
ActHEX: Implementing HEX Programs with Action
Atoms?

Michael Fink1, Stefano Germano2, Giovambattista Ianni2,
Christoph Redl1, and Peter Schüller3

1 Institut für Informationssysteme, Technische Universität Wien
2 Dipartimento di Matematica e Informatica, Università della Calabria

3 Faculty of Engineering and Natural Sciences, Sabanci University

Abstract. acthex programs are a convenient tool for connecting stateful external
environments to logic programs. In the acthex framework, actual actions on an
external environment can be declaratively selected, rearranged, scheduled and then
executed depending on intelligence specified in an ASP-based language. We report
in this paper about recent improvements of the formal and of the operational acthex
programming framework. Besides yielding a significant increase in versatility of
the framework, we also present illustrative application showcases and a short
evaluation thereof exhibiting computational acthex strengths.

1 Introduction

The acthex formalism [1] generalizes HEX programs [4] introducing dedicated action
atoms in rule heads. Action atoms can actually operate on and change the state of
an environment, which can be roughly seen as an abstraction of realms outside the
logic program at hand. The acthex framework allows to conveniently design ASP-based
applications by properly connecting logic-based decisions to actual effects thereof. We
recently advanced the acthex framework wrt. several respects:

– Framework improvements: external atom evaluation has been generalized to take
state into account, i.e., the realm of acthex programs has been extended to capture
nondeterministic actions and environments. Moreover, support for selecting a single
model and a unique corresponding execution schedule has been enhanced, and we
developed explicit means for controlling iterative evaluation of logic programs.
– System improvements: we provide a new architecture for the acthex framework
efficiently implemented as an extension to the dlvhex system4.
– Applications: we realized new applications and pursued a preliminary system evalua-

tion exhibiting promising results. In terms of performance, our experiments indicate that,
compared to purely declarative approaches, finding problem solutions iteratively may
pay off when instances are large. In terms of ease of programming, our approach allows
to attach code in arbitrary programming languages to a logic-programming framework.
This is dual to other approaches to interoperability of ASP solvers like [5].
? This research has been partially supported by the Vienna Science and Technology Fund (WWTF)

grant ICT 08-020 Austrian Science Fund (FWF) grant P24090. Peter Schüller is supported by
the TUBITAK 2216 Research Fellowship.

4 Available at http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html

2 Preliminaries

We assume familiarity with ASP and corresponding basic syntactic and semantic notions
(atoms, models, etc.). For space reasons, in the following, we also do not present acthex
syntax and semantics at full formal detail (for the latter cf. [1, 4]).

acthex syntax. In addition to constants (also used for predicate names) and variables,
acthex programs build on external predicate names (prefixed by &) and action predicate
names (prefixed by #). An external atom is of the form &g [Y1, . . . , Yn](X1, . . . , Xm),
where Y1, . . . , Yn and X1, . . . , Xm are lists of terms. An action atom is of the form
#g [Y1, . . . , Yn]{o, r}[w : l], where #g is an action predicate name, Y1, . . . , Yn is a list of
input terms of fixed length in(#g) = n. Moreover, attribute o ∈ {b, c, cp} is called the
action option that identifies an action as brave, cautious, or preferred cautious, while
optional integer attributes r, w, and l are called precedence, weight, and level of #g ,
respectively. A rule r is of the form α1∨. . .∨αk ← β1, . . . , βn,not βn+1, . . . ,not βm,
where body elements β are (ordinary) atoms or external atoms, and head elements α are
(ordinary) atoms or action atoms. An acthex program is a finite set of rules.

Example 1. The acthex program P1 = {#robot [goto, charger]{b, 1}←&sensor [bat](low);
#robot [clean, kitchen]{c, 2}←night ; #robot [clean, bedroom]{c, 2}← day ;night ∨ day←}
uses action atom #robot to control a robot, and an external atom &sensor to access
sensor data. Intuitively, precedence 1 of action atom #robot [goto, charger]{b, 1} should
make the robot recharging its battery, if necessary, before cleaning actions. ut

acthex semantics. An acthex program P is evaluated wrt. a fixed state (snapshot) of the
external environment E using the following steps: (i) answer sets of P are determined
wrt.E, and the set of best models is a subset of the answer sets determined by an objective
function; (ii) any (best) model originates a set of corresponding execution schedules
S, i.e., a sequence of actions to execute; (iii) executing the actions of (and sequentially
according to) a selected schedule S yields another (not necessarily different) state E′

of the environment, called the observed execution outcome; finally (iv) the process
may be iterated starting at (i), by considering a snapshot E′′, which can be different
from E′ due to exogenous actions (in so-called dynamic environments). Answer Sets
are defined similarly to HEX programs [4], i.e., using Herbrand interpretations, the
grounding of P wrt. the Herbrand universe, and the FLP reduct; ground action atoms
in rule heads are treated like ordinary atoms, see Section 3 for a generalized external
atom semantics including the environment E. We denote by AS(P,E) the collection of
all answer sets of P wrt. E. The set of best models of P , denoted BM(P,E), contains
those answer sets I ∈ AS(P,E) that minimize an objective function over weights
and levels of atoms in I (equivalent to the evaluation of weak constraints in [2]). An
action a = #g [y1, . . . , yn]{o, r}[w : l] with option o and precedence r is executable in
I wrt. P and E iff (i) a is brave and a ∈ I , or (ii) a is cautious and a ∈ B for every
B ∈ AS(P,E), or (iii) a is preferred cautious and a ∈ B for every B ∈ BM(P,E).
An execution schedule SI for a (best) model I is a sequence of all actions executable
in I , such that for all pairs of action atoms a, b ∈ I , if prec(a) < prec(b) then a must
precede b in SI , for prec(c) the precedence of an action atom c. Concerning the effects of
actually executing actions, as well as corresponding notions of execution outcomes, we

also refer to the next section where these notions are generalized compared to definitions
in [1].

Example 2. Considering the program of Example 1, if the robot has low battery, then
AS(P,E) = BM(P,E) contains two models:

I1 = {night , #robot [clean, kitchen]{c, 2}, #robot [goto, charger]{b, 1}}, and
I2 = {day , #robot [clean, bedroom]{c, 2}, #robot [goto, charger]{b, 1}}.

Both give rise to a single execution schedule SIi : first charge, then clean. ut

3 Conceptual Improvements to the acthex framework

The effective implementation of acthex within the dlvhex software, as well as its initial
application and preliminary evaluation (cf. Sections 4 and 5), raised practical issues
calling for conceptual changes of the acthex framework. Compared to its definition in [1],
we incorporated the following improvements.
External Atom and Action Atom Semantics. We generalize external atom semantics
in order to take the environment into account as follows. With every external predi-
cate name &g we associate an (n+m+2)-ary Boolean function f&g, assigning each
tuple (E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where E is an environment state, I
an interpretation, and the other parameters are input and output constants of &g , re-
spectively. We say that an interpretation I relative to P is a model of a ground external
atom a = &g [y1, . . . , yn](x1, . . . , xm) wrt. environment E, denoted as I, E |= a, iff
f&g(E, I, y1 . . . , yn, x1, . . . , xm) = 1.

Given a model I , for each action predicate name #g the possible effects of executing
a ground action #g [y1, . . . , ym]{o, p}[w : l] on an environment E wrt. I are defined
by an associated (m+2)-ary function f#g which returns a set of possible follow-up
environment states: f#g(E, I, y1, . . . , ym) = E . Every E′ ∈ E thus represents a possible
effect. Considering a set of environments rather than a definite effect allows to model
nondeterministic actions, and also nondeterministic and/or dynamic environments, where
the environment may change without action execution by means of exogenous events.
Model Selection and Execution Schedule Representation. In practice, one usually
wants to consider and execute a single execution schedule. This requires the choice
of a single best model and a unique corresponding execution schedule. The former is
modelled by a Best Model Selector function selectBM which intuitively decides which
model I from BM(P,E) to use. In our implementation, some simple selection functions
(like lexicographic first) are built-in and can be configured. Alternatively, selectBM can
be provided in terms of user-defined C++ code. The set of all execution schedules of I is
given by ESP,E(I) ={
〈a1, . . . , an〉 | prec(ai)≤ prec(aj), for 1≤ i< j≤n, and {a1, . . . , an}=Ae

}
.

ESP,E(I) is in principle as large asO(|I|!), thus it is of course represented implicitly by
its execution schedule base ESBP,E(I), which is defined as a sequence of sets of actions
ESBP,E(I)=

{
〈A1, . . . , Am〉

}
where Ai⊆Ae, 1≤ i≤m, and prec(a)= prec(a′) for

all a, a′ ∈Ai, while prec(a)< prec(a′′) holds for all a∈Ai, a
′′ ∈Aj , 1≤ j≤m, i 6= j.

Intuitively, actions in Ai have the same precedence, while the precedence of actions

strictly increases along the sequence. Obviously, ESBP,E(I) has size O(|I|), and
ESP,E(I) can be recovered from it.
Execution Schedule Selection and Execution Outcomes. Given an execution sched-
ule base, again a particular (customizable) function buildES , called Execution Schedule
Builder, selects a single execution schedule 〈a1, . . . , an〉 ∈ ESP,E(I) for execution.
It defines a strict order over potential schedules, possibly based on general criteria
on actions independent from the current execution base. Given an execution sched-
ule S= 〈a1, . . . , an〉 ∈ ESP,E(I), the set of possible execution outcomes of S in en-
vironment E wrt. I is defined as EX(S, I, E) = {En | E0 = E, and Ei+1 ∈
f#g(Ei, I, y1, . . . , ym)}, given that ai is of the form #g [y1, . . . , ym]{o, p}[w : l]. In-
tuitively the initial environment E0 = E is succeeded by a potential effect of ex-
ecuting each action in S in the given order. Recall that nondeterministic functions
f&g not only capture nondeterministic actions but take into account nondeterminis-
tic and/or dynamic environments. Eventually, given acthex program P , environment
E, execution schedule builder buildES and best model selector selectBM , the ob-
served outcome of executing P on E is given by some En ∈ EX(S, I, E), where
S= buildES (ESBP,E(I)) and I = selectBM (BM(P,E)). Unless the environment is
static and deterministic, from a modeling perspective, the observed outcome represents a
nondeterministic choice. For instance, executing SI1 of Example 2 assuming a static and
deterministic environment first yields {E1}= f#robot(E, I1, goto, charger), and then
{E2}= f#robot(E1, I1, clean, bedroom), where E2 is the observed execution outcome.
Evaluation Iteration. Another important implementation aspect is an efficient realiza-
tion of iterative acthex program evaluation. For this purpose we provide support on two
aspects. First, in order to capture systems with dynamic environments, the environment
state is sensed upon each iteration. This yields the environment E = E0 that is used
to evaluate external atoms and upon which the first scheduled action is executed. In
general, the environment E = E′

i for evaluation in iteration i + 1 can possibly differ
from the observed outcome Ei at iteration i. Second, iteration control is provided by
dedicated command line options, built-in constants, and specific action atoms. From
the command line, and with higher priority by setting built-in constants to true, one can
effect iterative evaluation in terms of fixed number of iterations, iteration until a pre-set
value of (total) execution time is elapsed (checked after each iteration), and iteration
ad infinitum. Special action atoms #acthexContinue and #acthexStop have highest
priority and provide a declarative means of controlling iteration.

4 System Architecture and Implementation

Figure 1 shows how acthex is implemented within the dlvhex [4] framework, how appli-
cations interface with acthex, and the stages of executing an acthex program.

A given acthex program P is first parsed using the dlvhex parser, the acthex-specific
parser, and the program rewriter modules. This yields a HEX program P ′ which contains
auxiliary atoms instead of actions. P and P ′ are such that the setsAS(P ′) andAS(P,E)
are in one-to-one correspondence. P ′ is evaluated using the computational core of
dlvhex wrt. custom external atoms of an acthex application, then the set of best models
BM(P,E) is computed. One best model I is selected using a Best Model Selector

HEX Core

Enumeration Finished Callback

Best Model
Selector

Schedule
Builder

Custom
Actions

Environment
Interface

Custom
Environment

External Atom
Interface

Custom
External Atoms

Parser &
Rewriter

dl
vh

ex
ac

th
ex

A
pp

lic
at

io
n

iteration management execute actions in S on E build Schedule S from I

parse and rewrite evaluate HEX semantics compute+ select Best ModelsP P ′ AS(P ′)=

AS(P,E)
I ∈BM(P,E)

SE′
iterate

end

Fig. 1: Architecture of acthex and execution flow for program P on Environment E.

module, then an Execution Schedule Builder module creates a unique execution schedule
S from actions in I . Both Best Model Selectors and Execution Schedule Builders can be
customized, as well as it is possible to program custom action predicates each having its
own customizable Environment interface. Moreover, the acthex system features iterative
evaluation of P ′. The iteration process can be controlled as described in Section 3.

5 Application and Evaluation

acthex can be fruitfully used in a variety of contexts, especially when it is expected to
take actions which have impact on actual dynamic environments, and which require to
repeatedly take new decisions. In this respect, logic-based games are the ideal testbed:
we showcase here two pilot applications (addons) we developed using the acthex system.

Sudoku Addon. This addon allows to maintain a Sudoku table of arbitrary size and to
perform operations on it. Sudoku tables are seen as stored within the external environ-
ment. The addon provides a single action predicate #sudoku[A,O1, O2, O3]{O,P}[W :
L], where A is an operation type and O1 ,O2 ,O3 are parameters, depending on the
operation type. Possible actions are the insertion of a number into a cell, exclusion of
a candidate number from the possible values of a cell, and printing the current table
in various formats. Other external predicates allow to query the content of the current
table. This addon permitted us to experiment with the incremental application of Sudoku
inference rules as described in [3]. Large Sudoku tables cannot be solved by pure guess
& check strategies: on the other hand, acthex allows to iterate over partially complete
tables, and to repeatedly apply a number of deterministic inference strategies depending
on the current resolution progress. Our acthex-based iterative player allows to solve
Sudoku tables as large as 81 × 81, which are far out of the performance reach of an
ASP-based system using a pure guess & check strategy5.

Reversi Addon. The Reversi addon allows for playing an online version of the popular
board game Reversi. acthex allows to program Reversi heuristic rules using a logic

5 Detailed results are available at http://www.kr.tuwien.ac.at/research/systems/dlvhex/
actionplugin/SudokuAddon.html#sbench.

program and to perform actual actions depending on the move of choice. Here the
environment includes an external web gaming site6; we developed Javascript and Perl
scripts in order to access and perform actions on the site, and attached them to the
execution of the action atom #reversi [A,O1, O2]{O,P}[W : L], where A selects an
action type and O1 and O2 are parameters, depending on the action type. Possible
actions are: setting the game number, logging in, making a move, and waiting until the
opponent makes their move. Some external predicates are available for retrieving the
current status of the game and the corresponding board. The usage workflow of the
Reversi addon is straightforward: after initialization, each iteration extracts the current
board state from the Web by means of proper external atoms and performs reasoning
about the next move in a logic program, using commonly known heuristic rules for
Reversi7. The chosen move triggers an action which is executed on the game web site.
The iteration progress is then suspended by means of a wait action, which will let a
further iteration start when the game opponent replies to the last move. The odering of
actions is controlled by the precedence feature of acthex, while the end of the game is
detected by means of an external atom, causing to end iteration when a game terminates.

6 Conclusion

In this work we have enriched the acthex semantics by new features and provided an
implementation on top of the dlvhex reasoner for HEX-programs. Moreover, an iteration
framework allows for repeating the evaluation of an acthex program and consequent
execution of actions. For evaluation, we applied our system to logic games (Sudoku and
Reversi) exhibiting scalability to larger instances and modeling strength. Further work
is planned, especially concerning evaluation efficiency. For instance, we are currently
considering an incremental evaluation approach similar to iclingo [6], although the latter
serves a different purpose, since it does neither address action execution nor maintain
arbitrary state information, and hence is less expressive (e.g., for re-planning).

References

1. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In: International
Conference on Logic Programming, Technical Communications. pp. 24–33 (2010)

2. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In:
Logic Programming And Nonmonotonic Reasoning, pp. 2–17. Springer (1997)

3. Calimeri, F., Ianni, G., Perri, S., Zangari, J.: The eternal battle between determinism and
nondeterminism: preliminary studies in the sudoku domain. In: RCRA (2013), submitted.

4. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI. pp. 90–96.
Professional Book Center (2005)

5. Febbraro, O., Leone, N., Grasso, G., Ricca, F.: Jasp: A framework for integrating answer set
programming with java. In: KR (2012)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: ICLP. pp. 190–205 (2008)

6 “Your Turn My Turn”, available at http://www.yourturnmyturn.com
7 See e.g. the Strategy guide for Reversi at http://www.samsoft.org.uk/reversi/strategy.htm

