
MASTER THESIS

Default Reasoning on Top of Ontologies
with dl-Programs

carried out at the

Institute for Information Systems
Knowledge Based Systems Group

Vienna University of Technology

under the instruction of

O.Univ.Prof. Dipl.-Ing. Dr. techn. Thomas Eiter

and the accompanying care of

Dipl.-Ing. Thomas Krennwallner

by

Bsc. DAO Tran Minh

Tigergasse 23–27, A-1080 Wien

June 18, 2008

Default Reasoning on Top of Ontologies
with dl-Programs

DAO Tran Minh

June 18, 2008

Abstract

We study the usefulness of dl-programs in implementing Reiter’s default logic on top of
a Description Logic knowledge base (DL-KB). To this end, we investigate transforma-
tions from default theories to description logic programs (dl-programs) based on different
established algorithms for computing default theory extensions, namely select-defaults-
and-check and select-justifications-and-check algorithm. In each transformation, additional
constraints are exploited to prune the search space based on conclusion-conclusion or
conclusion-justification relations. The implementation was deployed as a new component
for the dl-plugin for dlvhex, and evaluated with various experimental test ontologies, which
showed promising results.

i

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

List of Algorithms vii

Acknowledgements ix

1 Introduction 1
1.1 Nonmonotonic Reasoning . 2
1.2 Ontology . 5
1.3 Answer Set Programming . 7
1.4 Integration of Rules and Ontologies . 9

1.4.1 Issues . 9
1.4.2 Strategies for Integrating Rules and Ontologies 11

1.5 Thesis Organization . 13

2 Preliminaries 15
2.1 Declarative Logic Programming . 15
2.2 Logic Programming under the Answer-Set Semantics 16

2.2.1 Syntax of Answer-Set Programs . 16
2.2.2 Semantics of Answer-Set Programs 16

2.3 Description Logics . 18
2.3.1 Syntax of SHIF(D) and SHOIN (D) 19
2.3.2 Semantics of SHIF(D) and SHOIN (D) 20

2.4 Web Ontology Language . 23
2.5 dl-Programs . 27
2.6 cq-Programs . 28
2.7 Default Logic . 30

2.7.1 Syntax and Semantics of Default Logic 30
2.7.2 Algorithms for evaluating extensions of a default theory 32

3 Embedding Defaults over Description Logics into dl-Programs 35
3.1 Transformation Π . 36
3.2 Transformation Ω . 38
3.3 Transformation Υ . 40

iii

iv CONTENTS

3.4 Pruning Rules for Optimization . 41
3.4.1 Forcing other defaults to be out . 41
3.4.2 Forcing other defaults to be in . 42
3.4.3 Defaults whose conclusions are already in the background theory . . 42

4 Front-End 43
4.1 Front-End Overview . 43
4.2 Syntax for Input Defaults . 44
4.3 Typing Predicates . 45
4.4 Update of the dl-Plugin to Adopt the df-Converter 47

4.4.1 Update the dl-Plugin Use Cases . 47
4.4.2 Update the dl-plugin Components . 48

4.5 DFConverter Class Diagram . 48
4.6 Command line options . 50

5 Applications 51
5.1 Classical examples . 51

5.1.1 Nixon Diamond . 51
5.1.2 Small Wine . 52

5.2 Complex examples . 52
5.2.1 Student . 52
5.2.2 Web Services Property Reasoning . 54

5.3 Experimental Results . 55
5.3.1 Tweety bird example . 56
5.3.2 Nixon diamond and Small Wine . 59
5.3.3 Summary . 63

6 Conclusion 65
6.1 Future Work . 65

A Proofs 67
A.1 Proof for Transformation Ω . 67
A.2 Proof for Transformation Υ . 69

B Transformed Programs 73
B.1 Tweety bird . 73

B.1.1 Transformation Π . 73
B.1.2 Transformation Ω . 73
B.1.3 Transformation Υ . 73

B.2 Nixon diamond . 73
B.2.1 Transformation Π . 73
B.2.2 Transformation Ω . 74
B.2.3 Transformation Υ . 74

B.3 Small Wine . 74
B.3.1 Transformation Π . 74
B.3.2 Transformation Ω . 75
B.3.3 Transformation Υ . 75

Bibliography 77

List of Figures

1.1 An example ontology . 6
1.2 An example graph and one of its Hamiltonian cycles 8
1.3 Tight semantic integration . 11
1.4 Strict semantic separation . 12

4.1 Strategy for implementing the df-converter 43
4.2 Use Case Diagram dl-plugin . 47
4.3 Component Diagram dl-plugin . 48
4.4 Class Diagram df-converter . 49

5.1 Tweety bird example’s running time - transformation Π 56
5.2 Tweety bird example’s running time - transformation Ω 57
5.3 Tweety bird example’s running time - transformation Υ 57
5.4 Tweety bird example - Comparing 3 transformations (query caching on) . . 59
5.5 Nixon diamond example - Comparing 3 transformations (query caching on) 61
5.6 Small Wine example - Comparing 3 transformations (query caching on) . . 63

v

List of Tables

2.1 Program classes . 16
2.2 OWL DL Syntax vs. DL Syntax and Semantics 24
2.3 OWL DL Axioms and Facts . 25

4.1 Expected results in the Tweety bird example for different transformations . 47

5.1 Expected results in the Nixon Diamond example for different transformations 52
5.2 Expected results in the Nixon Diamond example for different transformations 53
5.3 Expected results in the Student example for different transformations . . . 54
5.4 Expected results in the Web Service example for different transformations . 55
5.5 Tweety bird example experiment results (query caching off) 58
5.6 Tweety bird example experiment results (query caching on) 58
5.7 Nixon Diamond example experiment results (query caching off) 60
5.8 Nixon diamond example experiment results (query caching on) 60
5.9 Small wine example experiment results (query caching off) 62
5.10 Small wine example experiment results (query caching on) 62

vi

List of Algorithms

1 Select-defaults-and-check . 32
2 Select-justifications-and-check . 32
3 Select-ordering-and-check . 33

vii

viii LIST OF ALGORITHMS

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Thomas
Eiter, for giving me a chance working on this interesting topic, and for his orientation
and support since the beginning with numerous meetings every week. For me, this was
the best experience so far working with and learn a lot from one of the top professors in
Computational Logic.

I would like to give a big thank to Thomas Krennwallner. This work is based on his
master thesis and I received a lot of help from him, from the first suggestion of using boost
spirit for parsing the input and finally reading and providing comments for my thesis.
Without his support, I would not be able to stay here writing this acknowledgment to
finish my thesis.

I would like to thank all professors in Facudade de Ciêncisa e Technologia, Universidade
Nova de Lisboa; Institut für Informationssysteme, Technischen Universität Wien for their
excellence courses which gave me the love to Computational Logic. I have learnt from
them not only basic and advanced topics in Computational Logic, but also how professors
encourage and inspire students to do their best.

I express my gratefulness to the European Commission for granting me the Erasmus
Mundus scholarship to study in Portugal and Austria. The last two years were a wonderful
experience in my life having an opportunity to study in an international environment,
meet top professors in Computational Logic, visit European countries and learn about the
beauty of Europe and its culture.

I would like to thank my family and my fiancée for everything they have done for me,
their care, encouragement, and love, especially in these two years when I was studying
abroad. For me, family is the most important thing in my life and I am happy to always
have you beside me.

ix

x Acknowledgements

1
Introduction

To convey the flavor of our work, we will start this section by discussing a motivating
example. Assume that we have an ontology describing knowledge about students, con-
centrating more on graduate students and their work in which a student can be either
an undergraduate student or a graduate student. Furthermore, a graduate student can be
either a master student or a PhD student. A student takes some courses and can have
a scholarship. A diagram representation of this example is given in Example 1.2, other
representations in terms of a description logic knowledge base (DL-KB) and the Web
Ontology Language OWL are given in Example 2.5 and 2.6, respectively.

We know that normally, a graduate student needs to work as an assistant, either teaching
assistant or research assistant to earn for his/her studying, but for some graduate students
who win a scholarship or fellowship, it is not needed. Given a graduate student in such
a knowledge base (KB) without any further information, we would like to conclude that
he/she is an assistant; and later if we know that he/she has a scholarship, an opposite
conclusion would be our favorite. However, such kinds of normal reasoning is not possible
in description logics (DLs) due to its monotonicity property (see Section 1.1 for a discussion
on monotonicity and nonmonotonicity). If one would like to impose such kinds of reasoning,
one possibility is to embed default logics into terminological knowledge representation
formalisms. The first attempt in this field was presented in [Baader and Hollunder, 1993];
however, there has not been further development on this approach since then.

Recently, an interesting topic has emerged among the Logic Programming, Description
Logics, and Semantic Web communities, i.e., the problem of integrating rules and ontologies.
For example, in our example about student, one would add a constraint saying that “A
teaching assistant cannot take a course that he/she is an assistant of, because if it happens
then he/she will grade his/her own exam, which is not fair.” This is in fact not a trivial
problem. There have been many proposals for integration of rules and ontologies such
as framework combining Horn rules and Description Logics in [Levy and Rousset, 1996],
r-hybrid knowledge bases [Rosati, 2005a], hybrid MKNF KBs [Motik et al., 2006], and
dl-programs [Eiter et al., 2007b] (see more in section 1.4). Some of these approaches
have mentioned the abilities to enable nonmonotonic reasoning, but none has provided a
concrete implementation for default reasoning over ontologies. Based on these results, in
order for users to express a nonmonotonic reasoning application, they have to know about
such formalizations thoroughly, how to write a program and what is the semantics of the
programs, this may not be necessary if they are experts in different fields and just want to
work with some simple nonmonotonic rules of the form:

1

2 Introduction

“If A is true and B can be consistently assumed then conclude C.”

In this thesis, we would like to investigate in-depth the problem of enabling one formal-
ization of nonmonotonic reasoning, i.e., default reasoning, on top of ontologies based on an
available mechanism that allows for integrating rules and ontologies, namely dl-programs.
We do not stop at some theoretical results but go one step further by providing a front-end.

The main contributions of this thesis, briefly summarized, are as follows:

1. We present three transformations embedding default rules over dl-rules, which
are based on two well-known algorithms for evaluating extensions of a default
theory, namely Select-defaults-and-check and Select-justifications-and-check algo-
rithm [Cholewinski and Truszczynski]. The first transformation was proposed in [Eiter
et al., 2007b] and the other two are proposed in this work motivated by the first one.
Furthermore, pruning rules are also investigated for optimization purposes.

2. We show the equivalence between default theories over DL-KBs and the transformed
dl-programs. i.e., if there exists an extension in the original default theory, then there
will be a corresponding answer set in the transformed dl-program, and vice versa.

3. We report the implementation of our front-end which allows users to easily specify
their specific knowledge in terms of defaults in a simple syntax together with an
ontology as an OWL file, and have the benefit from the system without worrying
about what is a dl-program, how to write such a program in that formalization, and
how the extensions are evaluated. The extensions are returned as answer sets of the
transformed dl-programs consisting of auxiliary predicates whose names represent
the intuition of the concept/role in relation to the extensions. The implementation
is called the df-converter and was deployed as a new component of the dl-plugin, a
plug-in for the hex program solver, dlvhex [Schindlauer, 2006].

4. We report some experimental results in comparing the performance of different
transformations with respect to evaluation time. The results show that the two
new transformations are much faster compared to the first one. On the other
experimenting dimension, the caching technique provided by the dl-plugin leads a
significant performance. The details on the experiment results are presented in
Section 5.3. Moreover, these results reveals many interesting facts from which we
can exploit to improve our system.

To prepare the reader with the necessary background, the upcoming sections will give more
hints on the underlying machinery used in this work.

1.1 Nonmonotonic Reasoning

In this section, we start with a famous slogan given by Benjamin Franklin in 1789 “Nothing
is certain, but death an taxes.” Bypassing the implication about taxes, we consider the
aspect that most of the things in daily life are uncertain, and this is the way how humans
usually reason. We use statements such as: “In my experience, it must be the case that ...,”
or “There is no good reason not to believe that ...” This kind of reasoning is known as
commonsense reasoning.

The discussion on the need for the automation of common-sense reasoning by McCarthy
in [McCarthy, 1959] then opened a new research direction of Nonmonotonic Reasoning
(NMR) which approximately started in 1975/1976, and developed resplendently from the

1.1 Nonmonotonic Reasoning 3

late 1970s to early 1990s. In this period, many important results were published. Among
these publications, the first two rules of negation were closed world assumption (CWA)
in [Reiter, 1978] and the if-and-only-if (iff) statements by Clark in [Clark, 1977]. And
it is also important to mention circumscription [McCarthy, 1977], the truth maintenance
systems [Doyle, 1979], default reasoning [Reiter, 1980], and the use of modal logic to handle
nonmonotonicity [McDermott and Doyle, 1980]. For a historical view of NMR, see [Minker,
August 1991].

In this thesis, we will concentrate on enabling default reasoning on top of ontologies. To
bring the flavor of NMR to readers, the rest of this section will show the crucial point of
nonmonotonicity versus monotonicity and give an example asserting that classical logic is
not sufficiently powerful to adequately reason as humans do.

In classical logic, it is well known that if we have a theory T from which we can conclude
a formula φ, then later if we extend the T to a theory T ′ by adding more facts, φ still
holds in T ′. This property is called monotonicity.

But life is not that simple. People in the past once believed that the earth was flat, and
later this belief was defeated by many explores and developments in geography that the
earth is spherical. Many other conclusions considered true in the past now are revised as
not. And we trust that there are still current beliefs now which will be defeated in future.

Example 1.1. Take a formal, yet simple example to see how different classical logic and
common-sense reasoning are. We know that:

• Birds usually fly.

• Penguins are birds, but they do not fly.

This knowledge can be represented in classical logic by the following rules:

flies(X) ← bird(X) ∧ ¬penguin(X).
bird(X) ← penguin(X).
¬flies(X) ← penguin(X).

Now we know that “Tweety is a bird”, then add a fact bird(tweety) into T , it is easy to
see that by classical logic, we can conclude neither flies(tweety) nor ¬flies(tweety) since
there is no information regarding “Tweety is a penguin or not”.

But in daily life, humans can overcome this kind of obstacles by making assumptions
about incomplete information. By statistical information and experience, we know that

“Birds usually fly,” and when there is no information against making an assumption that
“Tweety can fly,” we come up with the conclusion that “Tweety flies.” Later, if we know
that “Tweety is a penguin,” then the assumption is no longer acceptable and we conclude
that “Tweety does not fly”. Classical logic also concludes the same fact in this case.

Obviously, classical logic does not work for commonsense reasoning and we need to come
up with something different. It is now an appropriate moment to present Minsky’s general
definition of NMR:

Definition 1.1. [Minsky, 1974]
1. By nonmonotonic reasoning we understand the drawing of conclusions which may be
invalidated in the light of new information.
2. A logical system is nonmonotonic iff its provability relation violates the property of
monotonicity.

4 Introduction

The principal difference between classical logic and nonmonotonic logics is that classical
logic formalises truth and valid conclusions, while nonmonotonic logics formalise rationality
and plausible conclusions.

Rationality is central for common-sense reasoning. The intuition behind rationality is
that although conclusions can be invalidated by new information, they are not chosen at
random. At least one rational justification is required to accept a conclusion in common-
sense reasoning. Rationality is surprisingly difficult to formalize. The reason is that it
cannot be measured by number as in mathematic where classical logic plays a major role;
furthermore, rationality has the following properties [Lukaszewicz, 1990]:

• agent-dependent : different agents may have different opinions on what is rational in
a certain situation

• purpose-dependent : the acceptance of a proposition as a rational conclusion depends
on the purpose it is used for.

It is also not surprising that different approaches for capturing different aspects of
rationality bring us different NMR formalisms listed at the beginning of this section.

Plausible conclusions, also known as beliefs, are the subjective nature of common-sense
reasoning. The following definition of beliefs was given in [Perlis, 1986]:

Definition 1.2. A proposition A is a belief of an agent G, i.e., G considers A as a rational
conclusion, if G is prepared to use A as if it were true.

The following example from [Winograd, 1980] elucidates this definition. Assume that
I plan a trip by car. To begin with, I must decide where my car actually is. Given no
better evidence, the following is possible: (A) “The car is there, where I parked it last.”
According to definition 1.2, (A) is considered as a belief if I act as if it were true. That
is, if I ignore all circumstances in which (A) could be false, and I base my actions on the
assumption that (A) is true, then I believe in (A), even if I cannot be sure that (A) is
actually true.

On the other hand, even if I am almost certain that (A) holds, but at the same time
I improve my chances by checking whether a bus will pass by, in case the car is missing,
then (A) is not regarded as a belief, rather a very likely contingency.

Finally, we present here a definition of Nonmonotonic Inference Rules:

Definition 1.3. By a nonmonotonic inference pattern, or a nonmonotonic inference rule,
we understand a rule of the following form:

Given A, in the absence of evidence B, infer C.

To sum up, NMR deals with reasoning under incomplete information, uncertainty to
reflect common-sense reasoning as humans do.

Among different formalisms for nonmonotonic reasoning, default logic proposed in [Reiter,
1980] is one of the most famous approaches. Under default logic, Example 1.1 can be
represented as “Birds fly by default,” therefore if we know that “Tweety is a bird” and
nothing more, then by default, we conclude that “Tweety flies”. The exception when we
know that “Tweety is known as a penguin” is treated as in Example 1.1.

In daily life, default logic is applied quite often. For example, by default, I know that
the Complexity Analysis class this week is on Friday, as the other weeks; or by default, we
can consider that the solution found so far is the best solution; or by default, a person has
an appendix, etc. Embedding default reasoning into ontologies therefore is meaningful and
interesting to explore. Hence default logic is one of the most important ingredients for this
thesis and we have Section 2.7 to present it more formally.

1.2 Ontology 5

1.2 Ontology

The word “Ontology” comes from Philosophy where it is concerned with the study of being
or existence. Researchers in Computer Science, especially in Artificial Intelligence (AI)
then borrowed this term for the purpose of supporting sharing and reusing of formally
represented knowledge among AI systems. This approach was proposed in [Neches et al.,
1991], in which authors claimed that the ontology layer plays an important role as a
standard component of knowledge systems. The definition of ontology then was given
in [Gruber, 1995] as an “explicit specification of a conceptualization”, i.e., “the objects,
concepts, and other entities that are presumed to exist in some area of interest and the
relationships that hold among them” [Genesereth and Nilsson, 1987].

Also in this article, Gruber emphasized what is so-called ontological commitments. A
common ontology defines the vocabulary with which queries and assertions are exchanged
among a community of agents. An agent is said to be committed to a common ontology
if its observable actions are consistent with the definition in the ontology. This property
guarantees consistency, but not completeness; i.e., each agent needs not share its own
knowledge base nor answer all queries which can be formulated in the shared vocabulary.
Furthermore, the internal knowledge of each agent needs not be represented by the terms
specified in the ontology. For example, provider and customer must agree on provisions of
a contract between them, but each can have different point of views about the contract on
how it brings benefits to them.

Gruber proposed a preliminary set of design criteria for ontologies whose purpose is
knowledge sharing and interoperation among programs based on a shared conceptualization,
namely:

1. Clarity: an ontology should be objectively defined by means of formalism, most
possibly logical axioms.

2. Coherence: the defining axioms should be logically consistent, and the ontology
should agree with not only implications consistent with the definition but also the
concepts which are defined informally.

3. Extendability: based on existing ontologies, one should be able to define new terms
for his own specialization without requiring the revision of existing definitions. This
criteria implies monotonicity of ontology languages.

4. Minimal encoding bias: conceptualization is an abstract notion, hence it should be
specified at the knowledge/semantics level independently of a particular symbol-level
encoding.

5. Minimal ontological commitment: to fulfill the knowledge sharing purpose, an
ontology should minimize ontological commitment to give participating agents the
freedom specialize and instantiate the ontology as needed.

To end this section, we will point out some ontology languages classified by their
structures and give a simple ontology example.

• Frame-based ontology languages: F-Logic, OKBC, and KM

• Description logic-based ontology languages: KL-ONE, and OWL (Web Ontology
Language)

• First-order logic-based ontology languages: CycL and KIF

6 Introduction

Among those ontology languages, the Web Ontology Language OWL has been rec-
ommended by the World Wide Web Consortium (W3C) as a standard for providing a
framework for asset management, enterprise integration and the sharing and reuse of data
on the Web. More details on OWL will be given in Section 2.4.

Example 1.2. We present here an example ontology in a diagram. A representation
of this ontology in OWL is provided in Section 2.4. Basically, this ontology describes
knowledge about students, concentrates on graduate students and their work.

Scholarship

Student

UnderGradStudent GraduateStudent

hasScholarship

isa

MasterStudent PhDStudent

isa

Assistant

TA RA

isa

hasAssistantship

Work

Course Research

isa

teachingAssistantOf

takesCourse

reasearchAssistantOf

assistantOf

Figure 1.1: An example ontology

The concepts/classes are represented by boxes, the roles/relationships are represented
by arrows. We select red arrows for the is-a relationship, which means that a class is a
subclass of another one, while blue arrows are used for other relationships between classes.
The intuitive meaning of this ontology is:

• A Student can be either UnderGradStudent or GraduateStudent ;

• A GraduateStudent can be either MasterStudent or PhDStudent ;

• A Student can have Scholarship;

• A Student takes Course(s);

• Work can be teaching a Course or doing a Research;

• An Assistant can be TA (TeachingAssistant) or RA (ResearchAssistant);

1.3 Answer Set Programming 7

• An Assistant has to do Work ;

• A GraduateStudent can have an assistantship; and

• A TA works on Course and an RA works on Research.

For this moment, we will keep the ontology simple. Later, we will pose some nonmonotonic
rules on top of it and see how default logic can help to represent such spices.

1.3 Answer Set Programming

As an attempt to overcome limitations of traditional logic programming in which Prolog
is a typical example, answer-set semantics, originally called stable model semantics, was
proposed in [Gelfond and Lifschitz, 1988] and opened a new paradigm of Knowledge Repre-
sentation and Reasoning (KRR). Based on this innovative idea, Answer Set Programming
(ASP) has not only attracted researchers in AI but has also been applied successfully
to many problems, such as plan generation and product configuration problems in AI,
graph-theoretic problems arising in VLSI design and in historical linguistic. Its initial
paper is among the top 5 AI source documents in terms of citeseer citations.

While having a similar syntax to Prolog, ASP differs from traditional logic programming
in the following ways:

• Firstly, ASP is declarative, i.e., the order of rules in an Answer-Set program does not
matter, while it does in Prolog.

• Secondly, ASP uses strong/classical and weak negation, also known as Negation as
Failure (NAF), while there are many other proposals for the semantics of ”not” in
Logic Programming.

• Thirdly, in contrast to classical logic, ASP is non-monotonic (section 1.1).

ASP is very suitable for dealing with solving problems with uncertain, incomplete and
inconsistent information.

The idea of evaluating an answer-set program P contains a guess-and-check strategy as
follows: firstly, a set of atoms I will be guessed to be true. Then, the original program is
reduced with respect to this guess, called P I . The intuition of this reduction is that: if
a ∈ I and “not a” belongs to the body of a rules r, then r is no longer applicable, therefore
r should be deleted; if a /∈ I then a is implicitly assigned the truth value false, hence “not
a” has the value true and its appearance in the body of a rule r′ can also be deleted. The
reduct P I then is a positive logic program and its least fixed point can be evaluated easily
in polynomial time. If the least fixed point of P I coincides with I, then I is an answer-set
of P . Each answer-set of P is a solution for the encoded problem; if P has no answer-set,
the corresponding problem has no solution.

An answer-set program usually has 3 parts: an encoding of the problem instance, a
guessing/generating part which guesses all possible answers and a checking part which
“kills” all wrong answers. To see how declarative ASP is and how this schema works, we
will examine the Hamiltonian Cycle Problem (HAM), a well-known NP-complete problem
[Garey and Johnson, 1979]: given a graph G, is there any cycle through G that visits each
node exactly once?

Example 1.3. Figure 1.2 represents a graph G. It is easy to see that GHC is one of the
Hamiltonian cycles of G. The following answer-set program P is encoded in such a way
that G has a Hamiltonian cycle iff P has an answer-set:

8 Introduction

a

c

b d

a

c

b d

G GHC

Figure 1.2: An example graph and one of its Hamiltonian cycles

Graph encoding:
(0) arc(a, b). arc(a, d). arc(b, a). arc(b, d). arc(c, a). arc(c, b). arc(d, c). start(a).

Guess solution:
(1) reached(X) ← in hm(, X).
(2) in hm(X, Y) ∨ out hm(X, Y) ← start(X), arc(X, Y).
(3) in hm(X, Y) ∨ out hm(X, Y) ← reached(X), arc(X, Y).

Check solution:
(4) ← in hm(X, Y), in hm(X, Y1), Y 6= Y1.
(5) ← in hm(X, Y), in hm(X1, Y), X 6= X1.
(6) ← arc(X,), not reached(X).

The intuition of this program is as follows: all facts in line (0) encode the graph G in
terms of a binary predicate arc and specify the starting node by a fact start(a). Since we
are interested in cycles, the starting node is actually not important; any node can be chosen
to play this role. Rules (2) and (3) guess whether an arc is in a Hamiltonian cycle from
the starting node or a reached node. The guess is stored in two binary predicates, namely
in hm and out hm. A node is reached if it is already guessed to be in the Hamiltonian cycle.
From rules (4) to (6), we use rules without heads, also called constraints. A constraint
has the power to kills all guesses making all atoms in its body become true. Therefore,
the constraints (4), (5) eliminate all guesses such that there exists a node visited more
than once; while constraint (6) rejects all guesses in which not all nodes are visited.

Note that this program not only solves the decision problem, whether G contains a
Hamiltonian cycle or not, but also provides all Hamiltonian cycles, if any exists in its
answer-sets. In fact, G has two Hamiltonian cycles corresponding to two answer-sets of P .
We show here only the predicate in hm which is directly related to the Hamiltonian cycles:

{in hm(a, d), in hm(b, a), in hm(d, c), in hm(c, b), . . .}

{in hm(a, b), in hm(b, d), in hm(d, c), in hm(c, a), . . .}

We have seen how powerful ASP is. In order to solve a problem, what we need is to
specify the problem in terms of its semantics and translate it to a syntax supported by

1.4 Integration of Rules and Ontologies 9

an ASP solver. Two famous ASP solvers are DLV1 and Smodels. In this thesis, we use
dlvhex,2 a solver based on DLV; its dl-plugin gives us power to communicate with ontologies
so that we can put some rules on top of ontologies. Next, we will see the necessity of the
integration of rules and ontologies, the challenges of this work and what we expect to
extend the available results to enable default reasoning on top of ontologies.

1.4 Integration of Rules and Ontologies

Section 1.2 provides an overview of ontology for the purpose of supporting, sharing and
reusing of formally represented knowledge among AI systems. In the context of Semantic
Web, the ontology layer has reached a certain level of maturity with W3C recommendations
such as RDF and OWL. Recently, researchers have been interested in the integration of
this layer and the Rule Layer for the following purposes:

• from the logic programming point of view, we can make use of ontologies to provide
identified individuals, objects from different sources for sharing and reusing.

• from the ontology point of view, rule languages like logic programs are capable of
overcoming obstacles in ontology formalisms based on Description Logics such as
higher relational expressivity, polyadic predicates, integrity constraints and modeling
exceptions (see [Krennwallner, 2007] for details on these motivations).

However, several approaches to this problem have not provided straightforward solutions
due to many difficulties. Next, we will address issues arising and two strategies for
integrating rules and ontologies.

1.4.1 Issues

CWA vs. OWA First-order logic and its fragment description logics adopt the Open
World Assumption (OWA), which means “if a statement cannot be inferred from what is
expressed in a system, then it still cannot be inferred to be false.” The OWA applies when
we represent knowledge as we discover it and the reality described by the system can never
be known to have been fully described. It is plausible to consider the Semantic Web as
such system and apply OWA to it.

On the other hand, the Closed World Assumption (CWA) [Reiter, 1978] presumes that
“what is not currently known to be true is assumed to be false.” This assumption is indeed
reasonable in real life. Take a typical example, a direct flight database, which is assumed to
be complete in the sense that if there is no direct flight explicitly recorded in the database,
then such direct flight does not exist. In logic programming, CWA is closely related to
Negation as Failure (NAF) which derives not p from the failure in deriving p.

To see the difference between OWA and CWA, consider the following concrete example:

Example 1.4.

wine(X) ← whiteWine(X).
nonWhite(X) ← not whiteWine(X).

wine(myDrink).

1http://www.dlvsystem.com/
2http://www.kr.tuwien.ac.at/research/dlvhex/

http://www.dlvsystem.com/
http://www.kr.tuwien.ac.at/research/dlvhex/

10 Introduction

Under the non-availability of whiteWine(myDrink), this program concludes nonWhite(myDrink),
whereas a similar representation under description logics would not justify the same con-
clusion:

Example 1.5.

WhiteWine v Wine
¬WhiteWine v NonWhite

myDrink ∈ Wine

The reason for this behaviour is that, under OWA, there is not enough information to
guarantee either myDrink ∈WhiteWine or myDrink ∈ ¬WhiteWine, hence no further
conclusion can be made.

Although CWA is not adopted in the Semantic Web since ontologies are based on
description logics, it is still needed in many applications, e.g., in information integration.
Thus, integration of a nonmonotonic formalism and ontologies plays an important role for
such a purpose.

Strong Negation vs. Classical Negation Sometimes, people equate strong negation with
classical negation, but strong negation as used in ASP is in fact slightly different from each
its classical counterpart. The following example demonstrates this divergence:

Example 1.6.

Wine(X)←WhiteWine(X). WhiteWine vWine.
−Wine(myDrink). myDrink ∈ ¬Wine.

While in the description-logic knowledge base, we would conclude myDrink ∈ ¬WhiteWine,
the fact −WhiteWine(myDrink) cannot be justified in the logic programming setting. How-
ever, adding a rule WhiteWine(X) ∨−WhiteWine(X) in this particular example will help
to derive this fact.

UNA vs. non-UNA ASP (and typically all logic-based programming languages) operates
under the Unique Names Assumption (UNA), which basically says that the function relating
constants on the language and objects on the domain of the interpretation is a bijection.
This assumption is not valid in general on DL. The function that correlates constants
and objects in the domain may not be injective nor surjective. As a simple example, the
following answer-set program does not have any model:

Example 1.7.

← friendOf (tweety , X), friendOf (tweety , Y), X 6= Y.
friendOf (tweety , joe).

friendOf (tweety , pluto).

while the corresponding DL representation,

tweety ∈ ≤ 1friendOf
friendOf (tweety , joe)
friendOf (tweety , pluto)

has a model in which joe = pluto. This difference in basic assumption, when not taken
care of, will certainly pose problems in how we attach semantic to the integration of the
two systems.

1.4 Integration of Rules and Ontologies 11

Decidability Lastly, we want to archive an integration that has the nice property of
maintaining decidability while allowing for as much expressiveness as possible. Ideally, we
would want a system that tries to be as expressive as possible under the constraint of some
class of computational complexity. The problem arises in combining the two systems of
DL and logic-based programming, when we consider the fact that these two systems tries
to approach and tackle the problem of decidability from two different angles:

• Decidability in ASP is attained from the fact that it is based on function-free Horn
Logic, where ground-entailment can be checked using model-checking in finite subsets
of the Herbrand base of the program. In other words, decidability depends on the
finite-ness of the domain. Even the (more simple) Prolog semantic (using SLDNF),
when we consider functions in the language combined with full left-right recursion
could results in non-decidability.

• On the other hand, DL semantic maintains decidability by limiting the constructs
it offers to end up in a certain subset of first-order logic. The reasoning tasks of
deciding class membership, subsumption, satisfiability etc. rest on the fact that there
are only such a finite number of constructs allowed in the terminology.

Because of these different approaches, a naive attempt at combining both worlds could
result in non-decidability, even on simple cases as in [Levy and Rousset, 1996], many
detailed subtleties in the combination of the two system could lead to undecidability, if not
limited accordingly.

1.4.2 Strategies for Integrating Rules and Ontologies

[Eiter et al., 2006] proposed two strategies for combining the two worlds of logic programming
and classical logic, in particular description logics, namely:

• tight semantic integration (Figure 1.3)

• strict semantic separation (Figure 1.4)

We will now analyze the principles of these two strategies and review their related work.

Rules Ontologies

Figure 1.3: Tight semantic integration

Integration of rules and ontologies with tight semantic integration In this strategy,
rules are introduced directly in the Ontology Layer, i.e., concepts’ and roles’ names can be
used as predicate names in rules. Such an approach can easily lead to undecidability, for
example CARIN [Levy and Rousset, 1996] and SWRL [Horrocks et al., 2004]. On the other
hand, DLP proposed in [Grosof et al., 2003] which preserves decidability is very restricted
in its syntax, hence limits the expressivity. SWRL and DLP can be seen as two opposite
extremes at two bridgeheads, letting a big scale in between for other approaches to fit in,
such as DL-log [Rosati, 1999], DL-safe Rules [Motik et al., 2005], safe hybrid KBs [Rosati,

12 Introduction

2005b], r-hybrid KBs [Rosati, 2005c], and the expressive DL+log [Rosati, 2006a,b]. These
approaches, in order to maintain decidability and extend expressivity, require a safety
condition forcing variables in rules to occur in certain places.

Another approach is to reduce DL-KBs, in particular SHIQ knowledge bases, to
equivalent disjunctive logic programs [Hufstadt et al., 2004]. Hence, reasoning in DL is
carried out by standard reasoning algorithms of such programs. Since in the end one needs
to work only with rules, it is easy to add rules to a translated DL-KB.

We also need to mention one more class of proposed formalisms which can be considered
as unifying formalisms of logic programming and first-order theories, including Hybrid
MKNF KB [Motik et al., 2006, Motik and Rosati, 2007], [de Bruijn et al., 2007a] which
uses Autoepistemic Logic, and [de Bruijn et al., 2007b] uses Quantified Equilibrium Logic.

InterfaceRules Ontologies

Figure 1.4: Strict semantic separation

Integration of rules and ontologies with strict semantic separation In this approach,
rules (ASP) and ontologies (OWL/RDF) play in different fields. While ASP concentrates
on reasoning jobs, OWL/RDF flavors aims at their purpose of description languages. The
two components are not forced to any syntactic restrictions, as long as their own sides are
decidable; and then communicate to each other via a “safe interface.”

From the Rules Layer point of view, ontologies serve as an external source of information
with an independent semantics which can be updated and/or queried via a special predicate.
Such approaches are [Eiter et al., 2005, 2007b, Lukasiewicz, 2005, Eiter et al., 2008] and
the TRIPLE rules engine [Sintek and Decker, 2002] which calls external description logic
reasoners.

For excellent surveys, we refer the interested readers to [Antoniou et al., 2005] and [Pan
et al., 2004].

This thesis is motivated by the results published in [Eiter et al., 2007b, 2008], namely
dl-programs, a framework for integrating rules and ontologies. A dl-program consists of a
normal logic program and a DL-KB. The main idea of dl-programs is the use a special
atom called dl-atom which has the ability of updating and querying a DL-KB, therefore
provides a safe and bidirectional data flow from rules to ontologies and vice versa. Based on
answer-set semantics, dl-programs guarantee decidability as long as the DL-KB is decidable.
But above all, the most interesting fact is that dl-programs allow a clean integration of
rules and ontologies so that users who familiar with logic programming can easily adopt
this mechanism without having to worry about what kind of description logics is used
underneath. Moreover, switching between different description logics will not cause a big
problem as long as the used description logic is decidable. Therefore, we are very motivated
to use dl-programs as a means to enable default reasoning on top of ontologies. The rest of
this thesis will present our results in the order specified in the following section.

1.5 Thesis Organization 13

1.5 Thesis Organization

This chapter has discussed the underlying machinery related to our work. The next chapters
will deal with the following problems:

• Chapter 2 provides preliminaries for logic and answer-set programming, the family
of description logics and its relationship to the OWL Web Ontology Language, the
notions of dl-programs and cq-programs, and default logic.

• Chapter 3 discusses the main contribution of this thesis, including analyzing the
transformation from default logic to dl-programs proposed in [Eiter et al., 2007b],
proposing some small modifications for a clearer intuition, new transformations
justified by proofs, and some pruning techniques with the hope of bringing better
performances.

• Chapter 4 describes the implementation of the df-converter as an additional component
in the available dl-plugin in the plug-in environment provided by dlvhex.

• Some classical examples of default logics are given in Chapter 5. Experimental result
will be provided in order to compare performances of different transformations and
test the efficiency of pruning rules.

• Finally, Chapter 6 concludes the thesis and discusses future work based on this result.

14 Introduction

2
Preliminaries

This chapter provides a more technical view of the underlying machineries used in this thesis.
Firstly, we introduce the basics and principles of Answer-Set Programming. Description
logics then are described as a formalism for ontology languages in the Semantic Web
context, in particular the Web Ontology Language OWL. Then we outline both syntax
and semantics of dl- and cq-programs, which are used to represent the result of our
transformations from default logics, which is finally considered.

2.1 Declarative Logic Programming

In computer science, programming languages can be categorized into two big programming
concepts, namely imperative programming and declarative programming. On the one
hand, an imperative program comprises of a sequence of commands for the computer
to perform, hence focuses on how to solve a problem by an algorithm. Such imperative
programming languages are Fotran, C, C++, Java,... On the other hand, a declarative
program concentrates on representing what are the properties of the desired solution.
Therefore, programmers using purely declarative programming usually do not know how
the solver process their programs. Further classifications in declarative programming bring
us functional programming, logic programming, and constraint programming with LISP,
Haskell, and variants of Prolog as typical languages.

Compared to imperative programs, declarative programs are usually more concise and
more powerful in terms of reasoning abilities. One has tried to solve the Hamiltonian
Cycle problem in C++ or Java can easily verify that he/she must use a deep-first-search
implemented in a recursive way, and it cannot be written in just 6 lines like our example
in section 1.3.

Hereafter, we will focus on Declarative Logic Programming. A programmer using this
paradigm needs to specify in his/her logic program the relationships in the domain of
discourse obeying the syntax of a language, and then gets the output through the semantics
of the program.

There are logic programming languages such as Prolog which are not purely declarative.
Evaluating such a program depends on the order of rules in the program and the order
of atoms in a rule, hence makes it not very comprehensible and not easy to be modified.
However, answer-set programming [Gelfond and Lifschitz, 1988] is purely declarative and
guarantees termination. We have introduced ASP in section 1.3, the next section will
present ASP’s syntax and semantics in a more technical way.

15

16 Preliminaries

Name restriction
definite Horn k = 1, n = m
Horn k ≤ 1, n = m
normal k ≤ 1
definite k ≥ 1, n = m
positive n = m
disjunctive no restriction

Table 2.1: Program classes

2.2 Logic Programming under the Answer-Set Semantics

2.2.1 Syntax of Answer-Set Programs

Let P, C, V be disjoint sets of predicate, constant, and variable symbols from a first-order
vocabulary Φ, respectively, where V is infinite and P and C are finite. Assume that elements
from C and P are string constants that begin with a lowercase letter or double-quoted, and
elements from C can also be integer numbers; elements from V begin with an uppercase
letter. A term is either a constant or a variable. Given p ∈ P, an atom is defined as
p(t1, . . . , tk), where k is called the arity of p and each t1, . . . , tk are terms. Atoms of arity
0 are called propositional atoms.

A classical literal (or simply literal) l is an atom p or a negated atom ¬p, where “¬”
is the symbol for true (classical) negation. Its complementary literal is ¬p (resp., p). A
negation as failure literal (or NAF-literal) is a literal l or a default-negated literal not
l. not l evaluates to true if l cannot be proved, i.e., either l is false or we do not know
whether l is true or false.

A rule r is an expression of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , k ≥ 0 ,m ≥ n ≥ 0 , (2.1)

where a1, . . . , ak, b1, . . . , bn are classical literals. We say that a1, . . . , ak is the head of
r while the conjunction b1, . . . , bm,not bm+1, . . . ,not bn is the body of r. We use H(r) to
denote r’s head literals, and B(r) to denote the set of all its body literals B+(r) ∪B−(r),
where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A rule r without head literals
(i.e., k = 0) is an integrity constraint. A rule r with exactly one head literal (i.e., k = 1) is
a normal rule. If the body of r is empty (i.e., m = n = 0), then r is a fact, and we often
omit “←”1. An extended disjunctive logic program (EDLP, or simply program) P is a finite
set of rules r of the form (2.1).

Programs without disjunction in the heads of rules are called extended logic programs
(ELPs). A program P without NAF, i.e., for all r ∈ P,B−(r) = ∅ is called a positive
logic program. If, additionally, no strong negation occurs in P , i.e., the only form of
negation is default negation in rule bodies, then P is called normal logic program (NLP).
The generalization of an NLP by allowing default negation in the heads of rules is called
generalized logic program (GLP). Additional program classes of logic programming with
the corresponding restrictions on the rules in a program a summarized in Table 2.1.

2.2.2 Semantics of Answer-Set Programs

The semantics of extended disjunctive logic programs is defined for variable-free programs.
Hence, we first define the ground instantiation of a program.

1In this thesis, we will use both forms “a←” and “a.” to denote that a is a fact in a logic program.

2.2 Logic Programming under the Answer-Set Semantics 17

The Herbrand universe of a program P , denoted HUP , is the set of all constant symbols
C ⊆ C appearing in P . If there is no such constant symbol, then HUP = {c}, where c is
an arbitrary constant symbol from Φ. Terms, atoms, literals, rules, programs, etc. are
ground iff they do not contain any variables. The Herbrand base of a program P , denoted
HBP , is the set of all ground literals that can be constructed from the predicate symbols
appearing in P and the constant symbols in HUP . A ground instance of a rule r ∈ P is
obtained from r by replacing every variable that occurs in r by a constant symbol in HUP .
We use ground(P) to denote the set of all ground instances of rules in P .

The semantics for EDLPs is defined first for positive ground programs. A set of literals
X ⊇ HBP is consistent iff {p,¬p} (X for every atom p ∈ HBP . An interpretation I
relative to a program P is a consistent subset of HBP . We say that a set of literals S
satisfies a rule r if H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and B−(r) ∩ S = ∅. A model of a
positive program P is an interpretation I ⊆ HBP such that I satisfies all rules in P . An
answer set of a positive program P is the least model of P w.r.t. set inclusion.

To extend this definition to programs with negation as failure, we define the Gelfond-
Lifschitz transform (also often called the Gelfond-Lifschitz reduct) from a program P
relative to an interpretation I ⊆ HBP , denoted P I , as the ground positive program
obtained from ground(P) by

(i) deleting every rule r such that B−(r) ∩ I 6= ∅, and

(ii) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ⊆ HBP such that I is an answer set
of P I .

A constraint is used to eliminate “unwanted” models from the result, since its head is
implicitly assumed to be false. A model that satisfies the body of a constraint is hence
dismissed from the set of answer sets.

Example 2.1. Consider the following program P :

p← not q.

q ← not p.

Let I1 = {p}; then, P I1 = {p←} with the unique model {p}, thus I1 is an answer set of P .
Likewise, P has an answer set {q}. However, the empty set ∅ is not an answer set of P ,
since the respective reduct would be {p←; q ←} with the model {p, q}.

Example 2.2. Let P be the following program:

flies(X)← bird(X),not ¬flies(X).
bird(X)← penguin(X).
¬flies(X)← penguin(X).

penguin(tweety). bird(joe).

This program shows how ASP is used to handle nonmonotonic reasoning.
It is easy to see that I = {penguin(tweety), bird(tweety), bird(joe),flies(joe),¬flies(tweety)}

18 Preliminaries

is an answer set of P . The reduct P I is:

flies(joe)← bird(joe).
bird(joe)← penguin(joe).
¬flies(joe)← penguin(joe).

bird(tweety)← penguin(tweety).
¬flies(tweety)← penguin(tweety).

penguin(tweety). bird(joe).

Now, if penguinjoe is added to P , then I is not an answer set of P anymore. Instead,
we have the following answer set:

I = {penguin(tweety), bird(tweety), bird(joe), penguin(joe),¬flies(joe),¬flies(tweety)}

The main reasoning tasks associated with EDLPs under the answer-set semantics are
the following:

• decide whether a given program P has an answer set;

• given a program P and a ground formula φ, decide whether φ holds in every (resp.,
some) answer set of P (cautious (resp., brave) reasoning);

• given a program P and an interpretation I ⊆ HBP , decide whether I is an answer
set of P (answer-set checking); and

• compute the set of all answer sets of a given program P .

2.3 Description Logics

In the early days of Artificial Intelligence, ontologies were represented resorting to non-logic-
based formalisms. Among these approaches, semantic networks and frames systems were
the two most famous ones. Semantics Networks developed in the 1970s uses network-shaped
cognition to represent concepts and relationships between them. The same purposes were
shared in frames systems which appeared in [Minsky, 1975]. These two formalisms use
graphical representation which was argued to be easy to design, but then it became difficult
to manage with complex pictures. Furthermore, the lack of formal semantics limits their
reasoning abilities; reasoning was actually done by manipulating ad hoc data structures.

In attempts to enhance the reasoning capability for semantic networks and frames
systems, first-order logic was adopted to describe the semantics of core features of these
networks, making use of unary predicates for describing sets of individuals and binary
predicates for relationships between individuals. Then an important feature was discovered:
ordinary frames systems and semantic networks do not require all first-order logic, but
could be regarded as fragments of it. Therefore, typical reasoning used in structure-
based representations does not require the full power of first-order theorem provers. In
fact, specialized reasoning techniques can be applied. Furthermore, reasoning in different
fragments of first-order logic amount computational problems with different complexities.

From frames systems to description logics, the name changed over time, starting with
terminological systems emphasizing the language is used to define a terminology. Then,
concept language was used to underline the concept-forming constructs of the languages.
And “Description Logics” is used today, moving attention to the properties, including
decidability, complexity, and expressivity, of the languages.

2.3 Description Logics 19

Description Logics also have a wide range of applications, whose domains spread from
software engineering, configuration, medicine to digital libraries and Web-based information
systems, etc.; and application areas focus on natural language and database management.
The most well-known application of Description Logics, of course, is their use for ontologies
and Semantic Web research. For an excellent introduction to Description Logics, we refer
readers to [Baader et al., 2003, Baader and Lutz, 2006, Baader et al., 2007].

In this section, we will review the two description logics SHIF(D) and SHOIN (D)
which are the foundation for the Web Ontology Language OWL-Lite and OWL-DL,
respectively, and provide basis for dl-programs, cq-programs, on which we exploit for
our purpose of enabling default reasoning on top of ontologies. Syntax and semantics of
description logics can be defined in different ways. For our purpose, we use the definition
in [Eiter et al., 2007b]

2.3.1 Syntax of SHIF(D) and SHOIN (D)

We now recall the syntax of SHIF(D) and SHOIN (D). We first describe the syntax of
the latter, which has the following datatypes and elementary ingredients. We assume a
set of elementary datatypes and a set of data values. A datatype is either an elementary
datatype or a set of data values (called datatype oneOf). A datatype theory D = (∆D, ·D)
consists of a datatype (or concrete) domain ∆D and a mapping ·D that assigns to every
elementary datatype a subset of ∆D and to every data value an element of ∆D. The
mapping ·D is extended to all datatypes by {v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I
be pairwise disjoint finite nonempty sets of atomic concepts, abstract roles, datatype (or
concrete) roles, and individuals, respectively. We denote by R−

A the set of inverses R− of
all R ∈ RA.

Roles and concepts are defined as follows. A role is an element of RA ∪ R−
A ∪ RD.

Concepts are inductively defined as follows. Every atomic concept C ∈ A is a concept. If
o1, o2, . . . are individuals from I, then {o1, o2, . . .} is a concept (called oneOf). If C and
D are concepts, then also (C u D), (C t D) and ¬C are concepts (called conjunction,
disjunction, and negation, respectively). If C is a concept, R is an abstract role from
RA ∪R−

A, and n is a nonnegative integer, then ∃R.C, ∀R.C, ≥nR, and ≤nR are concepts
(called exists, value, atleast, and atmost restriction, respectively). We use > and ⊥ to
abbreviate the concepts C t ¬C and C u ¬C, respectively, and we eliminate parentheses
as usual.

Example 2.3. Assume that we have an atomic concept Scholarship and a role hasSchol-
arship. Then ≤ 1hasScholarship is a concept denoting all individuals that are related to
another individual via the role hasScholarship at most once. ∀hasScholarship.Scholarship
is another concept that consists of all individuals whose all related individuals via the role
hasScholarship belong to the concept Scholarship.

We next define axioms and knowledge bases as follows. An axiom is an expression of
one of the following forms: (1) C v D (called concept inclusion axiom), where C and
D are concepts; (2) R v S (called role inclusion axiom), where either R,S ∈ RA or
R,S ∈ RD; (3) Tran(R) (called transitivity axiom), where R ∈ RA; (4) C(a) (called
concept membership axiom), where C is a concept and a ∈ I; (5) R(a, b) (resp., U(a, v))
(called role membership axiom), where R ∈ RA (resp., U ∈ RD) and a, b ∈ I (resp., a ∈ I
and v is a data value); and (6) a = b (resp., a 6= b) (called equality (resp., inequality)
axiom), where a, b ∈ I. A (description logic) knowledge base L is a finite set of axioms.

Example 2.4. Assume that we have atomic concepts Student, UnderGradStudent, and
GraduateStudent. To say that all undergraduate students are students, all graduate students

20 Preliminaries

are students, the following concept inclusion axioms must be specified:

UnderGradStudent v Student
GraduateStudent v Student

For a role inclusion axioms example, assume that we have the following roles: assistantOf,
teachingAssistantOf, researchAssistantOf, the suitable role inclusion axioms are:

teachingAssistantOf v assistantOf
researchAssistantOf v assistantOf

For an abstract role R ∈ RA, we define Inv(R) = R− and Inv(R−) = R. Let the
transitive and reflexive closure of v on abstract role relative to L, denote v∗, be defined as
follows. For two abstract roles R and S in L, let S v∗ R relative to L iff either (a) S = R,
(b) S v R ∈ L, (c) Inv(S) v Inv(R) ∈ L, or (d) some abstract role Q exists such that
S v∗ Q and Q v∗ R relative to L. An abstract role R is simple relative to L iff for
each abstract role S such that S v∗ R relative to L, it holds that (i) Trans(S) /∈ L and
(ii) Trans(Inv(S)) /∈ L. For decidability, number restrictions in L are restricted to simple
abstract roles [Horrocks et al., 1999].

Observe that in SHOIN (D), concept and role membership axioms can equally be
expressed through concept inclusion axioms. The knowledge that the individual a is an
instance of concept C can be expressed by the concept inclusion axiom {a} v C, while
the knowledge that the pair (a, b) (resp., (a, v)) is an instance of role R (resp., U) can be
expressed by {a} v ∃R.{b} (resp., {a} v ∃U.{v}).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf
constructor and with the atleast and atmost constructors limited to 0 and 1.

Note that other definitions of description logic knowledge bases exist. A widely used
definition is the notion of DL-KB K = 〈T ,R,A〉, where T is called TBox and consists of
a set of concept inclusion axioms (the terminological knowledge), R is called RBox and
consists of a set of axiom of form (2), or (3) (the role hierarchy) and A is called ABox
and consists of a set of concept or role membership axioms (the assertional knowledge, or
extensional part). T and R builds the intentional part of a DL-KB. We do not use this
clear separation in our framework, but sometimes refer to the extensional part of L as
ABox and the intentional part of L as TBox.

2.3.2 Semantics of SHIF(D) and SHOIN (D)

We now define the semantics of SHIF(D) and SHOIN (D) in terms of general first-order
interpretations, as usual, and we recall some important reasoning problems in description
logics.

An interpretation I = (∆I , ·I) with respect to a datatype theory D = (∆D, ·D) consists
of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I that assigns to
each atomic concept C ∈ A a subset of ∆I , to each individual o ∈ I an element of ∆I ,
to each abstract role R ∈ RA a subset of ∆Ix∆I , and to each datatype role U ∈ RD a
subset of ∆Ix∆D. The mapping ·I is extended to all concepts and roles as usual (where
#S denotes the cardinality of a set S):

• (R−)I = {(a, b) | (b, a) ∈ RI};

• {o1, . . . , on}I = {oI1 , . . . , oIn};

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , and (¬C)I = ∆I \CI ;

2.3 Description Logics 21

• (∃R.C)I = {x ∈ ∆I | ∃y : (x, y) ∈ RI ∧ y ∈ CI};

• (∀R.C)I = {x ∈ ∆I | ∀y : (x, y) ∈ RI → y ∈ CI};

• (≥nR)I = {x ∈ ∆I | #({y | (x, y) ∈ RI}) ≥ n};

• (≤nR)I = {x ∈ ∆I | #({y | (x, y) ∈ RI}) ≤ n};

• (∃U.D)I = {x ∈ ∆I | ∃y : (x, y) ∈ UI ∧ y ∈ DD};

• (∀U.D)I = {x ∈ ∆I | ∀y : (x, y) ∈ UI → y ∈ DD};

• (≥nU)I = {x ∈ ∆I | #({y | (x, y) ∈ UI}) ≥ n};

• (≤nU)I = {x ∈ ∆I | #({y | (x, y) ∈ UI}) ≤ n}.

The satisfaction of a description logic axiom F in the interpretation I = (∆I , ·I) with
respect to D = (∆D, ·D), denotes I |= F , is defined as follows:

• I |= C v D iff CI ⊆ DI ;

• I |= R v S iff RI ⊆ SI ;

• I |= Trans(R) iff RI is transitive;

• I |= C(a) iff aI ∈ CI ;

• I |= R(a, b) iff (aI , bI) ∈ RI (resp., I |= U(a, v) iff (aI , vD) ∈ UI); and

• I |= a = b iff aI = bI (resp., I |= a 6= b iff aI 6= bI).

The interpretation I satisfies the axiom F , or I is a model of F , iff I |= F . The
interpretation I satisfies a knowledge base L, or I is a model of L, denotes I |= L, iff
I |= F for all F ∈ L. We say that L is satisfiable (resp., unsatisfiable) iff L has a (resp.,
no) model. An axiom F is a logical consequence of L, denoted L |= F , iff every model of L
satisfies F . A negated axiom ¬F is a logical consequence of L, denoted L |= ¬F , iff every
model of L does not satisfy F .

Some important reasoning problem related to description logic knowledge bases L are
the following:

(1) decide whether a given L is satisfiable;

(2) given L and a concept C, decide whether L 2 C v ⊥;

(3) given L and two concepts C and D, decide whether L |= C v D;

(4) given L, an individual a ∈ I, and a concept C, decide whether L |= C(a); and

(5) given L, two individuals a, b ∈ I (resp., an individual a ∈ I and a value v), and an
abstract role R ∈ RA (resp., a datatype role U ∈ RD), decide whether L |= R(a, b)
(resp., L |= U(a, v)).

Here, (1) is a special case of (2), since L is satisfiable iff L 2 > v ⊥. Furthermore, (2)
and (3) can be reduced to each other, since L |= C u ¬D v ⊥ iff L |= C v D. Finally, in
SHOIN (D), (4) and (5) are special cases of (3).

22 Preliminaries

Example 2.5. Consider the Student ontology in example 1.2, this diagram can be repre-
sented as follows in a description logic knowledge base L:

UnderGradStudent v Student (1)
GraduateStudent v Student (2)

UnderGradStudent v ¬GraduateStudent (3)
MasterStudent v GraduateStudent (4)

PhDStudent v GraduateStudent (5)
MasterStudent v ¬PhDStudent (6)

Course vWork (7)
Research vWork (8)

Course v ¬Research (9)
TA v Assistant (10)
RA v Assistant (11)
TA v ∃teachingAssistantOf .Course (12)
RA v ∃researchAssistantOf .Research (13)

teachingAssistantOf v assistantOf (14)
researchAssistantOf v assistantOf (15)
≤ 1hasScholarship v Student (16)

> v ∀hasScholarship.Scholarship (17)
∃assistantOf v Assistant (18)

> v ∀assistantOf .Work (19)
∃teachingAssistantOf v TA (20)

> v ∀teachingAssistantOf .Course (21)
∃researchAssistantOf v RA (22)

> v ∀reaseachAssistantOf .Research (23)
∃takesCourse v Student (24)

> v ∀takesCourse.Course (25)
MasterStudent(min) (26)

PhDStudent(tkren) (27)
hasScholarship(min, erasmus mundus) (28)

All the concept inclusions from (1)–(25) form the TBox of L, while the assertions from (24)–
(26) are the ABox of L. Basically, (1)–(11) represent the hierarchy between groups of atomic
concepts as in Figure 1.1. (12) and (13) say that each TA must be responsible for some
courses and each RA must do some research; (14) and (15) affirm that teachingAssistantOf
and researchAssistantOf are subproperties of assistantOf. Axioms (16)–(25) set the domain
and range for properties in the ontology. And finally, assertions (26), (27) declare two
individuals, min as a MasterStudent and tkren as a PhDStudent. Assertion (28) states
that min holds an erasmus mundus scholarship.

Some simple inferences can be made from this knowledge base, for example:

• L |= Student(min),

• L |= Scholarship(erasmus mundus),

2.4 Web Ontology Language 23

• L |= PhDStudent v Student , etc.

2.4 Web Ontology Language

Section 1.2 has mentioned the idea behind ontologies, and pointed out that OWL was
recommended by W3C to be a standard language for specifying ontologies on the Semantic
Web. OWL consists of three sublanguages with increasing expressivity: OWL Lite, OWL
DL, and OWL Full. The semantics of OWL Lite and OWL DL is based on the description
logics SHIF(D) and SHOIN (D), respectively. OWL Full, on the other hand, loosens
specific syntactic restrictions of OWL Lite and OWL DL, thus reasoning in OWL Full is
undecidable. In this section, we provide a summary of OWL Lite and OWL DL’s syntax
and semantics in the tables belows, which are from [Horrocks et al., 2003].

Syntax and semantics of OWL

The abstract syntax for class descriptions and axioms in OWL DL ontologies is given in
the first column of Table 2.2 and Table 2.3, respectively. The syntax for OWL Lite is
basically the same, with the following restrictions:

• oneOf, unionOf, and complementOf are prohibited;

• maxCardinality, minCardinality, and cardinality restrictions may only have 0
and 1 as parameter n;

• hasValue restrictions are prohibited; and

• EnumeratedClass and DisjointClass axioms are not allowed.

The concrete constraints on the syntax of OWL Lite ontologies are summarized in
http://www.w3.org/TR/owl-ref/#OWLLite.

Note that we omitted AnnotationProperty and OntologyProperty axioms, since they
do not have an immediate DL equivalent expression. In fact, those property axioms
are merely used for annotating extralogical information in the ontology like authorship
information and textual descriptions for class and property axioms. As an aside, the
owl:imports built-in ontology property can be used to include other ontologies (see also
the discussion in [Horrocks et al., 2003]

The second column of Table 2.2 and Table 2.3 maps OWL abstract syntax to the
corresponding DL syntax, hence OWL ontologies can be imagined as syntactic variants of
description logics. Moreover, OWL ontologies are in general just RDF graphs, consequently
they may come in form of RDF/XML2, the usual way to denote OWL ontologies. The
next example will show that this particular manner for denoting OWL ontologies is not
designed for human-readability; instead, RDF/XML is built for an easy machine-to-machine
communication.

Example 2.6. We again describe the Student ontology in Example 1.2, but this time in
terms of OWL abstract syntax. The OWL language constructors in use fit nicely into the
OWL DL language.

2http://www.w3.org/TR/rdf-syntax-grammar/

http://www.w3.org/TR/owl-ref/#OWLLite
http://www.w3.org/TR/rdf-syntax-grammar/

24 Preliminaries

Abstract Syntax DL Syntax Semantics
Descriptions (C)
A (URI reference) A AI ⊆ ∆I

owl:Thing > owl : ThingI = ∆I

owl:Nothing ⊥ owl : NothingI = ∅
intersectionOf(C1 C2 . . .) C1 u C2 (C1 u C2)I = CI

1 ∩ CI
2

unionOf(C1 C2 . . .) C1 t C2 (C1 t C2)I = CI
1 ∪ CI

2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1 . . .) {o1, . . .} {o1, . . .}I = {oI1 , . . .}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) R : o (∀R.o)I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(n)) ≥ nR (≥ nR)I = {x |]({y | 〈x, y〉 ∈ RI}) ≥ n}
restriction(R maxCardinality(n)) ≤ nR (≤ nR)I = {x |]({y | 〈x, y〉 ∈ RI}) ≤ n}
restriction(R cardinality(n)) = nR (= nR)I = {x |]({y | 〈x, y〉 ∈ RI}) = n}
restriction(U someValuesFrom(D)) ∃U.D (∃U.D)I = {x | ∃y.〈x, y〉 ∈ UI ∧ y ∈ DD}
restriction(U allValuesFrom(D)) ∀U.D (∀U.D)I = {x | ∀y.〈x, y〉 ∈ UI → y ∈ DD}
restriction(U hasValue(v)) U : v (U : v)I = {x | 〈x, vI〉 ∈ UI}
restriction(U minCardinality(n)) ≥ nU (≥ nU)I = {x |]({y | 〈x, y〉 ∈ UI}) ≥ n}
restriction(U maxCardinality(n)) ≤ nU (≤ nU)I = {x |]({y | 〈x, y〉 ∈ UI}) ≤ n}
restriction(U cardinality(n)) = nU (= nU)I = {x |]({y | 〈x, y〉 ∈ UI}) = n}

Data Ranges (D)
D (URI reference) D DD ⊆ ∆D

oneOf(v1 . . .) {v1, . . .} {v1, . . .}I = {vI1 , . . .}

Object Properties (R)
R (URI reference) R RI ⊆ ∆I ×∆I

R− (R−)I = (RI)−

Datatype Properties (U)
U (URI reference) U UI ⊆ ∆I ×∆D

Individuals (o)
o (URI reference) o oI ∈ ∆I

Data Values (v)
v (RDF literal) v vI = vD

Table 2.2: OWL DL Syntax vs. DL Syntax and Semantics

2.4 Web Ontology Language 25

Abstract Syntax DL Syntax Semantics
Class(A partial C1 . . . Cn) A v C1 u · · · u Cn AI ⊆ CI

1 ∩ · · · ∩ CI
n

Class(A complete C1 . . . Cn) A = C1 u · · · u Cn AI = CI
1 ∩ · · · ∩ CI

n

EnumeratedClass(A o1 . . . on) A = {o1, . . . , on} AI = {oI1 , . . . , oIn}
SubClassOf(C1 C2) C1 v C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 = · · · = Cn CI
1 = · · · = CI

n

DisjointClasses(C1 . . . Cn) Ci u Cj = ⊥, i 6= j CI
i ∩ CI

j = ∅, i 6= j

Datatype(D) DI ⊆ ∆D

DatatypeProperty(U

super(U1). . .super(Un) U v Ui UI ⊆ UI
i

domain(C1). . .domain(Cm) ≥ 1 U v Ci UI ⊆ CI
i ×∆D

range(D1). . .range(Dl) > v ∀U.Di UI ⊆ ∆I ×DI
i

[Functional]) > v≤ 1 U UI is functional
SubPropertyOf(U1 U2) U1 v U2 UI

1 ⊆ UI
2

EquivalentProperties(U1 . . . Un) U1 = · · · = Un UI
1 = · · · = UI

n

ObjectProperty(R

super(R1). . .super(Rn) R v Ri RI ⊆ RI
i

domain(C1). . .domain(Cm) ≥ 1 R v Ci RI ⊆ CI
i ×∆I

range(C1). . .range(Cl) > v ∀R.Ci RI ⊆ ∆I × CI
i

[inverseOf(R0)] R = R−
0 RI = (RI

0)−

[Symmetric] R = R− RI = (RI)−

[Functional] > v≤ 1 R RI is functional
[InverseFunctional] > v≤ 1 R− (RI)− is functional
[Transitive]) Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 v R2 RI
1 ⊆ RI

2

EquivalentProperties(R1 . . . Rn) R1 = . . . = Rn RI
1 = . . . = RI

n

Individual(o type(C1). . .type(Cn) o ∈ Ci oI ∈ CI
i

value(R1 o1). . .value(Rn on) 〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RI
i

value(U1 v1). . .value(Un vn)) 〈o, vi〉 ∈ Ri 〈oI , vIi 〉 ∈ RI
i

SameIndividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , i 6= j oIi 6= oIj , i 6= j

Table 2.3: OWL DL Axioms and Facts

26 Preliminaries

SubClassOf(UnderGradStudent Student)
SubClassOf(GraduateStudent Student)
SubClassOf(UnderGradeStudent complementOf(GraduateStudent))
SubClassOf(MasterStudent GraduateStudent)
SubClassOf(PhDStudent GraduateStudent)
SubClassOf(MasterStudent complementOf(PhDStudent))
SubClassOf(Course Work)
SubClassOf(Research Work)
SubClassOf(Course complementOf(Research))
SubClassOf(TA Assistant)
SubClassOf(RA Assistant)
SubClassOf(TA restriction(teachingAssistantOf someValuesFrom(Course)))
SubClassOf(RA restriction(researchAssistantOf someValuesFrom(Research)))
SubPropertyOf(teachingAssistantOf AssistantOf)
SubPropertyOf(researchAssistantOf AssistantOf)
SubClassOf(restriction(hasScholarship maxCardinality(1)) Student)
ObjectProperty(hasScholarship range(Scholarship))
ObjectProperty(assistantOf domain(Assistant) range(Work))
ObjectProperty(teachingAssistantOf domain(TA) range(Course))
ObjectProperty(researchAssistantOf domain(RA) range(Research))
ObjectProperty(researchAssistantOf domain(Student) range(Course))
Individual(min type(MasterStudent))
Individual(tkren type(PhDStudent))
Individual(min value(hasScholarship erasmus_mundus))

The concrete syntax of OWL is much more verbose. For example, the following
RDF/XML serialization represent the definition of the concept GraduateStudent :

<owl:Class rdf:ID="GraduateStudent">
<rdfs:subClassOf>

<owl:Class rdf:ID="Student"/>
</rdfs:subClassOf>
<owl:equivalentClass>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:ID="PhDStudent"/>
<owl:Class rdf:ID="MasterStudent"/>

</owl:unionOf>
</owl:Class>

</owl:equivalentClass>
<owl:disjointWith>
<owl:Class rdf:ID="UndergraduateStudent"/>

</owl:disjointWith>
</owl:Class>

The semantics for OWL DL and OWL Lite is presented in the third column of Table 2.2
and Table 2.3. As remarked in the beginning of this section, OWL Lite and OWL DL
ontologies correspond to SHIF(D) and SHOIN (D) DL-KBs, respectively. OWL uses the
RDF datatyping scheme to refer to datatypes.3 Hence, OWL uses XML Schema datatypes

3http://www.w3.org/TR/rdf-concepts/

http://www.w3.org/TR/rdf-concepts/

2.5 dl-Programs 27

like xsd:string or xsd:float. In a model I, ∆I is the domain of individuals and ∆D is
the domain of data values (cf. Section 2.3).

2.5 dl-Programs

First introduced in [Eiter et al., 2004a], dl-programs opened a new framework for integrating
rules and ontologies. In this thesis, dl-programs and cq-programs play an important role as
the target formalization of our transformation. Details about cq-programs will be described
in Section 2.6. This section deals with syntax and semantics of dl-programs.

Description Logic programs (dl-programs) consist of a normal logic program P and
a DL-KB L. The logic program P might contain special devices called dl-atoms which
may occur in the body of a rule and involve queries to a DL-KB. Moreover, dl-atoms can
specify an input to L before querying the external DL-KB, thus dl-programs allow for a
bidirectional data flow between the description logic component and the logic program.

The way dl-programs interface DK-KBs allow them to act as a loosely coupled formalism.
This feature brings the advantage of reusing existing logic programming and DL systems
in order to build an implementation of dl-programs.

Next, we provide the syntax of dl-programs and an overview of the semantics. More
details can be found in [Eiter et al., 2007b].

Syntax and semantics of dl-programs

Informally, a dl-program consists of a description logic knowledge base L and a generalized
normal program P , which may contain queries to L. Roughly, such a query asks whether a
specific description logic axiom is entailed by L or not.

We first define dl-queries and dl-atoms, which are used to express queries to the description
logic knowledge base L. A dl-query is either:

• a concept inclusion axiom F or its negation ¬F , or

• of the forms C(t) or ¬C(t), where C is a concept and t is a term, or

• of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m ≥ 0, (2.2)

where each Si is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a unary resp. binary
predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm input predicate symbols.
Intuitively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi, while
opi = −∩ constrains Si to pi.

A dl-rule r has the form

a← b1, . . . , bn,not bn+1, . . . ,not bm, (2.3)

where any literal b1, . . . , bm ∈ B(r) may be a dl-atom. We define H(r) = a and
B(r) = B+(r) ∪B−(r), where B+(r) = {b1, . . . , bn} and B−(r) = {bn+1, . . . , bm}. If
B(r) = ∅ and H(r) 6= ∅, then r is a fact. A dl-program KB = (L,P) consists of a
description logic knowledge base L and a finite set of dl-rules P .

The next example will illustrate our main ideas.

28 Preliminaries

Example 2.7 ([Schindlauer, 2006]). An existing network must be extended by new
nodes. The knowledge base LN contains information about existing nodes and their
interconnections as well as a definition of “overloaded” nodes (concept HighTrafficNode),
which depends on the number of connections of the respective node (here, all nodes with
more than three connections belong to HighTrafficNode):

≥ 1 wired v Node; > v ∀wired .Node; wired = wired−;
≥ 4 wired v HighTrafficNode;
Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);
wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).

To evaluate possible combinations of connecting the new nodes, the following program PN

is specified:

newnode(add1). (1)
newnode(add2). (2)
overloaded(X)← DL[wired] connect ;HighTrafficNode](X). (3)
connect(X, Y)← newnode(X),DL[Node](X),not overloaded(Y),not excl(X, Y). (4)
excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z. (5)
excl(X, Y)← connect(Z, Y),newnode(Z),newnode(X), Z 6= X. (6)
excl(add1 , n4). (7)

Rules (1)–(2) define the new nodes to be added. Rule (3) imports knowledge about
overloaded nodes in the existing network, taking new connections already into account.
Rule (4) connects a new node to an existing one, provided the latter is not overloaded
and the connection is not to be disallowed, which is specified by Rule (5) (there must not
be more than one connection for each new node) and Rule (6) (two new nodes cannot be
connected to the same existing one). Rule (7) states a specific condition: Node add1 must
not be connected with n4.

Two different semantics have been defined for dl-programs, the (strong) answer-set
semantics [Eiter et al., 2004a] and the well-founded semantics [Eiter et al., 2004b]. The
latter extends the well-founded semantics of [Van Gelder et al., 1991] to dl-programs.
Well-founded semantics is based on the notion of greatest unfounded set and assigns a
single three-valued model to every logic program. In addition, recent results define the
well-founded semantics to a subclass of Hybrid MKNF KBs [Knorr et al., 2007].

2.6 cq-Programs

As we can see in Section 2.5, queries in dl-programs are restricted to either concept and
role membership queries or subsumption queries. Since the semantics of logic programs is
usually defined over a domain of explicit individuals, this approach may fail to derive certain
consequences implicitly contained in a DL-KB. To overcome this limitation, cq-programs
were introduced in [Eiter et al., 2007a] as an extension of dl-programs by allowing (union
of) conjunctive queries in dl-atoms. In this section, we will give a quick overview of the new
contribution of cq-programs compared to dl-programs. For more details about cq-programs,
we refer the reader to [Krennwallner, 2007]

2.6 cq-Programs 29

Syntax and semantics of cq-programs

Informally, a cq-program consists of a DL-KB L and a generalized disjunctive program
P , which may involve queries to L. Roughly, such a query may ask whether a specific
description logic axiom, a conjunction or a union of conjunctions of DL axioms is entailed
by L or not.

dl-queries are defined as in Section 2.5. An extension called conjunctive query (CQ)
q(~X) is defined as follows:

{ ~X | Q1(~X1), Q2(~X2), . . . , Qn(~Xn)}, (2.4)

where n ≥ 0, each Qi is a concept or role expression and each ~Xi is a singleton or pair of
variables and individuals matching the arity of Qi, and where ~X ⊆

⋃n
i=1 vars(~Xi) are its

distinguished (or output) variables.
A union of conjunctive queries (UCQ) q(~X) is an expression of form

{ ~X | q1(~X) ∨ · · · ∨ qm(~X)} (2.5)

of CQs qi(~X) for m ≥ 0.
Intuitively, a CQ q(~X) is a conjunction Q1(~X1) ∧ · · · ∧ Qn(~Xn) of concept and role

expressions with possibly existential quantified variables, which is true if all conjuncts are
satisfied. A UCQ q(~X) is satisfied, whenever some qi(~X) is satisfied. We will omit the
output variables ~X from CQs and UCQs if clear from the context, especially when (U)CQs
are used in dl-atoms. Here, the output of the dl-atom and of the (U)CQ are equal.

An extended dl-atom is of form

DL[λ; q](~X), (2.6)

where λ = S1 op1 p1, . . . , Sm opm pm (m ≥ 0) is a list of expressions Si opi pi called input
list, each Si is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a predicate symbol matching
the arity of Si, and q is a (U)CQ with output variables ~X (in this case, (2.6) is called
a (u)cq-atom), or q(~X) is a dl-query. Each pi is an input predicate symbol ; intuitively,
opi =] increases Si by the extension of pi, while opi = −∪ increases ¬Si; opi = −∩ constrains
Si to pi.

A cq-rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, (2.7)

where every ai is a literal and every bj is either a literal or a dl-atom. We define H(r) =
{a1, . . . , ak} and B(r) = B+(r) ∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1,
. . . , bn}. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. If H(r) = ∅ and B(r) 6= ∅, then r is a
constraint. We denote by B+

dl(r) (resp., B−
dl(r)) the set of all dl-atoms occurring in B+(r)

(resp., B−(r)).
A cq-program KB = (L,P) consists of a DL-KB L and a finite set of cq-rules P .

Example 2.8. [Eiter et al., 2007a] The following example compares dl-programs and
cq-programs on a same description logic knowledge base L as follows:

L =


father v parent ,∃father .∃father−.{Remus}(Romulus),

hates(Cain,Abel), hates(Romulus,Remus),
father(Cain,Adam), father(Abel ,Adam)



30 Preliminaries

Apart from the explicit facts, L states that each father is also a parent and that Romulus
and Remus have a common father. To represent that a BadChild is an individual who
hates a sibling in terms of dl-programs, we have:

P = {BadChild(X)← DL[parent](X, Z),DL[parent](Y, Z),DL[hates](X, Y).}

This dl-program can conclude BadChild(Cain), but not BadChild(Romulus), though it is
implicitly stated that Romulus and Remus have a common father. The following cq-program
solves the problem:

P ′ = {BadChild(X)← DL[parent(X, Z), parent(Y, Z), hates(X, Y)](X, Y).}

Here, the body of the rule is a CQ {parent(X, Z), parent(Y, Z), hates(X, Y)} over L with
distinguished variables X and Y . In the case of Romulus and Remus, Z is their implicit
father which is recognized in the DL-KB, but is not mentioned in the Herbrand Base of P ′.

The strong answer-set semantics for cq-programs was defined in [Krennwallner, 2007],
based on the minimal-model semantics for positive cq-programs.

2.7 Default Logic

Default Logic, one of the most prominent nonmonotonic reasoning formalisms, was in-
troduced in [Reiter, 1980]. Since then, it has been widely studied and several variants
have been developed. However, the original presentation is still the most attractive one,
because of its simplicity and close intuition to common-sense reasoning. In this thesis, we
are also interested in this version and our purpose is to enable default reasoning on top of
ontologies, which can be seen as an attempt for integrating rules and ontologies to allow
nonmonotonic reasoning.

In this section, we provide the basic definitions default logic. For an excellent tutorial
on default logics, we refer the reader to [Antoniou, 1999].

2.7.1 Syntax and Semantics of Default Logic

Definition 2.1. [Reiter, 1980] A default δ is an inference rule of the form

α(x) : β1(x), . . . , βn(x)
γ(x)

, (n ≥ 1);

where α(x), β1(x), . . . , βn(x), and γ(x) are formulas in a first-order language L. The formula
α(x) is called the prerequisite, β1(x), . . . , βn(x) are called the justifications, and γ(x) the
consequent/conclusion of the default.

The intuitive meaning of δ is: “For all individuals x = (x1, . . . , xm), if α(x) is provable,
and assuming that, for each i, βi(x) is true does not lead to inconsistency then conclude
γ(x).”

If n = 0, δ is called justification-free and become a monotonic rule.

Definition 2.2. [Reiter, 1980] A default theory is a pair T = 〈W,D〉, where W is a set of
first-order sentences, axioms of T , and D is a set of defaults.

Element of W are the premisses of T , representing certain yet incomplete information
about the world. D represents plausible although not necessarily true conclusions, i.e.,
conclusions that hold typically.

2.7 Default Logic 31

Example 2.9. The default representing that “Birds usually fly” is

bird(X) : flies(X)
flies(X)

and with the constant tweety in the language L, the corresponding instance of this default
is:

bird(tweety) : flies(tweety)
flies(tweety)

Knowing that “Tweety is a bird,” we can conclude from this default that “Tweety flies.”
However, if the fact ¬flies(tweety) can be derived from an updated theory, for example

“Tweety is a penguin,” then it will block the default, since assuming flies(tweety) will lead
to inconsistency. Hence, we can no longer conclude flies(tweety).

Example 2.10. The informal discussion in Example 2.9 can be represented in a default
theory T = 〈W,D〉, where

W =


∀x. penguin(x) → bird(x)
∀x. penguin(x) → ¬flies(x)

bird(tweety)

,

and

D =
{

bird(X):flies(X)
flies(X)

}
We have T |= flies(tweety). Now consider another default theory T ′ = 〈W ′, D〉, where

W ′ = W ∪ {penguin(tweety)}, we can conclude T |= ¬flies(tweety) and the default in D is
not applicable anymore.

A default α(x):β1(x),...,βn(x)
γ(x) is called open iff at least one of α(x), β1(x), . . . , βn(x), γ(x)

contains a free variable; otherwise, it is called closed. A default theory is called open iff it
contains at least one open default; otherwise, it is said to be closed.

An instance of an open default is the result of uniformly replacing all free occurrences of
variables by ground terms. More specifically, an instance of an open default is any closed
default of the form α(c):β1(c),...,βn(c)

γ(c) , where c is an n-tuple of ground terms.
Since an open default can be identified with the set of all its closed instances, therefore

it is sufficient for us to consider only closed default theories from now on.
In order to represent the totality of knowledge induced by a default theory T , we use

the notion of extension. The basic idea of obtaining extensions is to apply the defaults in
D to the premisses in W to extend certain knowledge by plausible conclusions; and apply
the defaults as long as possible, until no new knowledge can be generated. The result is an
extension of T .

The definition of extensions uses the definition of the Γ operator.

Definition 2.3. [Reiter, 1980] Let T = 〈W,D〉 be a closed default theory over a first-order
language L. For any set of sentences S ⊆ L, let ΓT (S) be the smallest set of sentences
from L satisfying the following properties:

1. W ⊆ ΓT (S);

2. ΓT (S) is deductively closed, i.e., Cn(ΓT (S)) = ΓT (S);

3. if α:β1,...,βn

γ ∈ D and α ∈ ΓT (S) ∧ ¬β1, . . . ,¬βn /∈ S then γ ∈ ΓT (S).

32 Preliminaries

As usual, ` denotes the classical derivability relation and Cn(F) = {φ | F ` φ and φ is
closed }, for every set F of closed formulas.

Definition 2.4. A set of sentences E ⊆ L is an extension of T iff E = Γ(E), i.e., iff E is a
fixed-point of the operator ΓT .

Example 2.11. The extension of the default theory T in Example 2.10 is E = Cn(W ∪
flies(tweety)).

Definition 2.5. [Reiter, 1980] Let T be a closed default theory and suppose that E is an
extension of T . The set of generating defaults for E wrt T , written GD(E, T), is defined
by

GD(E, T) = {(α : β1, . . . , βn/γ) ∈ D : α ∈ E and β1 /∈ E, . . . , βn /∈ E}.

2.7.2 Algorithms for evaluating extensions of a default theory

Next, we present three different algorithms used to evaluate extensions of a default theory
[Cholewinski and Truszczynski], namely Select-defaults-and-check, Select-justifications-and-
check, and Select-ordering-and-check. They were all proved to find all extensions of a
default theory. The first two will be used in our transformations provided in Chapter 3.

Algorithm 1: Select-defaults-and-check

1. Select a set of defaults S ⊆ D

2. Check if S is a set of generating defaults. If so, output the theory generated by S as
an extension

3. Repeat until all subsets of D are considered or pruned

Algorithm 2: Select-justifications-and-check

1. Select a set of justifications J ⊆ j(D), where j(D) is the set of justifications of all
defaults in D.

2. Find a set of defaults S whose justifications belong to J .

3. Compute the set of consequences E of W that can be derived by means of defaults
in S (a default “fires” if its prerequisite has been derived earlier)

4. If all justifications in J are consistent with E and every default not in S has at least
one justification not consistent with E, then output E as an extension.

5. Repeat until all subsets of j(D) are considered or pruned.

As mentioned earlier, the purpose of this thesis is to enable default reasoning on top of
ontologies. To fulfil this purpose, what we need is the mechanisms that supports ontology
reasoning and allows the integration of (nonmonotonic) rules and ontologies

Such mechanisms are implemented and tools are ready for use. On the one hand,
natural candidates for ontology reasoning are Racer and Pellet; on the other hand, the
hex-program solver dlvhex has been implemented as a prover for Semantics Web reasoning

2.7 Default Logic 33

Algorithm 3: Select-ordering-and-check

1. Select a permutation d1, . . . , dn of D

2. Mark all defaults in D available

3. Set S := W

4. Repeat until no longer possible: find the smallest i such that di is marked available
and is applicable w.r.t. S (i.e., the prerequisite of di is a consequence of S and every
justifications of di is consistent with S). Mark di used and add its consequent to S.

5. If every justification of every used default is consistent with S, output Cn(S) as an
extension.

6. Repeat all these steps until all permutations are used.

under Answer-Set Semantics. Furthermore, dlvhex provides a plugin environment that
allows evaluating external atoms, including dl-atoms in which we are interested.

With all the foundations settled, our task is pretty much straightforward. The strategy is
(i) find some transformations from default logic over description logics to dl-programs such
that extensions of a default theory will be corresponding to answer sets of the translated dl-
program (Section 2.5); then (ii) implement these transformations in the plugin environment
provided by dlvhex. These two steps will be discussed in Chapters 3 and 4, respectively.

To finish this chapter, we discuss the first attempt of embedding defaults into termino-
logical knowledge representation proposed in [Baader and Hollunder, 1993] and point out
the difference between this approach and our work here.

In this approach, the authors directly applied the process of evaluating extensions in a
DL-KB based on the Compute-All-Extension(W,D) procedure for computing the set of
generating defaults of a default theory 〈W,D〉. Specifically, this procedure requires the
following subprocedures:

(1) Decide whether W is consistent.

(2) Compute all maximal subsets D′ of D such that W ∪ Con(D′) is consistent, where
Con(D′) is the set of consequents of all defaults in D′.

(3) Compute the largest subset D0 of D′ that is grounded in W .

(4) Compute all maximal subset D′′ of D0 such that W ∪ Con(D′′) 2 ¬βi, where βi is a
justification of a default in D.

When applied to a terminological default theories, subprocedures (2) and (4) are solved
by algorithms for computing minimal inconsistent and maximal consistent ABoxes (see
Section 6 [Baader and Hollunder, 1993]). The algorithms are extensions of the tableaux-
based consistency algorithms for ABoxes [Baader and Hanschke, 1991, Junker and Konolige,
1990] and were proved to be decidable for description logics ALC and ALCF .

Furthermore, this approach allows concept definitions to appear in prerequisites, premises
and consequents of defaults, thus defaults of the following form can be specified:

doctor : ∃child .doctor
∃child .doctor

34 Preliminaries

Compared to our approach, we allow concept and role names to appear as predicate names
for these components so that we can adopt defaults of the form

GraduateStudent(X) ∧ hasScholarship(X, S) : ¬Assistant(X)
¬Assistant(X)

where GraduateStudent and Assistant are concept names and hasScholarship is a role
name in a DL-KB.

Another difference is that our approach exploits the dl-safety condition of dl-programs,
the separated integration of rules and ontologies, hence allow as expressive DL-KBs as
possible in the terminology knowledge base, as long as querying to these DL-KBs is
decidable while [Baader and Hollunder, 1993] limits its applicability in description logics
ALC and ALCF .

Finally, both approaches do not apply skolemization, in other words, they work under
the convention that only explicit individuals from the DL-KBs are considered to ground
open defaults in a default theory, i.e., in the end actually process a set of finitely many
grounded defaults.

3
Embedding Defaults over Description Logics into dl-Programs

In this chapter, we describe three transformations embedding default theories over descrip-
tion logics to dl-programs. We start by analyzing the transformation proposed in [Eiter
et al., 2007b] which brought us the motivation for the second transformation. Both of them
share the Select-defaults-and-check algorithm. Finally, the third transformation based on
the Select-justifications-and-check algorithm will be presented.

Before presenting the transformations in details, we first introduce some basic notions
which will be used in the rest of this chapter.

As we recalled in Section 2.7, a default theory T is defined as a pair 〈W,D〉 in which W ,
the background theory, is a set of first-order sentences and D is a set of defaults. However,
with the purpose of enabling default reasoning on top of ontologies, we need to modify our
default theories in a way that the background theory represents an ontology.

Definition 3.1. Let L be a DL-KB, a default δ over L has the form:

α1(~X1) ∧ · · · ∧ αk(~Xk) : β1(~Y1), . . . , βm(~Ym)

γ(~Z)
(3.1)

where αi, βj , γ are either concept names or role names in L, i.e., either unary or binary. A
set of defaults D = {δ1, . . . , δn} is called over L iff each of its default is over L. A default
theory ∆ = 〈L,D〉 is called over L iff the set of defaults D is over L.

Since we only consider default theories over a DL-KB in this thesis, hence, from now on,
we will use the term default theories for simplicity. Later, we will extend the structural
complexity of defaults by allowing conjunctions in every component of each default, but
the main idea will not change, i.e., each literal name in those components is taken from
the concepts names and roles names of L. We inherit the notion of extension from default
logic as in Definition 2.4.

Example 3.1. The tweety example can be formalized by a default theory ∆ = 〈L,D〉,
where

L =
{

Flier v ¬NonFlier ,Penguin v Bird ,
Penguin v NonFlier ,Penguin(tweety)

}
, and

D =
{

Bird(X):Flier(X)
Flier(X)

}
In the next sections, we will present different transformations from default theories to

dl-programs, namely transformations Π, Ω, and Υ.

35

36 Embedding Defaults over Description Logics into dl-Programs

3.1 Transformation Π

This transformation was proposed in [Eiter et al., 2007b] and is based on the Select-defaults-
and-check algorithm.

Definition 3.2. Let ∆〈L,D〉 be a default theory, δ ∈ D be a default of the form (3.1),
the transformation Π(δ) consists of the following corresponding dl-rules:

(1) two rules for guessing whether the consequent γ(
−→
Z) of δ belongs to the extension E:

in γ(~Z)← not out γ(~Z). (3.2)

out γ(~Z)← not in γ(~Z). (3.3)

(2) a rule which checks the compliance of the guess for E with L:

fail ← DL[λ′; γ](~Z), out γ(~Z),not fail . (3.4)

where λ′ =
⋃

δi∈D γ opi in γi , opi =] if the literal γi(~Yi) is positive and opi = −∪
otherwise;

(3) a rule for applying δ as in Γ∆(E):

p γ(~Z)←DL[λ;α1](~X1), . . . , DL[λ;αk](~Xk), (3.5)

not DL[λ′;¬β1](~Y1), . . . ,not DL[λ′;¬βm](~Ym) ,

where λ =
⋃

δi∈D γi opi p γi, opi =] if the literal γi(~Yi) is positive, and opi = −∪
otherwise, (and double negation in ¬βj is canceled).

(4) rules which check whether E and Γ∆(E) coincide:

fail ← not DL[λ; γ](~Z), in γ(~Z),not fail . (3.6)

fail ← DL[λ; γ](~Z), out γ(~Z),not fail . (3.7)

Definition 3.3. Let ∆ = 〈L,D〉 be a default theory, then KBdf
Π is the dl-program (L,P),

where
P =

⋃
δ∈D

Π(δ)

Here after, we use Cn(L(I;λ)) for Cn(L ∪ λ(I)), which means the deductive closure of
the DL-KB L updated by the input list λ and the interpretation I.

Theorem 3.2. [Eiter et al., 2007b] Let ∆ = 〈L,D〉 be a default theory. Then:

(1) For each extension E of ∆, there exists a (unique) strong answer set M of KBdf
Π such

that
E = Cn(L(M ;λ′)) = Cn(L(M ;λ))

(2) For each strong answer set M of KBdf
Π , the set

E = Cn(L(M ;λ′)) = Cn(L(M ;λ))

is an extension of ∆.

3.1 Transformation Π 37

The proof for this theorem can be found in Appendix B, [Eiter et al., 2007b].
The intuition behind this transformation is the following. First of all, for each default,

we make a guess whether its conclusion is in an extension. The guess is then used in λ′

to check the compliance of it with the original DL-KB. Rule (3.4), which is a constraint,
does not allow the cases in which we guess something out but actually it can be concluded
from L. Having a compliant guess E, we can apply the Γ∆ operator as in Definition (2.3)
to compute Γ∆(E). Notice that in rule (3.5), we use another update, namely λ which
uses auxiliary predicates whose names start with the prefix “p ” as its input. Finally, the
two constraints (3.6) and (3.7) assert an extension by checking the condition E = Γ∆(E).
Basically, constraint (3.6) says that we cannot have a case in which we guess something in
which cannot be derived from L; and (3.7) prevents situation when we guess something
out but which can actually be derived from L.

Analyzing this transformation, we can see that it has two explicit guessing rules (3.2)
and (3.3) for auxiliary predicates whose names start with “in ”. Notice that these predicates
denote the same meaning as the ones whose names start with “p ”, and under answer-set
semantics, another implicit guess needs to be made in order to evaluate the program.

The question here is: can we simplify the transformation in a way that only one type of
auxiliary predicates is needed, therefore the guess will be reduced and the transformation
will be more effective.

Before answering this question and coming up with a new transformation, we describe
here another issue of this transformation. Notice that rules (3.2) and (3.3) do not distinguish
the cases where γi(~Zi) is positive or negative. Instead, this problem is only taken care of
in defining λ and λ′. A problem then arises when we have defaults with dual consequents.

Example 3.3 (Nixon diamond). A prominent example for this case is the Nixon diamond
example in which default assumptions can lead to inconsistent conclusion. This scenario
is as follows: usually, Quakers are pacifists, while Republicans usually are not. Richard
Nixon is both a Quaker and a Republican. What can we conclude about him?

In terms of ontologies and default reasoning, we can represent this example by a default
theory ∆ = 〈L,D〉, where L = {Q(nixon), R(nixon)} and its signature contains concepts
P,Q, and R. The default part is

D =
{

δ1 =
Q(X) : P (X)

P (X)
, δ2 =

R(X) : ¬P (X)
¬P (X)

}
Now, if we do apply the above transformation naively, the first two guessing rules produce

the same result, namely:

in P (X) ← not out P (X)
out P (X) ← not in P (X)

These rules lead to a very dangerous situation where λ′ = P] in P, P −∪ in P . The
guess for consequents of both defaults are not distinguished. Furthermore, guessing any
P (a), where a is a constant, will lead to inconsistency of the updated DL-KB. This
inconsistency will block all non-justification-free defaults in D and therefore throw some
possible extensions away. For instance, in this “Nixon diamond” example, we get no
extension with this transformation, while the correct result should be two extensions, namely
E1 = {Q(nixon), R(nixon), P (nixon)} and E2 = {Q(nixon), R(nixon),¬P (nixon)}.

However, this problem can be solved by giving explicit auxiliary predicate names for
positive and negative literals:

• let name(γ) be the predicate name of the literal γ; and

38 Embedding Defaults over Description Logics into dl-Programs

• let aux γ be in name(γ) (resp., in not name(γ)) if γ is positive (resp., negative).

and a change has to be made for the input list λ′ =
⋃

δ∈D γ]in name(γ), γ−∪in not name(γ).
p γ is changed to p aux γ and λ =

⋃
δ∈D γ] p in name(γ), γ −∪ p in not name(γ).

The updated transformation Π(δ) corresponding to this new naming approach can be
summarized as follows:

aux γ(~Z)←not out aux γ(~Z). (3.8)

out aux γ(~Z)←not aux γ(~Z). (3.9)

fail ←DL[λ′; γ](~Z), out aux γ(~Z),not fail . (3.10)

p γ(~Z)←DL[λ;α1](~X1), . . . ,DL[λ;αk](~Xk), (3.11)

not DL[λ′;¬β1](~Y1), . . . ,not DL[λ′;¬βm](~Ym).

fail ←not DL[λ; γ](~Z), aux γ(~Z),not fail . (3.12)

fail ←DL[λ; γ](~Z), out aux γ(~Z),not fail . (3.13)
(3.14)

where λ and λ′ are as in Definition 3.2.
Theorem 3.2 still holds for this new transformation.
So far, we used ordinary dl-atoms in our transformation. As described in Section 2.6,

using conjunctive queries might introduce more conclusions. And in cases of conjunctive
prerequisite, we have another choice for rules (3.5) and (3.11) by exploiting CQs as follows:

p γ(~Z)←DL[λ;α1(~X1), . . . , αk(~Xk)](~X), (3.15)

not DL[λ′;¬β1](~Y1), . . . ,not DL[λ′;¬βm](~Ym).

where ~X =
⋃k

j=1 V ars(~Xj)

3.2 Transformation Ω

In this section, we will discuss transformation Ω based on the same algorithm with this
transformation, but much more simplified.

Being inspired by the analysis in Section 3.1, a new transformation is proposed here
from default theories to dl-programs. The main idea of this transformation is to use only
one input list λ instead of λ and λ′, hence only the auxiliary predicates starting with “p ”
are needed. However, to keep the intuition of the result, we will use the prefix in instead.

Definition 3.4. Let ∆〈L,D〉 be a default theory, δ ∈ D be a default of the form (3.1),
the transformation Ω(δ) consists of the following corresponding dl-rule:

aux γ(~Z)←DL[λ;α1](~X1), . . . ,DL[λ;αk](~Xk), (3.16)

not DL[λ;¬β1](~Y1), . . . ,not DL[λ;¬βm](~Ym).

where λ =
⋃

δi∈D(γi] in name(γi), γi −∪ in not name(γi))

Definition 3.5. Let ∆ = 〈L,D〉 be a default theory, then KBdf
Ω is the dl-program (L,P),

where
P =

⋃
δ∈D

Ω(δ)

3.2 Transformation Ω 39

Theorem 3.4. Let ∆ = 〈L,D〉 be a default theory. Then:

(1) For each extension E of ∆, there exists a (unique) strong answer set M of KBdf
Ω such

that
E = Cn(L(M ;λ))

(2) For each strong answer set M of KBdf
Ω , the set

E = Cn(L(M ;λ))

is an extension of ∆.

This transformation is quite intuitive and follows exactly the usual way of evaluating
extensions in default theories: “If the prerequisites can be derived, and the justifications can
be consistently assumed, then the consequent can be concluded”. The proof of Theorem 3.4
is given in Appendix A.1.

As in Section 3.1, we can also use CQs here instead of a list of dl-atoms to check the
prerequisites. Rule (3.16) hence can be rewritten as follows:

aux γ(~Z)←DL[λ;α1(~X1), . . . , αk(~Xk)](~X), (3.17)

not DL[λ;¬β1(~Y1)](~Y1), . . . ,not DL[λ;¬βm(~Ym)](~Ym).

Next, we will see how more complex defaults can be transformed. Consider the case
when the consequent is a conjunction, i.e., γ(~Z) = γ1(~Z1) ∧ · · · ∧ γn(~Zn).

The idea in this case is to introduce an auxiliary predicate name for concluding that the
whole conclusion is in, and then to conclude that each literal belonging to that conjunction
has to be in. We have more than one rule in this case:

all in γ(~Z) ← DL[λ;α1(~X1), . . . , αk(~Xk)](~X),
not DL[λ;¬β1](~Y1), . . . ,not DL[λ;¬βm](~Ym).

aux γ1(~Z1) ← all in γ(~Z).
...

aux γn(~Zn) ← all in γ(~Z).
where Z =

⋃
1≤j≤n V ars(~Zj)

Finally, we go one step forward by allowing justifications to be conjunctions. Assume
that βj(~Yj) = µj,1(~Yj,1)∧ · · · ∧µj,lj (~Yj,lj). Checking the consistency condition for βj in this
case requires us to pose a union of conjunctive query (UCQ) to the knowledge base:

all in γ(~Z) ← DL[λ;α1(~X1), . . . , αk(~Xk)](~X),
not DL[λ;¬β1(~Y1)](~Y1),

...
not DL[λ;¬µj,1(~Yj,1) ∨ · · · ∨ ¬µj,lj (~Yj,lj)](~Yj),

...
not DL[λ;¬βm(~Ym)](~Ym).

aux γ1(~Z1) ← all in γ(~Z).
. . .

aux γn(~Zn) ← all in γ(~Z).

Theorem 3.4 still holds for these updated transformations.

40 Embedding Defaults over Description Logics into dl-Programs

Notice that in general cases, asking a UCQ to the knowledge base is undecidable for
expressive DLs [Rosati, 2007], but in active domain semantics where we just consider all
explicit individuals of the knowledge base, this problem is decidable.

3.3 Transformation Υ

In this section, we provide another transformation based on a different algorithm for
evaluating extensions of default theories, the Select-justifications-and-check algorithm (see
Algorithm 2). In this algorithm, the guessing part concentrates on whether a justification
of a default is consistent with an extension. Hence, we introduce the following auxiliary
predicate names for this purpose: let auxc βj be cons name(βj) (resp., cons not name(βj))
if βj is a positive (resp., negative) literal.

Definition 3.6. Let ∆〈L,D〉 be a default theory, δ ∈ D be a default of the form (3.1),
the transformation Π(δ) consists of the following corresponding dl-rules:

(1) rules that guess whether a justification is consistent with the extension E:

auxc βj(~Yj)← not out auxc βj(~Yj). (3.18)

out auxc βj(~Yj)← not auxc βj(~Yj). (3.19)

(2) a rule which computes the set of consequences E:

aux γ(~Z)←DL[λ;α1](~X1), . . . ,DL[λ;αk](~Xk), (3.20)

auxc β1(~Y1), . . . , auxc βm(~Ym).

where λ =
⋃

δi∈D(γi] in name(γi), γi −∪ in not name(γi))

(3) rules that check the compliance of our guess with E:

fail ← DL[λ;¬βj](~Yj), auxc βj(~Yj), not fail . (3.21)

fail ← not DL[λ;¬βj](~Yj), out auxc βj(~Yj), not fail . (3.22)

Definition 3.7. Let ∆ = 〈L,D〉 be a default theory, then KBdf
Υ is the dl-program (L,P)

where
P =

⋃
δ∈D

Υ(δ)

Theorem 3.5. Let ∆ = 〈L,D〉 be a default theory. Then:

(1) For each extension E of ∆, there exists a (unique) strong answer set M of KBdf
Υ such

that
E = Cn(L(M ;λ))

(2) For each strong answer set M of KBdf
Υ , the set

E = Cn(L(M ;λ))

is an extension of ∆.

3.4 Pruning Rules for Optimization 41

The first two rules (3.18) and (3.19) make a choice for the consistency of each justification
with the extension E. Then rule (3.20) applies the Γ∆ operator. We can see that compared
to rules (3.5) and (3.16), this rule poses less queries to the DL-KB; but we have to pay off by
having more guesses inside the program part. Finally, rule (3.21) prevents interpretations
being all models in which we guess a justification βi(~c) to be consistent but can actually
derive ¬βi(~c); and rule (3.22) dismisses situations where a justification βi(~c) is guessed to be
inconsistent but we cannot derive ¬βi(~c). A proof for theorem 3.5 is given in Appendix A.2.

Hereafter are some quick remarks for extensions to more complex defaults:

• defaults whose consequent is a conjunction: using the same strategy as in section 3.2,
rule (3.20)’s head will be replaced by an auxiliary predicate all in , and then we add
rules saying that each consequent’s element will be concluded if the this auxiliary
predicate is concluded.

• justifications that are conjunctions: the guessing rules in (3.18) will now mean that
the whole conjunction is consistent with the extension; therefore, rules for checking
the compliance in rules (3.21) and (3.22) must use UCQs instead. We also need to
add rules saying that if the whole conjunction is consistent with E then each of its
element is also consistent with E.

3.4 Pruning Rules for Optimization

This section will be based on investigating the relationship between pairs of defaults. In
particular, consider the defaults

δ1 =
α1,1(~X1,1) ∧ · · · ∧ α1,k1(~X1,k1) : β1,1(~Y1,1), . . . , β1,m1(~Y1,m1)

γ1,1(~Z1,1) ∧ · · · ∧ γ1,n1(~Z1,n1)
,

and

δ2 =
α2,1(~X2,1) ∧ · · · ∧ α2,k2(~X2,k2) : β2,1(~Y2,1), . . . , β2,m2(~Y2,m2)

γ2,1(~Z2,1) ∧ · · · ∧ γ2,n2(~Z2,n2)

3.4.1 Forcing other defaults to be out

Based on consequent-consequent relationship

The “Nixon diamond” example motivated us to come up with an optimization technique
for defaults with opposite consequents. In this example, we can see that the conclusion of
each default blocks the other default. In order to prune such cases, we can pose a constraint
saying that the two consequents can not be both in an extension. A more formal argument
is as follows:

If there exists γ1,i(~Z1,i) and γ2,j(~Z2,j) such that

γ1,i(~Z1,i) ≡ ¬γ2,j(~Z2,j) where (1 ≤ i ≤ n1, 1 ≤ j ≤ n2)

then all in def1(~Z1) and all in def2(~Z2) cannot stay together in an answer set. This can
be done by adding the following constraint:

fail ← all in def1 (~Z1), all in def2 (~Z2),not fail . (3.23)

where: ~Z1 =
⋃

1≤i≤n1
Terms(~Z1,i) and ~Z2 =

⋃
1≤i≤n2

Terms(~Z2,i).

42 Embedding Defaults over Description Logics into dl-Programs

Based on consequent-justification relationship

Not only can the relationships between consequents be exploited for our pruning purpose,
the relations between consequents and justifications can also play a role. If there exist i
and j (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) such that: γ1,i(~Z1,i) ≡ ¬β2,j(~Y2,j) then the consequent of
the first default will block the second one, therefore we can pose the following constraint:

fail ← all in def1 (~Z1), all in def2 (~Z2),not fail . (3.24)

~Z1 and ~Z2 are defined as above.

3.4.2 Forcing other defaults to be in

Another optimizing technique is to consider defaults that can be forced to be in by other
defaults. Consider two defaults, if the consequent of one default is contained in that of the
other, then guessing the second default to be in an extension will force the first one to be
in also. We can express this idea in a formal way as follows.

Let Γ1 = {γ1,1(~Z1,1), . . . , γ1,n1(~Z1,n1)} and Γ2 = {γ2,1(~Z2,1), . . . , γ2,n1(~Z2,n2)}.
If Γ1 ⊆ Γ2, then guessing all in def2(~Z2) to be true will forces all in def1(~Z1) to be true.
This can be done by adding the following rule:

all in def1 (~Z1)← all in def2 (~Z2). (3.25)

3.4.3 Defaults whose conclusions are already in the background theory

From the definition of extensions, we know that the background theory W is always
contained in an extension E (W ⊆ E). Exploiting this property can help us to make
another shortcut in our transformation. We can state that some certain facts which are in
the deductive closure of the background theory must be in the extension. There are two
ways to do that: (i) either directly query to the knowledge base and put the facts aux γ(~c)
whenever γ(~c) can be concluded from the knowledge base. γ here can be a literal for a
concept or a role, ~c is a vector of constants which can have one or 2 members corresponding
to γ; (ii) or we can add the following dl-rule to the transformation so that the querying
will be done by the dl-plugin at run time:

aux γ(~X)← DL[γ](~X). (3.26)

4
Front-End

Having all the theoretical transformations from default theories to dl-rules in Chapter 3,
our next step is to implement them in a framework which allows the use of dl- and cq-rules
to provide a front-end supporting default reasoning over ontologies. Before going into the
details of how the implementation was developed, we describe an overview of the front-end
in the following section.

4.1 Front-End Overview

default rules
[A(X);B(X)]
 /[C(X)]

dl-rules

HEX-rules

 dl-rules
C(X):-DL[;A](X),
 not DL[;-B](X).

dl-rules

HEX-rules

HEX-
rules

dlvhex Models/
Extensions

User

ontology ontology
dfconverter

dlconverter

Figure 4.1: Strategy for implementing the df-converter

The front-end can be described as in Figure 4.1. Users provide input, including a set
of default rules along with an ontology in an OWL file, and then get the extensions of
the default theory in terms of answer sets. Other optional inputs can be either dl-rules or
hex-rules. Recall that dlvhex is a solver for hex-programs under the answer-set semantics.
It receives input in terms of hex-rules and returns results as answer sets to users; hence,

43

44 Front-End

the level of hex-programs can be considered transparent.1 The reason why we do not
need to know about hex-rules is that the dl-plugin, which is a part of dlvhex’s plugin
environment, already supplies a dl-converter for converting dl-rules to hex-rules. However,
it does not prevent experts from providing more sophisticated input such as constraints in
terms of dl-rules or hex-rules to reduce the search space and speed up the evaluation. In
fact, we do provide a technique called typing predicates in which users can specify more
supportive information that helps our implementation gaining a significant improvement.
Details on this technique will be presented in Section 4.3.

Our strategy is quite straightforward. What we need to implement is a df-converter
whose input contains default rules accompanied with an ontology, optional dl-rules, or
even hex-rules. This converter then transforms all the default rules into dl-rules based
on different transformations discussed in Chapter 3, with the help of the ontology serving
as the sources of individuals for the domain predicates to guarantee the safety condition2.
Then, the transformed dl-rules, along with other input dl- and hex-rules, are transferred
to the dl-converter. The rest of the evaluation will be done by the dl-plugin and dlvhex.

When reading this discussion, one can pose the question: “What is the relationship
between the df-converter and the dl-plugin?” In fact, there are two possible answers: the
df-converter can be either another plugin preceding the dl-plugin in solving default reasoning
on top of ontologies, or it can be a component inside the dl-plugin which will be executed
before the dl-converter. In a first attempt to implement this front-end, we were considering
the first option. However, we realized that the df-converter and the dl-plugin share common
functionality in communicating with DL reasoners, which is already available in the dl-
plugin, hence we decided to take the second approach into account to make use of these
functions. Section 4.4 will give more details on how the dl-plugin was changed to adopt the
df-converter.

Next, we present the syntax of the input defaults and how typing predicates come into
play, together with the “Tweety bird” example.

4.2 Syntax for Input Defaults

To make it easy to present the syntax for input defaults, we first describe the grammar in
the simple case where namespace and typing predicates are not considered. Additional
flavour will be discussed in an informal way by examples.

The syntax for input defaults in the basic case is as follows. We use square brackets
to separate the prerequisites, justifications from the consequents. The prerequisites and
justifications are split up by a semicolon; different justifications are split by commas, and
the character “&” is used to represent the conjunction. The grammar for the input defaults
is as follows; we assume that readers are familiar with the notion of literals (positive or
negative predicates), which is denoted by lit:

just ≡ lit (& lit)∗

[lit (& lit)∗︸ ︷︷ ︸
prerequisites

; just (, just)∗︸ ︷︷ ︸
justifications

]/[lit (& lit)∗︸ ︷︷ ︸
consequents

]

The character ’-’ is used to represent strong negation.

1For more details about hex-programs, we refer readers to [Schindlauer, 2006]
2For more details about the safety condition, we refer the reader to [Schindlauer, 2006]

4.3 Typing Predicates 45

Example 4.1. The default for the “Tweety bird” example is as follows:

[Bird(X);Flier(X)]/[Flier(X)]

Now comes a more complicated case. It is common that concept, role and individual names
in an ontology can come from different namespaces, hence a syntax declaring namespace is
necessary. Fortunately, such a namespace definition syntax is already available in dlvhex.
The following line

#namespace("foo","http://foo.bar.com")

defines a namespace foo recognized by the URI http://foo.bar.com, and now we can
use a qualified name such as foo:P instead of P to explicitly specify P’s namespace.

Example 4.2. The following text represents the “Tweety bird” example with namespace:

#namespace("tweety", "http://example/tweety_bird")

[tweety:Bird(X);tweety:Flier(X)]/[tweety:Flier(X)]

4.3 Typing Predicates

Before going to discuss this technique, we would like to remark the safety condition in every
transformation. Since we intended to have our theoretical transformations in Chapter 3 to
be compact, we did not mention this requirement so far. Basically, the safety condition
says that every variable appearing in a rule must appear in a positive non-DL atom, so
that every variable is identified explicitly. In the implementation in dlvhex, what we need
to do is to add a domain predicate (dom for short) to the body of the rule for each variable
appearing in it, and generate a fact dom(a) for each constant/individual appearing in the
knowledge base. For more details on safety condition, we refer the reader to [Schindlauer,
2006].

After doing some experiments in which roles from the DL-KB appear in default rules,
we recognized that many unnecessary guesses were made during dlvhex’ guessing phase.
For example, suppose that in our DL-KB, we have property hasScholarship whose domain
is Student and range is Scholarship. Moreover, em and oad are two scholarships, min and
tkren are two students. If hasScholarship appears somewhere in a default, there will be a
corresponding dl-atom DL[λ;hasScholarship](X, Y) in a dl-rule. In the guessing phase of
dlvhex it tries all combinations of two individuals for this dl-atom, hence a ground dl-atom
such as

DL[λ; hasScholarship](em, oad)

will be considered, which is unnecessary in this situation. To reduce the number of
individuals, which have to be taken into account for the reasoning process, we provide an
advanced technique called typing predicate. Basically, we allow users to attach each default
with a predicate whose name is freely determined and terms already appeared in that
default’s components. In order to restrict the search space for dlvhex, users then can specify
all facts, or even a program, which computes the models for such a typing predicate. This
method can be seen as providing a database for the reasoner to work more effectively. One
effect of typing predicates is that they make our transformation theoretically incomplete,
but still acceptable from a practical point of view, especially when users only care about
individuals specified in those facts.

46 Front-End

Formally speaking, a default now can be represented in the following form

δ =

〈
α1(~X1) ∧ · · · ∧ αk(~Xk) : β1(~Y1), . . . , βm(~Ym)

γ1(~Z1) ∧ · · · ∧ γn(~Zn)
; θ(~W)

〉
where

~W ⊆
k⋃

i=1

Vars(~Xi) ∪
m⋃

i=1

Vars(~Yi) ∪
n⋃

i=1

Vars(~Zi)

and θ is the name of the typing predicate.
In all transformations, if a rule r satisfies the condition ~W ⊆ Vars(r) then all the

predicates dom(X) such that X ∈ ~W will be removed and be replaced by θ(~W).
The last update for our syntax to support typing predicates is as follows. We allow 〈lit〉

to occur next to a default where lit is a literal whose variables already appeared in the
default’s prerequisites, justifications or consequents. To make this typing predicate work,
users must specify facts or rules which compute models for lit in a hex file as the optional
input in Figure 4.1 which will be called with a default file and an OWL file by dlvhex.

Example 4.3. If we are interested in a small selection of birds from the ontology, what
we can do is to provide two files as follows:

The file tweety.df representing a default rule:

#namespace("tweety", "http://example/tweety_bird")

[tweety:Bird(X);tweety:Flier(X)]/[tweety:Flier(X)]<mybird(X)>

The file tweety.hex representing the facts:

mybird("<http://example/tweety_bird#tweety>").

mybird("<http://example/tweety_bird#joe>").

Assume that the ontology of this example is stored in the file bird.owl. We can run
the following command from the console to start the computation of the answer sets.

$dlvhex --default=bird.df --ontology=bird.owl bird.hex

In this simple case, only one extension exists in which tweety flies and joe does not. In
the syntax of the transformed dl-program, the results are differently represented in each
transformation. Table 4.1 shows the differences.

The name all in def 1, out def 1, and all p def 1 need to be clarified here. Basically,
we assign to each default an integer identifier starting from 1 and continuing increasing
as we get new input defaults. In Section 3.2, we mentioned using all in γ as an auxiliary
predicate name to deal with conjunctive consequents of a default. In the implementation,
we use all in def i where i is the identifier for the corresponding default for this purpose.

We can see from this table that the transformations Π and Υ conclude more facts about
joe than transformation Ω, which can be directly explained from the transformations since
Ω does not have explicit guesses for negative information, while Π and Υ do; however, Π
creates guesses for consequents which are in an extension, while Υ guesses if a justification
is consistent with an extension.

4.4 Update of the dl-Plugin to Adopt the df-Converter 47

Transformation Expected results
Π all in def 1(tweety), in Flier(tweety), out def 1(joe)

all p def 1(tweety), p Flier(tweety)
Ω all in def 1(tweety), in Flier(tweety)
Υ all in def 1(tweety), in Flier(tweety)

cons Flier(tweety), out cons Flier(joe)

Table 4.1: Expected results in the Tweety bird example for different transformations

Figure 4.2: Use Case Diagram dl-plugin

Notice that in this table, for simplicity, we omitted all the domain facts, and the
namespace of each individual. To be exact, the constant tweety is represented as
<http://example/tweety bird#tweety>. Therefore, the complete results from dlvhex
will be more verbose than what is shown here.

4.4 Update of the dl-Plugin to Adopt the df-Converter

As mentioned in Section 4.1, our strategy is to build the df-converter as a new component
in the dl-plugin, preceding the dl-converter. To fulfill this purpose, the following changes
need to be made in the dl-plugin.

4.4.1 Update the dl-Plugin Use Cases

In [Krennwallner, 2007], the author presented the use case diagram of the dl-plugin with
four use cases. The primary actor of this diagram is dlvhex while the support actor is

48 Front-End

Figure 4.3: Component Diagram dl-plugin

the DL-reasoner. Under the addition of the df-converter, this diagram is updated as in
Figure 4.2 in which all the updated/new use cases are shown in yellow. The changes
compared to the original one are:

(i) Use case “Set Options”: we allow more options to be recognized in the dl-plugin; see
Section 4.6 for details on these new options.

(ii) Use case “Convert Program”: this use case includes one new use case, the “Convert
defaults” use case, which converts default rules to dl-rules.

4.4.2 Update the dl-plugin Components

The component diagram of the dl-plugin has been updated as in Figure 4.3. We have a
new component named DFConverter. This component uses the component Registry to
get the options and is used by DLConverter as the first step of converting default rules to
hex-rules. Moreover, it is also a good idea to implement the communication between the
DFConverter and dlvhex via the OutputBuilder interface to give the result according to
the option of brave or cautious reasoning from users.

4.5 DFConverter Class Diagram

In this section, we look into the df-converter and see how its classes are organized. Figure 4.4
presents all the classes in this component, the relation between them, and the most
important public methods that those classes provide. The basic classes are Term, Terms,
Unifier, Update, and Updates. Then, at a one level higher, we have Predicate, DLAtom,

4.5 DFConverter Class Diagram 49

Figure 4.4: Class Diagram df-converter

50 Front-End

DLRule, DLRules, Default, and Defaults. Finally, we have DefaultParser and DFConverter
on top.

The two most important classes are DefaultParser and DFConverter. A DFConverter
object interacts with dl-plugin’s interface to get all the related command line options, one of
them is the name of the text file containing all the defaults. Then it calls a DefaultParser
object to parse this set of defaults and store them in an internal structure of the df-converter,
in objects of the type Defaults and Default. Those objects provide methods to return
translated dl-rules to the DFConverter object. There are command line options to choose
between different transformations, using pruning rules or not, etc. (see Section 4.6).

The DFConverter object finally queries the description logic knowledge base for all
individuals in the ontology. Each individual will be wrapped in a dom predicate and these
facts are added to the transformed dl-rules. At this point, we have a complete transformed
program. This content is transferred to the dl-converter in an output stream afterwards.

4.6 Command line options

dlvhex supports command line options to the plugins. Each plugin can pick particular
options for its own further processing purposes. The original set of command line options
that the dl-plugin accepts was listed in [Krennwallner, 2007], Section 4.6.1. Hereafter we
present the new options needed by the df-converter and one option from the original set
that will be used in experiments (Section 5.3):

• --default=FILENAME: FILENAME is the name of the text file containing the defaults;

• --dftrans=DFTRANS: DFTRANS can be 1, 2 or 3 to indicate the translation Π, Ω and
Υ from defaults to dl-rules, respectively. By default, DFTRANS is set to 2.

• --dfpruning=DFP: DFP can be either on or off, which identifies whether the user
wishes to use pruning rules in the transformation or not. The pruning rules we are
talking about were described in section 3.4. By default, DFP is set to on.

• --dlopt=MOD[,MOD]*: Setup particular optimization features according to the sup-
plied list of modifiers MOD, which may be -push for disabling push optimizations and
-cache for disabling the DL-Cache.

5
Applications

We start this chapter by describing all examples that have been tested, from the classical
and simple ones in Section 5.1 to the more complex ones in Section 5.2. Each example
will be described in the order of the DL-KB representation, the input defaults and typing
predicates (if any), and the expected extensions. For complicated ontologies in Section 5.2,
we will refer the reader to either an explanation in previous chapters or provide the
ontology’s original links available on the Internet.

In Section 5.3, we choose some examples to give experimental results on the sizes of the
input, different transformations and different running modes, in particular whether using
conjunctive queries or not. From these results, many interesting facts can be discovered to
help us understand not only our transformations, but also the implementation of dlvhex
and the dl-plugin. Furthermore, they suggest tasks for future work to improve the whole
system.

5.1 Classical examples

5.1.1 Nixon Diamond

Intuitive meaning see Example 3.3

Description Logic Knowledge Base The DL-KB in this example has three concepts
R, Q, and P as abbreviations for Republican, Quaker and Pacifist, respectively; and an
individual nixon belonging to R and Q. In other words, L = {Q(nixon), R(nixon)}.

Defaults

[R(X);-P(X)]/[-P(X)]

[Q(X);P(X)]/[P(X)]

Expected result We have two extensions in this example, namely one in which nixon is
a Pacifist, and the other in which nixon is not. The expected results are summarized in
Table 5.1. Notice that the first default, which conclude -P(X), has identifier 1, and the
second default has identifier 2.

51

52 Applications

Table 5.1: Expected results in the Nixon Diamond example for different transformations
Transformation Expected results

Π all in def 1(nixon) all in def 2(nixon)
all p def 1(nixon) all p def 2(nixon)
in not P(nixon) in P(nixon)
out def 2(nixon) out def 1(nixon)

Ω all in def 1(nixon) all in def 2(nixon)
in not P(nixon) in P(nixon)

Υ all in def 1(nixon) all in def 2(nixon)
in not P(nixon) in P(nixon)
cons not P(nixon) cons P(nixon)
out cons P(nixon) out cons not P(nixon)

5.1.2 Small Wine

Intuitive meaning In this example [Eiter et al., 2007b], we consider a small wine ontology
L, which contains some knowledge about red and white wines, Lambrusco, as well as about
Veuve Cliquot and Lambrusco di Modena; and we would like to say that:

• Normally, sparkling wines are white, and

• Normally, white wines are served cold.

Description Logic Knowledge Base

L =
{

RedWine v ¬WhiteWine,Lambrusco v SparklingWine u RedWine,
SparklingWine(veuveCliquot), Lambrusco(lambrusco di Modena)

}
Notice that we can not conclude WhiteWine(veuveCliquot) from L alone. Adding

the axiom SparklingWine v WhiteWine is impossible since it will make L inconsistent.
However, the followings defaults specified on top of L can help.

Defaults

[SparklingWine(X);WhiteWine(X)]/[WhiteWine(X)]

[WhiteWine(X);ServedCold(X)]/[ServedCold(X)]

Expected result In this example, we would like to conclude that veuveCliquot is WhiteWine
and hence it is ServedCold , both by default, as in Table 5.2.

5.2 Complex examples

5.2.1 Student

Intuitive meaning Through Sections 1 and 2, a student ontology has been mentioned in
diagram (Example 1.2) and a description logic representation (Example 2.5). Due to its
verbosity, we are not going to rewrite everything but refer the reader to previous examples.
What we need to add now is the intuition of the defaults. There are some rational defaults
which can be specified on top of this ontology:

5.2 Complex examples 53

Table 5.2: Expected results in the Nixon Diamond example for different transformations
Transformation Expected results

Π all in def 1(veuveCliquot), all p def 1(veuveCliquot)
in WhiteWine(veuveCliquot), p WhiteWine(veuveCliquot)
all in def 2(veuveCliquot), all p def 2(veuveCliquot)

in ServedCold(veuveCliquot), p ServedCold(veuveCliquot)
out def 1(lambrusco di Modena), out def 2(lambrusco di Modena)

Ω all in def 1(veuveCliquot), in WhiteWine(veuveCliquot)
all in def 2(veuveCliquot), in ServedCold(veuveCliquot)

Υ all in def 1(veuveCliquot), in WhiteWine(veuveCliquot)
all in def 2(veuveCliquot), in ServedCold(veuveCliquot)

cons WhiteWine(veuveCliquot), cons ServedCold(veuveCliquot)
out cons WhiteWine(lambrusco di Modena)
out cons ServedCold(lambrusco di Modena)

• Normally, a graduate student is an assistant (to earn money for his/her study)

• Graduate students with scholarship(s) do not have to be assistants (unless he/she
wants to earn some more money)

• Normally, an assistant should only be either a research assistant or a teaching assistant

Since the current version of dlvhex is not able to handle a large number of dl-atoms and
individuals, we will test the example with the first two defaults only.

Defaults

[GraduateStudent(X);Assistant(X)]/[Assistant(X)]<arg1(X)>

[GraduateStudent(X) & hasScholarsip(X,S);-Assistant(X)]
/[-Assistant(X)]<arg2(X,S)>

We can see the differences between this example and the previous ones, i.e., the use of
typing predicates. Since we would like to avoid unnecessary guesses such as considering
hasScholarship relationship between two GraduateStudents, supportive information can be
provided via predicates arg1 and arg2 as follows:

Typing predicates

arg1(min).
arg1(tkren).

arg2(min, erasmus_mundus).

Expected result There are two extensions in this example, in which individual tkren is
concluded to be an Assistant by default while individual min is derived to be an Assistant
in one extension and not in the other, since it satisfies the preconditions of both defaults
but the consequent of each default blocks the other as in the Nixon Diamond example,
hence only one conclusion can be made at a time. Table 5.3 summarizes these results.

54 Applications

Table 5.3: Expected results in the Student example for different transformations
Transformation Expected results (two extensions)

Π all in def 1(tkren) all in def 1(tkren)
in Assistant(tkren) in Assistant(tkren)
all in def 1(min) all in def 2(min)
in Assistant(min) in not Assistant(min)
all p def 1(tkren) all p def 1(tkren)
p Assistant(tkren) p Assistant(tkren)
all p def 1(min) all p def 2(min)
p Assistant(min) p not Assistant(min)
out def 2(min) out def 1(min)

Ω all in def 1(tkren) all in def 1(tkren)
in Assistant(tkren) in Assistant(tkren)
all in def 1(min) all in def 2(min)
in Assistant(min) in not Assistant(min)

Υ all in def 1(tkren) all in def 1(tkren)
in Assistant(tkren) in Assistant(tkren)
all in def 1(min) all in def 2(min)
in Assistant(min) in not Assistant(min)

cons Assistant(tkren) cons Assistant(tkren)
cons Assistant(min) cons not Assistant(min)

out cons not Assistant(tkren) out cons not Assistant(tkren)
out cons not Assistant(min) out cons Assistant(min)

5.2.2 Web Services Property Reasoning

Intuitive meaning OWL-S1 is well known to be an ontology for describing web services,
including the profile, process and grounding of a web service. Handling all of these
components of OWL-S is too heavy for the current combination of dlvhex, RacerPro and
the dl-plugin. Therefore, we chose to experiment our example with profile and process and
put a very simple default specifying that a web service is normally described by an atomic
process, unless it is explicitly described as a composite one. Based on this example, we can
put more defaults describing other different properties of a web service and allow reasoning
about those properties in a non-monotonic way.

Description Logic Knowledge Base The documents, which encode OWL-S as OWL
ontologies, are available on the Internet. However, different components are represented
in different namespaces and OWL files; and the current dl-plugin does not support OWL
import directives, which is used to partition an ontology to serveral files. Therefore, to test
this example, we had to merge the content of three owl files just to have a partly definition
of web services, namely Service.owl, Profile.owl, and Process.owl into one file;2 but we still
keep different namespaces to prevent name clash. For an example web service, we chose the
BookFinderService.3 Its contents also need to be combined into the web service definition
above, but only the profile and process parts. Due to the merging, many unnecessary
individuals appear in the ontology, hence typing predicates plays a very important role

1http://www.w3.org/Submission/OWL-S/
2files can be downloaded from http://www.ai.sri.com/daml/services/owl-s/1.2/
3http://www.mindswap.org/2004/owl-s/services.shtml

http://www.w3.org/Submission/OWL-S/
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.mindswap.org/2004/owl-s/services.shtml

5.3 Experimental Results 55

Table 5.4: Expected results in the Web Service example for different transformations
Transformation Expected results

Π all in def 1("mindswap:BookFinderService")
in AtomicProcess("mindswap:BookFinderService")

all p def 1("mindswap:BookFinderService")
p Assistant("mindswap:BookFinderService")

Ω all in def 1("mindswap:BookFinderService")
in AtomicProcess("mindswap:BookFinderService")

Υ all in def 1("mindswap:BookFinderService")
in AtomicProcess("mindswap:BookFinderService")
cons AtomicProcess("mindswap:BookFinderService")

here.

Defaults Since we have to merge different sources into one ontology, we have to specify
the namespaces:

#namespace("service",
"http://www.daml.org/services/owl-s/1.1/Service.owl#")

#namespace("process",
"http://www.daml.org/services/owl-s/1.1/Process.owl#")

#namespace("mindswap",
"http://www.mindswap.org/2004/owl-s/1.1/BookFinder.owl#")

[service:Service(X);process:AtomicProcess(X)]
/

[process:AtomicProcess(X)]<myService(X)>

Typing Predicates We consider only one individual here:

myService("mindswap:BookFinderService").

Expected Results Without information about what kind of process by which BookFinder-
Service is described, we would like to conclude, by default, that it is described by an atomic
process. The results according to different transformation are represented in Table 5.4.

5.3 Experimental Results

In this section, we will present our experimental results on the examples described in
Section 4.3 and 5.1 and give a discussion. For each example, we tested the performance
of each transformation based on the number of individuals concerned, denoted by n.
For each test case, we compare two running modes: (i) caching query calls to RacerPro
(--dlopt=-push), and (ii) not using caching (--dlopt=-cache). And we compare our
three different transformations Π, Ω, and Υ. This means that we have six runs for each test
case. To get objective experimental results, for each run, we restarted RacerPro and ran
the test four times in a row to get the evaluation times. Among these running times, we

56 Applications

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

total time (query caching on)
racer time (query caching on)
total time (query caching off)

racer time (query caching off)

Figure 5.1: Tweety bird example’s running time - transformation Π

omitted the fastest and slowest ones, took the other two and calculated the average as the
final running time. We used time format mm:ss:pp, i.e., minutes, seconds and percentage
of a second. For test cases that take too much time, (more than 30 minutes), we use “—”
to represent the results. We are also interested the partial time that RacerPro and dlvhex
use. The tests were done on a P4 1.8GHz PC with 1GB RAM under Ubuntu 6. We used
RacerPro 1.9.2Beta, dlvhex and the dl-plugin source code updated on May 30th 2008.

5.3.1 Tweety bird example

First of all, we will have a look at the “Tweety bird” example. The results are shown in
Table 5.5 and 5.6.

Figures 5.1 to 5.4 provides a graphical representation of the results. In all diagrams, the
horizontal axis shows the number of individuals while the vertical axis serves to display
the time in seconds. Missing entries in the diagrams indicate that the evaluation takes
too much time to finish. Each figure from 5.1 to 5.3 compares total running times and
RacerPro running time in two modes, namely --dlopt=-push and --dlopt=-cache, for
each transformation from Π to Υ, respectively. Recall that --dlopt=-push is used for
disabling push optimizations and --dlopt=-cache is used for disabling the DL-cache. Since
in the dl-plugin, DL-cache has just been implemented for ordinary dl-atoms, --dlopt=-push
has the same meaning as running under DL-Cache mode. Figure 5.4 compares three
transformations in their fast mode, i.e., query caching is on.

Based on these tables and diagrams, we came up with the following analyses. The very
first, and most obvious fact that we can see is that transformations Ω and Υ are much faster
than Π. This is not surprising if we look closer at the transformations. While Ω tries to
improve by not posing any guess for the consequents and Υ tries to minimize the number of
dl-atoms to reduce the communication between dlvhex and RacerPro, Π has both of them,
namely guessing rules for consequents and dl-atoms for every justifications. Moreover, it
has two different input lists λ and λ′, and uses two kinds of auxiliary predicates (“in ” and
“p ”). Thus, Π not only has communicating overhead with RacerPro compared to Ω and

5.3 Experimental Results 57

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

total time (query caching on)
racer time (query caching on)
total time (query caching off)

racer time (query caching off)

Figure 5.2: Tweety bird example’s running time - transformation Ω

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

total time (query caching on)
racer time (query caching on)
total time (query caching off)

racer time (query caching off)

Figure 5.3: Tweety bird example’s running time - transformation Υ

58 Applications

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

0:
78

00
:0

0:
73

00
:0

0:
05

00
:0

0:
36

00
:0

0:
27

00
:0

0:
09

00
:0

0:
59

00
:0

0:
39

00
:0

0:
20

2
00

:0
2:

37
00

:0
2:

29
00

:0
0:

09
00

:0
1:

09
00

:0
0:

91
00

:0
0:

18
00

:0
0:

65
00

:0
0:

54
00

:0
0:

10
3

00
:1

0:
90

00
:1

0:
59

00
:0

0:
31

00
:0

3:
10

00
:0

2:
80

00
:0

0:
30

00
:0

1:
36

00
:0

1:
24

00
:0

0:
12

4
01

:0
1:

90
01

:0
0:

72
00

:0
1:

18
00

:0
9:

70
00

:0
9:

20
00

:0
0:

50
00

:0
2:

84
00

:0
2:

44
00

:0
0:

40
5

05
:5

7:
79

05
:5

1:
27

00
:0

6:
53

00
:2

9:
57

00
:2

8:
80

00
:0

0:
77

00
:0

6:
17

00
:0

5:
43

00
:0

0:
74

6
—

—
—

01
:2

1:
25

01
:1

9:
63

00
:0

1:
61

00
:1

1:
27

00
:0

9:
64

00
:0

1:
64

7
—

—
—

03
:4

8:
59

03
:4

4:
26

00
:0

4:
33

00
:2

4:
28

00
:2

0:
55

00
:0

3:
73

8
—

—
—

11
:4

9:
72

11
:3

1:
51

00
:1

8:
21

00
:4

5:
47

00
:3

7:
38

00
:0

8:
09

9
—

—
—

—
—

—
01

:3
8:

59
01

:1
4:

01
00

:2
4:

59
10

—
—

—
—

—
—

03
:3

2:
59

02
:2

5:
72

01
:0

6:
88

11
—

—
—

—
—

—
09

:0
4:

69
04

:1
5:

31
04

:4
9:

38

T
ab

le
5.

5:
T

w
ee

ty
bi

rd
ex

am
pl

e
ex

pe
ri

m
en

t
re

su
lt

s
(q

ue
ry

ca
ch

in
g

off
)

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

0:
19

00
:0

0:
14

00
:0

0:
05

00
:0

0:
21

00
:0

0:
15

00
:0

0:
06

00
:0

0:
16

00
:0

0:
13

00
:0

0:
03

2
00

:0
0:

48
00

:0
0:

40
00

:0
0:

09
00

:0
0:

41
00

:0
0:

22
00

:0
0:

19
00

:0
0:

27
00

:0
0:

21
00

:0
0:

06
3

00
:0

1:
19

00
:0

0:
96

00
:0

0:
23

00
:0

0:
83

00
:0

0:
62

00
:0

0:
21

00
:0

0:
75

00
:0

0:
62

00
:0

0:
13

4
00

:0
3:

38
00

:0
2:

16
00

:0
1:

22
00

:0
1:

48
00

:0
1:

27
00

:0
0:

21
00

:0
1:

59
00

:0
1:

34
00

:0
0:

26
5

00
:1

0:
76

00
:0

4:
27

00
:0

6:
48

00
:0

3:
67

00
:0

2:
89

00
:0

0:
79

00
:0

3:
91

00
:0

3:
27

00
:0

0:
64

6
01

:3
9:

12
00

:0
9:

75
01

:2
9:

37
00

:0
7:

58
00

:0
5:

67
00

:0
1:

92
00

:0
7:

79
00

:0
6:

41
00

:0
1:

38
7

—
—

—
00

:1
6:

36
00

:1
1:

58
00

:0
4:

78
00

:1
6:

55
00

:1
2:

84
00

:0
3:

71
8

—
—

—
00

:3
8:

39
00

:2
4:

83
00

:1
3:

57
00

:3
5:

83
00

:2
6:

44
00

:0
9:

38
9

—
—

—
—

—
—

01
:2

2:
46

00
:5

0:
75

00
:3

1:
71

10
—

—
—

—
—

—
02

:4
8:

36
01

:3
6:

29
01

:1
2:

08
11

—
—

—
—

—
—

08
:2

3:
02

03
:1

5:
35

05
:0

7:
66

T
ab

le
5.

6:
T

w
ee

ty
bi

rd
ex

am
pl

e
ex

pe
ri

m
en

t
re

su
lt

s
(q

ue
ry

ca
ch

in
g

on
)

5.3 Experimental Results 59

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

Π
Ω
Υ

Figure 5.4: Tweety bird example - Comparing 3 transformations (query caching on)

Υ, but also has to deal with the exponentially increasing combinations when the number
of input individuals increases. It cannot handle the cases in which we have more than 5
individuals and query caching is turned off. If query caching is turned on Pi can handle
up to 6 individuals.

This shows our second expected result which is that using caching is much faster than
not using caching.

Comparing Ω and Υ in this particular case, Υ has been able to handle the input size up
to 11, while Ω spends a lot of time communicating with RacerPro if no caching is applied,
because it has more dl-atoms. However, when caching is applied, Ω is able to save a lot of
time and eventually it takes about the same amount of time as evaluating Υ, until giving
up at input size n ≥ 9.

Finally, in this particular example, we can see that the time consumed by RacerPro is
longer than that used by dlvhex, except for the case in which n = 11. One of the reasons
for this fact is that RacerPro currently has a bug when querying inconsistent updated KBs,
that is, if we have an update to a KB that makes it inconsistent and query it, the first
time RacerPro returns an inconsistent error message, which is correct. But if we do the
update and query again, RacerPro returns a NIL result, which is incorrect. To circumvent
this bug, one has to run (full-reset) before every query, which re-classifies the ontology.
This is indeed a very expensive solution, especially in our case where querying the DL-KB
is one of the main tasks. We believe that if RacerPro has this bug fixed, the performance
of our transformations will improve significantly.

The case n = 11 seems not to follow the trends of the other previous ten test cases.
However, it is explainable and is very close to what we can observe from the next two
examples, namely “Nixon Diamond” and “Small Wine.”

5.3.2 Nixon diamond and Small Wine

For the next two examples, we provide here the result in form of diagrams as shown in
figure 5.5 and 5.6. However, since the size of the test cases are not large enough, the

60 Applications

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

3:
73

00
:0

3:
57

00
:0

0:
16

00
:0

1:
43

00
:0

1:
26

00
:0

0:
17

00
:0

1:
19

00
:0

0:
95

00
:0

0:
25

2
04

:3
2:

64
04

:2
8:

34
00

:0
4:

30
00

:1
1:

71
00

:1
1:

19
00

:0
0:

52
00

:1
1:

77
00

:1
1:

31
00

:0
0:

47
3

—
—

—
01

:5
3:

30
01

:5
1:

00
00

:0
2:

30
01

:4
8:

25
01

:4
4:

88
00

:0
3:

37
4

—
—

—
21

:5
1:

20
21

:2
9:

60
00

:2
1:

61
—

—
—

T
ab

le
5.

7:
N

ix
on

D
ia

m
on

d
ex

am
pl

e
ex

pe
ri

m
en

t
re

su
lt

s
(q

ue
ry

ca
ch

in
g

off
)

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

0:
45

00
:0

0:
28

00
:0

0:
17

00
:0

0:
46

00
:0

0:
36

00
:0

0:
10

00
:0

0:
43

00
:0

0:
26

00
:0

0:
17

2
00

:0
6:

16
00

:0
1:

90
00

:0
4:

26
00

:0
2:

01
00

:0
1:

58
00

:0
0:

43
00

:0
2:

10
00

:0
1:

71
00

:0
0:

40
3

—
—

—
00

:1
0:

58
00

:0
8:

65
00

:0
1:

93
00

:1
4:

99
00

:1
0:

09
00

:0
4:

90
4

—
—

—
01

:0
1:

00
00

:4
4:

11
00

:1
6:

89
02

:4
1:

46
00

:4
6:

91
01

:5
4:

55

T
ab

le
5.

8:
N

ix
on

di
am

on
d

ex
am

pl
e

ex
pe

ri
m

en
t

re
su

lt
s

(q
ue

ry
ca

ch
in

g
on

)

5.3 Experimental Results 61

 0.1

 1

 10

 100

 1000

1 2 3 4

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

Π
Ω
Υ

Figure 5.5: Nixon diamond example - Comparing 3 transformations (query caching on)

maximum number of individuals we can handle is 4 and 5 “Nixon diamond” and “Small
Wine”, respectively. Therefore we will show only the comparisons between our three
transformations, in their fast running mode when query caching is on.

We see that the performance of the system decreases drastically. The reason is that each
of this examples has two defaults; one more default brings many more dl-atoms for Π and
Ω, and more guesses on the justifications for Υ; and the number of guesses in the ASP
solver increases exponentially.

On the other side, the relationship between Π and both Ω and Υ, whether using caching
or not, are unchanged. The only difference compared to the result in the “Tweety bird”
example is that Ω and Υ share almost the same speed when query caching is off; and Ω
is faster than Υ when query caching is on. There is even a test case in “Small wine”,
where n = 5, such that Ω finishes after nearly 6 minutes, while Υ cannot terminate in
a reasonable time frame. An explanation for this fact is that Υ has to pay off with the
guesses on the justifications. A careful comparison from columns racer and dlvhex for
transformations Ω and Υ in all tables reveals that the time spent in dlvhex increases by
a much bigger factor in Υ than compared to Ω. This is indeed the effect of exponential
guesses increasing for the justifications in Υ.

However, until now, we have not been able to confirm whether transformation Ω or Υ is
better in terms of performance. It depends on the performance of the DL-reasoner and the
particular instance of the problem. A default theory with a large set of justifications is a
big obstacle for Υ while a slow DL-reasoner has a bigger effect on Ω than on Υ.

The reader might wonder why there was no experiments regarding pruning rules de-
scribed in Section 3.4 for, in particular, “Nixon diamond” example. Theoretically, adding
constraints will reduce the search space, hence improve the performance of the transfor-
mation. However, in the current implementation of dlvhex, pruning rules are separated
into a lower program component than our transformation. Each program component is
evaluated consecutively, therefore pruning rules do not improve the overall performance of
the system but make it a little bit slower, because we have to check the constraints for the

62 Applications

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

6:
75

00
:0

6:
45

00
:0

0:
30

00
:0

1:
29

00
:0

1:
20

00
:0

0:
08

00
:0

1:
14

00
:0

1:
06

00
:0

0:
08

2
20

:5
8:

57
20

:3
7:

30
00

:2
1:

27
00

:1
1:

96
00

:1
1:

73
00

:0
0:

23
00

:0
7:

73
00

:0
7:

30
00

:0
0:

43
3

—
—

—
01

:5
3:

43
01

:5
1:

29
00

:0
2:

14
01

:4
3:

64
01

:4
0:

84
00

:0
2:

80
4

—
—

—
—

—
—

—
—

—

T
ab

le
5.

9:
Sm

al
l
w

in
e

ex
am

pl
e

ex
pe

ri
m

en
t

re
su

lt
s

(q
ue

ry
ca

ch
in

g
off

)

T
ra

ns
fo

rm
at

io
n

Π
T
ra

ns
fo

rm
at

io
n

Ω
T
ra

ns
fo

rm
at

io
n

Υ
n

to
ta

l
ra

ce
r

dl
vh

ex
to

ta
l

ra
ce

r
dl

vh
ex

to
ta

l
ra

ce
r

dl
vh

ex
1

00
:0

0:
57

00
:0

0:
33

00
:0

0:
24

00
:0

0:
43

00
:0

0:
38

00
:0

0:
05

00
:0

0:
42

00
:0

0:
32

00
:0

0:
10

2
00

:1
2:

35
00

:0
2:

33
00

:1
0:

02
00

:0
1:

61
00

:0
1:

30
00

:0
0:

31
00

:0
1:

76
00

:0
1:

32
00

:0
0:

44
3

—
—

—
00

:1
0:

65
00

:0
8:

59
00

:0
2:

06
00

:1
0:

15
00

:0
6:

80
00

:0
3:

35
4

—
—

—
01

:0
1:

98
00

:4
4:

42
00

:1
7:

56
02

:1
5:

98
00

:3
6:

93
01

:3
9:

05
5

—
—

—
05

:5
1:

96
03

:3
0:

62
02

:2
1:

34
—

—
—

T
ab

le
5.

10
:
Sm

al
l
w

in
e

ex
am

pl
e

ex
pe

ri
m

en
t

re
su

lt
s

(q
ue

ry
ca

ch
in

g
on

)

5.3 Experimental Results 63

 0.1

 1

 10

 100

 1000

1 2 3 4 5

ev
al

ua
tio

n
tim

e
/ s

ec
s

Number of individuals

Π
Ω
Υ

Figure 5.6: Small Wine example - Comparing 3 transformations (query caching on)

result of the transformation, which are satisfied anyway.
To prove the theoretical effect of pruning rules, we did a small hack into dlvhex by getting

its intermediate rewritten rules, adding the pruning rules and evaluate this program under
DLV. The result showed that fewer guesses were made, hence the running time should be
faster. Nonetheless, the number of decreasing guesses in “Nixon diamond” example was not
quite remarkable, as we had one guess interpretation pruned for each individual. Despite
this fact, pruning rules are still promising to improve the performance. The issue here is
that dlvhex needs to be upgraded so that constraints are shifted to an appropriate program
component where they can fulfill their role to reduce the search space. This is one of the
future works which will be mentioned again in Section 6.1.

5.3.3 Summary

To sum up, the experimental results showed that the two new transformations Ω and
Υ are much faster compared to the original transformation Π from [Eiter et al., 2007b].
Another remarkable result is that caching techniques concerning calls to the ontology play
an important role in improving the performance of the system while RacerPro is the biggest
consumer of the total running time. Pruning rules, which have not been able to take effect,
are promising to improve the system’s performance. All of these results are valuable for
the future work presented in Section 6.1.

64 Applications

6
Conclusion

In this work, we have studied different possibilities for transforming default theories over
DL-KBs to dl-programs, respectively cq-programs, which are means of integrating logic
programming and description-logic based ontologies. Based on these results, our approach
for default reasoning over a DL-KB provides a simple and intuitive way for users to
describe their defaults on top of an ontology without having to know about dl-programs or
cq-programs, neither their syntax nor semantics. This is indeed a very convenient feature,
especially for researchers working deeply in ontologies specified in an expert domain, for
example medical or biological ontologies. Those researchers, on the one hand, have profound
knowledge of the domain and have the need to reason with knowledge embedded in their
ontologies, but on the other hand, they are not experts, or even not familiar with the notion
of logic programming or answer-set semantics. Therefore, such a simple front-end hiding
all these obstacles will bring logic programming, non-monotonic reasoning in general, and
in particular dl-programs and cq-programs, closer to researchers in different fields so that
they can take benefit from results which have been discovered by the logic community so
far.

As we already mentioned, this is not the first attempt to combine default reasoning with
description logics. The first one was proposed in [Baader and Hollunder, 1993]. However,
from the theoretical point of view, our approach based on the strict semantic separation
between rules and ontologies is guaranteed to be decidable as long as the DL-KB is decidable,
while the approach in [Baader and Hollunder, 1993] is restricted to the description logics
ALC and ALCF . Moreover, from the practical point of view, we provide an implementation
which was missing in [Baader and Hollunder, 1993]. The implementation is deployed as an
additional component in the dl-plugin for the hex-program solver dlvhex.

We have tested and compared three transformations from default theories to dl-programs,
respectively cq-programs. Compared to transformation Π proposed in [Eiter et al., 2007b],
the transformations Ω and Υ proposed here have significant performance gains. The
experimental results revealed many future tasks that can help to improve the overall
performance of our prototype implementation.

6.1 Future Work

Concerning our implementation, the following future work can be pointed out. Firstly,
we would like to investigate more sophisticated pruning rules depending on the structure
of the default theory. Secondly, a closer look into particular kinds of default theories

65

66 Conclusion

such as normal default or semi-normal default theories should help to find more effective
transformations.

Concerning dlvhex and the dl-plugin, in Section 5.3, we have seen the behaviour of our
transformations in different running modes. The results suggested the following future
tasks need for an increased system performance.

First of all, we have seen that the caching results from a DL-reasoner has a great impact
on the evaluation time compared to not using caching. However, this technique is currently
only available for ordinary dl-atoms. Thus, adding support for caching in cq-programs
would give additional benefit.

We also witnessed that calling (full-reset) before every query to avoid a bug in
RacerPro is very expensive for the overall speed of our system. Hence, it would be
interesting to look at other possibilities interfacing dlvhex with different DL-reasoners such
as KAON2 or Pellet, and then compare the results. This versatility will also be of interest
for users, since they can freely choose between different DL-reasoners, especially between
the commercial and the open-source ones.

After adding support for typing predicates, our system ran much faster since only a
selected number of individuals are considered. Currently, the user has to specify the facts
and rules for such typing predicates. To make it more user friendly, a challenging next
step for dlvhex development would be to automatically classify the input, then do only
necessary rules grounding to avoid unnecessary instances. Nonetheless, this is not an easy
task and needs a lot of exploring deeply inside dlvhex.

It is well-known that deciding whether a propositional default theory has an extension
is ΣP

2 -complete [Gottlob, 1992]. Therefore, we cannot expect a fast implementation in
general. However, if users just need to check the consistency of their default theory on top
of an ontology, we can provide an option that in which system halts whenever the first
extension is found. Although this option does not solve the problem thoroughly, it still
plays a role in practice.

As discussed in Section 5.3, an important step towards a faster implementation would
be to upgrade dlvhex so that pruning rules can be effective. Specifically, what needs to be
done is to shift a constraint to the upper program component whenever all the body atoms
of the constraint appear in at least one head of a dl-rule of the program component.

A
Proofs

This section gives proofs for the correctness of the transformations Ω (Section 3.2) and Υ
(Section 3.3). To ease the demonstration, we will consider defaults whose prerequisites,
justifications and consequents consist only of a single literals. Formally speaking, let L be
a DK-KB, and let T = 〈W,D〉 be a default theory, where W is the transformation of L to
first-order logic, and let D consist of defaults of the form:

δ =
α(~X) : β(~Y)

γ(~Z)

In each section below, we will first restate the dl-rules and then provide our claim followed
by a proof for it.

A.1 Proof for Transformation Ω

The transformation Ω proposed in section 3.2 in this simple case is as follows. For each
default δ ∈ D, the transformation Ω(δ) to dl-rules is:

aux γ(~Z)←DL[λ;α](~X),not DL[λ;¬β](~Y).

The set of these dl-rules is called the program P .

Proof for theorem 3.4. We claim: if there exists an answer set IP of P then there
exists a corresponding extension ET of T and vice versa. (?)

We begin our proof for this property by showing how to construct ET from IP and vice
verse:

(1) From IP to ET :

ET = W ∪ {γ(~c)|aux γ(~c) ∈ IP }

(2) From ET to IP :

IP = {aux γ(~c)|γ(~c) ∈ ET }

67

68 Proofs

In the rest of this section, P and T are clear of the context, hence we will omit subscripts
P from IP and T from ET for simplicity.

The intuition of our transformation is that: the process of evaluating an extension in T
will be simulated in the process of evaluating an answer set in P . Hence, every extension
of T will have a corresponding answer set provided by P , which is equivalent to (?). In the
next steps, we show all the one-to-one correspondences between these two processes.

Evaluating interpretation I Evaluating extension E

in γ(~c) γ(~c)

in not γ(~c) ¬γ(~c)

Description Logic KB L Background theory W

A ground dl-rule r A ground default

aux γ(~c)← σ = α(~a):β(~b)
γ(~c)

DL[λ;α](~a),not DL[λ;¬β](~b).

L ∪ λ(I) 2 ¬β(~b) E 2 ¬β(~b)

Notice that W ⊆ E for every extension E

Evaluate the GL-reduct P I
L Evaluate DE

Keep all rules r s.t. L ∪ λ(I) 2 ¬β(~b) DE =
{

α(~a)
γ(~c) |

α(~a):β(~b)
γ(~c) ∈ D ∧ E 2 ¬β(~b)

}
Delete all NAF literals from these remaining

rules.

To make the proof concise, we will use the symbol ≈ for the corresponding relation.
Hereafter we provide an inductive proof of the following argument: “The least fix point
(lfp) of P I

L is corresponding to ΓT (E),” denoted by:

Th(Tω
P I

L
(∅)) ≈ ThDE (W)

⇔ Th(L ∪
⋃

k≥0 λ(Ik)) ≈ Th(
⋃

k≥0 Ek),
(??)

where ω is the ordinal for natural number, TP is a continuous operator to compute the lfp
of a logic program P , and

I0 = ∅;
Ik+1 = TP I

L
(Ik−1) = {aux γ(~c)|r ∈ P I

L ∧ L ∪ λ(Ik) |= α(~a)};
E0 = W ;

Ek+1 = {γ(~c)|α(~a)
γ(~c) ∈ DE ∧ Ek |= α(~a)};

Basic case: I0 = ∅, E0 = W . We have Th(L) ≈ Th(W) due to the fact that W is the
transformation of L into fist order logic. (??) holds with w = 0

Inductive case: assume that (??) holds with k (k ≥ 0), we will show that it also holds
with k + 1. Indeed:

Because (??) holds with k, we have [L ∪ λ(Ik) |= α(~a)] ≈ [Ek |= α(~a)]. Moreover, we
have r ≈ σ, hence the conditions for constructing Ik+1 and Ek+1 are corresponding to each
other, which yields that Th(L ∪

⋃k+1
i=0 Ii) ≈ Th(

⋃k+1
i=0 Ei). In other words, (??) holds with

k + 1.
Finally, by the induction principle, we can conclude that (??) holds for all k ≥ 0.

A.2 Proof for Transformation Υ 69

From (??) and all the correspondences above, we can conclude that (?) holds.

A.2 Proof for Transformation Υ

The transformation Υ proposed in Section 3.3 in this simple case is as follows. For each
default δ ∈ D, the transformation Υ(δ) to dl-rules is the following set dl-rules:

(r1) auxc β(~Y) ← not out auxc β(~Y).
(r2) out auxc β(~Y) ← not auxc β(~Y).
(r3) aux γ(~Z) ← DL[λ;α](~X), auxc β(~Y).
(r4) fail ← DL[λ;¬β](~Y), auxc β(~Y),not fail.

(r5) fail ← not DL[λ;¬β](~Y), out auxc β(~Y),not fail.

Proof for Theorem 3.5. Let P be the transformed dl-program from T . We claim: if there
exists a strong answer set I of P then there exists a corresponding extension
ET of T and vice versa.

In the proof below, to make it simple, we omit subscripts T , P from ET , IP , respectively,
for simplicity.

Firstly, we show how E is constructed from I and vice verse:

(1) From I to E:
E = Cn(L ∪ λ(I))

(2) From E to I:
I = {auxc β(~b)|¬β(~b) /∈ E} ∪ {out auxc β(~b)|¬β(~b) ∈ E}

∪{aux γ(~c)|α(~a):β(~b)
γ(~c) ∈ D ∧ α(~a) ∈ E;¬β(~b) /∈ E}

We show: if I is a strong answer set of P then E constructed by (1) is an
extension of T .

By (r4): if auxc β(~b) ∈ I then ¬β(~b) /∈ E.

By (r5): if auxc β(~b) /∈ I, then out auxc β(~b) ∈ I, hence ¬β(~b) ∈ E.

Let DE = {α(~a)
γ(~c) |

α(~a):β(~b)
γ(~c) ∈ D ∧ auxc β ∈ I}

We claim: Cn(L ∪ λ(I)) is closed under DE . Indeed:

Consider α(~a)
γ(~c) ∈ DE .

Suppose that α(~a) ∈ Cn(L ∪ λ(I)). Then DL[λ;α](~a) is true in I. From the consistency
condition, it is easy to see that auxc β(~b) ∈ I. Hence rule (r3) fires, and aux γ(~c) ∈ I;
therefore, γ(~c) ∈ λ(I), as a result, γ(~c) ∈ Cn(L ∪ λ(I)).

Since E = Cn(L ∪ λ(I)) has the closeness property, we can conclude that ΓT (E) ⊆ E,
where ΓT (E) is as in Definition 2.3.

Now we will show that E ⊆ ΓT (E), in other words, there exists no E′ such that E′ ⊂ E
and E′ is closed under DE .

70 Proofs

Suppose such an E′ exists, then there exist some γ(~c) such that γ(~c) ∈ E and γ(~c) /∈ E′.
We construct I ′ from E′ as follows:
I ′ = {auxc βi(~bi)|¬βi(~bi) /∈ E} ∪ {out auxc βi(~bi)|¬βi(~bi) ∈ E}

∪{aux γi(~ci)|αi(~ai):βi(~bi)
γi(~ci)

∈ D ∧ αi(~ai) ∈ E′;¬βi(~bi) /∈ E}

This is similar to (2) above, but here we use E′ instead of E.
Because E′ is closed under DE , there must exist some γ(~c) such that γ(~c) ∈ I and

γ(~c) /∈ I ′, in other words, I ′ ⊂ I.

Since E′ ⊂ E, in P I
L, the reduct of P w.r.t. I and L, we have:

• all rules (r4) are satisfied by I ′;

• all rules (r5) either disappear if β(~b) is not consistent with E or are satisfied by I ′

other wise;

• all rules (r1) (r2) and (r3) are satisfied due to the construction of I ′.

Therefore I ′ |= P I
L, hence I is not a strong answer set, which is a contradiction.

So, our assumption of the existence of E′ leads to a contradiction, therefore E ⊆ ΓT (E).
Finally, we can conclude that E = ΓT (E), which means that E is an extension of T .

We show: if E is an extension of T then I as constructed in (2) is a strong
answer set of P .

By the construction of I as in (2), it easy to see by the characterization of extension in
terms of generating defaults, that in P I

L:

• all rules (r4) are satisfied by I,

• all rules (r5) either disappear, if β(~b) is not consistent with E, or are satisfied by I
other wise;

• all rules (r1) and (r2) are satisfied due to the construction of I

• for each rule (r3), if the body of the rule is true, then the corresponding default δ
must be applied in E; hence γ must be in E, and then aux γ ∈ I by definition; hence
the rule is satisfied.

Therefore, I is a model of P I
L.

What we need to show now is that I is minimal. Suppose that there exists some I ′ ⊂ I
and I ′ |= P I

L. Let E′ = Cn(L ∪ λ(I ′)).

Since I ′ ⊂ I, there exist some A such that A ∈ I and A /∈ I ′. Notice that in P I
L, rule

instances of (r1) and (r2) either disappear or become facts, hence I ′ and I must agree
on the guessing of the consistency of the justifications to E. Hence, the different literal
A ∈ I ′ must be of the form aux γ(~c). This means the corresponding dl-rule does not fire,
i.e., DL[λ;α](~a) is evaluated to false, thus aux αi(~a) /∈ I ′. Therefore the corresponding
monotonic rule α(~a)

γ(~c) ∈ DE is satisfied in E′. In other words, E′ is closed under DE . Hence
ΓT (E) ⊆ E′.

Moreover, since I ′ ⊂ I, we have E′ ⊂ E. Indeed, suppose E′ = E. Then as I ′ is closed
under the rule in P I

L, we obtain that I ⊆ I ′, which is a contradiction.

A.2 Proof for Transformation Υ 71

Hence ΓT (E) ⊆ E′ ⊂ E. This contradicts with the fact that E is an extension. Therefore,
I is minimal and it is a strong answer set of P .

72 Proofs

B
Transformed Programs

B.1 Tweety bird

B.1.1 Transformation Π

all_in_def_1(X) :- dom(X), not out_def_1(X).
out_def_1(X) :- dom(X), not all_in_def_1(X).
in_Flier(X) :- all_in_def_1(X).
fail :- out_def_1(X), DL[Flier+=in_Flier;Flier](X), not fail.
all_p_def_1(X) :- dom(X), DL[Flier+=in_Flier;Bird](X),

not DL[Flier+=in_Flier;-Flier](X).
p_Flier(X) :- all_p_def_1(X).
fail :- all_in_def_1(X), not DL[Flier+=p_Flier;Flier](X), not fail.
fail :- out_def_1(X), DL[Flier+=p_Flier;Flier](X), not fail.

B.1.2 Transformation Ω

all_in_def_1(X) :- dom(X), DL[Flier+=in_Flier;Bird](X),
not DL[Flier+=in_Flier;-Flier](X).

in_Flier(X) :- all_in_def_1(X).

B.1.3 Transformation Υ

cons_Flier(X) :- dom(X), not out_cons_Flier(X).
out_cons_Flier(X) :- dom(X), not cons_Flier(X).
all_in_def_1(X) :- cons_Flier(X), dom(X), DL[Flier+=in_Flier;Bird](X).
in_Flier(X) :- all_in_def_1(X).
fail :- cons_Flier(X), DL[Flier+=in_Flier;-Flier](X), not fail.
fail :- out_cons_Flier(X), not DL[Flier+=in_Flier;-Flier](X), not fail.

B.2 Nixon diamond

B.2.1 Transformation Π

all_in_def_2(X) :- dom(X), not out_def_2(X).
out_def_2(X) :- dom(X), not all_in_def_2(X).

73

74 Transformed Programs

in_P(X) :- all_in_def_2(X).
fail :- out_def_2(X), DL[P-=in_not_P, P+=in_P;P](X), not fail.
all_p_def_2(X) :- dom(X), DL[P-=in_not_P, P+=in_P;Q](X),

not DL[P-=in_not_P, P+=in_P;-P](X).
p_P(X) :- all_p_def_2(X).
fail :- all_in_def_2(X), not DL[P-=p_not_P, P+=p_P;P](X), not fail.
fail :- out_def_2(X), DL[P-=p_not_P, P+=p_P;P](X), not fail.
all_in_def_1(X) :- dom(X), not out_def_1(X).
out_def_1(X) :- dom(X), not all_in_def_1(X).
in_not_P(X) :- all_in_def_1(X).
fail :- out_def_1(X), DL[P-=in_not_P, P+=in_P;-P](X), not fail.
all_p_def_1(X) :- dom(X), DL[P-=in_not_P, P+=in_P;R](X),

not DL[P-=in_not_P, P+=in_P;P](X).
p_not_P(X) :- all_p_def_1(X).
fail :- all_in_def_1(X), not DL[P-=p_not_P, P+=p_P;-P](X), not fail.
fail :- out_def_1(X), DL[P-=p_not_P, P+=p_P;-P](X), not fail.

B.2.2 Transformation Ω

all_in_def_2(X) :- dom(X), DL[P-=in_not_P, P+=in_P;Q](X),
not DL[P-=in_not_P, P+=in_P;-P](X).

in_P(X) :- all_in_def_2(X).
all_in_def_1(X) :- dom(X), DL[P-=in_not_P, P+=in_P;R](X),

not DL[P-=in_not_P, P+=in_P;P](X).
in_not_P(X) :- all_in_def_1(X).

B.2.3 Transformation Υ

cons_P(X) :- dom(X), not out_cons_P(X).
out_cons_P(X) :- dom(X), not cons_P(X).
all_in_def_2(X) :- cons_P(X), dom(X), DL[P-=in_not_P, P+=in_P;Q](X).
in_P(X) :- all_in_def_2(X).
fail :- cons_P(X), DL[P-=in_not_P, P+=in_P;-P](X), not fail.
fail :- out_cons_P(X), not DL[P-=in_not_P, P+=in_P;-P](X), not fail.
cons_not_P(X) :- dom(X), not out_cons_not_P(X).
out_cons_not_P(X) :- dom(X), not cons_not_P(X).
all_in_def_1(X) :- cons_not_P(X), dom(X), DL[P-=in_not_P, P+=in_P;R](X).
in_not_P(X) :- all_in_def_1(X).
fail :- cons_not_P(X), DL[P-=in_not_P, P+=in_P;P](X), not fail.
fail :- out_cons_not_P(X), not DL[P-=in_not_P, P+=in_P;P](X), not fail.

B.3 Small Wine

B.3.1 Transformation Π

all_in_def_2(X) :- dom(X), not out_def_2(X).
out_def_2(X) :- dom(X), not all_in_def_2(X).
in_ServedCold(X) :- all_in_def_2(X).
fail :- out_def_2(X),

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;ServedCold](X),

B.3 Small Wine 75

not fail.
all_p_def_2(X) :- dom(X),

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;WhiteWine](X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-ServedCold](X).

p_ServedCold(X) :- all_p_def_2(X).
fail :- all_in_def_2(X),

not DL[WhiteWine+=p_WhiteWine, ServedCold+=p_ServedCold;ServedCold](X),
not fail.

fail :- out_def_2(X),
DL[WhiteWine+=p_WhiteWine, ServedCold+=p_ServedCold;ServedCold](X),
not fail.

all_in_def_1(X) :- dom(X), not out_def_1(X).
out_def_1(X) :- dom(X), not all_in_def_1(X).
in_WhiteWine(X) :- all_in_def_1(X).
fail :- out_def_1(X),

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;WhiteWine](X),
not fail.

all_p_def_1(X) :- dom(X),
DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;SparklingWine](X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-WhiteWine](X).

p_WhiteWine(X) :- all_p_def_1(X).
fail :- all_in_def_1(X),

not DL[WhiteWine+=p_WhiteWine, ServedCold+=p_ServedCold;WhiteWine](X),
not fail.

fail :- out_def_1(X),
DL[WhiteWine+=p_WhiteWine, ServedCold+=p_ServedCold;WhiteWine](X),
not fail.

B.3.2 Transformation Ω

all_in_def_2(X) :- dom(X),
DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;WhiteWine](X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-ServedCold](X).

in_ServedCold(X) :- all_in_def_2(X).
all_in_def_1(X) :- dom(X),

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;SparklingWine](X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-WhiteWine](X).

in_WhiteWine(X) :- all_in_def_1(X).

B.3.3 Transformation Υ

cons_ServedCold(X) :-
dom(X), not out_cons_ServedCold(X).

out_cons_ServedCold(X) :-
dom(X), not cons_ServedCold(X).

all_in_def_2(X) :-
cons_ServedCold(X), dom(X),
DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;WhiteWine](X).

in_ServedCold(X) :- all_in_def_2(X).
fail :- cons_ServedCold(X),

76 Transformed Programs

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-ServedCold](X),
not fail.

fail :- out_cons_ServedCold(X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-ServedCold](X),
not fail.

cons_WhiteWine(X) :-
dom(X), not out_cons_WhiteWine(X).

out_cons_WhiteWine(X) :-
dom(X), not cons_WhiteWine(X).

all_in_def_1(X) :- cons_WhiteWine(X), dom(X),
DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;SparklingWine](X).

in_WhiteWine(X) :- all_in_def_1(X).
fail :- cons_WhiteWine(X),

DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-WhiteWine](X),
not fail.

fail :- out_cons_WhiteWine(X),
not DL[WhiteWine+=in_WhiteWine, ServedCold+=in_ServedCold;-WhiteWine](X),
not fail.

Bibliography

G. Antoniou. A tutorial on default logics. ACM Comput. Surv., 31(4):337–359, 1999. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/344588.344602. 2.7

G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and
P. F. Patel-Schneider. Combining Rules and Ontologies: A survey. Technical Report
IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, February 2005. IST-2004-
506779 REWERSE Deliverable I3-D3. 1.4.2

F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept
languages. Technical Report RR-91-10, Deutsches Forschungszentrum für Künstliche
Intelligenz, Germany (DFKI), 1991. URL citeseer.ist.psu.edu/baader91scheme.
html. 2.7.2

F. Baader and B. Hollunder. Embedding defaults into terminological knowledge rep-
resentation formalisms. Technical Report RR-93-20, Deutsches Forschungszentrum
für Künstliche Intelligenz, Germany (DFKI), 1993. URL citeseer.ist.psu.edu/
baader95embedding.html. 1, 2.7.2, 2.7.2, 6

F. Baader and C. Lutz. Description Logic. In P. Blackburn, J. van Benthem, and F. Wolter,
editors, The Handbook of Modal Logic, pages 757–820. Elsevier, 2006. URL http://lat.
inf.tu-dresden.de/research/papers/2006/BaLu-ML-Handbook-06.ps.gz. 2.3

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003. 2.3

F. Baader, I. Horrocks, and U. Sattler. Description Logics. In F. van Harmelen,
V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Representation. Elsevier,
2007. URL http://web.comlab.ox.ac.uk/oucl/work/ian.horrocks/Publications/
download/2007/BaHS07a.pdf. 2.3

P. Cholewinski and M. Truszczynski. Minimal number of permutations sufficient to
compute all extensions a finite default theory. URL citeseer.ist.psu.edu/250371.
html. unpublished note. 1, 2.7.2

K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, 1977. 1.1

J. de Bruijn, T. Eiter, A. Polleres, and H. Tompits. Embedding Non-Ground Logic
Programs into Autoepistemic Logic for Knowledge-Base Combination. In Proc. of the
20th Int. Joint Conf. on Art. Int. (IJCAI 2007), pages 304–309, Hyderabad, India,
Jan. 2007a. Association for the Advancement of Artificial Intelligence (AAAI). URL
http://www.ijcai.org/papers07/Papers/IJCAI07-047.pdf. 1.4.2

77

citeseer.ist.psu.edu/baader91scheme.html
citeseer.ist.psu.edu/baader91scheme.html
citeseer.ist.psu.edu/baader95embedding.html
citeseer.ist.psu.edu/baader95embedding.html
http://lat.inf.tu-dresden.de/research/papers/2006/BaLu-ML-Handbook-06.ps.gz
http://lat.inf.tu-dresden.de/research/papers/2006/BaLu-ML-Handbook-06.ps.gz
http://web.comlab.ox.ac.uk/oucl/work/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://web.comlab.ox.ac.uk/oucl/work/ian.horrocks/Publications/download/2007/BaHS07a.pdf
citeseer.ist.psu.edu/250371.html
citeseer.ist.psu.edu/250371.html
http://www.ijcai.org/papers07/Papers/IJCAI07-047.pdf

78 BIBLIOGRAPHY

J. de Bruijn, D. Pearce, A. Polleres, and A. Valverde. Quantified Equilibrium Logic and
Hybrid Rules. In First Int. Conference on Web Reasoning and Rule Systems (RR2007),
volume 4524 of LNCS, pages 58–72, Innsbruck, Austria, June 2007b. Springer. 1.4.2

J. Doyle. A truth maintenance system. Artif. Intell., 12(3):231–272, 1979. 1.1

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set pro-
gramming with description logics for the Semantic Web. In Proceedings KR-2004, pages
141–151, 2004a. Extended Report RR-1843-03-13, Institut für Informationssysteme, TU
Wien, 2003. 2.5, 2.5

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded Semantics for
Description Logic Programs in the Semantic Web. In G. Antoniou and H. Boley, editors,
Proceedings RuleML 2004 Workshop, International Semantic Web Conference (ISWC),
Hiroshima, Japan, November 2004, number 3323 in LNCS, pages 81–97. Springer, 2004b.
2.5

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In International Joint
Conferences on Artificial Intelligence (IJCAI), pages 90–96, 2005. 1.4.2

T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, and H. Tompits. Reasoning with Rules
and Ontologies. In P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, editors,
Reasoning Web, Summer School 2006, number 4126 in LNCS, pages 93–127. Springer,
2006. 1.4.2

T. Eiter, G. Ianni, T. Krennwallner, and R. Schindlauer. Exploiting Conjunctive Queries
in Description Logic Programs. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo,
B. Motik, A.-Y. Turhan, and S. Tessaris, editors, Proceedings of the 20th International
Workshop on Description Logics (DL2007), volume 250 of CEUR Workshop Proceed-
ings, pages 259–266. CEUR-WS.org, June 2007a. URL http://ceur-ws.org/Vol-250/
paper 64.pdf. 2.6, 2.8

T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set
Programming with Description Logics for the Semantic Web. Technical Report INFSYS
RR-1843-07-04, Institut für Informationssysteme, TU Wien, Mar. 2007b. 1, 1, 1.4.2, 1.5,
2.3, 2.5, 3, 3.1, 3.2, 3.1, 5.1.2, 5.3.3, 6

T. Eiter, G. Ianni, T. Krennwallner, and R. Schindlauer. Exploiting Conjunctive Queries
in Description Logic Programs. Technical Report INFSYS RR-1843-08-02, Institut für
Informationssysteme, TU Wien, Favoritenstraße 9-11, A-1040 Vienna, Mar. 2008. URL
http://www.kr.tuwien.ac.at/research/reports/rr0802.pdf. 1.4.2

M. Garey and D. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. 1.3

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A.
Kowalski and K. Bowen, editors, Proceedings of the Fifth International Conference on
Logic Programming, pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.
URL citeseer.ist.psu.edu/gelfond88stable.html. 1.3, 2.1

M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann Publishers, 1987. 1.2

http://ceur-ws.org/Vol-250/paper_64.pdf
http://ceur-ws.org/Vol-250/paper_64.pdf
http://www.kr.tuwien.ac.at/research/reports/rr0802.pdf
citeseer.ist.psu.edu/gelfond88stable.html

BIBLIOGRAPHY 79

G. Gottlob. Complexity results for nonmonotonic logics. J. Log. Comput., 2(3):397–425,
1992. 6.1

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proc. of the Twelfth International World Wide
Web Conference (WWW 2003), pages 48–57. ACM, 2003. ISBN 1-58113-680-3. URL
download/2003/p117-grosof.pdf. 1.4.2

T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing.
Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995. 1.2

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description
Logics. In Proceedings LPAR-1999, volume 1705 of LNCS, pages 161–180. Springer,
1999. 2.3.1

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. Journal of Web Semantics, 1(1):7–26, 2003.
2.4, 2.4

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
semantic web rule language combining OWL and RuleML. W3C Member Submission,
21 May 2004. Available at http://www.w3.org/Submission/SWRL/. 1.4.2

U. Hufstadt, B. Motik, and U. Sattler. Reasoning for Description Logics around SHIQ in
a Resolution Framework. Technical Report 3-8-04/04, Forschungszentrum Informatik
(FZI), Karlsruhe, 76131 Karlsruhe, Germany, July 8, 2004. 1.4.2

U. Junker and K. Konolige. Computing the extensions of autoepistemic and default logics
with a truth maintenance system. In Association for the Advancement of Artificial
Intelligence (AAAI), pages 278–283, 1990. 2.7.2

M. Knorr, J. J. Alferes, and P. Hitzler. A Well-founded Semantics for Hybrid MKNF
Knowledge Bases. In Proc. of 20th International Workshop on Description Logics DL’07,
volume 250 of CEUR Workshop Proc., pages 347–354. CEUR-WS.org, 2007. URL
http://CEUR-WS.org/Vol-250/paper 54.pdf. 2.5

T. Krennwallner. Integration of Conjunctive Queries over Description Logics into HEX-
Programs. Master’s thesis, Vienna University of Technology, Karlsplatz 13, A-1040 Wien,
Oct. 2007. URL http://www.postsubmeta.net/pub/2007/thesis.pdf. 1.4, 2.6, 2.6,
4.4.1, 4.6

A. Y. Levy and M.-C. Rousset. CARIN: A representation language combining horn rules
and description logics. In European Conference on Artificial Intelligence, pages 323–327,
1996. URL citeseer.ist.psu.edu/levy96carin.html. 1, 1.4.1, 1.4.2

T. Lukasiewicz. Stratified probabilistic description logic programs. In International
Semantic Web Conference-Uncertainty Reasoning for the Semantic Web (ISWC-URSW),
pages 87–97, 2005. 1.4.2

W. Lukaszewicz. Non-monotonic Reasoning, Formalization of Commonsense Reasoning.
Ellis Horwood, 1990. ISBN 0-13-624446-7. 1.1

J. McCarthy. Programs with common sense. In Proceedings of the Teddington Conference
on the Mechanization of Thought Processes, pages 75–91, London, 1959. Her Majesty’s
Stationary Office. URL citeseer.ist.psu.edu/mccarthy68programs.html. 1.1

download/2003/p117-grosof.pdf
http://www.w3.org/Submission/SWRL/
http://CEUR-WS.org/Vol-250/paper_54.pdf
http://www.postsubmeta.net/pub/2007/thesis.pdf
citeseer.ist.psu.edu/levy96carin.html
citeseer.ist.psu.edu/mccarthy68programs.html

80 BIBLIOGRAPHY

J. L. McCarthy. Epistemological problems of artificial intelligence. In International Joint
Conferences on Artificial Intelligence (IJCAI), pages 1038–1044, 1977. 1.1

D. V. McDermott and J. Doyle. Non-monotonic logic i. Artif. Intell., 13(1-2):41–72, 1980.
1.1

J. Minker. An overview of nonmonotonic reasoning and logic programming. Technical Report
UMIACS-TR-91-112, CS-TR-2736, University of Maryland, College Park, Maryland
20742, August 1991. URL citeseer.ist.psu.edu/article/minker93overview.html.
1.1

M. Minsky. A framework for representing knowledge. Technical Report AIM-306, 1974. 1.1

M. Minsky. Minsky’s frame system theory. In TINLAP ’75: Proceedings of the 1975
workshop on Theoretical issues in natural language processing, pages 104–116, Morristown,
NJ, USA, 1975. Association for Computational Linguistics. doi: http://dx.doi.org/10.
3115/980190.980222. 2.3

B. Motik and R. Rosati. A Faithful Integration of Description Logics with Logic Pro-
gramming. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI
2007), pages 477–482, Hyderabad, India, January 6–12 2007. Association for the Ad-
vancement of Artificial Intelligence (AAAI). URL http://www.ijcai.org/papers07/
Papers/IJCAI07-075.pdf. 1.4.2

B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60,
2005. 1.4.2

B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Programming Live
Together Happily Ever After? In Proceedings of the 2006 International Semantic Web
Conference (ISWC 2006), volume 4273 of Lecture Notes in Computer Science, pages
501–514. Springer, 2006. URL http://www.cs.man.ac.uk/∼horrocks/Publications/
download/2006/MHRS06.pdf. 1, 1.4.2

R. Neches, R. Fikes, T. W. Finin, T. R. Gruber, R. S. Patil, T. E. Senator, and W. R.
Swartout. Enabling technology for knowledge sharing. AI Magazine, 12(3):36–56, 1991.
1.2

J. Z. Pan, E. Franconi, S. Tessaris, G. Stamou, V. Tzouvaras, L. Serafini, I. R. Horrocks,
and B. Glimm. Specification of Coordination of Rule and Ontology Languages. Project
Deliverable D2.5.1, KnowledgeWeb NoE, June 2004. 1.4.2

D. Perlis. On the consistency of commonsense reasoning. Computational Intelligence, 2:
180–190, 1986. 1.1

R. Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980. 1.1, 1.1, 2.7,
2.1, 2.2, 2.3, 2.5

R. Reiter. On Reasoning by Default. In Proceedings of the 1978 workshop on Theoretical
issues in natural language processing, pages 210–218, Morristown, NJ, USA, 1978.
Association for Computational Linguistics. URL http://dx.doi.org/10.3115/980262.
980297. 1.1, 1.4.1

R. Rosati. On the decidability and complexity of integrating ontologies and rules. Web
Semantics, 3(1):41–60, 2005a. ISSN 1570-8268. 1

citeseer.ist.psu.edu/article/minker93overview.html
http://www.ijcai.org/papers07/Papers/IJCAI07-075.pdf
http://www.ijcai.org/papers07/Papers/IJCAI07-075.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2006/MHRS06.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2006/MHRS06.pdf
http://dx.doi.org/10.3115/980262.980297
http://dx.doi.org/10.3115/980262.980297

BIBLIOGRAPHY 81

R. Rosati. Semantic and Computational Advantages of the Safe Integration of Ontologies
and Rules. In Proceedings of the Third International Workshop on Principles and Practice
of Semantic Web Reasoning (PPSWR 2005), volume 3703 of Lecture Notes in Computer
Science, pages 50–64. Springer, 2005b. 1.4.2

R. Rosati. The limits of querying ontologies. In Proceedings of the Eleventh International
Conference on Database Theory (ICDT 2007), volume 4353 of Lecture Notes in Computer
Science, pages 164–178. Springer, 2007. ISBN 3-540-69269-X. 3.2

R. Rosati. Towards expressive KR systems integrating datalog and description logics:
preliminary report. In Proceedings of the 1999 International Workshop on Description
Logics (DL-1999), pages 160–164, 1999. 1.4.2

R. Rosati. On the Decidability and Complexity of Integrating Ontologies and Rules.
Journal of Web Semantics, 3(1):61–73, 2005c. 1.4.2

R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In
Proceedings of the Tenth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2006), pages 68–78. Association for the Advancement of
Artificial Intelligence (AAAI), 2006a. 1.4.2

R. Rosati. Integrating Ontologies and Rules: Semantic and Computational Issues. In
Reasoning Web, Summer School 2006, number 4126 in LNCS, pages 128–151. Springer,
2006b. 1.4.2

R. Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis, Technische
Universität Wien, 12 2006. 3, 2.7, 1, 2, 4.3

M. Sintek and S. Decker. Triple - a query, inference, and transformation language for
the semantic web. In ISWC ’02: Proceedings of the First International Semantic Web
Conference on The Semantic Web, pages 364–378, London, UK, 2002. Springer-Verlag.
ISBN 3-540-43760-6. 1.4.2

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3):620–650, 1991. 2.5

T. Winograd. Extended inference modes in reasoning by computer systems. Artif. Intell.,
13(1-2):5–26, 1980. 1.1

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Introduction
	Nonmonotonic Reasoning
	Ontology
	Answer Set Programming
	Integration of Rules and Ontologies
	Issues
	Strategies for Integrating Rules and Ontologies

	Thesis Organization

	Preliminaries
	Declarative Logic Programming
	Logic Programming under the Answer-Set Semantics
	Syntax of Answer-Set Programs
	Semantics of Answer-Set Programs

	Description Logics
	Syntax of SHIF(D) and SHOIN(D)
	Semantics of SHIF(D) and SHOIN(D)

	Web Ontology Language
	dl-Programs
	cq-Programs
	Default Logic
	Syntax and Semantics of Default Logic
	Algorithms for evaluating extensions of a default theory

	Embedding Defaults over Description Logics into dl-Programs
	Transformation Pi
	Transformation Omega
	Transformation Upsilon
	Pruning Rules for Optimization
	Forcing other defaults to be out
	Forcing other defaults to be in
	Defaults whose conclusions are already in the background theory

	Front-End
	Front-End Overview
	Syntax for Input Defaults
	Typing Predicates
	Update of the dl-Plugin to Adopt the df-Converter
	Update the dl-Plugin Use Cases
	Update the dl-plugin Components

	DFConverter Class Diagram
	Command line options

	Applications
	Classical examples
	Nixon Diamond
	Small Wine

	Complex examples
	Student
	Web Services Property Reasoning

	Experimental Results
	Tweety bird example
	Nixon diamond and Small Wine
	Summary

	Conclusion
	Future Work

	Proofs
	Proof for Transformation Omega
	Proof for Transformation Upsilon

	Transformed Programs
	Tweety bird
	Transformation Pi
	Transformation Omega
	Transformation Upsilon

	Nixon diamond
	Transformation Pi
	Transformation Omega
	Transformation Upsilon

	Small Wine
	Transformation Pi
	Transformation Omega
	Transformation Upsilon

	Bibliography

