
Distributed Nonmonotonic Multi-Context Systems

Minh Dao-Tran Thomas Eiter
Michael Fink Thomas Krennwallner

KBS Group, Institute of Information Systems, Vienna University of Technology

KR 2010 - May 13, 2010

Knowledge-Based Systems Group
KBS

Overview

Multi-Context Systems

Distributed Algorithm for Evaluating Nonmonotonic MCS

Loop Formulas for Multi-Context Systems

Experiments

Conclusions

1 / 16

Multi-Context Systems (MCS)

I MCSen introduced by [Giunchiglia and Serafini, 1994]:

I represent inter-contextual information flow

I express reasoning w.r.t. contextual information

I allow decentralized, pointwise information exchange

I monotonic, homogeneous logic

I Framework extended for integrating
heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]

2 / 16

Syntax of Multi-Context Systems

I multi-context system

I a collection M = (C1, . . . ,Cn) of contexts

I context Ci = (Li, kbi, bri)

I Li: a logic

I kbi: a knowledge base of logic Li

I bri: a set of bridge rules

I logic L = (KBL,BSL,ACCL)

I KBL: set of well-formed knowledge bases

I BSL: is the set of possible belief sets

I ACCL: acceptability function KBL 7→ 2BSL

Which belief sets are accepted by a knowledge base?

3 / 16

Syntax of Multi-Context Systems

I multi-context system

I a collection M = (C1, . . . ,Cn) of contexts

I context Ci = (Li, kbi, bri)

I Li: a logic

I kbi: a knowledge base of logic Li

I bri: a set of bridge rules

I logic L = (KBL,BSL,ACCL)

I KBL: set of well-formed knowledge bases

I BSL: is the set of possible belief sets

I ACCL: acceptability function KBL 7→ 2BSL

Which belief sets are accepted by a knowledge base?

3 / 16

Semantics of Multi-Context Systems (2)

I multi-context system
M = (C1, . . . ,Cn)

I context
Ci = (Li, kbi, bri)

I logic
L = (KBi,BSi,ACCi)

4 / 16

Syntax of Multi-Context Systems (bridge rules)
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Bridge rule r ∈ bri of a context Ci

s← (c1 : p1), . . . , (cj : pj),

not (cj+1 : pj+1), . . . , not (cm : pm)

I (ck : pk) looks at belief pk in context Cck

I r is applicable :⇔ positive/negative beliefs are present/absent

I we add the head s to kbi if r is applicable

5 / 16

Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I knowledge base of a context Ci

kbi ∈ KBi

I set of bridge rules bri of a context Ci of form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm)

I Contexts C1, . . . ,Cn are knowledge bases
with semantics in terms of accepted belief sets

I S = (S1, . . . , Sn) is a belief state of M with each Si ∈ BSi
5 / 16

Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Equilibrium semantics
I A belief state S = (S1, . . . , Sn) with Si ∈ BSi

. . . makes certain bridge rules applicable,

. . . add applicable bridge heads to kbi

⇒ S is an equilibrium :⇔
each kbi plus acceptable bridge heads from bri accepts Si

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

5 / 16

Toward Distributed Equilibria building for MCS

Obstacles:

I abstraction of contexts

I information hiding and security aspects

I lack of system topology

I cycles between contexts

We need to capture:

I dependencies between contexts

I representation of partial knowledge

I combination/join of local results

6 / 16

Import Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.
Alternatively,

IC(k) = {k} ∪
⋃

j≥0 ICj(k) ,

where
IC0(k) = In(k), and
ICj+1(k) =

⋃
i∈ICj(k) In(i).

In(1)

C1

C2

C4

C3

C5 C6

C7

7 / 16

Import Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.
Alternatively,

IC(k) = {k} ∪
⋃

j≥0 ICj(k) ,

where
IC0(k) = In(k), and
ICj+1(k) =

⋃
i∈ICj(k) In(i).

IC(1)C1

C2

C4

C3

C5 C6

C7

7 / 16

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck
iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

8 / 16

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck
iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

8 / 16

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck
iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

8 / 16

Joining Partial Belief States

Join S ./ T of belief sets S and T: like join of tuples in a database.

S1

ε

S1

...

...

...

ε

ε

ε

...

...

...

ε

Ti

Ti

...

...

...

S =

T =

S ./ T =

Sn

Tn

Sn = Tn

S ./ T is undefined, if ε 6= Sj 6= Tj 6= ε for some j.

S ./ T = {S ./ T | S ∈ S,T ∈ T }

9 / 16

Algorithm DMCS
Input: an MCS M and a starting context Ck
Output: all partial equilibria of M w.r.t. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

10 / 16

Algorithm DMCS
Input: an MCS M and a starting context Ck
Output: all partial equilibria of M w.r.t. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

10 / 16

Algorithm DMCS
Input: an MCS M and a starting context Ck
Output: all partial equilibria of M w.r.t. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

10 / 16

Algorithm DMCS
Input: an MCS M and a starting context Ck
Output: all partial equilibria of M w.r.t. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

10 / 16

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck
((i : p), (j : q) appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk

11 / 16

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck
((i : p), (j : q) appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk

11 / 16

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck
((i : p), (j : q) appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk

11 / 16

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck
((i : p), (j : q) appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk

11 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets

I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

12 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})

(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

({a}, {b}, {c}, {¬f , g})
({¬a}, {b}, {¬c}, {¬f , g})
({¬a}, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})

13 / 16

Loop Formulas for Multi-Context Systems

I DMCS is using lsolve() to incorporate the bridge rules into the local
knowledge base: this must be done for every intermediate result

I Some logics allow to combine bri and kbi:
I contexts with answer set programs, or
I contexts with propositional formulas

I Benefit: a single call to a SAT solver is sufficient to compute the
local semantics of a context

I This is used to adapt DMCS and provide a prototype implementation

14 / 16

Experiments

 0.01

 0.1

 1

 10

 100

D1 D2 D3 D4 D5

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Diamond

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

#1014
#56 #32 #348

#12

#1944

#5240

#15088

#14596

#5220

15 / 16

Experiments

 0.1

 1

 10

 100

R1 R2 R3 R4 R5

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Ring

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

#176 #208

#80
#111

#2119

#120736

#10548

#2200

#98656

#19388

15 / 16

Experiments

 0.1

 1

 10

 100

10-10-5-5 13-10-5-5 25-10-5-5 31-10-5-5

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Parameter Pi=(n,s,b,r) # equilibria

Diamond

#43.125

#1235 #35.25

#5772.8
#30.75

#80.5DMCSOPT
DMCS

15 / 16

Conclusions
I MCS is a general framework for integrating diverse formalisms

I First attempt for distributed MCS evaluation

I In certain settings, we can compile bridge rules away and use SAT
solvers locally to generate partial equilibria (loop formulas for MCS)

I Initial experiments with a prototype implementation

Future work:

I improve scalability
I move away from “knowing-nothing” to “knowing-something”

I approximation semantics

I syntactic restrictions

I specialized algorithms for some types of topologies

I how to deal with dynamic setting?

16 / 16

Conclusions
I MCS is a general framework for integrating diverse formalisms

I First attempt for distributed MCS evaluation

I In certain settings, we can compile bridge rules away and use SAT
solvers locally to generate partial equilibria (loop formulas for MCS)

I Initial experiments with a prototype implementation

Future work:

I improve scalability
I move away from “knowing-nothing” to “knowing-something”

I approximation semantics

I syntactic restrictions

I specialized algorithms for some types of topologies

I how to deal with dynamic setting?

16 / 16

Related work

Frameworks/Platforms
I Framework for P2P inference systems [Hirayama and Yokoo, 2005]:

consequence finding v.s. model building
I MWeb [Analyti et al., 2008]: scope and context for modular web rule

bases on the Web

Distributed Reasoning
I Satisfiability checking for homogeneous, monotonic MCS [Roelofsen

et al., 2004]: (co-inductive) fixpoint strategy, not truly distributed
I DisSAT [Hirayama and Yokoo, 2005]: finding single models

(randomize)
I Distributed Description Logic [Serafini and Tamilin, 2005], [Serafini

et al., 2005]
I reasoning v.s. (distributed) model building
I loose v.s. tight integration (signatures, meaning of symbols)

13 / 16

References I

Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damásio.
A principled framework for modular web rule bases and its
semantics.
In Proceedings of the 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR2008). AAAI Press,
September 2008.

Gerhard Brewka and Thomas Eiter.
Equilibria in heterogeneous nonmonotonic multi-context systems.
In AAAI’07, pages 385–390. AAAI Press, 2007.

Fausto Giunchiglia and Luciano Serafini.
Multilanguage hierarchical logics or: How we can do without modal
logics.
Artificial Intelligence, 65(1):29–70, 1994.

References II

Katsutoshi Hirayama and Makoto Yokoo.
The distributed breakout algorithms.
Artif. Intell., 161(1–2):89–115, January 2005.

Floris Roelofsen, Luciano Serafini, and Alessandro Cimatti.
Many Hands Make Light Work: Localized Satisfiability for
Multi-Context Systems.
In Ramon López de Mántaras and Lorenza Saitta, editors, 16th
Eureopean Conference on Artificial Intelligence (ECAI’04), pages
58–62. IOS Press, 2004.

Luciano Serafini and Andrei Tamilin.
Drago: Distributed reasoning architecture for the semantic web.
In Second European Semantic Web Conference (ESWC 2005),
pages 361–376. Springer, 2005.

References III

Luciano Serafini, Alexander Borgida, and Andrei Tamilin.
Aspects of distributed and modular ontology reasoning.
In Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 570–575. AAAI Press, 2005.

	Multi-Context Systems
	Distributed Algorithm for Evaluating Nonmonotonic MCS
	Loop Formulas for Multi-Context Systems
	Experiments
	Conclusions
	Appendix

