Distributed Nonmonotonic Multi-Context Systems: Algorithms and Efficient Evaluation

Minh Dao-Tran

Advisors: Thomas Eiter Michael Fink

Abteilung Wissensbasierte Systeme Institut für Informationssysteme
Technische Universität Wien
Doctoral Defense — March 24, 2014

- Introduction to Multi-context Systems
- Basic Algorithm DMCS to Evaluate MCS
- Topological-based Optimized Algorithm DMCSOPT
- Streaming Models with DMCS-STREAMING
- Experimental Evaluation: Setup and Analysis
- Outlook

TU I Multi-Context Systems

- What is a multi-context system? $M=\left(C_{1}, \ldots, C_{n}\right)$
- a collection of contexts C_{1}, \ldots, C_{n}
- What is a context?
$C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)$
- a logic L_{i}
- the context's knowledge base $k b_{i}$
- a set $b r_{i}$ of bridge rules

TU I Multi-Context Systems

- What is a multi-context system? $M=\left(C_{1}, \ldots, C_{n}\right)$
- a collection of contexts C_{1}, \ldots, C_{n}
- What is a context?
$C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)$
- a logic L_{i}
- the context's knowledge base $k b_{i}$
- a set $b r_{i}$ of bridge rules
- What is a logic?

$$
L=\left(\mathbf{K} \mathbf{B}_{L}, \mathbf{B S}_{L}, \mathbf{A C C}_{L}\right)
$$

- set $\mathbf{K B}_{L}$ of well-formed knowledge bases
- set $\mathbf{B S}_{L}$ of possible belief sets
- acceptability function $\mathbf{A C C}_{L}: \mathbf{K B}_{L} \rightarrow 2^{\mathbf{B S}_{L}}$ Which belief sets are accepted by a knowledge base?

TU ! MCS Example

TU I MCS Example - Encoding

TU I MCS Example - Encoding

$$
\text { where: } \quad R=\left\{\begin{aligned}
\text { joker_in } & \leftarrow \text { at_row }(X) . \\
\text { joker_in } & \leftarrow \text { at_col }(X) . \\
\text { at_row }(X) & \leftarrow \text { joker_in, row }(X), \text { not } \neg \text { at_row }(X) . \\
\neg \text { at_row }(X) & \leftarrow \text { joker_in, row }(X), \text { at_row }(Y), X \neq Y . \\
\text { at_col }(X) & \leftarrow \text { joker_in, col }(X), \text { not } \neg a t _c o l(X) . \\
\neg \text { at_col }(X) & \leftarrow \text { joker_in, } \operatorname{lol}(X), \text { at_col }(Y), X \neq Y . \\
& \operatorname{row}(1) . \operatorname{row}(2) \cdot \operatorname{row}(3) . \\
& \operatorname{col}(1) \cdot \operatorname{col}(2) \cdot \operatorname{col}(3) .
\end{aligned}\right\}
$$

TU I MCS Example - Encoding

where: $\quad R=\left\{\begin{aligned} \text { joker_in } & \leftarrow \text { at_row }(X) . \\ \text { joker_in } & \leftarrow \text { at_col }(X) . \\ \text { at_row }(X) & \leftarrow \text { joker_in, row }(X), \text { not } \neg \text { at_row }(X) . \\ \neg \text { at_row }(X) & \leftarrow \text { joker_in, row }(X), \text { at_row }(Y), X \neq Y . \\ \text { at_col }(X) & \leftarrow \text { joker_in, col }(X), \text { not } \neg \text { at_col }(X) . \\ \neg \text { at_col }(X) & \leftarrow \\ & \text { joker_in, } \operatorname{lol}(X), \text { at_col }(Y), X \neq Y . \\ & \operatorname{row}(1) . \operatorname{row}(2) . \operatorname{row}(3) . \\ & \operatorname{col}(1) . \operatorname{col}(2) . \operatorname{col}(3) .\end{aligned}\right\}$

TU I MCS Example - Encoding

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts
S is an equilibrium iff each context plus these heads accepts S_{i}.
Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts S is an equilibrium iff each context plus these heads accepts S_{i}. Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts
S is an equilibrium iff each context plus these heads accepts S_{i}.
Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts
S is an equilibrium iff each context plus these heads accepts S_{i}.
Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts S is an equilibrium iff each context plus these heads accepts S_{i}.
Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

- Equilibrium semantics: a belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{L_{i}}$
... makes certain bridge rules applicable
... so that we can add their heads into the $k b_{i}$ of the contexts S is an equilibrium iff each context plus these heads accepts S_{i}.
Equilibrium condition: $S_{i} \in \mathbf{A C C}\left(k b_{i} \cup H_{i}\right)$ for all C_{i}

Distributedness / Heterogeneity / Nonmonotonicity

Distributedness / Heterogeneity / Nonmonotonicity

\Rightarrow Power to model real life applications:

- collaboration between business partners,
- medical applications,
- reasoning on the web,
- ...

Distributedness / Heterogeneity / Nonmonotonicity

\Rightarrow Power to model real life applications:

- collaboration between business partners,
- medical applications,
- reasoning on the web,

Thus, algorithms to evaluate MCSs (compute equilibria) are of special interest!

TU I Evaluation of MOSs before this thesis

- Related works on distributed systems: either not truly distributed or homogeneous
- Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
- DisSAT: finding a single model [Hirayama and Yokoo, 2005]
- Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
- Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
- Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
- Distributed query evaluation in "MCS" based on defeasible logic [Bikakis et al., 2010]

TU ! Evaluation of MCSs before this thesis

- Related works on distributed systems: either not truly distributed or homogeneous
- Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
- DisSAT: finding a single model [Hirayama and Yokoo, 2005]
- Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
- Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
- Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
- Distributed query evaluation in "MCS" based on defeasible logic [Bikakis et al., 2010]
- For distributed nonmonotonic MCS:
- Only one proposal for evaluating MCSs in a centralized way using hex-programs
- No implementation available
- Related works on distributed systems: either not truly distributed or homogeneous
- Distributed Constraints Satisfaction Problems [Yokoo and Hirayama, 2000]
- DisSAT: finding a single model [Hirayama and Yokoo, 2005]
- Parallel algorithm for evaluating monotonic MCS [Roelofsen et al., 2004]
- Distributed Ontology Reasoning (DRAGO) [Serafini et al., 2005]
- Distributed reasoning in peer-to-peer setting [Adjiman et al., 2006]
- Distributed query evaluation in "MCS" based on defeasible logic [Bikakis et al., 2010]
- For distributed nonmonotonic MCS:
- Only one proposal for evaluating MCSs in a centralized way using hex-programs
- No implementation available
- Obstacles:
- Abstraction of contexts
- Information hiding and security aspects
- Lack of system topology
- Cyclic dependency between contexts

T0 I Towards Evaluation of MCSs

Our aims:

- Algorithms for evaluating equilibria of MCSs in a truly distributed way
- Optimization techniques
- Prototype implementation
- Benchmarking

TU I Towards Evaluation of MCSs

Our aims:

- Algorithms for evaluating equilibria of MCSs in a truly distributed way
- Optimization techniques
- Prototype implementation
- Benchmarking

We fulfill these goals by exploiting and adapting methods from distributed systems area, with special care for MCSs:

- Dependencies between contexts
- Representation of partial knowledge
- Combination/join of local results

TU

Our aims:

- Algorithms for evaluating equilibria of MCSs in a truly distributed way
- Optimization techniques
- Prototype implementation
- Benchmarking

We fulfill these goals by exploiting and adapting methods from distributed systems area, with special care for MCSs:

- Dependencies between contexts
- Representation of partial knowledge
- Combination/join of local results

Support notions:

- Import Neighborhood and Closure
- Partial Belief States and Equilibria
- Joining Partial Belief States

Tu I Import Neighborhood and Closure

Tu I Import Neighborhood and Closure

Import neighborhood of C_{k}
$\operatorname{In}(k)=\left\{c_{i} \mid\left(c_{i}: p_{i}\right) \in B(r), r \in b r_{k}\right\}$

Import closure $I C(k)$ of C_{k} is the smallest set S such that
(i) $k \in S$ and
(ii) for all $i \in S, \operatorname{In}(i) \subseteq S$.

$I C(1)$

Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

T0 I Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

A partial belief state of M is a sequence $S=\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \in \mathbf{B S}_{i} \cup\{\epsilon\}$, for $1 \leq i \leq n$

Tu I Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

A partial belief state of M is a sequence $S=\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \in \mathbf{B S}_{i} \cup\{\epsilon\}$, for $1 \leq i \leq n$
$S=\left(S_{1}, \ldots, S_{n}\right)$ is a partial equilibrium of M w.r.t. a context C_{k} iff for $1 \leq i \leq n$,

- if $i \in I C(k)$ then $S_{i} \in \mathbf{A C C}_{i}\left(k b_{i} \cup\left\{\operatorname{head}(r) \mid r \in \operatorname{app}\left(b r_{i}, S\right)\right\}\right)$
- otherwise, $S_{i}=\epsilon$

Intuitively, partial equilibria wrt. a context C_{k} cover the reachable contexts of C_{k}.

TU Joining Partial Belief States

Join $S \bowtie T$ of belief states S and T : like join of tuples in a database.

$S=$| S_{1} | \cdots | ϵ | \cdots | ϵ | \cdots | S_{j} | \cdots | S_{n} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$T=$| ϵ | \cdots | ϵ | \cdots | T_{i} | \cdots | T_{j} | \cdots | ϵ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$S \bowtie T=$| S_{1} | \cdots | ϵ | \cdots | T_{i} | \cdots | $S_{j}=T_{j}$ | \cdots | S_{n} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$S \bowtie T$ is undefined, if $\epsilon \neq S_{j} \neq T_{j} \neq \epsilon$ for some j.

$$
\mathcal{S} \bowtie \mathcal{T}=\{S \bowtie T \mid S \in \mathcal{S}, T \in \mathcal{T}\}
$$

T0 I Algorithm DMCS

Input: an MCS M and a starting context C_{k} Output: all partial equilibria of M wrt. C_{k}

TU I Algorithm DMCS

Input: an MCS M and a starting context C_{k} Output: all partial equilibria of M wrt. C_{k}

Requirement: solver Isolve (S) for each context C_{k} is available which computes $\mathbf{A C C}_{k}\left(k b_{k} \cup a p p_{k}(S)\right)$

TO Algorithm DMCS

Input: an MCS M and a starting context C_{k}
Output: all partial equilibria of M wrt. C_{k}
Requirement: solver Isolve (S) for each context C_{k} is available which computes $\mathbf{A C C}_{k}\left(k b_{k} \cup a p p_{k}(S)\right)$

Input parameters for DMCS:

- V : set of "interesting" variables (to project the partial equilibria)
- hist: visited path

TO I Algorithm DMCS

Input: an MCS M and a starting context C_{k}
Output: all partial equilibria of M wrt. C_{k}
Requirement: solver Isolve (S) for each context C_{k} is available which computes $\mathbf{A C C}_{k}\left(k b_{k} \cup a p p_{k}(S)\right)$

Input parameters for DMCS:

- V : set of "interesting" variables (to project the partial equilibria)
- hist: visited path

Strategy: DFS-traversal of M starting with C_{k}, visiting all C_{i} for $i \in I C(k)$
Distributedness: instances of DMCS

- running at each context node,
- communicating with each other for exchanging sets of belief states

TO Acyclic case

Leaf context $C_{k}\left(b r_{k}=\emptyset\right)$

Isolve $((\epsilon, \ldots, \epsilon))=\mathcal{S}$

Tu I Acyclic case

> Intermediate context $C_{k}((i: p),(j: q)$ appear in $\left.b r_{k}\right)$

Leaf context $C_{k}\left(b r_{k}=\emptyset\right)$

Isolve $((\epsilon, \ldots, \epsilon))=\mathcal{S}$

$\dot{\lambda}$

Tu I Acyclic case

> Intermediate context $C_{k}((i: p),(j: q)$ appear in $\left.b r_{k}\right)$

Leaf context $C_{k}\left(b r_{k}=\emptyset\right)$

Isolve $((\epsilon, \ldots, \epsilon))=\mathcal{S}$

\forall

Tu I Acyclic case

$$
\begin{aligned}
& \text { Intermediate context } C_{k}((i: p),(j: q) \\
& \text { appear in } \left.b r_{k}\right)
\end{aligned}
$$

Leaf context $C_{k}\left(b r_{k}=\emptyset\right)$

Isolve $((\epsilon, \ldots, \epsilon))=\mathcal{S}$

Tu I Cycle Breaking

T0 I Cycle Breaking

C_{k} detects a cycle in hist

T0 ! Cycle Breaking

C_{k} detects a cycle in hist

Scalability issues with the basic evaluation algorithm DMCS

- unaware of global context dependencies, only know (local) import neighborhood
- a context C_{i} returns a possibly huge set of partial belief states, which are the join of neighbor belief states of C_{i} plus local belief sets

Scalability issues with the basic evaluation algorithm DMCS

- unaware of global context dependencies, only know (local) import neighborhood
- a context C_{i} returns a possibly huge set of partial belief states, which are the join of neighbor belief states of C_{i} plus local belief sets

We address these issues by

- capturing inter-context dependencies (topology)
- providing a decomposition based on biconnected components
- characterizing minimal interface variables in each component
- develop the DMCSOPT algorithm which operates on query plans

- Problem: How to go home?

- Problem: How to go home?
- Possible solutions:
- Car
- Train

- Problem: How to go home?
- Possible solutions:
- Car: slower than train
- Train: should bring some food
- Spike and Mickey have additional information from Tyke and Minnie

TU E Example (ctd.)

- Minnie wants Mickey to come back as soon as possible.

$$
\begin{aligned}
& k b_{4}=\left\{\text { car }_{4} \vee \text { train }_{4} \leftarrow\right\} \\
& \text { br }_{4}=\left\{\text { train }_{4} \leftarrow\left(5: \text { want_sooner }_{5}\right)\right\} \\
& k b_{5}=\left\{\text { want_sooner }_{5} \leftarrow \text { soon }_{5}\right\} \\
& \text { br }_{5}=\left\{\text { soon }_{5} \leftarrow\left(4: \text { train }_{4}\right)\right\}
\end{aligned}
$$

TU E Example (ctd.)

- Spike is responsible for buying provisions, if they go by train.
- If his son Tyke is sick, then Spike must attend to him as fast as possible.
$k b_{3}=\left\{\begin{aligned} \text { car }_{3} \vee \text { train }_{3} & \leftarrow \\ \text { train }_{3} & \leftarrow \text { urgent }_{3} \\ \text { sandwiches }_{3} \vee \text { chocolate_peanuts }_{3} & \leftarrow \text { train }_{3} \\ \text { coke }_{3} \vee \text { juice }_{3} & \leftarrow \text { train }_{3}\end{aligned}\right\}$
$b r_{3}=\left\{\begin{aligned} \text { urgent }_{3} & \leftarrow\left(6: \text { sick }_{6}\right) \\ \text { train }_{3} & \leftarrow\left(4: \text { train }_{4}\right)\end{aligned}\right\} ;$
$k b_{6}=\left\{\right.$ sick $\left._{6} \vee f i t_{6} \leftarrow\right\}$
$b r_{6}=\emptyset$.
- Jerry is the leader of the group.
- Jerry is allergic to peanuts.
- Tom wants to get home somehow and doesn't want coke.
$k b_{1}=\left\{\begin{aligned} & \text { car }_{1} \leftarrow \text { not train } \\ & 1\end{aligned}\right\}$
$b r_{1}=\left\{\begin{aligned} \text { train }_{1} & \leftarrow\left(2: \text { train }_{2}\right),\left(3: \text { train }_{3}\right) \\ \text { peanuts }_{1} & \leftarrow\left(3: \text { chocolate_peanuts }_{3}\right)\end{aligned}\right\}$
$k b_{2}=\left\{\perp \leftarrow\right.$ not car ${ }_{2}$, not train $\left.{ }_{2}\right\}$ and
$b r_{2}=\left\{\begin{array}{c}\text { car }_{2} \leftarrow\left(3: \text { car }_{3}\right),\left(4: \text { car }_{4}\right) \\ \operatorname{train}_{2} \leftarrow\left(3: \text { train }_{3}\right),\left(4: \text { train }_{4}\right), \\ \text { not }\left(3: \text { coke }_{3}\right)\end{array}\right\}$

$\mathrm{TH}_{\text {wite }}$ I Example (ctd.)

- Jerry is the leader of the group.
- Jerry is allergic to peanuts.
- Tom wants to get home somehow and doesn't want coke.

$$
\begin{aligned}
& k b_{1}=\left\{\begin{array}{c}
\text { car }_{1} \leftarrow \text { not train } \\
\perp \leftarrow \text { peanuts }
\end{array}\right\} \\
& b r_{1}=\left\{\begin{array}{c}
\text { train }_{1} \leftarrow\left(2: \text { train }_{2}\right),\left(3: \text { train }_{3}\right) \\
\text { peanuts }_{1} \leftarrow\left(3: \text { chocolate_peanuts }_{3}\right)
\end{array}\right\} \\
& k b_{2}=\left\{\perp \leftarrow \text { not car }{ }_{2}, \text { not train }_{2}\right\} \text { and } \\
& b r_{2}=\left\{\begin{array}{c}
\text { car }_{2} \leftarrow\left(3: \text { car }_{3}\right),\left(4: \text { car }_{4}\right) \\
\text { train }_{2} \leftarrow\left(3: \text { train }_{3}\right),\left(4: \text { train }_{4}\right), \\
\text { not }\left(3: \text { coke }_{3}\right)
\end{array}\right\}
\end{aligned}
$$

One equilibrium is $S=\left(\left\{\right.\right.$ train $\left._{1}\right\}$, $\left\{\right.$ train $\left._{2}\right\}$, $\left\{\right.$ train $_{3}$, urgent $_{3}$, juice $_{3}$, sandwiches $\left._{3}\right\},\left\{\right.$ train $\left._{4}\right\},\left\{\right.$ soon $_{5}$, want_sooner $\left.{ }_{5}\right\}$, $\left\{\right.$ sick $\left._{6}\right\}$)

TO E Example (ctd.)

- Jerry decides after gathering information.

- Jerry decides after gathering information.
- Mickey and Spike do not want to bother the others.

TU I MCS Decomposition: Cut vertex

A vertex c of a weakly connected graph G is a cut vertex, if $G \backslash c$ is disconnected

TO I MCS Decomposition: Block Tree

Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)

TU I MCS Decomposition: Block Tree

Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)

- B_{1} induced by $\{1,2,3,4\}$
- B_{2} induced by $\{4,5\}$
- B_{3} induced by $\{3,6\}$

IU Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

Tu I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

IT I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}\right.$,

IT I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}\right.$,

IT I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}\right.$,

IT I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, \quad\right\rangle$

IT I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\rangle$

TU I Optimization: Create Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\rangle$
cycle breaker edges $\operatorname{cb}(G, P)$: remove last edge from each path P_{i} in G

TU Optimization: Avoid Unnecessary Calls

transitive reduction of a digraph G is the graph G^{-}with the smallest set of edges whose transitive closure G^{+}equals the one of G

- B_{1} : acyclic \rightarrow apply transitive reduction
- B_{2} : cyclic \rightarrow apply ear decomposition, then apply transitive reduction (already reduced)
- B_{3} : acyclic and already reduced

TU I Optimization: Minimal Interface

In a pruned block B^{\prime}, take all variables from

- the minimal interface in B^{\prime}
- child cut vertices c
- removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states

TU ! Example - Query Plan

- Operate on the (optimized) query plan
- Does not need to break cycle
- Proceed on the leaf and intermediate cases almost similar to DMCS
- ...Except: guessing for removed edges because of cycles

Tu I Motivation for Streaming Models in MCS

For large context knowledge bases, we still face scalability issues:

- potentially many models: exhaust memory at combination- or at solving-time
- synchronous evaluation (one context may block the parent)
- this is mainly due to computing all (partial) equilibria

For large context knowledge bases, we still face scalability issues:

- potentially many models: exhaust memory at combination- or at solving-time
- synchronous evaluation (one context may block the parent)
- this is mainly due to computing all (partial) equilibria

Idea: Adapt existing algorithms with streaming mode:

- request at most k partial equilibria (obtain some instead of all answers)
- allow for asynchronous communication
- allow to request further partial equilibria: communication in multiple rounds

TU ! Algorithm DMCS-STREAMING

TU ! Algorithm DMCS-STREAMING

$$
k=1: \quad S_{2,1}=\left(\epsilon,\left\{a_{2}^{1}\right\}, \epsilon\right)
$$

TU ! Algorithm DMCS-STREAMING

$$
k=1: \begin{array}{|l|}
\hline S_{2,1}=\left(\epsilon,\left\{a_{2}^{1}\right\}, \epsilon\right) \\
\hline S_{3,1}=\left(\epsilon, \epsilon,\left\{a_{3}^{1}\right\}\right) \\
\hline
\end{array}
$$

TU ! Algorithm DMCS-STREAMING

TU ! Algorithm DMCS-STREAMING

$$
k=1: \begin{array}{|l|}
\hline \frac{S_{2,1}=\left(\epsilon,\left\{a_{2}^{1}\right\}, \epsilon\right)}{} \\
S_{2,2}=\left(\epsilon,\left\{a_{2}^{2}\right\}, \epsilon\right) \\
\hline S_{3,1}=\left(\epsilon, \epsilon,\left\{a_{3}^{1}\right\}\right) \\
\hline
\end{array}
$$

TU ! Algorithm DMCS-STREAMING

$$
k=1: \begin{array}{|c|}
\hline S_{1,1}=\left(\left\{a_{1}^{1}, t_{1}\right\},\left\{a_{2}^{2}\right\},\left\{a_{3}^{1}\right\}\right) \\
\hline \frac{S_{2,1}}{}=\left(\epsilon,\left\{a_{2}^{1}\right\}, \epsilon\right) \\
S_{2,2}=\left(\epsilon,\left\{a_{2}^{2}\right\}, \epsilon\right) \\
\hline S_{3,1}=\left(\epsilon, \epsilon,\left\{a_{3}^{1}\right\}\right) \\
\hline
\end{array}
$$

TU ! Algorithm DMCS-STREAMING

$$
k=1: \begin{array}{|c|}
\hline S_{1,1}=\left(\left\{a_{1}^{1}, t_{1}\right\},\left\{a_{2}^{2}\right\},\left\{a_{3}^{1}\right\}\right) \\
\hline \frac{S_{2,1}=\left(\epsilon,\left\{a_{2}^{1}\right\}, \epsilon\right)}{} \\
\hline S_{2,2}=\left(\epsilon,\left\{a_{2}^{2}\right\}, \epsilon\right) \\
\hline S_{3,1}=\left(\epsilon, \epsilon,\left\{a_{3}^{1}\right\}\right) \\
\hline
\end{array}
$$

Trade-off: recomputation!!!

TO I DMCS System Architecture

TU E Experiments: Benchmark Setup
Topologies:
Binary Tree or or on, Diamond

Other quantitative parameters:

- n : system size
- s : local theory size
- b : number of interface atoms
- r : maximal number of bridge rules

Local theories' structure:

A local theory has 2^{m} answer sets, where $m \in[0, s / 2]$.

T0 E Experiments: The Run

Parameter choice (based on some initial testing):

- n was chosen based on the topology:
- $T: n \in\{7,10,15,31,70,100\}$
- $D: n \in\{4,7,10,13,25,31\}$
- $Z: n \in\{4,7,10,13,25,31,70\}$
- $R: n \in\{4,7,10,13,70\}$
- s, b, r are fixed to either $10,5,5$ or $20,10,10$, respectively.

TU I Experiments: The Run

Parameter choice (based on some initial testing):

- n was chosen based on the topology:
- $T: n \in\{7,10,15,31,70,100\}$
- $D: n \in\{4,7,10,13,25,31\}$
- $Z: n \in\{4,7,10,13,25,31,70\}$
- $R: n \in\{4,7,10,13,70\}$
- s, b, r are fixed to either $10,5,5$ or $20,10,10$, respectively.

Way to proceed:

- test 5 instances per parameter setting
- run DMCS, DMCSOPT on non-streaming and streaming mode (DMCS-STREAMING)
- in streaming mode, run with different package sizes: $1,10,100$
- measure:
- total number of returned partial equilibria
- total running time (in secs)
- running time to get the first set of answers (in streaming mode)
- Comparing DMCS and DMCSOPT
- Comparing streaming and non-streaming modes
- Effect of the package size
- Role of the topologies

划! DMCS vs. DMCSOPT (streaming)

- stream N partial equilibria: not a fair comparison due to projection
- first return: might have the above effect from intermediate contexts

- Streaming wins in most of the cases
- Ring behaves irregularly!

- Streaming loses because of recomputation

with large systems and local theories
- Streaming starts gaining back...
- ...but does not always win, again due to recomputation

Average time to find 1 partial equilibrium in streaming mode

- $k=1$ looks ok, too large package size is not always a good idea
- Ring behaves irregularly

TU I Roles of Topologies

Topological aspects that affect the performance:
(i) number of connections
(ii) structure of block trees and cut vertices
(iii) cyclicity

Observations:

$$
\begin{gathered}
T>{ }_{\text {DMCS }}^{(i, i i)} D>{ }_{\text {DMCS }}^{(i)} Z>{ }_{\text {DMCS }}^{(i i i)} R \\
T>{ }_{\text {DMCSOPT }}^{(i, i i)} Z>{ }_{\text {DMCSOPT }}^{(i i)} D>{ }_{\text {DMCSOPT }}^{(i i i)} R
\end{gathered}
$$

Tu Summary of Contributions

Exploration of an area that had not been considered before:
design, implement, and analyze truly distributed algorithms to evaluate partial equilibria of Heterogeneous Multi-Context Systems.

TU I Summary of Contributions

Exploration of an area that had not been considered before:
design, implement, and analyze truly distributed algorithms to evaluate partial equilibria of Heterogeneous Multi-Context Systems.

- Algorithms DMCS, DMCSOPT, DMCS-STREAMING,
- The DMCS System,
- Experimental Evaluation.

TH I Summary of Contributions

Exploration of an area that had not been considered before:
design, implement, and analyze truly distributed algorithms to evaluate partial equilibria of Heterogeneous Multi-Context Systems.

- Algorithms DMCS, DMCSOPT, DMCS-STREAMING,
- The DMCS System,
- Experimental Evaluation.

Thus establish another step to bring MCSs to real life applications!

- Implementation issues for DMCS
- Grounding-on-the-fly for non-ground ASP-based MCS
- Conflict learning in DMCS
- Query answering in MCS
- Distributed Heterogeneous Stream Reasoning
- Implementation issues for DMCS
- Grounding-on-the-fly for non-ground ASP-based MCS
- Conflict learning in DMCS
- Query answering in MCS
- Distributed Heterogeneous Stream Reasoning

Thank you very much for your attention!

- Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and Laurent Simon. Distributed reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res., 25:269-314, 2006.
- Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Decomposition of Distributed Nonmonotonic Multi-Context Systems. In Tomi Janhunen and Ilkka Niemelä, editors, Logics in Artificial Intelligence - 12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer Science, pages 24-37. Springer, September 2010.

$\operatorname{TH}_{\text {WTEN }}$ I References II

- Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. The DMCS Solver for Distributed Nonmonotonic Multi-Context Systems. In Tomi Janhunen and Ilkka Niemelä, editors, Logics in Artificial Intelligence - 12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer Science, pages 352-355. Springer, September 2010.
- Antonis Bikakis, Grigoris Antoniou, and Panayiotis Hassapis. Strategies for contextual reasoning with conflicts in ambient intelligence. Knowledge and Information Systems, April 2010.
- Gerhard Brewka and Thomas Eiter. Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 385-390. AAAI Press, 2007.
- Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Distributed Nonmonotonic Multi-Context Systems. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.
- Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms. Artif. Intell., 161(1-2):89-115, 2005.
- Floris Roelofsen, Luciano Serafini, and Alessandro Cimatti. Many hands make light work: Localized satisfiability for multi-context systems. In Ramon López de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAl'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 58-62. IOS Press, August 2004.

TU I References IV

- Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture for the semantic web. In Asunción Gómez-Pérez and Jérôme Euzenat, editors, The Semantic Web: Research and Applications, Second European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings, Lecture Notes in Computer Science, pages 361-376. Springer, 2005.
- Luciano Serafini, Alexander Borgida, and Andrei Tamilin. Aspects of distributed and modular ontology reasoning. In Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 570-575. AAAI Press, 2005.
- Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction: A review. Autonomous Agents and Multi-Agent Systems, 3(2):185-207, 2000.

