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Abstract. In this paper we address the problem of scalable, native and adaptive query
processing over Linked Stream Data integrated with Linked Data. Linked Stream Data
consists of data generated by stream sources, e.g., sensors, enriched with semantic
descriptions, following the standards proposed for Linked Data. This enables the inte-
gration of stream data with Linked Data collections and facilitates a wide range of novel
applications. Currently available systems use a “black box” approach which delegates
the processing to other engines such as stream/event processing engines and SPARQL
query processors by translating to their provided languages. As the experimental results
described in this paper show, the need for query translation and data transformation,
as well as the lack of full control over the query execution, pose major drawbacks in
terms of efficiency. To remedy these drawbacks, we present CQELS (Continuous Query
Evaluation over Linked Streams), a native and adaptive query processor for unified query
processing over Linked Stream Data and Linked Data. In contrast to the existing systems,
CQELS uses a “white box” approach and implements the required query operators na-
tively to avoid the overhead and limitations of closed system regimes. CQELS provides
a flexible query execution framework with the query processor dynamically adapting to
the changes in the input data. During query execution, it continuously reorders operators
according to some heuristics to achieve improved query execution in terms of delay and
complexity. Moreover, external disk access on large Linked Data collections is reduced
with the use of data encoding and caching of intermediate query results. To demon-
strate the efficiency of our approach, we present extensive experimental performance
evaluations in terms of query execution time, under varied query types, dataset sizes,
and number of parallel queries. These results show that CQELS outperforms related
approaches by orders of magnitude.

Keywords: Linked Streams, RDF Streams, Linked Data, stream processing, dynamic
query planning, query optimisation

1 Introduction

Sensing devices have become ubiquitous. Mobile phones (accelerometer, compass, GPS,
camera, etc.), weather observation stations (temperature, humidity, etc.), patient monitor-
ing systems (heart rate, blood pressure, etc.), location tracking systems (GPS, RFID, etc.),
buildings management systems (energy consumption, environmental conditions, etc.), and
cars (engine monitoring, driver monitoring, etc.) continuously produce information streams.
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Also on the Web, services like Twitter, Facebook and blogs, deliver streams of (typically
unstructured) real-time data on various topics. The heterogeneous nature of such diverse
streams makes their use and integration with other data sources a difficult and labor-intensive
task, which currently requires a lot of “hand-crafting.”

To address some of the problems, there have been efforts to lift stream data to a semantic
level, e.g., by the W3C Semantic Sensor Network Incubator Group3 and [12, 32, 37]. The goal
is to make stream data available according to the Linked Data principles [10] – a concept that
is known as Linked Stream Data [31]. This would allow an easy and seamless integration, not
only among heterogenous sensor data, but also between sensor and Linked Data collections,
enabling a new range of “real-time” applications.

However, one distinguishing aspect of streams that the Linked Data principles do not
consider is their temporal nature. Usually, Linked Data is considered to change infrequently.
Data is first crawled and stored in a centralised repository before further processing. Updates
on a dataset are usually limited to a small fraction of the dataset and occur infrequently, or
the whole dataset is replaced by a new version entirely. Query processing, as in traditional
relational databases, is pull based and one-time, i.e., the data is read from the disk, the query
is executed against it once, and the output is a set of results for that point in time. In contrast,
in Linked Stream Data, new data items are produced continuously, the data is often valid
only during a time window, and it is continually pushed to the query processor. Queries are
continuous, i.e., they are registered once and then are evaluated continuously over time against
the changing dataset. The results of a continuous query are updated as new data appears.
Therefore, current Linked Data query processing engines are not suitable for handling Linked
Stream Data. It is interesting to notice that in recent years, there has been work that points out
the dynamics of Linked Data collections [35]. Although at a much slower pace compared to
streams, it has been observed that centralised approaches will not be suitable if freshness of
the results is important, i.e., the query results are consistent with the actual “live” data under
certain guarantees, and thus an element of “live” query execution will be needed [34]. Though
this differs from stream data, some of our findings may also be applicable to this area.

Despite its increasing relevance, there is currently no native query engine that supports
unified query processing over Linked Stream and Linked Data inputs. Available systems, such
as C-SPARQL [9], SPARQLstream [14] and EP-SPARQL [3], use a “black box” approach
which delegates the processing to other engines such as stream/event processing engines
and SPARQL query processors by translating to their provided languages. This dependency
introduces the overhead of query translation and data transformation. Queries first need to
be translated to the language used in the underlying systems. The data also needs to be
transformed to feed into the system. For instance, in C-SPARQL and SPARQLstream, the
data is stored in relational tables and relational streams before any further processing, and EP-
SPARQL uses logic facts. This strategy also does not allow full control over the execution plan
nor over the implementation of the query engine’s elements. Consequently, the possibilities
for query optimisations are very limited.

To remedy these drawbacks, we present CQELS (Continuous Query Evaluation over
Linked Streams), a native and adaptive query processing engine for querying over unified
Linked Stream Data and Linked Data. In contrast to the existing systems, CQELS uses a
“white box” approach. It defines its own native processing model, which is implemented in the
query engine. CQELS provides a flexible query execution framework with the query processor
dynamically adapting to changes in the input data. During query execution, it continuously
reorders operators according to some heuristics to achieve improved query execution in terms
of delay and complexity. External disk access on large Linked Data collections is reduced
with the use of data encoding and caching of intermediate query results, and faster data access
is obtained with indexing techniques. To demonstrate the efficiency of our approach, we

3 http://www.w3.org/2005/Incubator/ssn/
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present extensive experimental performance evaluations in terms of query execution time,
under varied query types, dataset sizes, and number of parallel queries. Results show that
CQELS performs consistently well, and in most cases outperforms related approaches by
orders of magnitude.

The remainder of this paper is organised as follows: Section 2 discusses our contribution in
relation to relational database management systems, data stream management systems, Linked
Data processing, and Linked Stream Data processing. Our processing model is described in
Section 3, and the query engine is discussed in Section 4. Section 5 presents an experimental
evaluation of our approach, and Section 6 provides our conclusions and a brief discussion
about ongoing work and next steps.

2 Related Work

RDF stores. A fair amount of work on storage and query processing for Linked Data is
available, including Sesame [13], Jena [38], RISC-3X [28], YARS2 [23], and Oracle Database
Semantic Technologies [16]. Most of them focus on scalability in dataset size and query
complexity. Based on traditional database management systems (DBMSs), they typically
assume that data changes infrequently, and efficiency and scalability are achieved by carefully
choosing appropriate data storage and indexing optimised for read access, whereas stream
data is characterised by high numbers and frequencies of updates. The Berlin SPARQL
benchmark4 shows that the throughput of a typical triple store currently is less than 200
queries per second, while in stream applications continuous queries need to be processed
every time there is a new update in the data, which can occur at rates up to 100,000 updates
per second. Nevertheless, some of the techniques and design principles of triple stores are still
useful for scalable processing of Linked Stream Data, for instance some of the physical data
organisations [1, 13, 38] and indexing schemas [16, 23, 28].

Data stream management. Data stream management systems (DSMSs) such as STREAM [4],
Aurora [15], and TelegraphCQ [26] were built to overcome limitations of traditional database
management systems in supporting streaming applications [20]. The STREAM system pro-
poses CQL [4] (Continuous Query Language) which extends standard SQL syntax with new
constructs for temporal semantics and defines a mapping between streams and relations.
The query engine consists of three components: operators, that handle the input and output
streams, queues, that connect input operators to output operators, and synopses, that store the
intermediate states needed by continuous query plans. In the Aurora/Borealis project [15]
users can compose stream relationships and construct queries in a graphical representation
which is then used as input for the query planner. TelegraphCQ introduces StreaQuel as a
language, which follows a different path and tries to isolate temporal semantics from the query
language through external definitions in a C-like syntax. TelegraphCQ also uses a technique
called Eddies [6], which continuously reorders operators in a query plan as it runs, adapting
to changes in the input data. DSMSs perform better compared to traditional DBMSs in the
context of high volumes of updates. Even though DSMSs can not directly process Linked
Stream Data, such processing is still possible by translating the queries and mapping the data
to fit into the data storage. This is currently done by available systems that process Linked
Stream Data. The CQELS query engine, on the other hand, can directly process Linked Stream
Data, yielding consistently better performance, as we will demonstrate later on in the paper.

Streams and semantics. Semantic Streams [37] was among the first systems to propose
semantic processing of streams. It uses Prolog-based logic rules to allow users to pose
declarative queries over semantic interpretations of sensor data. Semantic System S [12]
proposes the use of the Web Ontology Language (OWL) to represent sensor data streams,

4 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
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as well as processing elements for composing applications from input data streams. The
Semantic Sensor Web project [8, 32] also focuses on interoperability between different sensor
sources, as well as providing contextual information about the data. It does so by annotating
sensor data with spatial, temporal, and thematic semantic metadata. Research like the one
carried by W3C Semantic Sensor Network Incubator Group5 aims at the integration of stream
data with Linked Data sources by following the Linked Data principles for representing the
data. In parallel, the concept of Linked Stream Data was introduced [31], in which URIs were
suggested for identifying sensors and stream data.

In contrast to these approaches, our work focuses on the efficient processing of Linked
Stream Data integrated with other Linked Data sources. Existing work with this focus com-
prises Streaming SPARQL [11], C-SPARQL [9], SPARQLstream [14], and EP-SPARQL [3]
as the main approaches. They all extend SPARQL with sliding window operators for RDF
stream processing. Streaming SPARQL simply extends SPARQL to support window operators
without taking into account performance issues regarding the choice of the data structures and
the sharing of computing states for continuous execution. Continuous SPARQL (C-SPARQL)
proposes an execution framework built of top of existing stream data management systems
and triple stores. These systems are used independently as “black boxes.” In C-SPARQL,
continuous queries are divided into static and dynamic parts. The framework orchestrator
loads bindings of the static parts into relations, and the continuous queries are executed by
processing the stream data against these relations. C-SPARQL is not designed for large static
data sets, which can degrade the performance of the stream processing considerably.

Along the same lines, SPARQLstream also translates its SPARQLstream language to
another relational stream language based on mapping rules. Event Processing SPARQL (EP-
SPARQL), a language to describe event processing and stream reasoning, can be translated
to ETALIS [3], a Prolog-based complex event processing framework. First, RDF-based data
elements are transformed into logic facts, and then EP-SPARQL queries are translated into
Prolog rules. In contrast to these systems, CQELS is based on a unified “white box” approach
which implements the required query operators for the triple-based data model natively,
both for streams and static data. This native approach enables better performance and can
dynamically adapt to changes in the input data.

3 Processing Model

The adaptive processing model of CQELS captures all the aspects of both data modelling
and query processing over Linked Stream Data and Linked Data in one single theoretical
framework. It defines two types of data sources, RDF streams and RDF datasets, and three
classes of operators for processing these types of data sources. Operators used in a query are
organised in a data flow according to defined query semantics, and the adaptive processing
model provides functions to reorder the query operators to create equivalent, more efficient
data flows. The details of the processing model are described in the following.

3.1 Definitions

In continuous query processing over dynamic data, the temporal nature of the data is crucial
and needs to be captured in the data representation. This applies to both types of data sources,
since updates in Linked Data collections are also possible. We define RDF streams to represent
Linked Stream Data, and we model Linked Data by generalising the standard definition of
RDF datasets to include the temporal aspect.

5 http://www.w3.org/2005/Incubator/ssn/
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Similar to RDF temporal [22], C-SPARQL, and SPARQLstream, we represent temporal
aspects of the data as a timestamp label. We use t ∈ N to indicate a logical timestamp to
facilitate ordered logical clocks for local and distributed data sources as done by classic
time-synchronisation approaches [24]. The issues of distributed time synchronization and
flexible time management are beyond the scope of this paper. We refer the reader to [19, 27,
33] for more details.

Let I , B, and L be RDF nodes which are pair-wise disjoint infinite sets of Information
Resource Identifiers (IRIs), blank nodes and literals, and IL = I ∪ L, IB = I ∪ B and
IBL = I ∪B ∪ L be the respective unions. Thereby,

1. A triple (s, p, o) ∈ IB × I × IBL is an RDF triple.
2. An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples valid at time t.

An RDF dataset is a sequence G = [G(t)], t ∈ N, ordered by t. When it holds that
G(t) = G(t+ 1) for all t ≥ 0, we call G a static RDF dataset and denote Gs = G(t).

3. An RDF stream S is a bag of elements 〈(s, p, o) : [t]〉, where (s, p, o) is an RDF triple
and t is a timestamp. S≤t denotes the bag of elements in S with timestamps ≤ t, i.e.,
{〈(s, p, o) : [t′]〉 ∈ S | t′ ≤ t}.

Let V be an infinite set of variables disjoint from IBL. A mapping is a partial func-
tion µ : V → IBL. The domain of µ, dom(µ), is the subset of V where µ is defined. Two
mappings µ1 and µ2 are compatible if ∀x ∈ dom(µ1) ∩ dom(µ2), µ1(x) = µ2(x).

A tuple from (IB ∪ V ) × (I ∪ V ) × (IBL ∪ V ) is a triple pattern. For a given triple
pattern P , the set of variables occurring in P is denoted as var(P ) and the triple obtained by
replacing elements in var(P ) according to µ is denoted as µ(P ). A graph template T is a set
of triple patterns.

3.2 Operators
Our processing model takes as input RDF datasets and RDF streams containing possibly
infinite numbers of RDF triples, applies a query Q and continuously produces outputs.

In processing Q, snapshots of the input at discrete times t, i.e., finite amounts of data, are
used in the evaluation of the query. This requires dedicated operators to (i) take snapshots of
the input and filter its valid part w.r.t. some condition, (ii) operate on the finite, intermediate
data, and (iii) convert the final results back into a stream. The required operators are called
window, relational, and streaming operators.

Window Operators. These operators extract triples from an RDF stream or dataset that match
a given triple pattern and are valid within a given time window. Similar to SPARQL, we define
a triple matching pattern operator on an RDF dataset at timestamp t as

[[P, t]]G = {µ | dom(µ) = var(P ) ∧ µ(P ) ∈ G(t)}.
A window operator [[P, t]]ωS is then defined by extending the operator above as follows.

[[P, t]]ωS = {µ | dom(µ) = var(P ) ∧ 〈µ(P ) : [t′]〉 ∈ S ∧ t′ ∈ ω(t)}.
where ω(t) : N → 2N is a function mapping a timestamp to a (possibly infinite) set of
timestamps. This gives us the flexibility to choose between different window modes [5]. For
example, a time-based sliding window of size T can be expressed as ωRANGE (t) = {t′ | t′ ≤
t∧ t′ ≥ max(0, t−T )}, and a window that extracts only events happening at the current time
corresponds to ωNOW (t) = {t}. Moreover, we can similarly define triple-based windows that
return the latest N triples ordered by the timestamps.

We define a result set Γ as a function from N ∪ {−1} to finite but unbounded bags of
mappings, where Γ (−1) = ∅. A discrete result set Ω = Γ (t), t ≥ 0, denotes the bag of
mappings at time t. Discrete result sets are the input of relational operators described below.
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Relational Operators. Our processing model supports the operators found in traditional
relational database management systems [18]. Similar to the semantics of SPARQL [29], the
operators work on the mappings from discrete result sets. As an example, given two discrete
result sets, Ω1 and Ω2, the join and union operators are defined as

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible }
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 ∨ µ ∈ Ω2}.

Streaming Operators. Similarly to the relation-to-stream operator of CQL [5], we define an
operator, based on some patterns, to generate RDF streams from result sets. From a graph
template T, that provides a set of triple patterns, and a result set Γ , a streaming operator C is
defined as

C(T,Γ ) =
⋃
t≥0

{〈µ(P ) : [f(t)]〉 | µ ∈ Γ (t) \ Γ (t− 1) ∧ P ∈ T},

where f : N→ N is a function mapping t to a new timestamp to indicate when we want to
stream out the result. In the simplest case, f is the identity function, indicating that triples are
streamed out immediately.

Query Semantics. Operators of a query are organised in a data flow. A data flow D is a
directed tree of operators, whose root node is either a relational or a streaming operator, while
leaves and intermediate nodes are window and relational operators, respectively.

Suppose the inputs to the leaves of D are RDF streams S1, . . . , Sn (n ≥ 1) and RDF
datasets G1, . . . , Gm (m ≥ 0). The query semantics of D is then defined as follows: If the
root of D is a streaming (resp., relational) operator, producing a stream S (resp., result set
Γ ), then the result of D at time t is S≤t (resp., Γ (t)), which is produced by recursively
applying the operators comprising D to S≤t1 , . . . , S≤tn and G1, . . . , Gm. Next we introduce
the “localisation scenario” to illustrate the query semantics of our processing model. This
scenario will also be used in following sections of the paper.

Localisation scenario: Consider a group of people wearing devices that constantly stream their
locations in a building, i.e., in which room they currently are, and assume we have information
about the direct connectivity between the rooms, given by a static RDF dataset G with
triples of the form P3 = (?loc1, conn, ?loc2), where GS = {(r1, conn, r2), (r1, conn, r3),
(r2, conn, r1), (r3, conn, r1)}. Also assume that people’s locations are provided in a single
stream S with triples of form (?person, detectedAt , ?loc). We are interested in answering
the following continuous query: “Notify two people when they can reach each other from two
different and directly connected rooms.”

Figure 1a depicts a possible data flow D1 for the query in the localisation scenario.
It suggests to extract two windows from stream S using the functions ω1 = ωNOW and
ω2 = ωRANGE . The former looks at the latest detected person, and the latter monitors people
during the last T logical clock ticks by which we can assume that they are still in the same
room. For the example, we assume T = 2. Let Γ 1 and Γ 2 be the outputs of the window
operators. We use the triple patterns Pi = (?personi, detectedAt , ?loci) for i = 1, 2 at the
window operators; hence, mappings in Γ i are of the form {?personi 7→ pid , ?loci 7→ lid}.

The join ./12 of discrete result sets from Γ 1 and Γ 2 in Figure 1a gives us the output result
set in Γ 3 to check the reachability based on the latest detected person. After joining elements
of Γ 3 with those of Γ 4 (the direct connectivity between locations provided by G) via ./124,
we have the result set Γ to answer the query. To return this result in terms of a stream Sout ,
the operator C is used at the root of D1.

Table 1 shows the input/output of D1 as time progresses. To reduce space consumption,
we use abbreviations as follows: dA for detectedAt , ?p for ?person , and ?` for ?loc.
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Fig. 1: Possible data flows for the query in the localisation scenario.

t S Γ 1 Γ 2 Sout

0 〈(m0, dA, r1) : [0]〉 {?p1 7→ m0, ?`1 7→ r1} {?p2 7→ m0, ?`2 7→ r1} ∅

1 〈(m0, dA, r1) : [0]〉 {?p2 7→ m0, ?`2 7→ r1}
〈(m1, dA, r2) : [1]〉 {?p1 7→ m1, ?`1 7→ r2} {?p2 7→ m1, ?`2 7→ r2} 〈(m0, reaches,m1) : [1]〉

2
〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 {?p2 7→ m1, ?`2 7→ r2} 〈(m0, reaches,m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p1 7→ m2, ?`1 7→ r1} {?p2 7→ m2, ?`2 7→ r1} 〈(m1, reaches,m2) : [2]〉

3

〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 〈(m0, reaches,m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p2 7→ m2, ?`2 7→ r1} 〈(m1, reaches,m2) : [2]〉
〈(m3, dA, r2) : [3]〉 {?p1 7→ m3, ?`1 7→ r2} {?p2 7→ m3, ?`2 7→ r2} 〈(m2, reaches,m3) : [3]〉

...
...

...
...

...

Table 1: Input and output of D1 as time progresses.

3.3 Adaptation Strategies

A data flow contains inner relational operators which can be reordered to create new equivalent
data flows. For instance, Figures 1a and 1b show two equivalent data flows for the query in
the localisation scenario. With respect to each alternative, an operator might have a different
next/parent operator. For example, [[P1, t]]

ω1

S has ./12 as its parent in D1 while in D2, its
parent is ./41.

In a stream processing environment, due to updates in the input data, during the query
lifetime the engine constantly attempts to determine the data flow that currently provides the
most efficient query execution. We propose an adaptive query processing mechanism similar
to Eddies [6], which continuously routes the outputs of an operator to the next operator on the
data flow. The routing policy will dynamically tell the operator what is the next operator it
should forward data to, as shown in Algorithm 1.

Function route(routingEntry ,O, t) is used to recursively apply the operator O on a
mapping or timestamped triple routingEntry and to route the output mappings to the next
operator. It uses the following primitives:

– compute(routingEntry ,O, t): apply O, a window, relational, or streaming operator, to
routingEntry , a timestamped triple or a mapping, at timestamp t, and return a discrete
result set.

– findNextOp(O, t): find the next operator to route the output mapping to, at timestamp t,
based on a given routing policy.
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Algorithm 1: route(routingEntry ,O, t)
Input: routingEntry : timestamped triple/mapping, O : operator, t : timestamp
Ω := compute(routingEntry ,O, t)
if O is not root then

nextOp := findNextOp(O, t)
for µ ∈ Ω do route(µ,nextOp, t)

else deliver Ω

C
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Γ1 Γ2
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r1 r2

r1 r3

r2 r1

r3 r1

t = 0 t = 1

Fig. 2: Dynamically choose the next operator after Γ 1 at timestamps 0 and 1

The routing policy decides the order in which the operators are executed at runtime. There
are many ways to implement a routing policy. However, choosing the optimal order on every
execution is not trivial. We are investigating mechanisms for dynamic cost-based optimisation.
Preliminary findings are reported in [25]. A possible solution, common to DBMSs, is a
cost-based strategy: the routing policy computes an estimated “cost” to each possible data
flow, and chooses the one with the smallest cost. While the definition of cost is not fixed, it is
usually measured by estimating the number of output mappings the operator will produce.

The following example illustrates how the adaptation strategies work as a whole.

Example 1. Consider again the query in the localisation scenario at timestamps 0 and 1, and
assume the routing policy implemented is the cost-based strategy mentioned above. Figure 2
illustrates the decision of which operator to choose next after extracting the latest triple
at Γ 1. In this figure, two simplified versions of D1 and D2 are on the left. On the right
hand side, we show the input/output of the join operators ./12 and ./41. At timestamp 0,
|Γ 1(0)| = |Γ 2(0)| = 1 as the first triple is streamed into the system. It is preferable at this
point to use D1, i.e., to join Γ 1(0) with Γ 2(0) using ./12 because the intermediate result
Γ 3(0) has size 1. If we follow D2 then joining Γ 1(0) with Γ 4(0) using ./41 yields Γ 5(0)
with size 2. However, at t = 1, D2 is preferred because |Γ 3(1)| = 2 and |Γ 5(1)| = 1.

4 CQELS’s Query Engine

The CQELS query engine implements the model introduced in Section 3. Continuous queries
can be registered using our CQELS language, an extension of the declarative SPARQL 1.1
language, which is described next. We then explain the details of the engine. We show how
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data is encoded for memory savings, how caching and indexing are used for faster data access,
and how operators and the routing policy are implemented. Before moving onto the query
language, we first need to introduce our second scenario, the “conference scenario,” which is
also used in the evaluation section.

Conference scenario: This scenario is based on the Live Social Semantics experiment
presented in [2]. We extend the localisation scenario by considering that people are now
authors of research papers and they are attending a conference. These authors have their
publication information stored in a DBLP dataset. To enhance the conference experience,
each participant would have access to the following services, which can all be modelled as
continuous queries:

(Q1) Inform a participant about the name and description of the location he just entered,
(Q2) Notify two people when they can reach each other from two different and directly

connected (from now on called nearby) locations,
(Q3) Notify an author of his co-authors who have been in his current location during the last

5 seconds,
(Q4) Notify an author of the editors that edit a paper of his and have been in a nearby location

in the last 15 seconds,
(Q5) Count the number of co-authors appearing in nearby locations in the last 30 seconds,

grouped by location.

4.1 CQELS Language

Based on our query semantics, we introduce a declarative query language called CQELS by
extending the SPARQL 1.1 grammar6 using the EBNF notation. We add a query pattern to
apply window operators on RDF Streams into the GraphPatternNotTriples pattern.
GraphPatternNotTriples ::= GroupOrUnionGraphPattern | OptionalGraphPattern

| MinusGraphPattern | GraphGraphPattern | StreamGraphPattern
| ServiceGraphPattern | Filter | Bind

Assuming that each stream is identified by an IRI as identification, the StreamGraphPat-
tern pattern is defined as follows.
StreamGraphPattern ::= ‘STREAM’ ‘[’ Window ‘]’ VarOrIRIref ‘{’TriplesTemplate‘}’

Window ::= Range | Triple | ‘NOW’ | ‘ALL’

Range ::= ‘RANGE’ Duration (‘SLIDE’ Duration)?

Triple ::= ‘TRIPLES’ INTEGER
Duration ::= (INTEGER ‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’ | ‘ns’)+

where VarOrIRIRef and TripleTemplate are patterns for the variable/IRI and triple tem-
plate of SPARQL 1.1, respectively. Range corresponds to a time-based window while Triple
corresponds to a triple-based window. The keyword SLIDE is used for specifying the sliding
parameter of a time-based window, whose time interval is specified by Duration . More details
of the syntax are available at http://code.google.com/p/cqels/.

Given the CQELS language defined above, we can represent the five queries from the
conference scenario as follows, where $Name$ is replaced by a constant when instantiating
the query.7

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person lv:detectedAt ?loc}
GRAPH <http://deri.org/floorplan/> {?loc lv:name ?locName. ?loc lv:desc ?locDesc}
?person foaf:name ‘‘$Name$’’. }

Query Q1

6 http://www.w3.org/TR/sparql11-query/#grammar
7 For the sake of space we omit the PREFIX declarations of lv, dc, foaf, dcterms and swrc
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CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

SELECT ?editorName
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 30s] {?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc2 lv:name ?locName. loc2 lv:connected ?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data encoding

When dealing with large data collections, it is very likely that data will not fit into the
machine’s main memory for processing, and parts of it will have to be temporarily stored on
disk. In the particular case of RDF data, with IRIs or literals stored as strings, a simple join
operation on strings could generate enough data to trigger a large number of disk reads/writes.
However, these are among the most expensive operations in query processing and should be
avoided whenever possible. While we cannot entirely avoid disk access, we try to reduce it by
encoding the data such that more triples can fit into main memory.

We apply dictionary encoding, a method commonly used by triple stores [1, 16, 13]. An
RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The encoded
version of an RDF node is considerably smaller than the original, allowing more data to fit
into memory. Moreover, since data comparison is now done on integers rather than strings,
operations like pattern matching, perhaps the most common operator in RDF streams and
datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF nodes
into dictionary if they can be represented in 63 bits. As such, a node identifier is presented as
a 64-bit integer. The first bit is used to indicate whether the RDF node is encoded or not. If
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the RDF nodes does not have to be encoded, the next 5 bits represent the data type of the RDF
node (e.g. integer, double or float) and the last 58 bits store its value. Otherwise, the RDF
node is stored in the dictionary and its identifier is stored in the remaining 63 bits.

4.3 Caching and Indexing

While data encoding allows a smaller data representation, caching and indexing aim at
providing faster access to the data. Caching is used to store intermediate results of sub-queries
over RDF data sets. Indexing is applying on top of caches, as well as on output mapping sets
from window operators, for faster data look-ups. Similar to data warehouses, cached data is
initially kept on disk with indexes and only brought to memory when needed.

In continuous query processing, RDF datasets are expected to have a much slower update
rate than RDF streams. Therefore, the output of a sub-query over an RDF dataset rarely
changes during a series of updates of RDF streams. Based on this observation, as soon as a
query is registered, we materialise the output of its sub-queries over the RDF datasets and
store them in a cache that is available to the remaining query operators. Thereby, a possibly
large portion of the query does not need to be re-executed when new stream triples arrive.

To keep the cache updated, we use triggers to notify changes in the RDF datasets. The
CQELS engine has a triple store that allows the engine to load and update RDF datasets as
named graphs. This triple store provides triggers that will notify the engine to update the
respective cached data. For the RDF datasets that are not loaded, we manually set a timer to
trigger an update. At the moment, a cache update is done by recomputing the full sub-query
as a background process and replacing the old cached data by the new results as soon as they
are ready. We are investigating adaptive caching [7] and materialised view maintenance [21]
techniques to create more efficient cache updating mechanisms.

For faster lookups on the cache, indexes are built on the variables shared among the
materialised sub-queries and other operator’s inputs. We use similar indexing schemas as in
popular triple stores [13, 16, 23, 28, 38]. Vigals et al. [36] showed that, in stream processing,
building hash tables for multi-way joins can accelerate the join operation. Therefore, we also
index data coming from window operators, which are the input to the relational operators.
Similar to caching, there is an update overheard attached to indexes. In CQELS, the decision
to create an index is as follows: cache data is always indexed. For data coming from window
operators, an index is maintained as long as it can be updated faster than the window’s stream
rate. If this threshold is reached, the index is dropped, and the relational operators that depend
on this index will be replaced by equivalent ones that can work without indexes.

4.4 Operators and Routing Policy

To recap, the CQELS processing model contains three groups of operators: window, relational
and streaming operators. In the current implementation, we support two types of window
operators: triple-based window and sliding window. We implement all relational operators
needed to support the CQELS language. In particular, one of the join operators is a binary
index join that uses indexing for faster processing. The implementation of the streaming
operator is rather simple: as soon as a mapping arrives at the streaming operator, it simply
binds the mapping to the graph template, then sends the output triples, tagged with the time
they were created, to the output stream.

To allow adaptive query execution, our engine currently support a “cardinality-based”
routing policy, based on some heuristics. For a given query, the engine keeps all possible
left-deep data flows that start with a window operator. For instance, Figure 3 shows the four
data flows that are maintained for the query in the localisation scenario from Section 3.

Algorithm 2 shows the findNextOp function used in the current routing policy (see
Algorithm 1). It applies two simple heuristics: the first one, common in DBMSs, pushes
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Fig. 3: Left-deep data flows for the query in the localisation scenario.

Algorithm 2: findNextOp(O, t)
Input: O : operator, t : timestamp
nextOp := null
for unaryOp ∈ nextUnaryOp(O) do

if unaryOp is a filter operator then return unaryOp else nextOp := unaryOp

mincard := +∞
for binaryOp ∈ nextBinaryOpOnLeftDeepTree(O) do

if mincard > card(binaryOp.rightChildOp, t) then
mincard := card(binaryOp.rightChildOp, t)
nextOp := binaryOp

return nextOp

operators like filters closer to the data sources. The rationale here is that the earlier we prune
the triples that will not make it to the final output, the better, since operators will then process
fewer triples. The second looks at the cardinality of the operators’ output and sorts them
in increasing order of this value, which also helps in reducing the number of mappings to
process.

Function nextUnaryOp(O) returns the set of possible next unary operators that O can
route data to, while nextBinaryOpOnLeftDeepTree(O) returns the binary ones. Examples of
unary operators are filters and projections, and they can be directly executed on the output pro-
duced by O. Binary operators, such as joins and unions, have two inputs, called left and right
child, due to the tree shape of the data flows. O will be the left child, since the data flows are
all left-deep. The right child is given by the rightChildOp attribute. For each binary operator,
we obtain the cardinality of the right child at time t from card(binaryOp.rightChildOp, t).
We then route the output of O to the one whose cardinality function returns the smallest value.

5 Experimental Evaluation

To evaluate the performance of CQELS, we compare it against two existing systems that
also offer integrated processing of Linked Streams and Linked Data – C-SPARQL [9] and
ETALIS [3].8 Note that EP-SPARQL is implemented on top of ETALIS. We first planned to
express our queries in EP-SPARQL, which would then be translated into the language used
in ETALIS. However, the translation from EP-SPARQL to ETALIS is currently not mature
enough to handle all queries in our setup, so we decided to represent the queries directly in the
ETALIS language. We also considered comparing our system against SPARQLstream [14],

8 We would like to thank the C-SPARQL, ETALIS, and SPARQLstream teams for their support in
providing their implementations and helping us to understand and correctly use their systems.
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Q1 Q2 Q3 Q4 Q5

CQELS 0.47 3.90 0.51 0.53 21.83
C-SPARQL 332.46 99.84 331.68 395.18 322.64
ETALIS 0.06 27.47 79.95 469.23 160.83

Table 2: Average query execution time for single queries (in milliseconds).

but its current implementation does not support querying on both RDF streams and RDF
dataset. Next, we describe our experimental setup, and then report and discuss the results
obtained. All experiments presented in this paper are reproducible. Both systems and datasets
used are available at http://code.google.com/p/cqels/.

5.1 Experimental Setup

We use the conference scenario introduced in Section 4. For the stream data, we use the
RFID-based tracking data streams provided by the Open Beacon community.9 The data is
generated from active RFID tags, the same hardware used in the Live Social Semantics
deployment [2]. The data generator from SP2Bench [30] is used to create simulated DBLP
datasets. We have also created a small RDF dataset, 172 triples, to represent the connectivity
between the locations given in the Open Beacon dataset.

The experiments were executed on a standard workstation with 1 x Quad Core Intel
Xeon E5410 2.33 GHz, 8GB memory, 2 x 500GB Enterprise SATA disks, running Ubuntu
11.04/x86_64, Java version “1.6”, Java HotSpot(TM) 64-Bit Server VM, and SWI-Prolog
5.10.4. The maximum heap size on JVM instances when running CQELS and C-SPARQL
was set to 4GB. For ETALIS, the global stack size is also 4GB.

We evaluate performance in terms of average query execution time. At each run, after
registering the query, we stream a number of triples into the system and every time the query
is re-executed we measure its processing time. We then average these values over multiple
runs.

The queries used follow the templates specified in Section 4.1. They were selected in a
way that cover many operators with different levels of complexity, for instance joins, filters
and aggregations. One query instance is formed by replacing $Name$ in the template with
a particular author’s name from the DBLP dataset. We have performed the following three
types of experiments:

Exp.(1) Single query: For each of the Q1, Q3, Q4 and Q5 templates we generate 10 different
query instances. For query template Q2, since it has no constants, we create one
instance only. Then we run each instance at a time and compute the average query
execution time.

Exp.(2) Varying size of the DBLP dataset: We do the same experiment as in (1) but varying
the numbers of triples of the DBLP dataset, ranging from 104 to 107 triples. We do
not include Q2 in this experiment, since it does not involve the DBLP dataset.

Exp.(3) Multiple queries: For query templates Q1, Q3 and Q4, we register 2M query instances
at the same time, with 0 ≤M ≤ 10, and execute them in parallel.

In experiments Exp.(1) and Exp.(3), the numbers of triples from DBLP is fixed to 105.

5.2 Results & Analysis

Table 2 shows the results for Exp.(1). We can see that, for most of the cases, CQELS
outperforms the other approaches by orders of magnitude; sometimes it is over 700 times

9 http://www.openbeacon.org/
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Fig. 4: Average query execution time for varying sizes of simulated DBLP dataset.
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Fig. 5: Average query execution time when running multiple query instances.

faster. The only exception is query Q1, where ETALIS is considerably faster. The reason is that
ETALIS supports three consumption policies, namely recent, chronological, and unrestricted,
where recent is very efficient for queries containing only simple filters on the stream data.
For more complex queries, the performance of ETALIS drops significantly. C-SPARQL is
currently not designed to handle large datasets, which explains its poor performance in our
setup. CQELS, on the other hand, is able to constantly deliver great performance, due to its
combination of pre-processing and adaptive routing policy.

The results from Exp.2 are shown in Figure 4, for query templates Q1, Q3 and Q5. The
results for query template Q4 are very similar to those from query template Q3, so we omit
them for the sake of space.

We can see how the performance is affected when the size of the RDF dataset increases.
For both ETALIS and C-SPARQL, not only does the average execution time increase with the
size of the RDF dataset, but they are only able to run up to a certain number of triples. They
can execute queries with a RDF dataset of 1 million triples, but at 2 million ETALIS crashes
and C-SPARQL does not respond. CQELS’ performance is only marginally affected by the
RDF dataset’s size, even for values as high as 10 million triples, and the performance gains
sometimes were three orders of magnitude. This is mainly due to the cache and indexes used
for storing and accessing pre-computed intermediate results. We have observed that the size
of the cache, which stores the co-authors and editors of a certain author, does not increase
linearly with the size of the dataset. Moreover, by using indexes on this cache, the access time
of a mapping increases only logarithmically with the cache size. This behaviour shows the
importance of having such cache and index structures for efficient query processing.

As a scalability test, we wanted to analyse how the systems perform with a number of
queries running in parallel. Figure 5 presents the results for Exp.(3). Again, ETALIS delivers
the best performance when there is no join operator on the stream data (Q1). But, for the
other cases, the number of queries it can handle in parallel is very limited (less than 10). Both
C-SPARQL and CQELS can scale to a large number of queries, but in C-SPARQL queries
face a long execution time that exceeds 100 seconds, while in CQELS, even with 1000 queries



A Native and Adaptive Approach for Unified Process of Linked Stream and Linked Data 15

running, the average execution time is still around one second. This scalability is mainly due
to our encoding technique, which allows more efficient use of main memory, consequently
reducing read/write disk operations.

In summary, our experimental evaluation shows the great performance of CQELS, both
in terms of efficiency and scalability. Its query engine, with the cache, index, and routing
policy, adapts well to different query complexities and it can scale with the size of the RDF
datasets. Our encoding technique enhances memory usage, which is crucial when handling
multiple queries. Even though ETALIS performed better for simpler queries, CQELS performs
consistently well in all the experiments, and in most cases outperforms the other approaches
by orders of magnitude.

6 Conclusions

This paper presented CQELS, a native and adaptive approach for integrated processing of
Linked Stream Data and Linked Data. While other systems use a “black box” approach
which delegates the processing to existing engines, thus suffering major efficiency drawbacks
because of lack of full control over the query execution process, CQELS implements the
required query operators natively, enabling improved query execution. Our query engine can
adapt to changes in the input data, by applying heuristics to reorder the operators in the data
flows of a query. Moreover, external disk access on large Linked Data collections is reduced
with the use of data encoding, and caching/indexing enables significantly faster data access.
Our experimental evaluation shows the good performance of CQELS, in terms of efficiency,
latency and scalability. CQELS performs consistently well in experiments over a wide range
of test cases, outperforming other approaches by orders of magnitude.

Our promising results indicate that an integrated and native approach is in fact necessary
to achieve the required query execution efficiency. For future work, we plan to improve the
performance of CQELS further. Query optimisation in adaptive query processing is still an
open problem under active research [17]. We have already started investigating cost-based
query optimisation policies [25] and we plan to look into adaptive caching [7] and materialised
view maintenance [21] to enhance the efficiency of our query execution algorithms.
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