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Multi-Context Systems (MCS)

I MCSen introduced by [Giunchiglia and Serafini, 1994]:

I represent inter-contextual information flow

I express reasoning w.r.t. contextual information

I allow decentralized, pointwise information exchange

I monotonic, homogeneous logic

I Framework extended for integrating
heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]
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Syntax of Multi-Context Systems

I multi-context system

I a collection M = (C1, . . . ,Cn) of contexts

I context Ci = (Li, kbi, bri)

I Li: a logic

I kbi: a knowledge base of logic Li

I bri: a set of bridge rules

I logic L = (KBL,BSL,ACCL)

I KBL: set of well-formed knowledge bases

I BSL: is the set of possible belief sets

I ACCL: acceptability function KBL 7→ 2BSL

Which belief sets are accepted by a knowledge base?
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Semantics of Multi-Context Systems (2)

I multi-context system
M = (C1, . . . ,Cn)

I context
Ci = (Li, kbi, bri)

I logic
L = (KBi,BSi,ACCi)
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Syntax of Multi-Context Systems (bridge rules)
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Bridge rule r ∈ bri of a context Ci

s← (c1 : p1), . . . , (cj : pj),

not (cj+1 : pj+1), . . . , not (cm : pm)

I (ck : pk) looks at belief pk in context Cck

I r is applicable :⇔ positive/negative beliefs are present/absent

I we add the head s to kbi if r is applicable
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Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I knowledge base of a context Ci

kbi ∈ KBi

I set of bridge rules bri of a context Ci of form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm)

I Contexts C1, . . . ,Cn are knowledge bases
with semantics in terms of accepted belief sets

I S = (S1, . . . , Sn) is a belief state of M with each Si ∈ BSi
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Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Equilibrium semantics
I A belief state S = (S1, . . . , Sn) with Si ∈ BSi

. . . makes certain bridge rules applicable,

. . . add applicable bridge heads to kbi

⇒ S is an equilibrium :⇔
each kbi plus acceptable bridge heads from bri accepts Si

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})
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Toward Distributed Equilibria building for MCS

Obstacles:

I abstraction of contexts

I information hiding and security aspects

I lack of system topology

I cycles between contexts

We need to capture:

I dependencies between contexts

I representation of partial knowledge

I combination/join of local results
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Import Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.
Alternatively,

IC(k) = {k} ∪
⋃

j≥0 ICj(k) ,

where
IC0(k) = In(k), and
ICj+1(k) =

⋃
i∈ICj(k) In(i).

In(1)

C1

C2

C4

C3

C5 C6

C7
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Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck
iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε
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Joining Partial Belief States

Join S ./ T of belief sets S and T: like join of tuples in a database.

S1

ε

S1

...

...

...

ε

ε

ε

...

...

...

ε

Ti

Ti

...

...

...

S =

T =

S ./ T =

Sn

Tn

Sn = Tn

S ./ T is undefined, if ε 6= Sj 6= Tj 6= ε for some j.

S ./ T = {S ./ T | S ∈ S,T ∈ T }
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Algorithm DMCS
Input: an MCS M and a starting context Ck
Output: all partial equilibria of M w.r.t. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states
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Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck
((i : p), (j : q) appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk
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Cycle breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I Guessing local belief sets
I return them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state
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Example

A run with C1.DMCS(V, ∅), where V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f ) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})
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Loop Formulas for Multi-Context Systems

I DMCS is using lsolve() to incorporate the bridge rules into the local
knowledge base: this must be done for every intermediate result

I Some logics allow to combine bri and kbi:
I contexts with answer set programs, or
I contexts with propositional formulas

I Benefit: a single call to a SAT solver is sufficient to compute the
local semantics of a context

I This is used to adapt DMCS and provide a prototype implementation

14 / 16



Experiments
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Conclusions
I MCS is a general framework for integrating diverse formalisms

I First attempt for distributed MCS evaluation

I In certain settings, we can compile bridge rules away and use SAT
solvers locally to generate partial equilibria (loop formulas for MCS)

I Initial experiments with a prototype implementation

Future work:

I improve scalability
I move away from “knowing-nothing” to “knowing-something”

I approximation semantics

I syntactic restrictions

I specialized algorithms for some types of topologies

I how to deal with dynamic setting?
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Related work

Frameworks/Platforms
I Framework for P2P inference systems [Hirayama and Yokoo, 2005]:

consequence finding v.s. model building
I MWeb [Analyti et al., 2008]: scope and context for modular web rule

bases on the Web

Distributed Reasoning
I Satisfiability checking for homogeneous, monotonic MCS [Roelofsen

et al., 2004]: (co-inductive) fixpoint strategy, not truly distributed
I DisSAT [Hirayama and Yokoo, 2005]: finding single models

(randomize)
I Distributed Description Logic [Serafini and Tamilin, 2005], [Serafini

et al., 2005]
I reasoning v.s. (distributed) model building
I loose v.s. tight integration (signatures, meaning of symbols)
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