
OMiGA: An Open Minded Grounding
On-The-Fly Answer Set Solver

Minh Dao-Tran, Thomas Eiter, Michael Fink,
Gerald Weidinger, and Antonius Weinzierl�

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria

{dao,eiter,fink,weidinger,weinzierl}@kr.tuwien.ac.at

Abstract. We present a new solver for Answer-Set Programs whose main fea-
tures include grounding on-the-fly and readiness for use in solving distributed
answer-set programs. The solver is implemented in Java and uses an underlying
Rete network for propagation. Initial experimental results show the benefit of us-
ing Rete for this purpose, but also exhibit the need for learning in the presence of
grounding on-the-fly.

1 Motivation

Answer-set programming (ASP), based on [2], is a paradigm where a problem is en-
coded as a program that is a set P of nonmonotonic rules, facts, and constraints. The
program P is then given to a solver that searches for specific interpretations called an-
swer sets of P such that all rules and constraints are satisfied.

Example 1. Consider a variant of cut-set: given a graph, remove one edge and compute
the reachability of the modified graph. An ASP encoding is P =
⎧
⎨

⎩

r1: del(X,Y ) ← e(X,Y ),not k(X,Y ). r4: reach(X,Y ) ← k(X,Y ).
r2: k(X,Y ) ← e(X,Y ), del(X1, Y1), X1 �= X. r5: reach(X,Z) ← reach(X, Y ),
r3: k(X,Y ) ← e(X,Y ), del(X1, Y1), Y1 �= Y. reach(Y,Z).

⎫
⎬

⎭
.

Rule r1 uses negation to create a choice point for each edge; r2 and r3 ensure that only
one edge is removed. Finally, r4 and r5 compute reachability among the edges kept.
Observe that only r1 requires a guess and if for one ground instance the rule is guessed
applicable, an answer set can be found using only propagation.

For humans, abstract rules as above are easy to understand and process, while traditional
answer-set solvers can not handle them. They apply (pre-)grounding, i.e., substituting
all variables with the actual values they might take. So for each combination of edges,
a new rule is generated where the variables are eliminated.

As the ground program might be very large compared to the non-ground program,
techniques like intelligent grounding have been developed in order to restrict the rules
which must be grounded. But for distributed systems, these techniques conflict with

� This work has been funded by the Vienna Science and Technology Fund (WWTF) project ICT
08-020 and by the Austrian Science Fund (FWF) project P20841.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 480–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver 481

information hiding and the fact that not all information is known when pre-grounding
must take place. As open domains become more important, the same problem arises
even in non-distributed settings.

To avoid pre-grounding the answer set solvers GASP [5] and ASPeRiX [3,4] have
been developed, both based on the same evaluation technique which has similarities to
the SModels [6] approach. We reconsider this technique since it can be improved with
well-suited data structures like Rete [1], and we develop a solver, called OMiGA, with an
eye on distributed systems.

2 Methods and Techniques

Intuitively, OMiGA keeps a partial interpretation I = (I+, I−) containing all ground
atoms considered true (resp., false) in I+ (resp., I−). If there is a non-ground rule r with
a valuation V of variables such that all positive atoms of the grounded rule r[V ] are true,
i.e., B+(r[V ]) ⊆ I+, and all negative atoms of r[V ] are false, i.e., B−(r[V ]) ⊆ I−,
then the head of r is grounded and derived, i.e., I+ is extended by H(r[V ]). This
propagation is repeated until a fixpoint is reached.

If propagation is finished and a valuation V of a rule r exists such that B+(r[V ]) ⊆
I+ and B−(r[V ]) ∩ I+ = ∅, then r[V ] possibly is applicable in some answer set; we
have to guess whether it is the case or not. If yes, I− is extended by B−(r[V ]) and I+

by H(r[V ]), making r[V ] applicable. If not, conceptually a constraint is added ensuring
that r[V ] does not become applicable.

At any point, if a constraint is violated or I+ ∩ I− �= ∅, the current guessing branch
is inconsistent, backtracking is issued, and subsequently a guess is inverted.

To minimize time needed to find a valuation V of r for propagation or guessing,
we employ a Rete-like network, where nodes represent parts of the input program P .
Each node has an associated working memory (WM) in which all valuations that are
true under I are stored. There are basic nodes, join nodes, and head nodes, representing
facts, subsets of rule body atoms, and rule heads, respectively.

These nodes are connected according to P , e.g., for rule r5 in Example 1 there exists
one join-node connected twice to the basic node of reach , and it is connected to the
head node for r5. If a new fact is added to its corresponding basic node, it is propagated
through the network and thus only processed where it might lead to new results. To
represent I+ and I− there are two basic nodes for each predicate p. For guessing, the
Rete network is built such that each rule has a specific join-node whose WM contains
valuations V for which B(r[V ]) ⊆ I+, i.e., finding a rule whose applicability can be
guessed amounts to selecting from that node.

3 Solver Architecture

The basic architecture of OMiGA is shown in Figure 1. Its input is an answer-set program
that is parsed and rewritten to optimize guessing (in a standard way, introducing new
atoms representing satisfaction of rule bodies). From these rules, the Rete Builder then
creates the Rete network that is later used in the central component of our solver. Here,
a Manager controls the depth-first search for answer sets as follows: Rete is repeatedly



482 M. Dao-Tran et al.

Input
file Parser Rewriter

Rete
Builder Rete Choice

Manager

Answer
sets

Fig. 1. System architecture

Manager

Rete Choice

1

7
3

9

4

10
6

12

5 11

13

2

8 Answer sets

(1, 7) M (Manager) triggers R (Rete) to propagate
(2) R propagates until a fix point and informs M (3)

I+ = {e(1, 2), e(2, 3), e(3, 4), e(2, 4)}
(4, 10) M triggers C (Choice) to make a choice
(5) C looks up Rete network, finds a choice r1[X/2, Y/3]
(6) C makes a choice: r1 is applicable

I+ = I+ ∪ {del(2, 3)}, I− = {k(2, 3)}
(8) R propagates until a fix point and informs M (9)

I+ = I+ ∪
{
k(1, 2), k(3, 4), k(2, 4), reach(1, 4),
reach(1, 2), reach(3, 4), reach(2, 4)

}

(11) C looks up Rete network, finds no more choice
(12) C informs M of no more choice
(13) M requests R to print the answer

Fig. 2. Illustration of the propagation-and-guess evaluation

triggered to evaluate all rules and derive new rule heads. If no new atoms can be derived,
i.e., the propagation phase is finished, then the Choice component selects a rule whose
positive body is fulfilled, a new decision level is entered and the rule is guessed to be ap-
plicable. This process of propagation and guess is repeated until either no more choices
can be made, i.e., an answer set is found and printed, or an inconsistent state is reached.
In the latter case, backtracking is done and the last guess is inverted. Figure 2 details a
run for Example 1, on a graph with edges E = {e(1, 2), e(2, 3), e(3, 4), e(2, 4)}.

4 Evaluation

We compare OMiGA to clingo1 3.0.4, DLV2 2011-12-21, and ASPeRiX 0.2.4; we omit
GASP, as it is known to be slower than ASPeRiX [4] and time measurement due to
entanglement with Prolog is ambiguous. The instances are: (i) reachability, a positive
program for graph reachability (from the 2009 ASP Contest), with close to 24K and
700K edges, (ii) 3-colorability on sparse graphs of size 10 and 20, (iii) locstrat, a bench-
mark program from [4] with 200 and 400 nodes, (iv) cutedge, our running example on
a random graph with 100 nodes and close to 2.8K resp. 4.9K edges.

As Table 1 shows, the use of Rete pays off as it stores partial joins and hence re-
duces time for propagation. OMiGA is consistently faster than ASPeRiX, except for loc-
strat where ASPeRiX uses must-be-true propagation while OMiGA only propagates rule
heads. Also note that due to the use of Java and the building of the Rete network, our
solver has an increased startup-time. On NP-hard problems like 3-colorability, the issue

1 http://potassco.sourceforge.net/
2 http://www.dlvsystem.com

http://potassco.sourceforge.net/
http://www.dlvsystem.com


OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver 483

Table 1. Comparative systems evaluation (c: clingo, d: DLV, a: ASPeRiX, o: OMiGA)

reachability 3-colorability locstrat cutedge
24K 700K 10 20 200 400 2.8K 4.9K

c 0.33 5.00 0.00 0.00 0.00 0.00 0.46 0.46 2.06 2.05 25.85 27.34 75.06 79.26

d 0.44 4.56 0.00 0.00 0.00 0.00 5.88 5.67 46.93 47.78 107.07 214.67 301.54 600.08

a 2.84 — 0.01 1.06 — — 0.01 0.08 0.07 0.33 1.70 16.70 4.62 46.02

o 1.20 15.53 0.16 0.35 1.97 5.37 0.38 0.65 0.61 1.32 0.77 3.05 0.85 3.53

Running time in seconds, left: first answer, right: first 10 answers (if applicable).

of missing learning from conflicts is visible as clingo (using nogood learning) and DLV
(using backjumping and look-back heuristics) perform extremely well. For non-ground
ASP solving, learning is an open issue.

Comparing the cutedge benchmark with reachability, the effect of intelligent pre-
grounding is evident since for the positive reachability instances, the pre-grounder can
efficiently evaluate the programs. If those pre-grounding strategies are not possible due
to only one guessing rule like in cutedge, the propagation becomes ineffective, very
much in contrast to a Rete-based propagation.

5 Ongoing Work and Conclusion

We have presented OMiGA,3 a new grounding on-the-fly solver for answer set programs,
which also can be employed in a distributed setting where nodes contain programs
that can access atoms at other nodes, by exchanging only the Manager component. As
our experimental results show, Rete pays off and makes OMiGA outperform clingo and
DLV for propagation-intense instances. Future work on backtracking, conflict-driven
learning, and extended propagation is planned.

References

1. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

3. Lefèvre, C., Nicolas, P.: A First Order Forward Chaining Approach for Answer Set Comput-
ing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 196–208.
Springer, Heidelberg (2009)

4. Lefèvre, C., Nicolas, P.: The First Version of a New ASP Solver: ASPeRiX. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg
(2009)

5. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Gasp: Answer set programming with lazy
grounding. Fundam. Inform. 96(3), 297–322 (2009)

6. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.
Artif. Intell. 138(1-2), 181–234 (2002)

3 http://www.kr.tuwien.ac.at/research/systems/omiga

http://www.kr.tuwien.ac.at/research/systems/omiga

	OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver
	Motivation
	Methods and Techniques
	Solver Architecture
	Evaluation
	Ongoing Work and Conclusion
	References




