
Bachelorarbeit für Software- & Information Engineering
LVA-Nr. 184.713

A Prototype for Incremental
Rule-based Stream Reasoning

Edward Tibor Toth
Matrikel-Nr. 0725631
25. November 2016

Betreuer
O.Univ.Prof. Dr. Thomas Eiter

Dipl.-Ing. Harald Beck

Contents

1 Introduction 2

2 Preliminaries 2
2.1 LARS . 2
2.2 Truth-Maintenance Systems 7

3 Stream Stratification 9

4 Extending Truth-Maintenance for LARS 10

5 Answer Update Algorithm 13
5.1 Main Procedure . 13
5.2 Sub-procedures . 15

6 Implementation 19
6.1 Programming Methodology 20
6.2 Algorithm in Scala . 21
6.3 Discussion . 25

7 Tests & Evaluation 26

8 Conclusion 29

Appendices 30

A TMS.scala 30

B TimeWindowAtomOperators.scala 39

1

1 Introduction

We are going to present a prototypical implementation of the answer update
algorithm presented in [BDE15]. The algorithm was introduced to update
results derived by stream reasoning [DCvF09] rather than recompute re-
sults from scratch. Recomputing results is highly impractical, if a stream
reasoning framework is used with semantics similar to Answer Set Program-
ming (ASP) [BET11] and thus there is a trade-off between complexity and
data throughput. Instead, the answer update algorithm uses the previously
calculated conclusions as input, which it updates if necessary.

For this novel implementation of the algorithm we put our emphasis
on keeping the structure and the overall appearance as close as possible to
the proposed algorithm. Furthermore, by using Scala we wanted to write
a program that consists of readable and easy to maintain code. Also by
examining the algorithm we wanted to uncover possible inconsistencies or
redundancies, and correct and remove them. Additionally we wanted to
simplify the algorithm, if possible. However as of writing this paper the
implementation does not incorporate everything perceived in [BDE15]. It
should also be noted that we did some testing on the functionality of the
program, but did not yet test it on its performance.

In the preliminaries we are going to introduce a fragment of a Logic-
based Framework for Analysing Reasoning over Streams (LARS) which is a
rule-based formalism to represent views on streaming data [BDTEF15], and
Truth-Maintenance Systems which update knowledge in a non-monotonic
way [RK91]. In Sections 3 and 4 we present concepts used and/or adapted
for the algorithm. Afterwards we present the algorithm on a high level and
also in detail, including the sub-procedures that are used. Finally we discuss
the implementation. We explain why we chose Scala as the implementation
language and we are going to compare the implementation to the proposed
algorithm and talk about the similarities and the differences between them.
Moreover we are going to highlight some parts of the code which show in-
teresting aspects of the program.

2 Preliminaries

In this section we are going to review some technical background.

2.1 LARS

The Logic-based framework for Analysing Reasoning over Streams (LARS)
is a rule-based modelling language [BDTEF15]. It uses concepts for stream
processing presented in [BW01]. To cope with the amount of data from
possibly infinite streams these concepts use snapshots of recent data, which
are obtained by so-called window operators (see below). Although LARS

2

also uses window operators to get snapshots from streams, it should be noted
that its semantics only consider finite streams. Snapshots are continuously
being queried by the user, either periodically or on request. LARS is also
influenced by [DCvF09] which studies logical reasoning over streaming data.

When LARS was first introduced, several aspects of stream reasoning
have already been investigated, although semantics of various languages
[BDTEF15] were usually defined only informally. However, advanced rea-
soning features like non-monotonicity or non-determinism have almost ex-
clusively been studied on static data. LARS provides a rule-based formalism
and different means to abstract from time (e.g. its window operator). It has
a non-monotonic semantics which can be seen as an extension of Answer Set
Programming ([GL88], [FLP04], [BET11]) for stream reasoning. There are
many application scenarios where stream reasoning might be used, such as
in public transportation. The real time information of vehicle locations can
be combined with time tables to reason about expected arrival times and
show travel options.

The following examples and definitions can also be found in [BDE15]
and [BDTEF15].

Example 1 On his way to his programming class near station Y , Franz
arrives at station X. He can decide to either take the tram line t or the bus
line b. The tram and the bus usually need about the same amount of time
to get from X to Y . Thus, Franz could just take the bus, which is expected
to arrive first at Y . He remembers though that there are often traffic jams
on the bus line. If that is the case, the tram could be faster.

The term stream, as we use it throughout this paper means that sets
of atoms are mapped to time points on a timeline. Formally a stream S is
a pair of a timeline T and a function v which maps sets of atoms to time
points in T .

Throughout, A denotes the set of atoms.

Definition 1 (Streams) A stream S = (T, v) consists of a closed inter-
val T ∈ N, called the timeline, with time points t ∈ T and an evaluation
function v : N 7→ 2A.

We distinguish input atoms from derived atoms. A stream is called a data
stream if it contains only input atoms. We will refer to data streams by
D = (TD, vD).

Definition 2 (Substreams, Restriction) Let S = (T, v) be a stream,
with a timeline T and an evaluation function v. Then a stream S′ = (T ′, v′)
is a substream of S, denoted by S′ ⊆ S, if T ′ ⊆ T and v′(t′) ⊆ v(t′), ∀t′ ∈

3

T ′. Moreover, S|T ′ denotes the restriction of S to T ′, i.e., the stream
(T ′, v|T ′), where

v|T ′(t) =

{
v(t) if t ∈ T ′

∅ else.

Streams can have very long timelines and thus hold big amounts of data.
Therefore we only consider recent data and use window functions to do so.
The substreams returned by window functions are called windows and can be
determined by a number of parameters. Two important window functions
are the sliding tuple-based and time-based window functions. The former
select a specified number of the most recent tuples and the latter select all
atoms within the last n time points.

Definition 3 (Window function) A window function is any function w
which returns a substream S′ of a given stream S at a time point t ∈ T .

In this work, we only consider sliding time-based windows.

Definition 4 (Time-based window function) Let S = (T, v) be a stream,
where T = [tmin, tmax], and let t ∈ T . Moreover, let k ∈ N. Then, the time-
based window function τ of size k is defined by

τk(S, t) = (T ′, v|T ′) ,

where T ′ = [max(tmin, t− k), t].

Note that the window function presented in Definition 4 is also referred to as
sliding time-based window function since it progresses at every time point.
For a more general definition see e.g. [BDTEF15].

In the sequel, we will also write evaluation functions as a set of mappings
from time points to sets of atoms. For instance, v = {42 7→ {a, b}} is the
evaluation function where v(42) = {a, b} and v(t′) = ∅ for all other time
points t′ in the considered timeline.

Example 2 Consider τ5, i.e, the time-based window function of size 5 and
let S = ([0, 9], v), where v = {3 7→ {a}}. Then, τ5(S, 6) = ([1, 6], {3 7→
{a}}), and τ5(S, 2) = ([0, 2], ∅).

Example 3 We can model the scenario of Example 1 with the public trans-
port from before the following way: We use a timeline TD = [1, 30000] where
each unit represents 0.1 seconds. For better readability, we write m for min-
utes, i.e., TD = [1, 50m]. The data stream is D = (TD, vD), where vD only
maps 37.2m to bus and 39.1m to tram, i.e., vD = {37.2m 7→ {bus}, 39.1m 7→
{tram}}. The time-based window of size 3 of D at time point t = 39.7m
is S′= (T ′, vD), where T ′= [36.7m, 39.7m]. Note that both atoms in D are
contained in the selected timeline, thus the evaluation function remains.

4

Any window function w can be used in so-called window operators of
form �w. Given a formula �wα, α will be evaluated on the window obtained
by w. Within the currently selected window, LARS allows to specify when
a formula has to hold. In addition to streaming data, also a static set of
background data B ⊆ A is considered. Formula evaluation is always relative
to a given time point t ∈ T . Let S = (T, v) be a stream and a ∈ A be an
atom. Informally,

• a holds, if a ∈ v(t) or a ∈ B,

• ♦a holds, if a holds at some time point t′ ∈ T ,

• �a holds, if a holds at all time points t′ ∈ T , and

• @t′a holds, if t′ ∈ T and a holds at t′.

Definition 5 (Extended Atom) Let a ∈ A be an atom, t ∈ N be a time
point and let w be a window function. Then, the set A+ of extended atoms
is defined by the grammar

a | @ta | �w@t a | �w♦a | �w�a. (1)

Any expression of the form �w@ta, �w♦a or �w�a is called a window
atom, and @ta is called an @-atom.

Throughout this paper, we will only use time-based window functions and
abbreviate �τk by �k for a window operator that uses a time-based window
of size k.

Example 4 (cont’d) Given the data stream D from Example 3, bus holds
at t = 37.2m, and @37.2mbus holds at any time point. Then, �3m@37.2mbus
and �3m♦bus hold at all time points t∈ [37.2m, 40.2m].

As mentioned above, LARS programs are extended answer set programs,
and thus have a similar syntax to ASP.

A LARS program P consists of rules r of form

η ← β(r), (2)

where H(r) = η is the head and

β(r) = β1, . . . , βi, not βi+1, . . . , not βn, (3)

where n ≥ 0, is the body. Here, η is an atom or an @-atom, and each βi is
an atom or a window atom. We call B+(r) = {β1, . . . , βi} the positive body
and B−(r) = {bi+1, . . . , βn} the negative body of r.

5

(r1) @T+3mexpBusM ← �3m@T bus, on.
(r2) @T+5mexpTramM ← �5m@T tram, on.
(r3) on ← �1m@T request.
(r4) takeBusM ← �+5m♦expBusM,not takeTramM,

not �3m ♦jam.
(r5) takeTramM ← �+5m♦expTramM, not takeBusM.

Figure 1: Program P based on examples 1 to 4

Example 5 Figure 1 shows a program with 5 rules. For instance, rule (r1)
specifies that we conclude the expectation of an arrival of a bus at station m
three minutes after the arrival of a bus, if atom on holds. Note that this rule
makes use of a time variable T and an addition “T + 3m” implicit in the @-
operator in the head. Variables serve as abbreviations for according ground
rules and arithmetic and similar operators/relations can be considered as
syntactic sugar given predefined predicates.

The semantics of programs are as follows. For a stream S = (T, v), we
define A(S) = {a ∈ v(t) | t ∈ T}. Given a set W of window functions
and background data B, a triple M = 〈S,W,B〉 is called a structure. Let
D = (TD, vD) be a data stream. Then, a stream I = (TD, v) ⊇ D that
extends D only by derived atoms is called an interpretation stream, i.e.,
no atom in A(I) \ A(D) is an input atom. The structure 〈I,W,B〉 is an
interpretation for D. Througout, W and B will be implicit. We assume
W always contains the time-based window functions used in the considered
examples. Moreover, B is empty, unless stated otherwise.

Given a structure M , a time point t and α ∈ A+, we write M, t |= α, if
α holds in (T, v) at time t. For a rule r, M, t |= β(r), if

(i) M, t |= β for all β ∈ B+(r) (4)

and
(ii) M, t 6|= β for all β ∈ B−(r). (5)

Further, M, t |= r holds iff M, t |= β(r) implies M, t |= H(r). If M, t |= r
for all r ∈ P , then M, t |= P holds and we call M a model of P (for D at
t). Moreover, M is minimal, if there is no model M ′ = 〈I ′,W,B〉 6= M of P
such that I ′ = (T, v′) and v′ ⊆ v. Note that smaller models must have the
same timeline.

Definition 6 (Answer Stream) Let I be an interpretation stream for D
and let P be a program. Then, I is an answer stream of P for D at time t,
if M = 〈I,W,B〉 is a minimal model of the reduct

PM,t = {r ∈ P |M, t |= β(r)}.

6

The set of all such answer streams I is denoted by AS(P,D, t).

2.2 Truth-Maintenance Systems

Truth Maintenance Systems [RK91] hold a knowledge base of what is be-
lieved to be true, and update that knowledge, based on new incoming infor-
mation. If the new information contradicts what was believed to be true,
the old contradicting knowledge is discarded and updated assuming the new
information to be true. This new information is treated as knowledge from
now on and also can be updated in turn. On the other hand, if the new infor-
mation confirms the current knowledge, the value can be kept and nothing
needs to be done. By updating the knowledge base on incoming new infor-
mation TMS are in effect an implementation of non-monotonic reasoning.
To avoid updating correct knowledge with false new knowledge an algorithm
using a TMS requires justifications which support this new knowledge. A
TMS using justifications was presented in [Doy79] and is called Justification-
based TMS (JTMS).

A JTMS data structure L is a pair (N,J), where N is a set of nodes
and J is a set of justifications J which has the form

J = 〈I|O → n〉, where I,O ⊆ N , n ∈ N. (6)

We call a node in if it is in set I and out if it is in set O. Thus we have

I = {in1, . . . , ink}

and
O = {o1, . . . , ol}.

A node n holds, iff all in ∈ I, hold, and no o ∈ O, holds. We assign truth
values to all in ∈ I and o ∈ O, where in = true (o = true) means that in
(o) holds. This means that I is a subset of a model M ⊆ N of a TMS data
structure L, and the set O has no common nodes with M . The sets M ,I
and O form the following set JM :

JM = {J | I ⊆M and O ∩M = ∅}, where J = 〈I|O → n〉 (7)

JM consists only of those justifications that are valid within a model M . A
model M can have additional properties:

For a justification J = 〈I|O → n〉 with I = {in1, . . . , inm} and O =
{o1, . . . , on} a logic program can be defined as follows [Elk90]:

PL = {rJ | J ∈ J } (8)

where rJ are rules of the form

n← in1, . . . , inm,not o1, . . . ,not on. (9)

7

Model Condition

founded if ∀ni ∈M there exists a total order n1 < · · · < nm,
s.t. some 〈I|O → ni〉 ∈ JM with I ⊆ {n1, . . . , ni − 1},
i.e. all elements in M have a supporting function

closed if ∀〈I|O → ni〉 ∈ JM , n ∈M
admissible if M is founded and closed

Figure 2: Model conditions

For a set of nodes N , the subset M ⊆ N is an admissible model of a
JTMS data structure L, iff M is an answer set of PL. See also Figure 2.2.
For a given admissible model M the TMS algorithm will try to update
M on arrival of a new justification J ′ = 〈I ′|O′ → n′〉 to an admissible
model M ′ of L = (N,J ∪ {J ′}). This is done by using the concepts of
(affected) consequences and support. We will introduce these concepts here
and formally define them in Section 4.

Before we can introduce the concepts we need to introduce the necessary
terms we are going to use. Nodes are represented as atoms. The set of
justifications is replaced by a program P . The set of atoms in a program P
is denoted by AP . See also [BDE15].

2.2.1 Status

An important concept is the status s of an atom, which can be any of the
set

{in, out, unknown},

where s = in means true and s = out means false. The status unknown is
only used during evaluation.

2.2.2 Rule conditions

The condition of a rule is determined by the statuses of its atoms in the
body of the rule. We have three different conditions:

• Valid rules are those where all atoms in the positive body (B+) have
status in and all atoms in the negative body (B−) have status out.

• Invalid rules have some atoms with status out in B+ or some atoms
with status in in B−.

• Unfounded rules have only atoms with status in in B+, some atoms
with status unknown and no atoms with status in in B−.

8

2.2.3 Support

The support(a) of an atom a is a set of atoms that depends on the status
of a.

• If a has status in the supporting atoms are composed of bodies of all
rules in the program that are valid and atom a is in their head.

• For status out of an atom a the set is composed of atoms from B+

(which have status out) and atoms from B− (which have status in),
where a is in the head of the rule. This applies only if there is no valid
rule for which a is in the rule head.

• If a has status unknown there is no support for a, i.e. the support is
the empty set.

2.2.4 (Affected) Consequences

The consequences of an atom a are those heads of rules where a is in their
body. The affected consequences is given by the set of atoms for which a is
in their support.

3 Stream Stratification

Stratification [ABW88] is a means to add a procedural aspect to logic pro-
grams (i.e. order of evaluation for predicates) by splitting the program into
strata which can be evaluated successively. However, this method is re-
stricted to programs with acyclic negation. By using stratification on in-
puts from streams and defining stream stratification the temporal validity
of atoms can be predicted hierarchically [BDE15]. To create a stratification
of a program P we need to define a dependency graph first.

Definition 7 (Stream dependency graph) For the dependency graph
of a program P we use a directed graph Gp = (V,E). The set of vertices
V contains the extended atoms α ∈ A+(P) in P , and atoms and @-atoms
contained in α. Formally we write

V = A+(P) ∪ {a | � ? a ∈ A+(P)} ∪ {@ta | �@ta ∈ A+(P)}, (10)

and ? ∈ {@t,♦,�}. The set E of edges contains

α→≥ β, if ∃r ∈ P s.t. α ∈ H(r) and β ∈ B(r),

@ta↔= a, if @ta ∈ A+(P), and

� ? a→> a, if � ? a ∈ A+(P).

9

Intuitively, an edge α→� β with �∈ {>,≥,=} means that the truth value
of α depends on the truth value of β. The � label indicates when it is
possible to separate the program into strata, which can in turn be evaluated
one after another.

Example 6 Let P = {v1 ← �5@tv2}. Then GP = (V,E), where

V = {v1,�5@tv2,@tv2, v2}

and
E = {v1 →≥ �5@tv2, �

5@tv2 →> v2, @tv2 ↔= v2}.

For a window atom �♦a the atom a has to be evaluated before the
window atom is evaluated. In the dependency graph this is an edge of the
form �♦a→> a. Now we can define stream stratification for logic programs.

Definition 8 (Stream stratification) Let P be a program and GP = (V,E)
its stream dependency graph. A mapping

λ : A+(P)→ {0, . . . , n}, n ≥ 0, (11)

is said to be a stream stratification if α→� β ∈ E implies λ(α) � λ(β)
for all �∈ {>,≥,=}. If such a stratification exists, P is called stream
stratified.

By definition, stratification also means that the dependency graph has
no cycles with an edge α →> β, i.e. two window atoms can not depend on
each other. Checking that no strongly connected sub-graph of GP contains
an edge α→> β, can be done in linear time using standard methods.

The evaluation of a stream stratified program P is the same as for any
other stratified logic program. The strata are evaluated one after another,
where the results of previous strata are the input for the current stratum.
We say the result is pushed to the next stratum.

4 Extending Truth-Maintenance for LARS

We are now going to review an extension of truth-maintenance techniques
for LARS as presented in [BDE15]. Similar to a TMS, which updates a
stable model in light of new rules, the answer update algorithm incrementally
updates a LARS answer stream.

To use a truth-maintenance system for LARS some of the concepts pre-
sented in Section 2.2 were adapted in [BDE15]. In addition, stream stratifi-
cation will be used to handle the stream input. For a TMS data structure
L a label L(α) = (s, T) is introduced, where s ∈ {in, out, unknown} is the
status of an extended atom α ∈ A+ and T is a set of time intervals during

10

Rule Conditions on statuses of atoms in B(r)

valid B+ all in ∧ B− all out
invalid B+ some out ∧ B− some in
unfounded B+ all in ∧ B− none in ∧ B− some unknown

Figure 3: Rule conditions

which α has status s. If L(α) = (s, T), we also write st(α) to refer to s. This
label extends the status from Section 2.2 by mapping it to time intervals.
The rule conditions also apply here, and are depicted in Figure 3. For better
readability abbreviations were used, e.g. “B+ all in” is an abbreviation for
∀a ∈ B+: st(a) = in.

The support and the (affected) consequences are also extended to incor-
porate the window atoms and @-atoms. We write α ∈̂P if α occurs in P .
Similarly, we write a ∈̂ω if atom a occurs in a window atom ω.

Definition 9 (Support) The support is the union of the positive, negative
and @-support of α. The positive and negative support of α support the
status of an atom by rules and the @-support captures the support for labels
of atoms α of the form @t′α.

Supp+(α) =

{
∅ if st(α) 6= in⋃
r∈PH(α)∧valid(r)B(r) otherwise

Supp−(α) =

∅ if st(α) 6= out⋃
r∈PH(α) f(r) where f(r) selects some random

β ∈ B+(r),where st(β) = out, or

β ∈ B−(r),where st(β) = in

Supp@(α) =

{
∅ if α /∈ A or st(α) = out⋃

@t′α∈̂P
@t′α if st(@t′α) = in

Supp(α) = Supp+(α) ∪ Supp−(α) ∪ Supp@(α)

The set of consequences for an atom α is the union of the consequences of the
head of a rule r in a program P , the window atoms for α and the atoms at
time t for α. The consequences capture the structural dependencies between
atoms a ∈ A and extended atoms α ∈ A+.

Definition 10 (Consequences) Let α ∈ A+ be an extended atom and P
a program, then the set of consequences for α is defined as:

11

Consh(α) = {H(r) | ∃r ∈ P, α ∈ B(r)}

Consw(α) =

{
{� ? a∈̂P} if α = a, where ? ∈ {♦,�} and a ∈ A
{�@tβ} if α = @tβ

Cons@(α) =

{
{a} if α = @t′a and @t′a ∈̂ P ,

∅ otherwise

Cons(α) = Consh(α) ∪ Consw(α) ∪ Cons@(α).

The set Cons∗(α) is the transitive closure of Cons(α), i.e., the smallest
set C where Cons(α) ⊆ C and

⋃
β∈C Cons(β) ⊆ C.

Definition 11 (Affected consequences) All consequences with α in their
support, plus all atoms a ∈ A, where α is an @-atom, are the affected con-
sequences of α.

ACons(α) = {β ∈ Cons(α) | α ∈ Supp(β)} ∪ Cons@(α)

For a set A of atoms, the affected consequences at time t are defined as:

ACons(A, t) =

{⋃
a∈ACons

∗(a) if t = 0⋃
a∈AACons

∗(@ta) \A if t > 0

By ACons∗(α) we denote the transitive closure of the affected consequences.
Its definition is similar to Cons∗(α).

The affected consequences can also be derived per stratum. In that case
only those atoms are allowed which belong to the current stratum.

Example 7 The grounded rule (r1), from the program in Figure 1, at time
t = 37.2m is:

(r′1) @40.2mexpBusM ← �3m@37.2mbus, on.

Consequences for this rule are as follows:

Consh(on) = {@40.2mexpBusM}
Consh(�3m@37.2mbus) = {@40.2mexpBusM}
Consw(@37.2mbus) = {�3m@37.2mbus}
Cons@(@40.2expBusM) = {expBusM}

With the following labels (r′1) is valid:

L(�3m@37.2mbus) = (in, [37.2m, 40.2m])
L(on) = (in, [38.0m, 39.0m])

The support and the affected consequences are

Supp+(@40.2mexpBusM) = {�3m@37.2mbus, on},
ACons(�3m@37.2mbus) = {@40.2mexpBusM}.

12

5 Answer Update Algorithm

In this section we will present the answer update algorithm. First we will
explain how the algorithm works at a high level. Afterwards, in Section 5.2,
we will go into detail on what the sub-procedures do.

5.1 Main Procedure

The general idea of the algorithm is to update the status of atoms from a
given program P within a time interval so that the answer, which is derived
from the program, is true for the current time and the available information.
The atoms which make it necessary to make an update are contained in the
data streamD, which is an input parameter for the answer update algorithm.
To handle the update in an efficient way several concepts are used. The high
level ideas of those concepts we presented in the previous sections and we
will now show how they were implemented.

The input program P for the algorithm is split into strata using the
method for stream stratification introduced in Section 3. The strata are also
numbered, where the stratum in which there are no atoms which depend on
other atoms, gets the number 1. We will also use the terms “first stratum”
and “lowest stratum” to refer to the stratum with number 1. The lowest
stratum is a special case in the algorithm. It is the only one where input
atoms are used. This requires to calculate some sets differently than on any
other stratum. We will go into detail about where these differences are and
how the process is different in the next section.

The update algorithm consists of several parts. The first part is the
collection and the status update of expired and fired atoms. Since we are
using an extended TMS this means that not only the status is updated, but
also the set of time intervals associated with it, i.e., we update the label of
atoms. The sub-procedure Expired in Line 6 of Algorithm 1 collects all atoms
for which their status is not out, but their time label does not contain any
time point between a specified time point and the current time point. After
that, ExpireInput in Line 7 updates the labels of all those atoms. Similarly
Fired in Line 9 collects all atoms whose status is not in, and FireInput in
Line 10 sets the labels accordingly. See Sections 5.2.1 - 5.2.4 for more details.

In the next part, starting at Line 15 with UpdateTimestamps, only the
timestamps of those atoms are updated for which the status does not change.
This is done based on sets of window atoms with changed labels and old
labels respectively, which were stored before. In Algorithm 1 these are the
variables C and L′. This is explained in detail in 5.2.5 UpdateTimestamps.

Now the algorithm looks at all the atoms which do not have a status yet,
or rather which have a status unknown. Several subroutines are involved in
setting the statuses. At first the status of every atom is set to unknown
in Line 16 if its time label does not contain the specified time point t.

13

Algorithm 1: AnswerUpdate(t,D,L)

Input: Time point t, data stream D, TMS structure L of a
stream-stratified program P = P0 ∪ . . . ∪ Pn for D at time
t′ < t

Output: Update of L for P at time t or fail

1 foreach stratum ` := 1→ n do
2 C := ∅ //affected window atoms
3 L′ := current labels
4
5 /∗ Update labels of window atoms ∗/
6 foreach ω ∈ Expired(`, t′, t) do
7 ExpireInput(ω, t)
8 C := C ∪ {ω}
9 foreach 〈ω, t1〉 ∈ Fired(`, t′, t) do

10 FireInput(ω, t1)
11 C := C ∪ {ω}
12
13 /∗ Update rule heads ∗/
14 //Where possible, extend rule head intervals
15 updateT imestamps(C,L′, `, t)
16 setUnknown(`, t) repeat
17 //determine label for some unknown head
18 if setRule(`, t) = fail then return fail
19 //fix supporting assignment for some unfounded valid rule
20 if makeAssignment(`, t) = fail then return fail

21 until no new assignment made
22 setOpenOrdAtomsOut(`, t)
23 PushUp(`, t) //heads serve as input for the next stratum

Afterwards for all atoms α, which now have status unknown, all rules where
α is in the rule head are checked for (in)validity. This is done by SetRule
in Line 18. Then the status and the time label of α are set appropriately
by setHead (see 5.2.7 SetRule/SetHead). There is also the case that a rule
was unfounded (see Sections 2.2 and 4). The subroutine MakeAssignment
in Line 20 will pick one such unfounded rule, set the status of the atom α to
in and the status of all atoms in the negative body to out. There are also
subroutines for the special cases of atoms and @-atoms where the label has to
be set in an extra step. See 5.2.7 SetHead and 5.2.9 SetOpenOrdAtomsOut
for details. Finally in Line 23 the atoms collected in Fired are added as
input and pushed to the next stratum.

14

5.2 Sub-procedures

We now go through the details of the sub-procedures.

5.2.1 Expired

As the name suggests, this method collects all atoms which are expired at
time t1 between time point t′ and t, i.e., t′ < t1 < t (that is all atoms a ∈ A
from a window atom ω = �k ? a ∈ A+, where ? ∈ {�,♦}, which had status
in, k time points before a time point t′ < t1 ≤ t.). All Fired (see below)
atoms are exempt from this set, and removed from the set of expired atoms,
if necessary.

Expired, shown in (12), is the union of the sets of expired atoms at a
time t1. These subsets (13), are unions of the sets of expired atoms for each
window atom (14). Time t∗ depends on the quantifier (i.e. {�,♦}) of the
window atom and whether the window atom incorporates an @-atom. The
basis for the subsets is a list of pairs of a ∈̂ω and the time point t′ at which
the atom had status in (15).

Expired(`, t′, t) :=
⋃

t′<t1≤t
Expired(`, t1) (12)

Expired(`, t) :=
⋃
ω∈̂P

{〈a, ω〉 | a ∈ exp(ω, t)} \ Fired(`, t) (13)

exp(ω, t∗) := {a | (a, t′) ∈ q(ω) ∧ t′ < t∗} (14)

q(ω) := {〈a, t′〉 | a ∈ A ∧ t′ < t ∧ st(a) = in} (15)

Note that only the set of expired atoms for stratum ` is being collected.

5.2.2 ExpireInput

After the collection process, the set of tuples of form 〈α, ω〉 returned by
Expired is traversed. For the label L(ω) = (s, T) of each window atom ω,
we check whether t2 < t for some [t1, t2] ∈ T . If t is past the interval from
the label, the status of a is set to out and its time label is set to Sout = [t∗1, t

∗
2],

where t∗i is again depending on the quantifier in ω. In addition, all window
atoms whose labels have changed are stored in a set C. This will be needed,
along with the original labels L′ in UpdateTimestamps.

15

5.2.3 Fired

This method collects all atoms which are firing between a time point t′ and
time point t, with t′ < t.

On the first stratum the fired atoms are collected from the input stream.
In higher strata they are collected from the previous strata. In addition to
the collected atoms, the time point t1 (i.e., the time point at which the firing
happens) is also saved. Similar to Expired the set of fired atoms is also the
union of fired atoms at a time point t′ < t1 ≤ t (16). In contrast to Expired
there is also a distinction in the collection process between the first stratum
(17) and higher strata (18). In the first stratum Fired(1, t) is collected from
atoms in the input stream (i.e. the value of v(t)), rather than from Push(`)
and PushNow(`).

Fired(`, t′, t) =
⋃

t′<t1≤t
Fired(`, t1) (16)

Fired(1, t) = {〈a, ω〉 | a ∈ υ(t) ∧ ω ∈ Consω(a)}∪
{〈@ta,�@ta〉 | a ∈ υ(t) ∧�@ta ∈̂P1}

(17)

Fired(`, t) = {〈α, ω, t〉 | 〈α, ω〉 ∈ PushNow(`)}∪
{〈α, ω, t1〉 | 〈α, ω, t1〉 ∈ Push(`) ∧ t1 ≤ t}

(18)

The set of fired atoms at higher strata is composed of atoms which can be
pushed immediately (i.e., at the current time t) and those pushed at a time
determined by the functions wf(α, ω, `) (21) and aR(a, ω, t1, t2) (22).

PushNow(`) = {〈a, ω〉 | wf(a, ω, `) ∧ a ∈
l−1⋃
i=1

Updated(i)} (19)

Push(`) =

〈@t′a, ω, t〉 | (wf(a, ω, `) ∨ wf(@t′a, ω, `))

∧ (@t′ ∈
⋃l−1
i=1 Updated(i)

∧ L(@t′a) = [t1, t2] ∧ t ∈ aR(a, ω, t1, t2))

 (20)

The following functions determine when and where to push the atoms.

wf(a, ω, `) =

{
true if ω ∈ Consω(α) ∧ (λ(ω) = `)

false otherwise
(21)

aR(a, ω, t1, t2) =

{
[t′ − n, t′] if n > 0, where tm(@t′a) = [m,n]

[t1, t2] otherwise
(22)

16

5.2.4 FireInput

The resulting set of Fired is traversed and the labels of the window atoms at
` are updated. The time intervals to which the labels are assigned, depend on
the window operators and functions, and whether an @-atom is involved. All
window atoms with changed labels are stored in C (same as for ExpireInput).

5.2.5 UpdateTimestamps/UpdateTimestamp

Using the set C and a data structure L′ that keeps the old labels, sets can
be computed which allow to determine how timestamps are updated. The
sets are:

• KI (keep in): contains the window atoms that keep their status in and
for which the time labels are extended.

• KO (keep out): contains the window atoms that keep their status out
and for which the time labels are extended.

• I2O (in to out): contains the window atoms that have their status
changed from in to out.

• O2I (out to in): contains the window atoms that have their status
changed from out to in.

We also define conditions on the sets KI, KO, I2O and O2I, which are for a
given rule r:

B+(r) ∩ I2O = ∅ ∧B−(r) ∩O2I = ∅ (U1)

B+(r) ∩KI 6= ∅ ∨B−(r) ∩KO 6= ∅ (U2)

B+(r) ∩KO 6= ∅ ∧B−(r) ∩KI 6= ∅ (U3)

Condition (U1) is true, if the support of r did not change. Condition (U2)
means that a positive (negative) atom from the body of r keeps its status in
(out), and its time label is extended. The time label of H(r) is extended if
its status is in. Finally Condition (U3) is similar, with the statuses switched.

UpdateT imestamp(r, status) is called with status = in if (U1) and (U2)
hold, and status = out if (U1) and (U3) hold. This is repeated until none
of the three rules (U1) - (U3) is satisfied by a rule r. UpdateTimestamp sets
the end point in the time label for H(r) to MinEnd(r, t) and, depending on
its status, adds H(r) to either KI or KO.

MinEnd(r, t) =

min{t2 | b ∈ B(r) if ∀b ∈ B(r) : t ∈ tm(b)

∧tm(b) = [t1, t2]}
t otherwise

(23)

17

5.2.6 SetUnknown

This function sets all atoms in ACons(A, `, t) to unknown if t is not within
their time label. A is the set of all fired and expired atoms in stratum ` at
time t.

5.2.7 SetRule/SetHead

SetRule(`, t) calls SetHead(α, `, t) for every α ∈ ACons(`, t) which has
status unknown. SetHead (see Algorithm 2) in return does several things.
First, it determines if there are (in)valid rules for which α is in their head.
We denote the set of rules with α in their head at a stratum ` with PH` (α).
If there is at least one rule which is founded valid the endpoint of the time
label L(α) is set to the biggest value of MinEnd(r, t) (see (23)) of all rules
on stratum ` with α in their head:

t∗ := max{MinEnd(r, t) | r ∈ PH` (α)},

and
L(α) := (in, [t, t∗]).

On the other hand, if all rules are founded invalid, then t∗ is the smallest
value:

t∗ := min{MinEnd(r, t) | r ∈ PH` (α)},
and

L(α) := (out, [t, t∗]).

Afterwards the function UpdateOrdAtom(α, status) is called, with sta-
tus either in or out, and the positive (respectively negative) support is up-
dated. Finally it is checked if there are atoms in the consequences of α which
have status unknown. For every such atom β, setHead(β, `, t) is called re-
cursively.

UpdateOrdAtom(α, status) updates only atoms of the form α = @t1a
(@-atoms). If status and st(a) are both in, UpdateOrdAtom inserts the
interval [t1, t1] into tm(a). If st(a) 6= in, the label of a is set to L(a) =
(in, [t1, t1]). If status = out and st(a) = in the interval [t1, t1] is removed
from tm(a). If st(a) = out as well, the label is set to unknown: L(a) =
(unknown, ∅).

5.2.8 MakeAssignment

For every affected consequence of α in stratum ` with status unknown the
sub-procedure MakeAssignment assigns a truth value. After the previous
functions every such atom is only supported by unfounded rules. If such
rules exist MakeAssignment sets the status of α to in (i.e. st(α) = in) and
all atoms in the negative body of the rule are set to out if their status is
unknown.

18

Algorithm 2: setHead(α, `, t)

1 if ∃r ∈ PH` (α) : valid(r) then
2 t? := max{MinEnd(r, t) | r ∈ PH` (α)}
3 L(α) := (in, [t, t?])
4 UpdateOrdAtom(α, in)
5 if α ∈ A then
6 foreach @t1α ∈ Supp@(α) do
7 add [t1, t1] to tm(α)

8 Updated(`) := Updated(`) ∪ {α}
9 update Supp+(α) as defined

10 foreach β ∈ Cons(α, `) : st(β) = unknown do
11 setHead(β, `, t)

12 else if ∀r ∈ PH` (α) : invalid(r) then
13 t? := min{MinEnd(r, t) | r ∈ PH` (α)}
14 L(α) := (out, [t, t?])
15 UpdateOrdAtom(α, out)
16 update Supp−(α) as defined
17 foreach β ∈ Cons(α, `) : st(β) = unknown do
18 setHead(β, `, t)

5.2.9 SetOpenOrdAtomsOut

Here any ordinary atom a with status unknown is set to (out, [t, t]). When
this procedure is called an atom a can have status unknown, if

• it is not concluded by any rule,

• but @-atoms of the form α = @ta update its status,

• and neither SetRule nor MakeAssignment set any of its @-atoms (i.e.
@ta) to status in.

5.2.10 PushUp

Before proceeding to the next stratum consequences are pushed up. For
every index i > ` PushNow(i) is added to Fired(i, t) and pairs of 〈a, ω〉 are
added to Fired(i, t′) for every triple 〈a, ω, t′〉 ∈ Push(i, t).

6 Implementation

In this section first we discuss the choice of Scala as implementation lan-
guage, i.e. the benefits and drawbacks compared to other languages. After-
wards we will discuss the implementation of the algorithm presented in the

19

previous section. We will compare Algorithm 1 to the implementation and
point out the differences between them. We will also discuss why there are
differences in some parts of the implementation.

6.1 Programming Methodology

The goal of the implementation was to keep the program as close as possible
to the pseudocode presented in [BDE15]. The implementation should of
course work as was intended by the algorithm in the first place but its
structure should also resemble the pseudocode and the formal definitions
from the previous sections as much as possible. The benefit we gain from
that is better readability and an easier comparison of the two. Although
these requirements were the most important there were other aspects to be
considered as well. The program should be written in a modern (i.e. well
supported and developed) programming language, which is fairly common
(or very close to a common language in terms of its syntax) and it should
be cross-platform if possible.

We wanted to maintain the representation of the formal definitions, so
we needed to find such a programming language. Many languages which
support that, use the functional programming paradigm (e.g. Haskell). The
problem which arises from that is that functional programming languages are
not well suited to keep state. This was a requirement because the algorithm
is based on updating state.

Fortunately in recent years functional programming has found its way
into several programming languages which also include mechanisms for im-
perative or even object-oriented programming. There are many multi-paradigm
languages which support functional and imperative (object-oriented) style
programming. There was only one programming language which fully sat-
isfied all of the requirements which is called Scala [OCD+06].

Scala first appeared in 2004. It aims to combine object-oriented and
functional style programming (as mentioned before), is compiled into Java
byte code and thus fully compatible with Java libraries. The Java Virtual
Machine (JVM) [LYBB], and the compatibility with Java, are strong argu-
ments for Scala, because of the vast ecosystem which has evolved around
it. For example if we would want to visualize the output, we would ben-
efit from all the frameworks that already exist for Java, and in increasing
number also for Scala itself. By compiling into Java byte code our program
becomes highly portable as well, since there is an implementation of the
JVM for virtually all common platforms.

Since Java also fulfils all of the requirements, except for the functional
paradigm, the question is why not use Java. The choice to use Scala instead
of Java had several reasons. For one Scala has a much cleaner, less verbose,
syntax than Java. For example, it uses a sophisticated static type inference
mechanism. This removes the need to explicitly declare types (similar to

20

many scripting languages, such as Python) with the benefit that types are
checked at compile time and thus bugs concerning wrong types are caught
at an early stage (in contrast to e.g. Python, where types are checked dy-
namically during execution) and are easier to debug.

Last but not least Scala itself is very scalable (hence the name). Scala’s
scalability comes from the integration of both object-oriented and func-
tional programming concepts. Further the scalability is manifested in Scala’s
“read–eval–print loop” (REPL) which allows for quick one-line expressions
and instant results on one hand. On the other hand code generated from
Scala comparable to Java code. In addition many issues are caught at com-
pile time rather than at execution [Ode].

In the next section we will point out the benefits of Scala and compare
parts of the main method of the algorithm to the pseudocode in Algorithm 1
and formal definitions from previous sections.

6.2 Algorithm in Scala

We were able to achieve our goal of implementing the algorithm as similar
to the pseudocode as possible, for almost all methods. For example, for the
main Algorithm 1 this was straightforward. (See also the implementation in
Listing 1.) The most noticeable differences are the type of the value wAOp
in the parameter list of answerUpdate in the implementation and that the
labels L are passed to almost every sub-method. The reason for the type of
wAOp is to ensure the generic nature of the algorithm. All window function
specific operations are encapsulated in a separate class. All these classes
have WindowAtomOperators as a common trait (Traits in Scala are similar
to interfaces in Java). Furthermore the value wAOp does not have the type
of the trait but is a HashMap which holds any class that implements the
trait WindowAtomOperators. This way multiple different window functions
can be used in the same call of the answerUpdate method. In case no special
window function is specified, we set the default to use a time-based window
function, along with its operators.

Listing 1: Answer Update Algorithm

def answerUpdate (L : Labels , tp : Int , t : Int , D: S ,
wAOp:HashMap [Class [<:

WindowFunctionFixedParams] ,
WindowAtomOperators] = HashMap()) : Option [
Labe ls] = {

waOperators ++= wAOp
val Lp = L . copy

for (l <− 1 to n) {
var C = Set [WindowAtom] ()
for (omega <− Expired (D, l , tp , t , L)) {

ExpireInput (omega , t , L)

21

C += omega
A += omega . atom
addToUpdated (omega , l)

}
for ((omega , t1) <− Fired (D, l , tp , t , L)) {

Fire Input (omega , t1 , l ,D,L)
C += omega
A += omega . atom
addToUpdated (omega , l)

}
UpdateTimestamps (C,L , Lp , l , t)
val unknowns = SetUnknown(l , t , L ,A)
var madeNewAssignment = fa l se
do {

i f (SetRule (l , t , L , unknowns) == f a i l) return None
val opt : Option [Boolean] = MakeAssignment (l , t , L , unknowns)
i f (opt . isEmpty) {

return None
}
madeNewAssignment=opt . get

} while (madeNewAssignment)
SetOpenOrdAtomsOut (l , t , L)
PushUp(l , t , L)

}
Option (L)

}

The methods Fired and SetHead were the most difficult methods to
implement. Especially Fired , because it depends on several sub-procedures
to collect its atoms. Listing 2 displays the method Fired along with its
sub-procedures. Note that there are two different Fired methods. We will
now elaborate the differences between the two Fired methods and the sub-
procedures Push and PushNow.

• The first Fired method takes a substream in the interval [tp, t] defined
by the method parameters, and then iterates over every time point in
the interval. For every time point t1 ∈ [tp, t] the second Fired method
is called. It implements Equation (16).

• In the second Fired method there are two cases which can apply. The
first case applies if the current stratum is the first stratum. The second
case applies for any other stratum. For every higher stratum the fired
atoms are computed by using the methods Push and PushNow. This
implements the equations (17) and (18).

• Push and PushNow collect pairs of window atoms and time points
when these atoms are pushed. For PushNow this is always the current
time (i.e. the value t: Int passed to the method as an argument). For
every @-atom Push checks if there is a corresponding window atom

22

using wf, and then computes its active range using aR. Note that aR
is specific to each window function. These methods implement the
equations (19) - (22).

Fired and Expired are the two methods which have the most differences
between their formal definitions in [BDE15] and the implementation. This
could not be avoided because we needed to check the types of atoms to
distinguish between atoms, @-atoms and window atoms and had to loop
over all atoms and time points.

Listing 2: Fired

def Fired (D: S , l : Int , tp : Int , t : Int , L : Labe ls) : Set [(
WindowAtom, Int)] = {

var r e s u l t = Set [(WindowAtom, Int)] ()
i f (tp >= t) return Set ()

val t l p = Timel ine (tp + 1 , t)
val Dp = S(t lp , D. v | t l p)

for (t1 <− tp to t) {
r e s u l t ++= Fired (l , t1 ,Dp,L)

}
r e s u l t

}

def Fired (l : Int , t1 : Int , D: S , L : Labels) : Set [(WindowAtom,
Int)] = {

l match {
case 1 =>

var r e s u l t = Set [(WindowAtom, Int)] ()
for (a <− D(t1)) {

for (r <− stratum (l) . r u l e s) {
val tmp = (r .B ++ Set (r . h)) f i l t e r (p =>

ConsW(stratum (l) , a) . conta in s (p) | | p . conta in s (
AtAtom(t1 , a)))

tmp . c o l l e c t { case wa :WindowAtom => wa} f o r each {
wa => r e s u l t += ((wa , t1)) }

}
}

r e s u l t
case =>

Push (l , t1 , L) ++ PushNow(l , t1)
}

}

def Push (l : Int , t : Int , L : Labe ls) : Set [(WindowAtom, Int)] = {
var r e s u l t = Set [(WindowAtom, Int)] ()
for (i <− 1 to l −1) {

i f (updated . conta in s (i)) {
updated (i) c o l l e c t {case a :AtAtom => a} f o r each {

ata =>
for (i v <− tm(ata , L)) {

23

(wf (ata , l) ++ wf (ata . atom , l)) f o r each { a =>
val wfn = waOperators (a . wop . wfn . ge tC la s s)
i f (wfn . aR(a , iv , ata . t) . conta in s (t)) {

r e s u l t += ((a , ata . t))
}

}
}

}
}

}
push fo r each { r => r e s u l t += ((r , t)) }
r e s u l t

}

def PushNow(l : Int , t : Int) : Set [(WindowAtom, Int)] = {
var r e s u l t : Set [(WindowAtom, Int)] = Set ()
for (i <− 1 to l −1) {

i f (updated . conta in s (i)) {
updated (i) c o l l e c t {case a :Atom => a} f o r each {

ea =>
val wa = wf (ea , l) . f i l t e rN o t (a => a . nested . e x i s t s {

case at :AtAtom => true})
wa fo r each {a => r e s u l t += ((a , t)) }

}
}

}
r e s u l t ++ pushNow

}

def wf (atom : ExtendedAtom , l : Int) : Set [WindowAtom] = {
ConsW(stratum (l) , atom) c o l l e c t {case wa :WindowAtom => wa}

}

The case is different for SetHead (see Listing 3). This method resem-
bles the proposed algorithm (Algorithm 2). There are some slight changes
nonetheless. For instance we need to add an extra argument prev to the
method. In the next section we will discuss this further.

Listing 3: SetHead

def SetRule (l : Int , t : Int , L : Labels , unknowns : Set [
ExtendedAtom]) : Result = {

for (a <− unknowns) {
i f (SetHead (a , a , l , t , L) == f a i l) return f a i l

}
success

}

def SetHead (prev : ExtendedAtom , alpha : ExtendedAtom , l : Int , t
: Int , L : Labe ls) : Result = {

val ph = PH(stratum (l) , alpha)
val t imeSet = minTime(ph , t , L)

24

i f (ph . e x i s t s (r => fVal (L , r))) {
i f (t imeSet . nonEmpty) {

val tS ta r = timeSet .max
L . update (alpha , Label (in , (t , tS ta r)))
UpdateOrdAtom(alpha , in ,L)
alpha match {

case wa :WindowAtom => /∗do noth ing ∗/
case =>

val suppAt = support . suppAt (alpha)
suppAt . f o r each {

case ata :AtAtom => L . addInte rva l (ata ,new
Clo s ed In t In t e r va l (ata . t , ata . t))

}
}
addToUpdated (alpha , l)
support . updateP (stratum (l) ,L)

}
} else i f (ph . nonEmpty && ph . f o r a l l (r => f I n v a l (L , r))) {

i f (t imeSet . nonEmpty) {
val tS ta r = timeSet . min
L . update (alpha , Label (out , (t , tS ta r)))
UpdateOrdAtom(alpha , out , L)
support . updateN (stratum (l) ,L)

}
}
Cons (stratum (l) , alpha) f o r each { beta =>

i f (prev != beta && beta != alpha && L . s t a tu s (beta) ==
unknown) {

i f (SetHead (alpha , beta , l , t , L) == f a i l) {
return f a i l

}
}

}
success

}

6.3 Discussion

While writing the prototype we changed some details of the proposed answer
update algorithm. Most of these changes are reflected in the implementation,
although we also modified parts of the pseudocode from [BDE15].

The changes include the sets returned by the sub-procedures Expired
and Fired in Algorithm 1. In Line 6 we replaced the pair 〈a, ω〉 with a single
window atom and in Line 9 we replaced the former triple 〈a, ω, t1〉 with
the pair 〈ω, t1〉. Atom a was redundant, because it is contained within ω.
Further we changed the name of the TMS data structure from M to L in
order to be consistent with the implementation. In Algorithm 2 we changed
the names of fVal to valid and fInval to invalid for better readability. In
Line 5 of Algorithm 2 we also replaced the expression “α is ordinary” with

25

“a ∈ A” because we do not use the term ordinary to describe atoms.
For the algorithm to return the correct results we modified some pro-

cedures to inspect atoms within window atoms. These procedures include
FireInput and ACons. FireInput not only checks for @-atoms directly within
the program, but also within window atoms. The procedure Acons(α),
which collects all atoms where α is in the support of its consequences, and
it also checks if α is contained within an extended atom of its support.

We also changed L, which acts as the TMS data structure in our imple-
mentation, from a global variable to a local one which is passed to methods
as an argument. The consequence of this change is that we had to turn the
immutable map, held internally by L, into a mutable map. In Scala the
difference is that the contents of a mutable data structure, in this case a
map, can be changed. On the other hand, immutable data structures create
a new instance every time some value is changed or the data structure is
assigned to a new variable. Because we need to change the content of L,
an immutable map would be impractical since L would reference a differ-
ent object every time we passed it to a method. So all the changes in the
method would be lost once it returned. If we kept L as an immutable map,
L would need to return from every method. The drawback would be that
we either could not return any other values, or need to pair L with every
return value. As a side effect this change enhanced the readability of the
program in the sense that now every use of L can be seen at first glance.
This was especially helpful in the process of debugging the code.

We also changed the argument list of SetHead. In Listing 3 the argu-
ment f appears twice in the call of method SetHead(f, f, l, t, L). This was
necessary to prevent SetHead from recursing infinitely. Note that the first
two arguments of SetHead are the same only for the first call. For every
subsequent call it is checked if the first two arguments are equal. If they
are, SetHead is not called again.

In an effort to comply with Scala’s idiom, we use pattern matching, and
built-in functions for collections. For instance such functions include foreach,
filter and exists. Pattern matching allows us to replace if-else constructs and
directly match fields in case classes. All of these mechanisms make the code
more concise and increase its readability.

7 Tests & Evaluation

We will now show the results of running our implementation of the answer
update algorithm. We will present the input and output for every sub-
procedure of the answer update algorithm. We will also point out where the
implementation differs from the proposed algorithm in [BDE15] and why we
changed it. Throughout, we refer to the program P from Figure 1.

26

Example. Let D = (T, v) be the data stream, where T = [0m, 50m] and
v = {37.2m 7→ {bus, request}, 39.1m 7→ {tram}, 40.2m 7→ {expBus}, 44.1m 7→
{expTr}}. Consider time point t = 37.2m.

Prior to calls to answerUpdate, the strata of P are determined. Stratum
P1 consists of rules (r1), (r2) and (r3):

(r1) @37.2m+3mexpBusM ← �3m@37.2mbus, on.
(r2) @39.1m+5mexpTramM ← �5m@39.1mtram, on.
(r3) on ← �1m@37.2mrequest.

P2 consists of rules (r4) and (r5):

(r4) takeBusM ← �+5m♦expBusM,not takeTramM,not �3m ♦jam.
(r5) takeTramM ← �+5m♦expTramM, not takeBusM.

The bus arriving at t = 37.2m and the request, denoted by @37.2mbus
and @37.2mrequest are in the first stratum, i.e., in P1.

At time t = 37.2m the labels of all atoms α ∈ A are L(α) = (out, [0, 0]).
Recall that L denotes the data structure holding the labels for all atoms.

Expired. The first sub-procedure called in answerUpdate is Expired. More
specifically, we call Expired(D, l, tp, t, L), where D is the data stream, l = 1
is the stratum, tp = t = 37.2m are time points.

For every window atom omega returned by Expired, ExpireInput(omega, t, L)
is called. For our current arguments Expired returns the empty set, i.e.,

Expired(D, l, tp, t, L) = Set().

Therefore, ExpireInput is not executed.

Fired/FireInput. Next, Fired(D, l, tp, t, L) is called with the same ar-
guments as for Expired. It contains two pairs:

Fired(D, 1, 37.2m, 37.2m,L) = Set((�3m@37.2m bus, 37.2m),
(�1m@37.2m request, 37.2m))

Now FireInput(omega, t1, l, D, L) is called, where omega = �3m@37.2m bus
and t1 = 37.2m in one loop, and �1m@37.2m request and t1 = 37.2m in the
other loop.

FireInput updates the label for omega and @-atoms at time t1. Note that
FireInput checks whether there are such @-atoms within window atoms. In
the original presentation of the algorithm only those @-atoms where updated
that are directly contained in P , i.e., not in the scope of a window. However,
all of them need to be accounted for to compute the transitive consequences
later. Without this change @-atoms would sometimes not have the correct
labels.

The updated label for omega is (in, [22320, 22320]) for both �3m@37.2m bus
and �1m@37.2m request. Note that 22320 = 37.2m.

27

UpdateTimestamps. We call UpdateT imestamps(C,L,Lp, l, t), where
argument C contains all updated window atoms. Here, we have C =
{�3m@37.2m bus,�1m@37.2m request}. The value Lp is a copy of L which
contains the original labels. At this point, UpdateTimestamps does not do
anything.

SetUnknown. The method SetUnknown(l, t, L,A) is called where A =
{bus} is the set of input atoms. It calculates ACons(a) for every a ∈ A.
SetUnknown returns the following set, and set all statuses to unknown:

SetUnknown(1, 37.2, L, {bus}) = {expBusM,@40.2m expBusM on}

SetRule/SetHead. Next, method SetRule(l, t, L, unknowns) is called
with uknowns = {expBusM,@40.2m expBusM, on} which was returned by
SetUnknown. For every a ∈ unknowns, SetRule calls SetHead(a, a, l, t, L).
First SetHead sets the label of on to (in, [37.2m, 38.2m]). In a further iter-
ation the method determines that rule (r1) is valid, since on now has status
in. Thus it assigns @40.2m expBusM to in and, SetHead assigns

L(@40.2m expBusM) = (in, [37.2m, 38.2m]).

The call of SetHead for expBusM does nothing because expBusM is not in
the head of any rule.

SetOpenOrdAtomsOut. After SetRule is called, nothing needs to be
done in MakeAssignment, since no atom in unknowns remains unknown.
Thus, we next call SetOpenOrdAtomsOut(l, t, L) which sets the status of
expBusM to out.

PushUp. The only extended atom being pushed to the next stratum is
�+5m♦expBusM .

Consider now stratum 2. The label for the window atom �+5m♦expTramM
is still (out, [0, 0]) as initialized. Due to its status, rule (r5) is invalid. There-
fore, the label of takeTrM is updated to (out, [37.2, 37.2]). However, the
status for �+5m♦expBusM is set to in. Although �+5m♦expTramM is out
takeBusM cannot be set to in because �3m♦jam from (r4) is still out.

If we call the algorithm again later at t = 38m, UpdateTimestamps will
extend the time intervals in the labels for on and @40.2m expBusM . If
on and @40.2m expBusM get their time intervals updated depends on
the atoms in the body of the rules they are concluded by. The method
checks which atoms the status stayed the same. In this example the sta-
tuses for �3m@37.2m bus and �1m@37.2m request are not changed from
in. Now for every rule the three conditions mentioned in Section 5.2.5
are checked. The conditions (U1) and (U2) become true, and thus the

28

method UpdateT imestamp(r : StdRule, s : Status, t : Int, L : Labels) is
called with r = (r3) and s = in for on, and with r = (r1) and s = in for
@40.2m expBusM . The argument t is the same as for UpdateTimestamps.
The UpdateTimestamp method sets the new time interval for the rule head.
In our example the new labels are L(on) = Label(in, Set([37.2m, 38.2m]))
and L(@40.2m expBusM) = Label(in, Set([40.2m, 40.2m])).

8 Conclusion

In this work we have presented a detailed description of the answer update
algorithm of [BDE15] and a prototypical implementation. We tried to stay as
close to the proposed algorithm and the mathematical definitions as possible.
In some cases however this was impossible or impractical as we have pointed
out. The program is also far from being finished. For one, we only considered
time-based window functions whereas at least tuple-based window functions
would be interesting to implement as well.

Another topic which is a subject for future work is exploiting the func-
tional programming capabilities of Scala even more. We did use it where
it was convenient, e.g. by using immutable collections, but more imperative
constructs could be replaced by functional ones to improve readability. Our
code still has many properties of imperative, respectively object-oriented
programming. There is also little to no error handling in the code, which
we omitted to concentrate solely on the algorithm itself.

For further reading the code for all procedures presented in this paper
can be found in Appendix A and Appendix B. Appendix A depicts the main
procedure along with all the window function independent sub-procedures
and Appendix B shows all the methods specific for time-based windows. The
whole framework can also be found on Github.1

1https://github.com/hbeck/lars, accessed: 2016-11-18

29

https://github.com/hbeck/lars

Appendices

A TMS.scala

package l a r s . tms

import l a r s . core . C l o s ed In t In t e rva l
import l a r s . core . semant ics . formulas .
import l a r s . core . semant ics . programs . extatoms .
import l a r s . core . semant ics . programs . g ene ra l . i n sp e c t .

ExtensionalAtoms
import l a r s . core . semant ics . programs . standard . i n sp e c t .PH
import l a r s . core . semant ics . programs . standard .{ StdProgram ,

StdRule}
import l a r s . core . semant ics . streams .{S , Timel ine }
import l a r s . core . windowfn . WindowFunctionFixedParams
import l a r s . core . windowfn . time . TimeWindowFixedParams
import l a r s . s t r a t . St rata
import l a r s . tms . acons . ACons
import l a r s . tms . cons .{Cons , ConsStar , ConsW}
import l a r s . tms . i n c r . Result
import l a r s . tms . i n c r . Result .{ f a i l , success}
import l a r s . tms . s t a tu s . Status .{ in , out , unknown}
import l a r s . tms . s t a tu s . r u l e .{ f I nva l , fVal , ufVal }
import l a r s . tms . s t a tu s .{ Label , Labels , Status }
import l a r s . tms . supp .

// import s c a l a . c o l l e c t i o n . immutable .
import s c a l a . c o l l e c t i o n . immutable .HashMap

/∗∗
∗ Created by hb on 6/25/15.
∗/

case class TMS(P: StdProgram) {

private val stratum : Map[Int , StdProgram] = Strata (P)
private val n = stratum . keySet . reduce (math .max)
private var updated = Map[Int , Set [ExtendedAtom]] ()
private var waOperators : HashMap [Class [<:

WindowFunctionFixedParams] , WindowAtomOperators] =
HashMap(c l a s sO f [TimeWindowFixedParams] −>

TimeWindowAtomOperators)
private var pushNow = Set [(WindowAtom, Int)] ()
private var push = Set [WindowAtom] ()
private var A = Set [Atom] ()
private var support = Support ()

def answerUpdate (L : Labels , tp : Int , t : Int , D: S ,
wAOp:HashMap [Class [<:

WindowFunctionFixedParams] ,
WindowAtomOperators] = HashMap()) : Option [
Labe ls] = {

30

waOperators ++= wAOp
val Lp = L . copy

for (l <− 1 to n) {
var C = Set [WindowAtom] ()
for (omega <− Expired (D, l , tp , t , L)) {

ExpireInput (omega , t , L)
C += omega
A += omega . atom
addToUpdated (omega , l)

}
for ((omega , t1) <− Fired (D, l , tp , t , L)) {

Fire Input (omega , t1 , l ,D,L)
C += omega
A += omega . atom
addToUpdated (omega , l)

}
UpdateTimestamps (C,L , Lp , l , t)
val unknowns = SetUnknown(l , t , L ,A)
var madeNewAssignment = fa l se
do {

i f (SetRule (l , t , L , unknowns) == f a i l) return None
val opt : Option [Boolean] = MakeAssignment (l , t , L , unknowns)
i f (opt . isEmpty) {

return None
}
madeNewAssignment=opt . get

} while (madeNewAssignment)
SetOpenOrdAtomsOut (l , t , L)
PushUp(l , t , L)

}
Option (L)

}

def addToUpdated (atom : ExtendedAtom , l : Int) = {
val heads = stratum (l) . r u l e s e x i s t s { r u l e => r u l e . h . conta in s

(atom) }
i f (heads) {

updated += l −> (updated . getOrElse (l , Set ()) ++ Set (atom))
}

}

def i n i t () : Labe ls = {
val L = Labels ()
i n i t L ab e l s (L)
in itUpdated ()
answerUpdate (L , 0 , 0 , S (Timel ine (0 , 0)))
support = in i tSuppor t (L)
L

}

def i n i t L ab e l s (L : Labe ls) = {
val inputAtoms : Set [Atom] = ExtensionalAtoms (P)

31

A = inputAtoms

A fo reach {a => L . update (a , Label (out , (0 , 0))) }
val transCons : Set [ExtendedAtom] = A. flatMap (ConsStar (P,))

for (x <− transCons) {
x match {

case wa :WindowAtom => L . update (x , Label (out , (0 , 0)))
case => L . update (x , Label (unknown))

}
}

}

def in i tUpdated () = {
for (i <− 1 to n) {

updated += i −> Set ()
}

}

def i n i tSuppor t (L : Labels) : Support = {
val support = Support ()
var programAtoms : Set [ExtendedAtom] = Set ()
for (r u l e s <− P. r u l e s) {

programAtoms ++= (r u l e s .B ++ Set (r u l e s . h))
}

programAtoms fo r each {
a => support . suppP += a −> SuppP(P,L , a)

support . suppN += a −> SuppN(P,L , a)
support . suppAt += a −> SuppAt (P,L , a)

}
support

}

def Expired (D: S , l : Int , tp : Int , t : Int , L : Labe ls) : Set [
WindowAtom] = {

var r e s u l t = Set [WindowAtom] ()
val omegaSet = getOmega (stratum (l))

i f (omegaSet . isEmpty) return r e s u l t
for (omega <− omegaSet) {

for (t1 <− tp to t) {
i f (waOperators (omega .wop . wfn . ge tC la s s) . exp (omega , L , t1 ,

Fired (l , t1 ,D,L))) {
r e s u l t += omega

}
}

}
r e s u l t

}

def getOmega (P: StdProgram) : Set [WindowAtom] = {
var r e s u l t = Set [WindowAtom] ()
var pH = Set [ExtendedAtom] ()

32

P. r u l e s . f o r each (pH += . h)
(pH ++ P. r u l e s . f latMap (.B)) c o l l e c t {case wa :WindowAtom =>

wa} f o r each { r e s u l t += }
r e s u l t

}

def Fired (D: S , l : Int , tp : Int , t : Int , L : Labe ls) : Set [(
WindowAtom, Int)] = {

var r e s u l t = Set [(WindowAtom, Int)] ()
i f (tp >= t) return Set ()

val t l p = Timel ine (tp + 1 , t)
val Dp = S(t lp , D. v | t l p)

for (t1 <− tp to t) {
r e s u l t ++= Fired (l , t1 ,Dp,L)

}
r e s u l t

}

def Fired (l : Int , t1 : Int , D: S , L : Labels) : Set [(WindowAtom,
Int)] = {

l match {
case 1 =>

var r e s u l t = Set [(WindowAtom, Int)] ()
for (a <− D(t1)) {

for (r <− stratum (l) . r u l e s) {
val tmp = (r .B ++ Set (r . h)) f i l t e r (p =>

ConsW(stratum (l) , a) . conta in s (p) | | p . conta in s (
AtAtom(t1 , a)))

tmp . c o l l e c t { case wa :WindowAtom => wa} f o r each {
wa => r e s u l t += ((wa , t1)) }

}
}

r e s u l t
case =>

Push (l , t1 , L) ++ PushNow(l , t1)
}

}

def Push (l : Int , t : Int , L : Labe ls) : Set [(WindowAtom, Int)] = {
var r e s u l t = Set [(WindowAtom, Int)] ()
for (i <− 1 to l −1) {

i f (updated . conta in s (i)) {
updated (i) c o l l e c t {case a :AtAtom => a} f o r each {

ata =>
for (i v <− tm(ata , L)) {

(wf (ata , l) ++ wf (ata . atom , l)) f o r each { a =>
val wfn = waOperators (a . wop . wfn . ge tC la s s)
i f (wfn . aR(a , iv , ata . t) . conta in s (t)) {

r e s u l t += ((a , ata . t))
}

}

33

}
}

}
}
push fo r each { r => r e s u l t += ((r , t)) }
r e s u l t

}

def PushNow(l : Int , t : Int) : Set [(WindowAtom, Int)] = {
var r e s u l t : Set [(WindowAtom, Int)] = Set ()
for (i <− 1 to l −1) {

i f (updated . conta in s (i)) {
updated (i) c o l l e c t {case a :Atom => a} f o r each {

ea =>
val wa = wf (ea , l) . f i l t e rN o t (a => a . nested . e x i s t s {

case at :AtAtom => true})
wa fo r each {a => r e s u l t += ((a , t)) }

}
}

}
r e s u l t ++ pushNow

}

def wf (atom : ExtendedAtom , l : Int) : Set [WindowAtom] = {
ConsW(stratum (l) , atom) c o l l e c t {case wa :WindowAtom => wa}

}

def ExpireInput (omega : WindowAtom, t : Int , L : Labe ls) : Unit =
{
i f (! tm(omega ,L) . e x i s t s (e => e . upper > t)) {

val wfn = waOperators (omega .wop . wfn . ge tC la s s)
val s out = wfn . SOut(omega , t)
L . update (omega , Label (out , (s ou t . lower , s ou t . upper)))

}
}

def Fire Input (omega : WindowAtom, t : Int , l : Int , D: S , L : Labe ls)
: Unit = {

val ata = new AtAtom(t , omega . atom)

i f (P. r u l e s e x i s t s (r => r .B. e x i s t s (. conta in s (ata)) | | r . h .
conta in s (ata))) {

L . update (ata , Label (in , (t , t)))
}

val wfn = waOperators (omega .wop . wfn . ge tC la s s)
val s i n : Option [C l o s ed In t In t e r va l] = wfn . SIn (omega , t , l , D,

L)

i f (s i n . i sDe f i n ed) {
L . update (omega , Label (in , (s i n . get . lower , s i n . get . upper)

))
}

34

}

def tm(a : ExtendedAtom , L : Labels) : Set [C l o s ed In t In t e r va l] = L .
i n t e r v a l s (a)

def MinEnd(r : StdRule , t : Int , L : Labe ls) : Int = {
var t2Set = Set [Int] ()

i f (r .B f o r a l l (tm(,L) e x i s t s (. conta in s (t)))) {
r .B fo r each (tm(,L) f o r each (t2Set += . upper))

return t2Set . min
}
t

}

def UpdateTimestamps (C: Set [WindowAtom] , L : Labels , Lp : Labels ,
l : Int , t : Int) : Unit = {

var ki , ko , i2o , o2 i = Set [ExtendedAtom] ()

for (wa <− C) {
val newStatus = L . s t a tu s (wa)
i f (newStatus == Lp . s t a tu s (wa)) {

i f (newStatus == in) {
k i += wa

}
else ko += wa

} else {
i f (newStatus == in) o2 i += wa
else i 2o += wa

}

}
for (r u l e <− stratum (l) . r u l e s) {

val u1 = (ru l e .Bp i n t e r s e c t i 2o) . isEmpty && (ru l e .Bn
i n t e r s e c t o2 i) . isEmpty

val u2 = (ru l e .Bp i n t e r s e c t k i) . nonEmpty | | (r u l e .Bn
i n t e r s e c t ko) . nonEmpty

val u3 = (ru l e .Bp i n t e r s e c t ko) . nonEmpty | | (r u l e .Bn
i n t e r s e c t k i) . nonEmpty

i f (u1 && u2) {
val head = UpdateTimestamp (ru le , in , t , L)
i f (head . i sDe f i n ed) k i += head . get

} else i f (u1 && u3) {
val head = UpdateTimestamp (ru le , out , t , L)
i f (head . i sDe f i n ed) ko += head . get

}
}

}

def UpdateTimestamp (r : StdRule , s : Status , t : Int , L : Labe ls) :
Option [ExtendedAtom] = {

i f (L . s t a tu s (r . h) == s) {
var newInterva l s = Set [C l o s ed In t In t e r va l] ()

35

for (i n t e r v a l <− L . i n t e r v a l s (r . h)) {
i f (i n t e r v a l . conta in s (t)) newInterva l s ++= Set (new

Clo s ed In t In t e r va l (i n t e r v a l . lower ,MinEnd(r , t , L)))
newInterva l s += i n t e r v a l

}
L . update (r . h , Label (s , newInte rva l s))
return Option (r . h)

}
None

}

def SetUnknown(l : Int , t : Int , L : Labels , A: Set [Atom]) : Set [
ExtendedAtom] = {

var unknowns : Set [ExtendedAtom] = Set ()
for (a <− ACons(stratum (l) ,L ,A, support , t)) {

i f (! (L . i n t e r v a l s (a) e x i s t s (. conta in s (t)))) {
L . update (a , Label (unknown , L . i n t e r v a l s (a)))
unknowns += a

}
}
unknowns

}

def SetRule (l : Int , t : Int , L : Labels , unknowns : Set [
ExtendedAtom]) : Result = {

for (a <− unknowns) {
i f (SetHead (a , a , l , t , L) == f a i l) return f a i l

}
success

}

def SetHead (prev : ExtendedAtom , alpha : ExtendedAtom , l : Int , t
: Int , L : Labe ls) : Result = {

val ph = PH(stratum (l) , alpha)
val t imeSet = minTime(ph , t , L)

i f (ph . e x i s t s (r => fVal (L , r))) {
i f (t imeSet . nonEmpty) {

val tS ta r = timeSet .max
L . update (alpha , Label (in , (t , tS ta r)))
UpdateOrdAtom(alpha , in ,L)
alpha match {

case wa :WindowAtom => /∗do noth ing ∗/
case =>

val suppAt = support . suppAt (alpha)
suppAt . f o r each {

case ata :AtAtom => L . addInte rva l (ata ,new
Clo s ed In t In t e r va l (ata . t , ata . t))

}
}
addToUpdated (alpha , l)
support . updateP (stratum (l) ,L)

}

36

} else i f (ph . nonEmpty && ph . f o r a l l (r => f I n v a l (L , r))) {
i f (t imeSet . nonEmpty) {

val tS ta r = timeSet . min
L . update (alpha , Label (out , (t , tS ta r)))
UpdateOrdAtom(alpha , out , L)
support . updateN (stratum (l) ,L)

}
}
Cons (stratum (l) , alpha) f o r each { beta =>

i f (prev != beta && beta != alpha && L . s t a tu s (beta) ==
unknown) {

i f (SetHead (alpha , beta , l , t , L) == f a i l) {
return f a i l

}
}

}
success

}

def minTime(r u l e s : Set [StdRule] , t : Int , L : Labe ls) : Set [Int] =
{

var minSet = Set [Int] ()
r u l e s . f o r each (r => minSet += MinEnd(r , t , L))
minSet

}

def UpdateOrdAtom(alpha : ExtendedAtom , s : Status , L : Labe ls) :
Unit = alpha match {

case ata :AtAtom =>
val a = ata . atom
i f (s == in) {

i f (L . s t a tu s (a) == in) {
L . update (a , Label (in , tm(a ,L) + new Clo s ed In t In t e r va l (

ata . t , ata . t)))
} else {

L . update (a , Label (in , (ata . t , ata . t)))
}

} else i f (s == out) {
i f (L . s t a tu s (a) == in) {

L . update (a , Label (out , tm(a ,L) − new Clo s ed In t In t e r va l (
ata . t , ata . t)))

} else {
L . update (a , Label (unknown , (0 , 0)))

}
}

case => None
}

def MakeAssignment (l : Int , t : Int , L : Labels , unknowns : Set [
ExtendedAtom]) : Option [Boolean] = {

val st i l lUnknown = unknowns . f i l t e r (p => L . s t a tu s (p) ==
unknown)

for (alpha <− st i l lUnknown) {

37

val ph = PH(stratum (l) , alpha)
i f (ph . e x i s t s (r => ufVal (L , r))) {

L . update (alpha , Label (in , (t , t)))
for (beta <− ph . f i nd (r => ufVal (L , r)) . get .Bn) {

i f (L . s t a tu s (beta) == unknown) L . update (beta , Label (
out , (t , t)))

}
UpdateOrdAtom(alpha , in ,L)
addToUpdated (alpha , l)
support . updateP (stratum (l) ,L)
return Option (fa l se)

} else {
L . update (alpha , Label (out , (t , t)))
ph fo r each { r =>

r .Bp fo r each {b =>
i f (L . s t a tu s (b) == unknown) L . update (b , Label (out , (

t , t)))
}

}
UpdateOrdAtom(alpha , out , L)
support . updateN (stratum (l) ,L)
return Option (fa l se)

}
}

Option (true)
}

def SetOpenOrdAtomsOut (l : Int , t : Int , L : Labe ls) : Unit = {
stratum (l) . r u l e s f o r each {

r u l e => (r u l e .B ++ Set (r u l e . h)) f o r each {
a => i f (L . s t a tu s (a . atom) == unknown) {

L . update (a . atom , Label (out , (t , t)))
}

}
}

}

def PushUp(l : Int , t : Int , L : Labe ls) : Unit = {
pushNow = Set ()
push = Set ()
for (i <− l+1 to n) {

pushNow ++= PushNow(i , t)
val p = Push (i , t , L)
p . f o r each (r => push += r . 1)

}
}

}

38

B TimeWindowAtomOperators.scala

package l a r s . tms

import l a r s . core . C l o s ed In t In t e rva l
import l a r s . core . semant ics . formulas .{Atom, ExtendedAtom}
import l a r s . core . semant ics . programs . extatoms .
import l a r s . core . semant ics . streams . S
import l a r s . core . windowfn . time . TimeWindowFixedParams
import l a r s . tms . s t a tu s . Labe ls
import l a r s . tms . s t a tu s . Status . in

import s c a l a . c o l l e c t i o n . p a r a l l e l . mutable

/∗∗
∗ Created by e t on 09 . 09 . 15 .
∗/

object TimeWindowAtomOperators extends WindowAtomOperators{

override def exp (omega : WindowAtom, L : Labels , t : Int , f i r e d :
Set [(WindowAtom, Int)]) : Boolean = omega .wop . wfn match {

case wfn : TimeWindowFixedParams =>

val atp = q(omega , L)

omega match {
case wb:WBox => mapInAtoms(omega , f i r e d , t , atp)
case =>

val N = wfn . x . u−wfn . x . l
mapInAtoms(omega , f i r e d , t+N, atp)

}
}

def mapInAtoms(omega : WindowAtom, f i r e d : Set [(WindowAtom, Int)
] , t : Int , atp : Set [Int]) : Boolean = {
i f (! f i r e d . conta in s ((omega , t))) {

i f (atp . e x i s t s (t1 => t1 < t)) return true
}

fa l se
}

override def q (omega : WindowAtom, L : Labels) : Set [Int] = {
var r e s = Set [Int] ()

i f (L . s t a tu s (omega) == in) {
for (i <− L . i n t e r v a l s (omega)) {

r e s = r e s ++ i . toSeq . toSet
}

}
r e s

}

39

override def aR(wa : WindowAtom, i n t e r v a l : C lo s ed In t In t e rva l ,
tp : Int) : C l o s ed In t In t e r va l = wa .wop . wfn match {

case wfn : TimeWindowFixedParams =>

wfn . x . u match {
case 0 => new Clo s ed In t In t e r va l (i n t e r v a l . lower , i n t e r v a l

. upper)
case n : Int => new Clo s ed In t In t e r va l (tp − n , tp)

}
}

override def SIn (wa : WindowAtom, tSta r : Int , l : Int , D: S , L :
Labe ls) : Option [C l o s ed In t In t e r va l] = wa .wop . wfn match {

case wfn : TimeWindowFixedParams =>

var r e s u l t : Option [C l o s ed In t In t e r va l] = None
var t = tStar

val Nl = wfn . x . l
val Nu = wfn . x . u

var at : Option [AtAtom] = None

wa . nested . f i nd ({
case a :AtAtom => {

t = a . t
at = Option (a)

} ; true
case => fa l se

})

wa match {
case wb:WBox =>

l match {
case 1 =>

for (t1 <− math .max(0 , t − Nl) to t+Nu) {
i f (!D. v (t1) . conta in s (wa . atom)) return None

}
r e s u l t = Option (new Clo s ed In t In t e r va l (t , t))
case =>

i f (L . i n t e r v a l s (wa) . conta in s (new
Clo s ed In t In t e r va l (math .max(0 , t−Nl) , t+Nu)))

r e s u l t = Option (new Clo s ed In t In t e r va l (t , t))
}

case => r e s u l t = Option (new Clo s ed In t In t e r va l (t−Nu, t
+Nl))

}

i f (at . i sDe f i n ed) {
val tmp = L . i n t e r v a l s (at . get) . f i l t e r (e => e . lower <=

r e s u l t . get . upper | | e . upper >= r e s u l t . get . lower)
i f (tmp . nonEmpty) {

val min = math . min (tmp . head . lower , r e s u l t . get . lower)
val max = math .max(tmp . head . upper , r e s u l t . get . upper)

40

r e s u l t = Option (new Clo s ed In t In t e r va l (min , max))
}
}

r e s u l t
}

override def SOut(wa : WindowAtom, t : Int) : C l o s ed In t In t e r va l =
wa .wop . wfn match {

case wfn : TimeWindowFixedParams =>

wa match {
case wb:WBox =>

val Nl = wfn . x . l
val Nu = wfn . x . u

new Clo s ed In t In t e r va l (t−Nu, t+Nl)
case => new Clo s ed In t In t e r va l (t , t)

}
}

}

References

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. To-
wards a Theory of Declarative Knowledge. In Jack Minker,
editor, Foundations of Deductive Databases and Logic Program-
ming, pages 89–148. Morgan Kaufmann Publishers, Inc., Wash-
ington DC, 1988. 9

[BDE15] Harald Beck, Minh Dao-Tran, and Thomas Eiter. Answer
update for rule-based stream reasoning. In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
2741–2747. AAAI Press, 2015. 2, 3, 8, 9, 10, 20, 23, 25, 26, 29

[BDTEF15] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink.
LARS: A logic-based framework for analyzing reasoning over
streams. In AAAI, 2015. 2, 3, 4

[BET11] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. An-
swer set programming at a glance. Communications of the
ACM, 54(12):92–103, 2011. 2, 3

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. SIGMOD Record, 3(30):109–120, 2001. 2

41

[DCvF09] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and
Dieter Fensel. It’s a streaming world! reasoning upon rapidly
changing information. IEEE Intelligent Systems, 24:83–89,
2009. 2, 3

[Doy79] Jon Doyle. A Truth Maintenance System. Artif. Intell.,
12(3):231–272, 1979. 7

[Elk90] Charles Elkan. A rational reconstruction of nonmonotonic truth
maintenance systems. Artif. Intell., 43(2):219–234, 1990. 7

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive
aggregates in disjunctive logic programs: Semantics and com-
plexity. In JELIA, pages 200–212, 2004. 3

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model se-
mantics for logic programming. In R. Kowalski and K. Bowen,
editors, 5th Conference on Logic Programming, pages 1070–
1080. MIT Press, 1988. 3

[LYBB] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex
Buckley. The java virtual machine specification.
https://docs.oracle.com/javase/specs/jvms/se8/html/. Ac-
cessed: 2016-09-25. 20

[OCD+06] Martin Odersky, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Niko-
lay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon,
Matthias Zenger, and et al. An overview of the scala pro-
gramming language (second edition). Technical report, EMIR
B, MCDIRMID S, MICHELOUD S, MIHAYLOV N, SCHINZ
M,. STENMAN E, SPOON L, ZENGER M, 2006. 20

[Ode] Martin Odersky. What is scala? - a scalable lan-
guage. http://www.scala-lang.org/what-is-scala.html. Ac-
cessed: 2016-11-14. 21

[RK91] Elaine Rich and Kevin Knight. Artificial intelligence. McGraw-
Hill, 1991. 2, 7

42

	Introduction
	Preliminaries
	LARS
	Truth-Maintenance Systems

	Stream Stratification
	Extending Truth-Maintenance for LARS
	Answer Update Algorithm
	Main Procedure
	Sub-procedures

	Implementation
	Programming Methodology
	Algorithm in Scala
	Discussion

	Tests & Evaluation
	Conclusion
	Appendices
	TMS.scala
	TimeWindowAtomOperators.scala

