
Distributed Nonmonotonic Multi-Context Systems:
Algorithms and Efficient Evaluation

Minh Dao-Tran

Advisors: Thomas Eiter
Michael Fink

Abteilung Wissensbasierte Systeme
Institut für Informationssysteme
Technische Universität Wien

Doctoral Defense — March 24, 2014

supported by the Austrian Science Fund (FWF) project P20841

Overview

I Introduction to Multi-context Systems

I Basic Algorithm DMCS to Evaluate MCS

I Topological-based Optimized Algorithm DMCSOPT

I Streaming Models with DMCS-STREAMING

I Experimental Evaluation: Setup and Analysis

I Outlook

1

Multi-Context Systems

I What is a multi-context system? M = (C1, . . . ,Cn)

I a collection of contexts C1, . . . ,Cn

I What is a context?

Ci = (Li, kbi, bri)

I a logic Li
I the context’s knowledge base kbi
I a set bri of bridge rules

I What is a logic?

L = (KBL,BSL,ACCL)

I set KBL of well-formed knowledge bases
I set BSL of possible belief sets
I acceptability function ACCL : KBL → 2BSL

Which belief sets are accepted by a knowledge base?

2

Multi-Context Systems

I What is a multi-context system? M = (C1, . . . ,Cn)

I a collection of contexts C1, . . . ,Cn

I What is a context?

Ci = (Li, kbi, bri)

I a logic Li
I the context’s knowledge base kbi
I a set bri of bridge rules

I What is a logic?

L = (KBL,BSL,ACCL)

I set KBL of well-formed knowledge bases
I set BSL of possible belief sets
I acceptability function ACCL : KBL → 2BSL

Which belief sets are accepted by a knowledge base?

2

MCS Example

3

MCS Example - Encoding

{
at_col(X) ← see_col(X).
¬at_col(X) ← ¬see_col(X).

}
∪ R ∪ {¬see_col(2). ¬see_col(3).}

at_row(X) ← (2 : at_row(X)).
¬at_row(X) ∨ covered_row(X) ← not (2 : see_row(X)), (1 : row(X)).

C1

at_col(X) ← (1 : at_col(X)).
¬at_col(X) ∨ covered_col(X) ← not (1 : see_col(X)), (2 : col(X)).{

at_row(X) ← see_row(X).
¬at_row(X) ← ¬see_row(X).

}
∪ R ∪ {see_row(1).}

C2

where: R =



joker_in ← at_row(X).
joker_in ← at_col(X).

at_row(X) ← joker_in, row(X), not ¬at_row(X).
¬at_row(X) ← joker_in, row(X), at_row(Y),X 6= Y.

at_col(X) ← joker_in, col(X), not ¬at_col(X).
¬at_col(X) ← joker_in, col(X), at_col(Y),X 6= Y.

row(1). row(2). row(3).
col(1). col(2). col(3).



J

c1

r1

c2 c3

r2

r3

4

MCS Example - Encoding

{
at_col(X) ← see_col(X).
¬at_col(X) ← ¬see_col(X).

}
∪ R ∪ {¬see_col(2). ¬see_col(3).}

at_row(X) ← (2 : at_row(X)).
¬at_row(X) ∨ covered_row(X) ← not (2 : see_row(X)), (1 : row(X)).

C1

at_col(X) ← (1 : at_col(X)).
¬at_col(X) ∨ covered_col(X) ← not (1 : see_col(X)), (2 : col(X)).{

at_row(X) ← see_row(X).
¬at_row(X) ← ¬see_row(X).

}
∪ R ∪ {see_row(1).}

C2

where: R =



joker_in ← at_row(X).
joker_in ← at_col(X).

at_row(X) ← joker_in, row(X), not ¬at_row(X).
¬at_row(X) ← joker_in, row(X), at_row(Y),X 6= Y.

at_col(X) ← joker_in, col(X), not ¬at_col(X).
¬at_col(X) ← joker_in, col(X), at_col(Y),X 6= Y.

row(1). row(2). row(3).
col(1). col(2). col(3).



J

c1

r1

c2 c3

r2

r3

4

MCS Example - Encoding

{
at_col(X) ← see_col(X).
¬at_col(X) ← ¬see_col(X).

}
∪ R ∪ {¬see_col(2). ¬see_col(3).}

at_row(X) ← (2 : at_row(X)).
¬at_row(X) ∨ covered_row(X) ← not (2 : see_row(X)), (1 : row(X)).

C1

at_col(X) ← (1 : at_col(X)).
¬at_col(X) ∨ covered_col(X) ← not (1 : see_col(X)), (2 : col(X)).

{
at_row(X) ← see_row(X).
¬at_row(X) ← ¬see_row(X).

}
∪ R ∪ {see_row(1).}

C2

where: R =



joker_in ← at_row(X).
joker_in ← at_col(X).

at_row(X) ← joker_in, row(X), not ¬at_row(X).
¬at_row(X) ← joker_in, row(X), at_row(Y),X 6= Y.

at_col(X) ← joker_in, col(X), not ¬at_col(X).
¬at_col(X) ← joker_in, col(X), at_col(Y),X 6= Y.

row(1). row(2). row(3).
col(1). col(2). col(3).



J

c1

r1

c2 c3

r2

r3

4

MCS Example - Encoding

{
at_col(X) ← see_col(X).
¬at_col(X) ← ¬see_col(X).

}
∪ R ∪ {¬see_col(2). ¬see_col(3).}

at_row(X) ← (2 : at_row(X)).
¬at_row(X) ∨ covered_row(X) ← not (2 : see_row(X)), (1 : row(X)).

C1

at_col(X) ← (1 : at_col(X)).
¬at_col(X) ∨ covered_col(X) ← not (1 : see_col(X)), (2 : col(X)).{

at_row(X) ← see_row(X).
¬at_row(X) ← ¬see_row(X).

}
∪ R ∪ {see_row(1).}

C2

where: R =



joker_in ← at_row(X).
joker_in ← at_col(X).

at_row(X) ← joker_in, row(X), not ¬at_row(X).
¬at_row(X) ← joker_in, row(X), at_row(Y),X 6= Y.

at_col(X) ← joker_in, col(X), not ¬at_col(X).
¬at_col(X) ← joker_in, col(X), at_col(Y),X 6= Y.

row(1). row(2). row(3).
col(1). col(2). col(3).



J

c1

r1

c2 c3

r2

r3

4

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1) joker_inat_col(1)

¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1)

see_row(1) at_row(1)

5

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1) joker_inat_col(1)

¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1)

see_row(1) at_row(1)

5

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1)

joker_inat_col(1)

¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1)

see_row(1) at_row(1)

5

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1) joker_inat_col(1) ¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1)

see_row(1) at_row(1)

5

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1) joker_inat_col(1) ¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1)

see_row(1) at_row(1)

5

Reasoning in MCSs: Equilibria

I Equilibrium semantics: a belief state S = (S1, . . . , Sn) with Si ∈ BSLi

... makes certain bridge rules applicable

... so that we can add their heads into the kbi of the contexts
S is an equilibrium iff each context plus these heads accepts Si.

Equilibrium condition: Si ∈ ACC(kbi ∪ Hi) for all Ci

at_row(1) joker_inat_col(1) ¬at_col(2)

¬at_col(3)

¬see_col(2)

¬see_col(3)

at_row(1) at_row(1)

at_col(1) at_col(1)

at_col(1) see_row(1) at_row(1)

5

Why are MCSs interesting?

Distributedness / Heterogeneity / Nonmonotonicity

⇒ Power to model real life applications:
I collaboration between business partners,
I medical applications,
I reasoning on the web,
I ...

Thus, algorithms to evaluate MCSs (compute equilibria) are of special
interest!

6

Why are MCSs interesting?

Distributedness / Heterogeneity / Nonmonotonicity

⇒ Power to model real life applications:
I collaboration between business partners,
I medical applications,
I reasoning on the web,
I ...

Thus, algorithms to evaluate MCSs (compute equilibria) are of special
interest!

6

Why are MCSs interesting?

Distributedness / Heterogeneity / Nonmonotonicity

⇒ Power to model real life applications:
I collaboration between business partners,
I medical applications,
I reasoning on the web,
I ...

Thus, algorithms to evaluate MCSs (compute equilibria) are of special
interest!

6

Evaluation of MCSs before this thesis
I Related works on distributed systems: either not truly distributed or

homogeneous
I Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
I DisSAT: finding a single model [Hirayama and Yokoo, 2005]
I Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
I Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
I Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
I Distributed query evaluation in “MCS” based on defeasible logic [Bikakis et al.,

2010]

I For distributed nonmonotonic MCS:
I Only one proposal for evaluating MCSs in a centralized way using

hex-programs
I No implementation available

I Obstacles:
I Abstraction of contexts
I Information hiding and security aspects
I Lack of system topology
I Cyclic dependency between contexts

7

Evaluation of MCSs before this thesis
I Related works on distributed systems: either not truly distributed or

homogeneous
I Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
I DisSAT: finding a single model [Hirayama and Yokoo, 2005]
I Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
I Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
I Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
I Distributed query evaluation in “MCS” based on defeasible logic [Bikakis et al.,

2010]

I For distributed nonmonotonic MCS:
I Only one proposal for evaluating MCSs in a centralized way using

hex-programs
I No implementation available

I Obstacles:
I Abstraction of contexts
I Information hiding and security aspects
I Lack of system topology
I Cyclic dependency between contexts

7

Evaluation of MCSs before this thesis
I Related works on distributed systems: either not truly distributed or

homogeneous
I Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
I DisSAT: finding a single model [Hirayama and Yokoo, 2005]
I Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
I Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
I Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
I Distributed query evaluation in “MCS” based on defeasible logic [Bikakis et al.,

2010]

I For distributed nonmonotonic MCS:
I Only one proposal for evaluating MCSs in a centralized way using

hex-programs
I No implementation available

I Obstacles:
I Abstraction of contexts
I Information hiding and security aspects
I Lack of system topology
I Cyclic dependency between contexts

7

Towards Evaluation of MCSs
Our aims:

I Algorithms for evaluating equilibria of MCSs in a truly distributed way
I Optimization techniques
I Prototype implementation
I Benchmarking

We fulfill these goals by exploiting and adapting methods from distributed
systems area, with special care for MCSs:

I Dependencies between contexts
I Representation of partial knowledge
I Combination/join of local results

Support notions:
I Import Neighborhood and Closure
I Partial Belief States and Equilibria
I Joining Partial Belief States

8

Towards Evaluation of MCSs
Our aims:

I Algorithms for evaluating equilibria of MCSs in a truly distributed way
I Optimization techniques
I Prototype implementation
I Benchmarking

We fulfill these goals by exploiting and adapting methods from distributed
systems area, with special care for MCSs:

I Dependencies between contexts
I Representation of partial knowledge
I Combination/join of local results

Support notions:
I Import Neighborhood and Closure
I Partial Belief States and Equilibria
I Joining Partial Belief States

8

Towards Evaluation of MCSs
Our aims:

I Algorithms for evaluating equilibria of MCSs in a truly distributed way
I Optimization techniques
I Prototype implementation
I Benchmarking

We fulfill these goals by exploiting and adapting methods from distributed
systems area, with special care for MCSs:

I Dependencies between contexts
I Representation of partial knowledge
I Combination/join of local results

Support notions:
I Import Neighborhood and Closure
I Partial Belief States and Equilibria
I Joining Partial Belief States

8

Import Neighborhood and Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.

In(1)

C1

C2

C4

C3

C5 C6

C7

9

Import Neighborhood and Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.

IC(1)C1

C2

C4

C3

C5 C6

C7

9

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck

iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

Intuitively, partial equilibria wrt. a context Ck cover the reachable contexts
of Ck.

10

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck

iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

Intuitively, partial equilibria wrt. a context Ck cover the reachable contexts
of Ck.

10

Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck

iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

Intuitively, partial equilibria wrt. a context Ck cover the reachable contexts
of Ck.

10

Joining Partial Belief States

Join S ./ T of belief states S and T: like join of tuples in a database.

S1

ε

S1

. . .

. . .

. . .

ε

ε

ε

. . .

. . .

. . .

ε

Ti

Ti

. . .

. . .

. . .

. . .

. . .

. . .

S =

T =

S ./ T =

Sj

Tj

Sj = Tj

Sn

ε

Sn

S ./ T is undefined, if ε 6= Sj 6= Tj 6= ε for some j.

S ./ T = {S ./ T | S ∈ S,T ∈ T }

11

Algorithm DMCS

Input: an MCS M and a starting context Ck

Output: all partial equilibria of M wrt. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Distributedness: instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

12

Algorithm DMCS

Input: an MCS M and a starting context Ck

Output: all partial equilibria of M wrt. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Distributedness: instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

12

Algorithm DMCS

Input: an MCS M and a starting context Ck

Output: all partial equilibria of M wrt. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Distributedness: instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

12

Algorithm DMCS

Input: an MCS M and a starting context Ck

Output: all partial equilibria of M wrt. Ck

Requirement: solver lsolve(S) for each context Ck is available which
computes ACCk(kbk ∪ appk(S))

Input parameters for DMCS:
I V: set of “interesting” variables (to project the partial equilibria)
I hist: visited path

Strategy: DFS-traversal of M starting with Ck, visiting all Ci for i ∈ IC(k)

Distributedness: instances of DMCS

I running at each context node,
I communicating with each other for exchanging sets of belief states

12

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck ((i : p), (j : q)
appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)S i S

j

lsolve(Si ./ Sj) = Sk

13

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck ((i : p), (j : q)
appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)

S i S
j

lsolve(Si ./ Sj) = Sk

13

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck ((i : p), (j : q)
appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)S i S

j

lsolve(Si ./ Sj) = Sk

13

Acyclic case

Leaf context Ck (brk = ∅)

Ck

lsolve((ε, . . . , ε)) = S

(V, hist) S

Intermediate context Ck ((i : p), (j : q)
appear in brk)

Ck

Ci Cj

(V, hist)

(V
, h

ist
∪ {

k}
)S i S

j

lsolve(Si ./ Sj) = Sk

13

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets
I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets
I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets

I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets
I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets
I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Cycle Breaking

Ck

V

Ci

Cj

C`

hist =
{. . . , k, . . . }

Ck detects a cycle in hist

I guesses local belief sets
I returns them to invoking context

I on the way back, partial belief states
w.r.t. bad guesses will be pruned by ./

I eventually, Ck will remove wrong
guesses by calling lsolve on each
received partial belief state

14

Motivation for DMCSOPT

Scalability issues with the basic evaluation algorithm DMCS
I unaware of global context dependencies, only know (local) import

neighborhood

I a context Ci returns a possibly huge set of partial belief states, which
are the join of neighbor belief states of Ci plus local belief sets

We address these issues by
I capturing inter-context dependencies (topology)

I providing a decomposition based on biconnected components

I characterizing minimal interface variables in each component

I develop the DMCSOPT algorithm which operates on query plans

15

Motivation for DMCSOPT

Scalability issues with the basic evaluation algorithm DMCS
I unaware of global context dependencies, only know (local) import

neighborhood

I a context Ci returns a possibly huge set of partial belief states, which
are the join of neighbor belief states of Ci plus local belief sets

We address these issues by
I capturing inter-context dependencies (topology)

I providing a decomposition based on biconnected components

I characterizing minimal interface variables in each component

I develop the DMCSOPT algorithm which operates on query plans

15

Example

I Problem: How to go home?

I Possible solutions:
I Car

: slower than train

I Train

: should bring some food

I Spike and Mickey have additional information from Tyke and Minnie

16

Example

I Problem: How to go home?

I Possible solutions:
I Car

: slower than train

I Train

: should bring some food

I Spike and Mickey have additional information from Tyke and Minnie

16

Example

I Problem: How to go home?

I Possible solutions:
I Car: slower than train
I Train: should bring some food

I Spike and Mickey have additional information from Tyke and Minnie

16

Example (ctd.)

I Minnie wants Mickey to come back as
soon as possible.

kb4 =
{

car4 ∨ train4 ←
}

br4 =
{

train4 ← (5 : want_sooner5)
}

kb5 =
{

want_sooner5 ← soon5
}

br5 =
{

soon5 ← (4 : train4)
}

1

2
3

4
6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want_sooner5},
{sick6})

17

Example (ctd.)

I Spike is responsible for buying
provisions, if they go by train.

I If his son Tyke is sick, then Spike must
attend to him as fast as possible.

kb3 =


car3 ∨ train3 ←

train3 ← urgent3
sandwiches3 ∨ chocolate_peanuts3 ← train3

coke3 ∨ juice3 ← train3


br3 =

{
urgent3 ← (6 : sick6)

train3 ← (4 : train4)

}
;

kb6 =
{

sick6 ∨ fit6 ←
}

br6 = ∅.

1

2
3

4
6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want_sooner5},
{sick6})

17

Example (ctd.)

I Jerry is the leader of the group.
I Jerry is allergic to peanuts.
I Tom wants to get home somehow and

doesn’t want coke.

kb1 =

{
car1 ← not train1

⊥← peanuts1

}
br1 =

{
train1 ← (2 : train2), (3 : train3)

peanuts1 ← (3 : chocolate_peanuts3)

}
kb2 = {⊥ ← not car2, not train2} and

br2 =


car2 ← (3 : car3), (4 : car4)

train2 ← (3 : train3), (4 : train4),
not (3 : coke3)



1

2
3

4
6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want_sooner5},
{sick6})

17

Example (ctd.)

I Jerry is the leader of the group.
I Jerry is allergic to peanuts.
I Tom wants to get home somehow and

doesn’t want coke.

kb1 =

{
car1 ← not train1

⊥← peanuts1

}
br1 =

{
train1 ← (2 : train2), (3 : train3)

peanuts1 ← (3 : chocolate_peanuts3)

}
kb2 = {⊥ ← not car2, not train2} and

br2 =


car2 ← (3 : car3), (4 : car4)

train2 ← (3 : train3), (4 : train4),
not (3 : coke3)



1

2
3

4
6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want_sooner5},
{sick6})

17

Example (ctd.)

1

2 3

4 6

5

I Jerry decides after gathering information.

I Mickey and Spike do not want to bother the others.

18

Example (ctd.)

1

2 3

4 6

5

I Jerry decides after gathering information.
I Mickey and Spike do not want to bother the others.

18

MCS Decomposition: Cut vertex

1

2 3

4 6

5

A vertex c of a weakly connected graph G is a cut vertex, if G\c is discon-
nected

18

MCS Decomposition: Block Tree

Based on cut vertices, we can decompose the MCS into a
block tree: provides a “high-level” view of the dependencies
(edge partitioning)

B1

B2 B3

1

2 3

3

3

4
4

4

5
6

I B1 induced by {1, 2, 3, 4}
I B2 induced by {4, 5}
I B3 induced by {3, 6}

19

MCS Decomposition: Block Tree

Based on cut vertices, we can decompose the MCS into a
block tree: provides a “high-level” view of the dependencies
(edge partitioning)

B1

B2 B3

1

2 3

3

3

4
4

4

5
6

I B1 induced by {1, 2, 3, 4}
I B2 induced by {4, 5}
I B3 induced by {3, 6}

19

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈

P0, P1, P2, P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈

P0, P1, P2, P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0,

P1, P2, P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0, P1,

P2, P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0, P1, P2,

P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0, P1, P2, P3,

P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0, P1, P2, P3, P4 〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈 P0, P1, P2, P3, P4 〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

20

Optimization: Avoid Unnecessary Calls

transitive reduction of a digraph G is the graph G− with the smallest set of
edges whose transitive closure G+ equals the one of G

G G+ G−

21

Example (ctd.)

B1

B2 B3

1

2 3

3

3

4

4

4

5
6

I B1: acyclic→ apply transitive reduction
I B2: cyclic→ apply ear decomposition, then apply transitive reduction

(already reduced)
I B3: acyclic and already reduced

22

Optimization: Minimal Interface

B1

B2 B3

1

2 3

3

3

4

4

4

5
6

In a pruned block B′, take all variables from

I the minimal interface in B′

I child cut vertices c
I removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states
23

Example - Query Plan

1

2 3

4 6

5

{
car4, train4
want_sooner5

}

{sick6 }
{ca

r 4
, t

ra
in 4
}

 
tra

in 2
, c

ar 3
,

tra
in 3
, c

ok
e 3
,

c_
pe

an
uts

3
,

ca
r 4
, t

ra
in 4

 
train3, coke3,

car3, c_peanuts3,
car4, train4



24

Algorithm DMCSOPT

I Operate on the (optimized) query plan

I Does not need to break cycle

I Proceed on the leaf and intermediate cases almost similar to DMCS

I ...Except: guessing for removed edges because of cycles

25

Motivation for Streaming Models in MCS

For large context knowledge bases, we still face scalability issues:
I potentially many models: exhaust memory at combination- or at

solving-time

I synchronous evaluation (one context may block the parent)

I this is mainly due to computing all (partial) equilibria

Idea: Adapt existing algorithms with streaming mode:
I request at most k partial equilibria (obtain some instead of all

answers)

I allow for asynchronous communication

I allow to request further partial equilibria: communication in multiple
rounds

26

Motivation for Streaming Models in MCS

For large context knowledge bases, we still face scalability issues:
I potentially many models: exhaust memory at combination- or at

solving-time

I synchronous evaluation (one context may block the parent)

I this is mainly due to computing all (partial) equilibria

Idea: Adapt existing algorithms with streaming mode:
I request at most k partial equilibria (obtain some instead of all

answers)

I allow for asynchronous communication

I allow to request further partial equilibria: communication in multiple
rounds

26

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

S2,2 = (ε, {a2
2}, ε)

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

S2,1 = (ε, {a1
2}, ε)

S2,2 = (ε, {a2
2}, ε)

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

S2,1 = (ε, {a1
2}, ε)

S2,2 = (ε, {a2
2}, ε)

S3,1 = (ε, ε, {a1
3})

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

(((((((
S2,1 = (ε, {a1

2}, ε)

S2,2 = (ε, {a2
2}, ε)

(((((((
S3,1 = (ε, ε, {a1

3})

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

(((((((
S2,1 = (ε, {a1

2}, ε)
S2,2 = (ε, {a2

2}, ε)

S3,1 = (ε, ε, {a1
3})

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

(((((((
S2,1 = (ε, {a1

2}, ε)
S2,2 = (ε, {a2

2}, ε)

S3,1 = (ε, ε, {a1
3})

Trade-off: recomputation!!!

27

Algorithm DMCS-STREAMING

a1
1 ∨ ¬a1

1 ← t1
. . .

a`1 ∨ ¬a`1 ← t1
⊥ ← ¬t1{

t1 ← (2 : ae
2), (3 : ao

3) |
1 ≤ e, o ≤ `, e even, o odd }

C1

a1
2 ∨ ¬a1

2
. . .

a`2 ∨ ¬a`2

∅

C2

a1
3 ∨ ¬a1

3
. . .

a`3 ∨ ¬a`3

∅

C3

k = 1:

S1,1 = ({a1
1, t1}, {a

2
2}, {a

1
3})

(((((((
S2,1 = (ε, {a1

2}, ε)
S2,2 = (ε, {a2

2}, ε)

S3,1 = (ε, ε, {a1
3})

Trade-off: recomputation!!!
27

DMCS System Architecture

N3

dmcsd
N2

dmcsd

N1

dmcsd

N4

dmcsd

client
dmcsc

manager
dmcsm

partial equilibria requests

registration query

Handler Output Handler Output

Request Dispatcher Output Dispatcher

Context Context

Joiner Dispatcher

NOut NIn NOut NIn

external requests external partial equilibria

internal requests internal partial equilibria

notifications

Requests
Dispatcher

Cycle Breaker

Evaluator

Bridge Rules
Evaluator

Joiner

+

Joiner DispatcherNOut NIn

Output
Dispatcher

requests partial equilibria

heads notifications

28

Experiments: Benchmark Setup

Topologies:

Binary Tree , Diamond , Zig-zag , Ring

Other quantitative parameters:
I n: system size
I s: local theory size
I b: number of interface atoms
I r: maximal number of bridge rules

Local theories’ structure:

a1 a2 a3 a4 a5 a6 a7 a8

A local theory has 2m answer sets, where m ∈ [0, s/2].
29

Experiments: The Run

Parameter choice (based on some initial testing):
I n was chosen based on the topology:

I T : n ∈ {7, 10, 15, 31, 70, 100}
I D : n ∈ {4, 7, 10, 13, 25, 31}
I Z : n ∈ {4, 7, 10, 13, 25, 31, 70}
I R : n ∈ {4, 7, 10, 13, 70}

I s, b, r are fixed to either 10, 5, 5 or 20, 10, 10, respectively.

Way to proceed:
I test 5 instances per parameter setting
I run DMCS, DMCSOPT on non-streaming and streaming mode

(DMCS-STREAMING)
I in streaming mode, run with different package sizes: 1, 10, 100
I measure:

I total number of returned partial equilibria
I total running time (in secs)
I running time to get the first set of answers (in streaming mode)

30

Experiments: The Run

Parameter choice (based on some initial testing):
I n was chosen based on the topology:

I T : n ∈ {7, 10, 15, 31, 70, 100}
I D : n ∈ {4, 7, 10, 13, 25, 31}
I Z : n ∈ {4, 7, 10, 13, 25, 31, 70}
I R : n ∈ {4, 7, 10, 13, 70}

I s, b, r are fixed to either 10, 5, 5 or 20, 10, 10, respectively.

Way to proceed:
I test 5 instances per parameter setting
I run DMCS, DMCSOPT on non-streaming and streaming mode

(DMCS-STREAMING)
I in streaming mode, run with different package sizes: 1, 10, 100
I measure:

I total number of returned partial equilibria
I total running time (in secs)
I running time to get the first set of answers (in streaming mode)

30

Experiments: Analysis

I Comparing DMCS and DMCSOPT

I Comparing streaming and non-streaming modes

I Effect of the package size

I Role of the topologies

31

DMCS vs. DMCSOPT (non-streaming)

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30 35 40 45 50

DMCS
DMCSOPT

R
10,10,5,5

Z
10,10,5,5

D
10,10,5,5

T
10,10,5,5

R
7,10,5,5

Z
7,10,5,5

D
7,10,5,5

T
7,10,5,5

32

DMCS vs. DMCSOPT (streaming)

 1

 10

 100

T1 T2 T3 T4 T5

DMCS-1st

DMCSOPT-1st

DMCS-100

DMCSOPT-100

(a) T(25, 10, 5, 5)

 0.1

 1

 10

 100

D1 D2 D3 D4 D5

DMCS-1st

DMCSOPT-1st

DMCS-10

DMCSOPT-10

(b) D(10, 10, 5, 5)

 0.1

 1

 10

 100

 1000

Z1 Z2 Z3 Z4 Z5

DMCS-1st

DMCSOPT-1st

DMCS-10

DMCSOPT-10

(c) Z(10, 10, 5, 5)

 0.1

 1

 10

 100

R1 R2 R3 R4 R5

DMCS-1st

DMCSOPT-1st

DMCS-10

DMCSOPT-10

(d) R(4, 10, 5, 5)

I stream N partial equilibria: not a fair comparison due to projection
I first return: might have the above effect from intermediate contexts

33

Streaming vs. Nonstreaming (DMCS)

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R
4,10,5,5

Z
10,10,5,5

D
10,10,5,5

T
10,10,5,5

I Streaming wins in most of the cases
I Ring behaves irregularly!

34

Streaming vs. Nonstreaming (DMCSOPT)

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R
4,10,5,5

Z
10,10,5,5

D
10,10,5,5

T
10,10,5,5

with small systems and local theories

I Streaming loses because of recomputation

35

Streaming vs. Nonstreaming (DMCSOPT)

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R
4,20,10,10

Z
10,20,10,10

D
10,20,10,10

T
31,20,10,10

with large systems and local theories

I Streaming starts gaining back...
I ...but does not always win, again due to recomputation

36

Effect of the Package Size

 0.001

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25

Streaming-1
Streaming-10

Streaming-100

R
4,20,10,10

Z
70,20,10,10

D
25,20,10,10

T
100,20,10,10

Average time to find 1 partial equilibrium in streaming mode

I k = 1 looks ok, too large package size is not always a good idea
I Ring behaves irregularly

37

Roles of Topologies

Topological aspects that affect the performance:

(i) number of connections
(ii) structure of block trees and cut vertices
(iii) cyclicity

Observations:

T >
(i,ii)
DMCS D >

(i)
DMCS Z >

(iii)
DMCS R

T >
(i,ii)
DMCSOPT Z >

(ii)
DMCSOPT D >

(iii)
DMCSOPT R

38

Summary of Contributions

Exploration of an area that had not been considered before:

design, implement, and analyze truly distributed algorithms to evaluate
partial equilibria of Heterogeneous Multi-Context Systems.

I Algorithms DMCS, DMCSOPT, DMCS-STREAMING,

I The DMCS System,

I Experimental Evaluation.

Thus establish another step to bring MCSs to real life applications!

39

Summary of Contributions

Exploration of an area that had not been considered before:

design, implement, and analyze truly distributed algorithms to evaluate
partial equilibria of Heterogeneous Multi-Context Systems.

I Algorithms DMCS, DMCSOPT, DMCS-STREAMING,

I The DMCS System,

I Experimental Evaluation.

Thus establish another step to bring MCSs to real life applications!

39

Summary of Contributions

Exploration of an area that had not been considered before:

design, implement, and analyze truly distributed algorithms to evaluate
partial equilibria of Heterogeneous Multi-Context Systems.

I Algorithms DMCS, DMCSOPT, DMCS-STREAMING,

I The DMCS System,

I Experimental Evaluation.

Thus establish another step to bring MCSs to real life applications!

39

Future Work

I Implementation issues for DMCS

I Grounding-on-the-fly for non-ground ASP-based MCS

I Conflict learning in DMCS

I Query answering in MCS

I Distributed Heterogeneous Stream Reasoning

Thank you very much for your attention!

40

Future Work

I Implementation issues for DMCS

I Grounding-on-the-fly for non-ground ASP-based MCS

I Conflict learning in DMCS

I Query answering in MCS

I Distributed Heterogeneous Stream Reasoning

Thank you very much for your attention!

40

References I

I Philippe Adjiman, Philippe Chatalic, François Goasdoué,
Marie-Christine Rousset, and Laurent Simon. Distributed reasoning in a
peer-to-peer setting: Application to the semantic web. J. Artif. Intell.
Res., 25:269–314, 2006.

I Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and
Thomas Krennwallner. Decomposition of Distributed Nonmonotonic
Multi-Context Systems. In Tomi Janhunen and Ilkka Niemelä, editors,
Logics in Artificial Intelligence - 12th European Conference, JELIA 2010,
Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341
of Lecture Notes in Computer Science, pages 24–37. Springer,
September 2010.

References II

I Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and
Thomas Krennwallner. The DMCS Solver for Distributed Nonmonotonic
Multi-Context Systems. In Tomi Janhunen and Ilkka Niemelä, editors,
Logics in Artificial Intelligence - 12th European Conference, JELIA 2010,
Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341
of Lecture Notes in Computer Science, pages 352–355. Springer,
September 2010.

I Antonis Bikakis, Grigoris Antoniou, and Panayiotis Hassapis. Strategies
for contextual reasoning with conflicts in ambient intelligence.
Knowledge and Information Systems, April 2010.

I Gerhard Brewka and Thomas Eiter. Equilibria in Heterogeneous
Nonmonotonic Multi-Context Systems. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada, pages 385–390. AAAI
Press, 2007.

References III

I Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner.
Distributed Nonmonotonic Multi-Context Systems. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010, Toronto, Ontario, Canada, May
9-13, 2010. AAAI Press, 2010.

I Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout
algorithms. Artif. Intell., 161(1–2):89–115, 2005.

I Floris Roelofsen, Luciano Serafini, and Alessandro Cimatti. Many
hands make light work: Localized satisfiability for multi-context systems.
In Ramon López de Mántaras and Lorenza Saitta, editors, Proceedings
of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 58–62. IOS Press, August
2004.

References IV

I Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning
architecture for the semantic web. In Asunción Gómez-Pérez and
Jérôme Euzenat, editors, The Semantic Web: Research and
Applications, Second European Semantic Web Conference, ESWC
2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings,
Lecture Notes in Computer Science, pages 361–376. Springer, 2005.

I Luciano Serafini, Alexander Borgida, and Andrei Tamilin. Aspects of
distributed and modular ontology reasoning. In Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI 2005), pages 570–575.
AAAI Press, 2005.

I Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed
constraint satisfaction: A review. Autonomous Agents and Multi-Agent
Systems, 3(2):185–207, 2000.

45

