
Distributed Nonmonotonic
Multi-Context Systems:
Algorithms and Efficient

Evaluation
DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Minh Dao-Tran
Matrikelnummer 0727429

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O. Univ. Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Dipl.-Ing. Dr. techn. Michael Fink

Diese Dissertation haben begutachtet:

(O. Univ. Prof. Dipl.-Ing.
Dr. techn. Thomas Eiter)

(Prof. Dr. Tran Cao Son)

Wien, 10.02.2014
(Minh Dao-Tran)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Distributed Nonmonotonic
Multi-Context Systems:
Algorithms and Efficient

Evaluation
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Minh Dao-Tran
Registration Number 0727429

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O. Univ. Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Dipl.-Ing. Dr. techn. Michael Fink

The dissertation has been reviewed by:

(O. Univ. Prof. Dipl.-Ing.
Dr. techn. Thomas Eiter)

(Prof. Dr. Tran Cao Son)

Wien, 10.02.2014
(Minh Dao-Tran)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Minh Dao-Tran
Donaufelderstrasse 91/2/233, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

From the bottom of my heart, I want to express my gratefulness to my supervisors: Thomas Eiter
and Michael Fink. It is such a great honour to have Thomas as a supervisor for both of my Mas-
ter and PhD theses, and Michael for the latter. Every meeting with them is an adventure. Under
their sharp technical eyes and the ability to immediately hit the crucial points of the problems, I
can learn lots of new things, from technical details to methodology; and especially, get encour-
agement to carry out the on-going work in better ways. I want to thank Thomas Krennwallner.
We not only had fun working on the theoretical side, but also enjoyed implementing the DMCS
system together. My technical skills, especially C++ and Emacs, were strongly affected by his
style. As a colleague, a friend, Thomas is always open to help me and others on not only work
but also everyday issues. I must say that I was very lucky to be in a team with brilliant people
whom working with brought me an experience of life.

Major thanks to the Austrian Science Fund (FWF) for granting Project P20841 that funded
my research.

I want to thank Katrin Seyr, who helped me with the biggest problem outside DMCS. With-
out her aid, I am not sure whether I can be here writing these final lines of my thesis. Katrin also
taught me a lesson that one can overcome all obstacles or bad luck to live happily.

I want to thank colleagues/friends from KBS and DBAI (listed in alphabetic order of last
names): Cristina Feier, Sarah Gaggl, Nysret Musliu, Magdalena Ortiz, Johannes Oetsch, Joerg
Puehrer, Christoph Redl, Vadim Savenkov, Patrik Schneider, Peter Schueller, Mantas Simkus,
Daria Stepanova, Antonius Weinzierl, Magdalena Widl, Stefan Woltran, Gouhui Xiao, who have
been sharing the pressure of doing a PhD with me, and having fun of it in everyday procrastinat-
ing conversations.

I want to thank Eva Nedoma and Matthias Schloegel for all of their administrative and tech-
nical supports. Eva never says no to any of my request, from translating a notification in German
to filling out any long application form. And when you ask Matthias for help with network issue
or even a keyboard, he is always there.

Finally, I want to thank my parents for raising me, bringing me the opportunities to a better
education and giving me a good background for my development. I want to thank my brother
who is here with me and helps when I need. And thanks to my little family with my wife and
my little son, you are the motivation for all what I have been doing, you are home where I want
to be with after a long/stressful working day. You are my everything.

iii

Abstract

Heterogeneous Nonmonotonic Multi-Context Systems (MCSs) are a generalization of a series
of works on formalizing contexts in AI dating back in the 80s by John McCarthy. As such,
they are a formalism for representing systems consisting of multiple (possibly nonmonotonic)
knowledge-based systems (contexts). Knowledge between contexts is exchanged via bridge
rules, a form of rules that allow to augment knowledge at a context depending on whether cer-
tain beliefs are accepted (not accepted) at certain contexts. Although virtually all formalizations
of systems of multiple contexts are inherently targeted for distributedness, no truly distributed
algorithms for evaluating their semantics exist, due to several obstacles: (i) the semantic abstrac-
tion of contexts to belief sets hinders interference with the local evaluation processes in contexts;
(ii) information hiding and security aspects disable access to the context theories themselves,
merely interfaces to the belief sets are provided; (iii) the complete system topology might be
unknown to a context, which hinders decomposed evaluation; and (iv) the bridge rules of two
contexts may refer to each other, thus creating cyclic systems that must be handled with care.

Coping with these challenges, we aim at designing and realizing truly distributed algorithms
for evaluating MCSs. Deliberately approaching the issues, we started with a basic algorithm
that mainly concentrates on the distributed aspects, i.e., dealing with transferring messages and
breaking cycles. Then, we looked into possible optimizations at the meta level which prepro-
cesses the global topology of the system to reduce information exchange. Taking one more step
forward, we investigated gradually evaluating MCS where not all results are returned at once
but in a streaming fashion. On an additional explorative branch, we designed an algorithm to
configure dynamic MCSs into the original ones.

As the theoretical results of this thesis, we came up with notions to support evaluation of
MCSs, such as contexts’ import neighborhood, import closure, import interface, partial belief
states and equilibria, loop formulas for MCSs, decomposition of MCSs, etc. Based on these
notions, different algorithms to evaluate MCSs were proposed, namely DMCS, DMCSOPT, and
DMCS-STREAMING. The first two correspond to the basic and topology-optimized evaluation.
The last one introduces a new strategy in which both DMCS and DMCSOPT can be deployed
to compute partial equilibria in a streaming fashion.

As the empirical results of the thesis, we have realized all proposed algorithms in a proto-
type implementation. Furthermore, we did a thorough experimental evaluation to compare the
implemented algorithms on different aspects. And by analyzing the experimental results, we
give a brief guideline on choosing the appropriate algorithm and running mode in a particular
situation, determined by the parameter setting.

v

Beside the main results, a number of interesting future works were also revealed from ex-
periences gained within the thesis project, including but not limited to conflicts learning for
the algorithms, query answering in MCSs, and a potential for distributed heterogeneous stream
reasoning.

Kurzfassung

Heterogene nichtmonotone Multi-Kontext Systeme (MCSs) sind eine Generalisierung einer Rei-
he von Arbeiten von John McCarthy über die Formalisierung von Kontexten in der Künstlichen
Intelligenz, die bis in die 80er Jahre reichen. Sie sind ein Formalismus zur Repräsentierung von
Systemen von mehreren (möglicherweise nichtmonotonen) wissensbasierten Systemen (Kon-
texte). Das Wissen zwischen Kontexten wird mittels Brückenregeln (bridge rules) ausgetauscht.
Diese Form von Regeln erlaubt, Wissen eines Kontextes zu erweitern, je nachdem, ob gewisse
Überzeugungen (nicht) bei gewissen Kontexten akzeptiert werden. Obwohl nahezu alle Forma-
lisierungen von Systemen mit mehreren Kontexten grundsätzlich auf Verteilte Systeme abzielen,
existieren keine echten verteilten Algorithmen zur Evaluierung ihrer Semantiken aufgrund meh-
rerer Hürden: (i) die semantische Abstraktion der Kontexte mit Hilfe von Überzeugungsmengen
(belief sets) verhindert den Zugriff in den lokalen Evaluationsprozess von Kontexten; (ii) Infor-
mationsabgrenzung und Sicherheitsaspekte sperren the Zugriff auf die Kontext Theorien; (iii) die
komplette Systemtopologie könnte einem partikulären Kontext unbekannt sein, was wiederum
das aufgeteilte Evaluieren verhindert; und (iv) die Brückenregeln zweier Kontexte können auf-
einander verweisen, was ein zyklisches System erzeugt, welches mit Vorsicht handzuhaben ist.

Um diese Herausforderungen zu meistern, zielen wir auf das Entwerfen und Realisieren von
echten verteilten Algorithmen zur Evaluierung von MCSs. Durch bewusste Annäherung an diese
Probleme, haben wir mit einem einfachem Algorithmus angefangen, der sich hauptsächlich auf
verteilte Aspekte konzentriert, das heisst, dem Übertragen von Nachrichten und dem Brechen
von Zyklen. Danach untersuchten wir mögliche Optimierungen auf der Meta-Ebene, welche
die globale Topologie des Systems aufbereiten, um den Informationsaustausch zu reduzieren.
Einen Schritt vorausgehend, erforschen wir die stufenweise Auswertung von MCS, bei denen
nicht alle Ergebnisse auf einmal zurückgegeben werden, sondern auf kontinuierliche Weise.
Auf einem weiteren explorativen Zweig entwickelten wir einen Algorithmus zur Konfiguration
dynamischer MCSs auf ursprüngliche MCS.

Als theoretische Resultate dieser Dissertation entwickelten wir Konzepte, die die Evaluie-
rung von MCSs unterstützen, wie etwa Import Nachbarschaft, Import Abschluss, Import Schnitt-
stelle, partielle Überzeugungsmengen und Gleichgewichte, Schleifenformeln für MCSs, Zerle-
gung von MCSs, etc. Basierend auf diesen Konzepten, schlugen wir unterschiedliche Algorith-
men zur Evaluierung von MCSs vor, nämlich DMCS, DMCSOPTsowie DMCS-STREAMING.
Die ersten beiden korrespondieren zur einfachen und Topologie-optimierten Evaluierung. Der
letzte Algorithmus stellt eine neue Strategie vor, in welcher sowohl DMCS als auch DMCSOPT
eingesetzt werden kann zur Berechnung partieller Gleichgewichte auf kontinuierlicher Weise.

vii

Die empirischen Resultate der Dissertation umfassen die Realisierung aller vorgeschlagenen
Algorithmen in prototypischen Implementierungen. Weiters haben wir eine sorgfältige experi-
mentelle Evaluierung durchgeführt, um die implementierten Algorithmen auf unterschiedlichen
Aspekten zu vergleichen. Bei der Analyse der experimentellen Resultaten haben wir eine kur-
ze Richtlinie entwickelt, um den geeigneten Algorithmus und Laufmodus in einer bestimmten
Situation zu wählen, welcher durch eine Parameterkonfiguration bestimmt wird.

Neben den Hauptresultaten haben wir eine Anzahl interessanter zukünftiger Studien ausge-
arbeitet, die aus den Erfahrungen des Dissertationsprojekt gewonnen wurden, einschliesslich,
aber nicht beschränkt auf Konfliktlernen für die Algorithmen, Anfragebeantwortung von MCSs,
sowie Potentiale für verteilte heterogene Datenstromsschlussfolgerung.

Contents

I Basic Notions 1

1 Introduction 3
1.1 Motivation . 3
1.2 State of the Art . 5

Reasoning with logic programming under the answer set semantics 5
Multi-context systems . 6

1.3 Goals of the Thesis, Main Results, and Structure 7

2 Preliminaries 11
2.1 Declarative Logic Programming . 11
2.2 Logic Programs under the Answer-Set Semantics 12

Syntax of answer-set programs . 12
Semantics of answer-set programs . 13
Answer-set solvers . 15

2.3 Loop Formulas . 16
2.4 Multi-Context Systems . 19

Formalization of multi-context systems . 19
Semantics of multi-context systems . 21
Centralized evaluation of multi-context systems 23

II Algorithms for Multi-Context Systems 25

3 Basic Distributed Algorithm and Realization with Loop Formulas 27
3.1 Basic Algorithm for Multi-Context Systems 27

Basic notions . 27
The basic algorithm . 29
Discussion . 39

3.2 Realization with Loop Formulas . 40
Loop formulas for MCS . 40
Loop formulas for grounded equilibria . 47
Algorithm for SAT-based MCS . 48

ix

4 Topology-based Optimized Algorithm 51
4.1 Motivating Scenario . 52
4.2 Decomposition of Nonmonotonic MCS . 54

Graph-theoretic concepts . 55
Pruning . 55
Refined recursive import . 57
Algorithms . 58

4.3 Evaluation with Query Plans . 60
4.4 Proof of Proposition 13 . 63

5 Streaming Algorithm 69
5.1 Basic Streaming Procedure . 71
5.2 Parallelized Streaming . 78

6 Dynamic Multi-Context Systems 79
6.1 Motivating Scenario . 80
6.2 Basic Notions for Dynamic Nonmonotonic Multi-Context Systems 82
6.3 From Dynamic to Ordinary Multi-Context Systems 88
6.4 Multi-Context Systems Configuration . 89

Basic algorithm . 89
Quality-driven local configuration . 93
Dealing with irregular cases . 95
Prototype implementation . 95

III Implementation and Evaluation of Multi-Context Systems 97

7 The DMCS System 99
7.1 Global Level Architecture . 99
7.2 Architecture At Local Nodes . 102
7.3 Wrapping the Local Solvers . 105
7.4 DMCS System Usage . 106

Generating test cases with dmcsgen . 106
Running the system with dmcsm, dmcsc and dmcsd 108
Availability . 109

8 Experimental Evaluation 111
8.1 Benchmark Setup . 111
8.2 Experiments . 113
8.3 Observations and Interpretations . 114

DMCS v.s. DMCSOPT . 123
Streaming v.s. non-streaming DMCS . 125
Effects of the package size in streaming mode 125
Roles of topologies . 126

x

Summary . 127

9 Related Work, Conclusions
and Future Work 131
9.1 Related Work . 131

Distributed reasoning algorithms . 131
Distributed configuration . 132

9.2 Conclusions . 133
9.3 Future Work . 133

Further research problems for dynamic MCS 134
Implementation issues for DMCS . 134
Grounding-on-the-fly for non-ground ASP-based MCS 135
Conflict learning in DMCS . 136
Query answering in multi-context systems . 136
Distributed heterogeneous stream reasoning potential 136

.1 DMCS System Usage . 138
Generating test cases with dmcsgen . 138
Running the system with dmcsm, dmcsc and dmcsd 139

Bibliography 141

xi

Part I

Basic Notions

1

CHAPTER 1
Introduction

1.1 Motivation

In recent years, there has been an increasing interest in systems comprising multiple knowledge
bases. This approach allows one to deploy a wide range sophisticated applications, including
but not limited to data integration, multi-agent systems, argumentation, or project costs and time
management as an example of real-life applications, where regulations such as constraints like
working laws, holiday restrictions, etc. are kept in different knowledge bases like an ontology of
personal costs, rules that compute the work amount for work packages, personal timekeeping,
central administration data, local preferences, and so on.

The rise of distributed systems and the World Wide Web fostered this development, and to
date, several formalisms are available to accommodate multiple, possibly distributed knowledge
bases. Well-known formalisms are distributed SAT solving [62], distributed constraint satisfac-
tion [47,96], distributed ontologies in different flavors [63], MWeb [4], and different approaches
on Multi-Context Systems [19,21,56,58,78]; among these, Heterogeneous Nonmonotonic Multi-
Context System (MCSs) [19] is of our special interest. As a generalization of previous proposals
on Multi-Context Systems, MCSs brought in a powerful formalism in which one can specify
systems whose contexts hold different knowledge representation and reasoning powers, ranging
from simple, monotonic one such as querying to a database, to more sophisticated one such as
ontology reasoning, or even with nonmonotonicity like disjunctive logic programs under the an-
swer set semantics. On top of these distributed and heteregeneous knowledge bases, bridge rules
are a uniform way to interlink the contexts, in a possibly cyclic manner. A bridge rule updates
the local knowledge base at a context when certain beliefs are concluded to be true/false in other
contexts; hence, influences a context to derive new beliefs based on remote information. The
semantics of MCSs is given in terms of equilibria, which are intuitively states in which every
context announces a “local model” that is conformant with those local models of other contexts,
obeying the knowledge imported by bridge rules. The following simple example illustrates this
idea.

3

Figure 1.1: The magic box example

Example 1 (Inspired by the Magic-Box example [56]) Suppose that Batman and Robin were
chasing Joker and finally reached an area that is partially visible to both. Furthermore, assume
that Robin is currently wounded and cannot distinguish the distance to an object. Under these
conditions and their positions as in Figure 1.1, neither Batman nor Robin can tell the exact
position of Joker, as Batman only make sure that Joker is not in columns 2 or 3, while Robin can
only tell that Joker is on row 1. However, if they exchange their above partial knowledge then
Joker’s position can be exactly located at row 1, column 1.

To formalize this scenario, each of Batman and Robin can be modelized as a context whose
local knowledge bases contain their partial knowledges about Joker’s position, which are then
exchanged by bridge rules. A single equilibrium in this case gives the answer to Joker’s position.
For a concrete encoding, we refer the reader to Example 8 in Chapter 2.

Although virtually all formalisations of MCSs are inherently targeted for distributed sys-
tems, no truly distributed algorithms for MCSs exist. In [19], the authors gave an encoding to
evaluate equilibria using dlvhex [43]. While this approach inherits the capability to deal with
heterogeneity from dlvhex, it is totally centralized. In another attempt, [86] proposed an algo-
rithm for checking satisfiability of homogeneous, monotonic MCS with a centralized control
accesses contexts in parallel, thus is not truly distributed.

The lack of distributed algorithms for MCSs is due to several obstacles:

(1) to give semantics for MCSs, the local models at every context are abstracted to a uniform,
general notion called belief sets. This view however hinders the interference of algorithms
that evaluate the whole system at a global level with the local semantics and evaluation
process at each context;

4

(2) with the purpose of gearing MCSs towards real life applications, e.g., to model information
exchange between companies where certain levels of information hiding and security are
required, the formalism fosters this feature by allowing only necessary part of the informa-
tion, identified as interfaces, to be transferred between contexts. For the global algorithm,
this prevents a context to get more insight about its neighbors for potential optimization, for
example, to learn conflicts across contexts;

(3) the complete system topology might be unknown to a context, which disables decomposing
the system for more efficient, modular evaluation;

(4) last but not least, the bridge rules might form a cyclic information interlinking through
a group of contexts. In such cases, even though their local theories only require acyclic
evaluation, the global evaluation must carefully handle the cycles.

In this thesis, we will address these challenges and develop solutions towards efficient eval-
uation of MCSs. Before going into the goals in detail, we give a brief view of state of the art in
fields most related to the topic, namely Answer Set Programming (ASP) and other theoretical
developments regarding Multi-Context Systems.

1.2 State of the Art

Reasoning with logic programming under the answer set semantics

The abstract model of MCSs allows one to locate any kind of reasoning power at a context. To
realize this theoretical result in a practical implementation, the first decision one has to make is to
choose a suitable formalism that on the one hand, guarantees a certain level of expressiveness to
represent sophisticated scenarios, and on the other hand, has efficient implementations available.
Our choice for this first step is ASP [55], a recently emerged tool for declarative knowledge
representation and reasoning, because it fulfills the needs above.

ASP is a formalism that allows one to represent problems by logic programs (sets of finite
logic rules), and it defines the semantics of the programs as sets of models in which all rules
are satisfied; as such, each model is a solution to the original problem. The traditional ASP for-
malism does not allow function symbols in the programs to guarantee termination but it is still
powerful because of supported expressive constructs such as negation as failure in rule bodies,
disjuction in rule heads. These constructs, together with the possibility of having cyclic depen-
dencies between predicates, are suitable for handling incomplete, inconsistent information, i.e.,
non-monotonicity, as well as for expressing non-determinism. From the complexity point of
view, ASP can represent problems and reasoning tasks having complexity up to ⌃

P

2 .
For such expressibility, ASP is a suitable tool to serve as a host language for advanced rea-

soning tasks. ASP solvers can be used as underlying engines for processing such dedicated
tasks; those were implemented can be listed as planning [37], diagnostic reasoning [36], com-
puting updates of nonmonotonic knowledge bases represented as logic programs [40], or the
semantics of inheritance programs [24]. The increasing interest in ASP is also documented by

5

the formation of the Working Group on Answer Set Programming (WASP),1 supported by the
European Commission from 2002 to 2005.

Further advanced features have been added to modern ASP, for example, function sym-
bols [10, 16, 27, 28, 44, 45, 92], paracoherent ASP [39], open ASP [60, 61], modularity [30, 66],
ASP with external information [43], reactive, online ASP [51], etc. However, in this thesis, we
stick to traditional ASP as there are efficient implementations available for these tasks. This is
also the second reason for us to choose ASP to work with.

Indeed, one of the reasons contributed to the success of ASP in knowledge representation
and reasoning is the availability of a number of effective ASP solvers which have been devel-
oping for more than 15 years. One can name the most successful engines such as clasp,2 DLV,3

and Smodels4 which exploit model-building on the grounded programs with advanced search
techniques such as conflict learning, unfounded sets to gain performance. Besides, there are
alternative, new approaches for evaluate ASP programs such as using SAT solvers by transla-
tion via loop formulas [76], or grounding-on-the-fly ASP [34, 72, 83] that saves memory during
run time. With this diversity of developing ASP, one can expect more and more efficient en-
gines in the near future. This development process is also encouraged by the ASP competition
which is co-organized biennial with LPNMR, a crucial conference for Logic Programming and
Nonmonotonic Reasoning.

Multi-context systems

The problem of context has a long tradition in different areas of Artificial Intelligence (AI).
But the issue of formalizing contexts has become widely discussed only in the late 80s, when
J. McCarthy proposed the formalization of context as a crucial step toward the solution of the
problem of generality [77], and was later elaborated in his note [78]. Intuitively, an axiom only
holds in certain contexts and does not hold in more general ones; therefore, contexts are needed
in representing/formalizing common sense knowledge.

Under McCarthy’s supervision, Guha proposed in his PhD thesis [59] a first formalization
of contexts a long the lines suggested in [78]. These works were the starting point of Proposi-
tional Logic of Context (PLC) [25] by Buvac and Manson, in which contexts are treated as first
class objects (i.e., the logical language must contain terms for contexts, and the interpretation
domain contains objects for contexts), and two main contextual reasoning mechanisms are those
of entering and exiting a context. Following a different approach, Giunchiglia proposed to for-
malize contexts based on the problem of locality [57], which emphasizes more on formalizing
contextual reasoning than on formalizing contexts as first class objects. Giunchiglia and Serafini
then proposed Multi-Context Systems (MCSs) as a proof-theoretical framework for contextual
reasoning [58], and Serafini and Bouquet in their comparison [89] presented that MCSs are more
general than PLC and a more adequate formalizations of contexts.

The above proposals share a property that contexts are based on classical, monotonic rea-
soning, i.e., the acquisition of new information is based on the presence of other information

1http://www.kr.tuwien.ac.at/research/projects/WASP/
2http://www.cs.uni-potsdam.de/clasp/
3http://www.dlvsystem.com/dlvsystem/index.php/Home
4http://www.tcs.hut.fi/Software/smodels/

6

http://www.kr.tuwien.ac.at/research/projects/WASP/
http://www.cs.uni-potsdam.de/clasp/
http://www.dlvsystem.com/dlvsystem/index.php/Home
http://www.tcs.hut.fi/Software/smodels/

only. However, in many natural situations, new information is obtained due to a lack/absence of
other information. This motivated to generalize MCSs with a non-monotonic reasoning capabil-
ity. Roelofsen and Serafini made a first step a long this idea in [85] by adding default negation
to a rule based MCS and thus combining contextual and default reasoning; however, this ap-
proach has a serious weakness regarding skeptical reasoning. Brewka et al. [21] later proposed
a syntactical counterpart of the approach in [85], called Contextual Default Logic, as a contex-
tual variant of Reiter’s Default Logic [84]. This proposal, on the one hand, paves the way to
remedy the weakness above, and on the other hand, is closer to standard ways of representing
non-monotonic inference and closer to implementation.

Nevertheless, the formalizations in [21, 85] are homogeneous, in the sense that local theo-
ries at every context in a system are of the same type. In practical distributed applications, this
assumption normally does not hold; for examples, when different companies join and share in-
formation via an MCS, they would prefer to keep their own internal structures and communicate
via a uniform interface, rather than making significant changes internally. Inspired by this obser-
vation, a higher abstract level of MCSs was proposed in [19], namely a framework that allows
both non-monotonicity and heterogeneity regarding local theories at the contexts. Intuitively,
according to this generic framework:5

• contexts are constructed based on a notion of logic in a very broad sense: basically only
sets and functions on sets are taken into account;

• the unit elements in the logics are abstracted in terms of beliefs, and models are abstracted
to belief sets;

• interlinking of information between contexts is done via a uniform means called bridge
rules, which support negation as failure;

• the semantics of MCSs is defined in terms of equilibria, which are intuitively stably inter-
linked local models.

As already mentioned in Section 1.1, due to the generality of MCSs, several obstacles are
observed that challenge efforts to realize this theoretical results in terms of practical implemen-
tation. In this thesis, we take this challenge and give solutions to the problem. The detail goals
and main results of the thesis are presented next.

1.3 Goals of the Thesis, Main Results, and Structure

The main goal of this thesis is to develop effcient meta algorithms for evaluating Multi-Context
Systems in a truly distributed way, and to realize the algorithms in terms of prototype implemen-
tation.

In more concrete terms, the main aspects considered in the thesis are the following:

5For the details on the formalization, we refer the reader to Section 2.4.

7

Meta algorithms and optimization techniques for evaluating MCSs in a distributed man-
ner. We first develop a basic algorithm for evaluating MCSs with emphasis on being truly
distributed [31]. As a basic version, we deal with obstacles (1)-(4) in a generic way: contexts
just exchange belief sets and the call history between each other; no further information is used.
Belief sets are a uniform representation of local results obtained from the local solving processes
at different nodes, which are based on different semantics. This allows us to uniformly deal with
local results and concentrate on the global aspects of the algorithm. At this level, the semantics
of the system is represented by belief states (which are sequences of belief sets, each corresponds
to a local context) and we need to consistently combine those from neighboring contexts before
starting the local solving process at any non-leaf context. Regarding the call history, it is used
to detect cycles. When a context gets a request and sees its own identifier in the call history, this
means a cycle was detected and the context is responsible for breaking the cycle by means of
guessing. The checking part will be done later on the same context, along the returning path, by
making use of the combination operator of belief states mentioned above.

By limiting what a context should know about the system and what is transferred between
them, we obtain a truly distributed algorithm for evaluating MCSs but at the same time suffer
some scalability issues. To enhance the performance in an optimized version of the algorithm,
we reveal more meta-level information to contexts, namely the topological dependency of the
system for decomposing it into a block tree and the interface between contexts for optimizing
the data transfer between blocks [8]. The former breaks the cycles in advance, while the latter
reduces a significant amount of duplicated local evaluation. Both techniques show remarkable
improvement in performance compared to the basic version.

Nevertheless, as the first two algorithms aim at computing all equilibria of an MCS, they can
not escape from scability issues as well as memory consumption when local contexts produce
exponentially many local models, which is often the case in ASP. Therefore, computing models
in a streaming way was investigated for a more pratical usage [33]. The idea here is not to
return all local models from a context to its parent in one shot but rather to gradually return them
in small portions. This way, a memory blowup can be avoided, and contexts can also process
in parallel instead of inactively waiting for all answers from all neighbors. This approach is
more user-friendly as one can observe the answers gradually with acceptable interval rather than
waiting for long for all answers at once. More importantly, it meets certain pratical tasks that do
not require to compute all answers, such as consistency checking.

Configuration of Dynamic MCS. We also look into an extended setting: dynamic MCS [32],
where the linking between contexts is not fixed at design time and is only decided at run time,
before evaluating the equilibria. For this setting, we first extend the MCS formalism to handle
“dynamic” rules, and then formalize the notion of context substitution to bind dynamic MCSs to
the original/static ones. The substitution uses quality matching from schematic beliefs to local
beliefs, which is assessed by a similarity function. Based on these building blocks, we design a
truly distributed algorithm to config dynamic MCSs, that is, computing the binding.

Prototype Implementation and Experimental Evaluation. As the practical aspect of the the-
sis, we realized the proposed algorithms in a prototype implementation [9]. To assess the effect

8

of the optimization techniques, we set up a benchmarking system and did thorough experiments
with automatically generated data. The test results confirm our expectation of the optimization
techniques in general (details can be found in Chapter 8):

• the decomposition technique absolutely improves the performance in non-streaming mode;

• the streaming mode is definitely worth pursuing: there are cases where the non-streaming
mode times out while the streaming mode can still find some first answers;

• in streaming mode, it is very important to choose the package size of each returned portion
of the whole answer;

• the system topology plays an important role as some optimization techniques show drastic
improvement in some specific topologies.

However, there are also special/rare cases when some optimization pushes so hard that the per-
formance is actually not as good as using no optimization. These interesting observations can
be input for further investigation to enhance our system.

Thesis Organization. The remainder of this thesis is organized as follows. In Chapter 2,
we give a formal introduction to fields related to the thesis, namely Answer Set Programming,
Loop Formulas, and Multi-Context Systems. The main contributions, which are presented in
Chapters 3 to 7, are devided into two main parts. In the first part, Chapters 3 to 6, we develop
algorithms for evaluating MCSs, including a basic distributed algorithm, a topology-based op-
timization algorithm, and a streaming algorithm; and for configuring dynamic MCSs. In the
second part, we present important aspects of the prototype implementation in Chapter 7 and a
thorough experiments of the proposed algorithms in Chapter 8. Finally, the results of the the-
sis are summarized in Chapter 9, together with comparison to related works, and an outlook to
interesting future works that come from experiences working on this thesis.

9

CHAPTER 2
Preliminaries

This Chapter provides a more technical view of the underlying machineries used in this thesis.
Firstly, we introduce the basics and principles of Answer-Set Programming. Loop Formulas are
then described as a bridge to connect ASP to SAT solving. Finally, we outline Multi-Context
Systems, a framework for distributed heterogeneous reasoning, which is the main topic of the
thesis.

2.1 Declarative Logic Programming

In computer science, programming languages can be categorized into two big programming
concepts, namely imperative programming and declarative programming. On the one hand, an
imperative program comprises of a sequence of commands for the computer to perform, hence
focuses on how to solve a problem by an algorithm. Such imperative programming languages
are Fortran, C, C++, Java,... On the other hand, a declarative program concentrates on repre-
senting what are the properties of the desired solution. Therefore, programmers using purely
declarative programming usually do not need to know how the solver process their programs.
Further classifications in declarative programming bring us functional programming, logic pro-
gramming, and constraint programming with LISP, Haskell, and variants of Prolog as typical
languages.

Compared to imperative programs, declarative programs are usually more concise and more
powerful in terms of reasoning abilities. Any programer who has tried to solve the Hamilto-
nian Cycle problem in C++ or Java can easily verify that he/she must use a deep-first-search
implemented in a recursive way, and it cannot be written in just 6 lines like our example in
Section 1.2.

Hereafter, we will focus on Declarative Logic Programming. A programmer using this
paradigm needs to specify in his/her logic program the relationships in the domain of discourse
obeying the syntax of a language, and then gets the output through the semantics of the program.

There are logic programming languages such as Prolog which are not purely declarative.
Evaluating such a program depends on the order of rules in the program and the order of atoms

11

in rules; therefore, makes it not very comprehensible and not easy to modify. A Prolog program
does not guarantee termination. Moreover, Prolog provides extra-logical features to control the
execution of the program, e.g., the cut rule “!” which does not have a logical meaning.

A different paradigm of logic programming introduced by Gelfond and Lifschitz is Answer-
Set Programming [54], which is purely declarative and guarantees termination. We have in-
troduced ASP in Section 1.2; next, we will breifly present its syntax and semantics in a more
technical way. For a detail tutorial, we refer the reader to [42].

2.2 Logic Programs under the Answer-Set Semantics

Syntax of answer-set programs

Let P , C, V be disjoint sets of predicate, constant, and variable symbols from a first-order vocab-
ulary �, respectively, where V is infinite and P and C are finite. Assume that elements from C
and P are string constants that begin with a lowercase letter or double-quoted, and elements from
C can also be integer numbers; elements from V begin with an uppercase letter. A term is either
a constant or a variable. Given a predicate p 2 P , an atom is defined as p(t1, . . . , t

k

), where k
is called the arity of p and each t1, . . . , t

k

is a term. Atoms of arity 0 are called propositional
atoms.

A classical literal (or simply literal) l is an atom a or a negated atom ¬a, where “¬” is the
symbol for true (classical) negation. Its complementary literal is ¬a (resp., a). A negation as
failure literal (or NAF-literal) is a literal l or a default-negated literal not l. It evaluates to true
if l cannot be proved, i.e., either l is false or we do not know whether l is true or false.

A rule r is an expression of the form

a1 _ . . . _ a
k

 b1, . . . , bm, not b
m+1, . . . , not bn , k � 0 ,m � n � 0 , (2.1)

where a1, . . . , a
k

, b1, . . . , bn are classical literals. We say that a1, . . . , a
k

is the head of r while
the conjunction b1, . . . , bm, not b

m+1, . . . , not bn is the body of r. We use H(r) to denote
r’s head literals, and B(r) to denote the set of all its body literals B+

(r) [B�
(r), where

B+
(r) = {b1, . . . , bm} and B�

(r) = {b
m+1, . . . , bn} are called the positive and negative body,

respectively. A rule r without head literals (i.e., k = 0) is an integrity constraint. A rule r
with exactly one head literal (i.e., k = 1) is a normal rule. If the body of r is empty (i.e.,
m = n = 0), then r is a fact, and we often omit “ ”.1 An extended disjunctive logic program
(EDLP, or simply program) P is a finite set of rules r of the form (2.1).

Programs without disjunction in the heads of rules are called extended logic programs (ELPs).
A program P without NAF, i.e., for all r 2 P,B�

(r) = ; is called a positive logic program. If,
additionally, no strong negation occurs in P , i.e., the only form of negation is default negation
in rule bodies, then P is called normal logic program (NLP). The generalization of an NLP by
allowing default negation in the heads of rules is called generalized logic program (GLP). Ad-
ditional program classes of logic programming with the corresponding restrictions on the rules
in a program a summarized in Table 2.1.

1In this thesis, we will use both forms “a ” and “a.” to denote that a is a fact in a logic program.

12

Name restriction
definite Horn k = 1, n = m
Horn k 1, n = m
normal k 1

definite k � 1, n = m
positive n = m
disjunctive no restriction

Table 2.1: Program classes

Example 2 The following set of rules comprises a logic program:

P =

8
>>>><

>>>>:

flies(X) bird(X), not ¬normal(X).
bird(X) penguin(X).

¬normal(X) penguin(X).
penguin(tweety).
bird(joe).

9
>>>>=

>>>>;

In this program, the first rule is a normal rule encoding a default inference “birds normally
fly.” The next two are positive rules saying that penguins are birds and penguins are abnormal,
respectively. Finally, there are two facts about tweety and joe; the former is a penguin while the
latter is known to be a bird.

Intuitively, one should be able to conclude from this program that joe flies, tweety is a bird
but it does not fly. This is accomplished by the semantics of Answer-Set programs presented
next.

Semantics of answer-set programs

The semantics of extended disjunctive logic programs is defined via variable-free programs.
Hence, we first define the ground instantiation of a program.

The Herbrand universe of a program P , denoted HU
P

, is the set of all constant symbols
C ✓ C appearing in P . If there is no such constant symbol, then HU

P

= {c}, where c is an
arbitrary constant symbol from �. Terms, atoms, literals, rules, programs, etc. are ground iff
they do not contain any variables. The Herbrand base of a program P , denoted HB

P

, is the set
of all ground literals that can be constructed from the predicate symbols appearing in P and the
constant symbols in HU

P

. A ground instance of a rule r 2 P is obtained from r by replacing
every variable that occurs in r by a constant symbol in HU

P

. We use ground(P) to denote the
set of all ground instances of rules in P .

13

Example 3 Take the program P from Example 2, its ground version is

ground(P) =

8
>>>>>>>>>><

>>>>>>>>>>:

flies(tweety) bird(tweety), not ¬normal(tweety).
bird(tweety) penguin(tweety).

¬normal(tweety) penguin(tweety).
flies(joe) bird(joe), not ¬normal(joe).
bird(joe) penguin(joe).

¬normal(joe) penguin(joe).
penguin(tweety).
bird(joe).

9
>>>>>>>>>>=

>>>>>>>>>>;

The semantics for EDLPs is defined first for positive ground programs. A set of literals
X ◆ HB

P

is consistent iff {p,¬p} (X for every atom p 2 HB
P

. An interpretation I relative
to a program P is a consistent subset of HB

P

. We say that a set of literals S satisfies a rule r
if H(r) \ S 6= ; whenever B+

(r) ✓ S and B�
(r) \ S = ;. A model of a positive program

P is an interpretation I ✓ HB
P

such that I satisfies all rules in P . An answer set of a positive
program P is the least model of P w.r.t. set inclusion.

To extend this definition to programs with negation as failure, we recall the Gelfond-Lifschitz
transform (also often called the Gelfond-Lifschitz reduct) from a program P relative to an in-
terpretation I ✓ HB

P

, denoted P I , as the ground positive program obtained from ground(P)

by

(i) deleting every rule r such that B�
(r) \ I 6= ;, and

(ii) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ✓ HB
P

such that I is an answer set of P I .

Example 4 Consider ground(P) from Example 3 and an interpretation I = {penguin(tweety),
bird(tweety),¬normal(tweety), bird(joe),flies(joe)}. The reduct of P wrt. I is

P I

=

8
>>>>>>>><

>>>>>>>>:

bird(tweety) penguin(tweety).
¬normal(tweety) penguin(tweety).

flies(joe) bird(joe).
bird(joe) penguin(joe).

¬normal(joe) penguin(joe).
penguin(tweety).
bird(joe).

9
>>>>>>>>=

>>>>>>>>;

One can check that I satisfies all rules of P I and is minimal wrt set inclusion. Therefore, I is an
answer set of P .

A constraint is used to eliminate “unwanted” models from the result, since its head is im-
plicitly assumed to be false. A model that satisfies the body of a constraint is hence dismissed
from the set of answer sets.

The main reasoning tasks associated with EDLPs under the answer-set semantics are the
following:

14

• decide whether a given program P has an answer set (consistency checking);

• given a program P and a ground formula �, decide whether � holds in every (resp., some)
answer set of P (cautious (resp., brave) reasoning);

• given a program P and an interpretation I ✓ HB
P

, decide whether I is an answer set of
P (answer-set checking); and

• compute the set of all answer sets of a given program P .

Answer-set solvers

With a lot of efforts put into implementing Answer-Set Solvers during the last two decades, there
have been successful implementations that can solve problems at sizes comparable to practical
needs. We list in the following some well-known solvers:

• ASPeRix2 escapes from the preliminary phase of rule instantiation by integrating it in
the search process [72] (called grounding on the fly) while other solvers choose the pre-
grounding approach, i.e., ground the program first and then compute answer sets of the
grounded instance. An important benefit of this technique is to avoid the bottleneck of
instantiation phase arising from some problems because of the huge amount of memory
needed to ground all rules of a program, even if these rules are not really useful in cer-
tain cases. The solver [73] is at a very preliminary state of development but experimental
results already show good performances for definite, stratified and almost stratified pro-
grams.

• ASSAT3 uses a technique called Loop Formulas [76] (described in details in Section 2.3)
to translate an answer set program into a propositional clausal theory (SAT instance), and
then it just needs to feed the theory to a SAT solver for computing answer sets. Since
the SAT community has been developing many successful solvers, some are deployed in
practical applications, this approach is definitely worth it as the solver can exploit all the
best results from the SAT solving area with the effort of providing the translation.

• clasp4 is a part of the Potassco project,5 which contains bundles tools for Answer Set Pro-
gramming developed at the University of Potsdam. clasp combines the high-level model-
ing capacities of ASP with state-of-the-art techniques from the area of Boolean constraint
solving. The primary clasp algorithm relies on conflict-driven nogood learning [52], a
technique that proved very successful for SAT. As the outcome, clasp has been the most
powerful ASP solver; it won the two latest ASP competitions in 2009 and 2011.

• DLV6 is a state-of-the-art answer set solver which has been developed at the University of
Calabria and the Vienna University of Technology for over more than a decade.

2http://www.info.univ-angers.fr/pub/claire/asperix/
3http://assat.cs.ust.hk/
4http://www.cs.uni-potsdam.de/clasp/
5http://potassco.sourceforge.net/
6http://www.dlvsystem.com/dlvsystem/index.php/Home/

15

http://www.info.univ-angers.fr/pub/claire/asperix/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/clasp/
http://potassco.sourceforge.net/
http://www.dlvsystem.com/dlvsystem/index.php/Home/

The system [74] has a richer language than extended disjunctive logic programs, and
supports additional constructs (e.g., aggregates, weak constraints) some of which increase
the expressivity. DLV supports certain built-in predicates (e.g. bounded integer arithmetic
and comparisons), and offers a range of front-ends for specific KR tasks (e.g., planning
or diagnosis), as well an interface to databases. The engine has been extended in many
directions leading to a family of systems that support different purposes, including dlv-ex,
dlvhex, OntoDLV, dlv-db, and dlt.

• Smodels7 allows for the computation of answer sets for normal logic programs. It has
GNT [65]8 as an extended prototype version for the evaluation of disjunctive logic pro-
grams. Smodels is another extension to pure answer-set programming allowing to min-
imize/maximize over sets of predicates. During model computation Smodels does not
compute only optimal answer sets, but first evaluates an arbitrary model and then incre-
mentally only returns “better” answer sets, such that the last answer set found by Smodels
is the optimal one. Similar to DLV, Smodels allows for a restricted form of integer arith-
metics and lexicographic comparison predicates.

2.3 Loop Formulas

Logic programming with answer-set semantics and propositional logic are closely related. It
has been shown in [80, 97] that there is a local and modular translation from clauses to logic
program rules such that the models of a set of clauses and the answer sets of its corresponding
logic program are in one-to-one correspondence.

The other direction (from logic program rules to clauses) is however more difficult and
interesting. When such a translation in this direction is available, one can exploit all the state-
of-the-art SAT solvers to do the hard work of computing the models of the clauses, and then
convert the models to the answer sets of the corresponding logic program. There have been
several proposals regarding this approach such as [11] for normal logic programs which uses
a quadratic number of propositional variables, or [64] for the class of 2-literal programs which
does not require any extra variable.

In [76], the authors proposed a translation for normal logic programs which does not need
extra variables but might introduce in the worst case exponentially many clauses. It is motivated
by the relationship between the answer-set semantics and the completion semantics. Basically,
every answer set of a logic program is also a model of the completion of that program, but the
other way only holds for ‘’tight” programs, i.e., those without positive cycles between atoms.
To make it possible for the general case, one must treat positive cycles carefully so that no
unfounded model is allowed.

We start presenting this approach by recalling the notion of completion. In the following,
given a logic program P , atom(P) denotes the set of atoms appearing in P . For a set of atoms
A, let ¬.A = {¬a | a 2 A} and, as usual,

W
F =

W
f2F f and

V
F =

V
f2F f (note thatW

; = ? and
V
; = >.

7http://www.tcs.hut.fi/Software/smodels/
8http://www.tcs.hut.fi/Software/gnt/

16

http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/

Definition 1 ([76]) Given a normal logic program P , i.e., a set of rules of the form (2.1) where
k 1, its completion, written Comp(P), is the union of the constraints in P and the Clark
completion [29] of the set of rules in P , i.e., the following sentences:

• for each p 2 atom(P), let r1, . . . , r
`

be all the rules whose heads are {p}, then

p ⌘
^

B+
(r1) ^

^
¬.B�

(r1) ^ . . . ^
^

B+
(r

`

) ^
^

¬.B�
(r

`

)

is in Comp(P). If ` = 0, then the equivalence is p ⌘ ?, which is equivalent to ¬p.

• if r = b1, . . . , bm, not b
m+1, . . . , not bn is a constraint in P then

W
¬.B+

(r) _W
B�

(r) is in Comp(P).

Example 5 Consider the following simple program:

P =

⇢
a b. b a. a not c.
c d. d c. c not a.

�

Then Comp(P) = {a ⌘ (b _ ¬c), c ⌘ (¬a _ d), b ⌘ a, d ⌘ c}. According to the answer set
semantics, P has two models {a, b} and {c, d}. However, Comp(P) has three models, namely
the two above and additionally {a, b, c, d}.

Notice that the last model in Comp(P) is unfoundedly deduced since a, b (and also c, d)
depend on each other in a cyclic way. To eliminate such unfounded models, we need the notions
of positive cycles and loop formulas.

Given a logic program P , the positive dependency graph of P is denoted by G
P

= (V,E),
where V = atom(P) and (p, q) 2 E if there is a rule r such that H(r) = {p} and q 2 B+

(r).
Informally, an edge from p to q means that p positively depends on q. From this dependency,
loops are defined as follows.

Definition 2 ([76]) Given a finite normal logic program P that may contain constraints, a non-
empty subset L of atom(P) is called a loop of P , if for any p and q in L, there is a path of length
> 0 from p to q in the positive dependency graph of P , G

P

, such that all the vertices in the path
are in L.

This means that if L is non-empty, and not a singleton, then it is a loop iff the subgraph of G
induced by L is strongly connected, i.e., in this subgraph, every vertex is reachable from every
other vertex. If L is a singleton, say {p}, then it is a loop iff there is an edge from p to itself in
G

P

.
The program P in Example 5 has two loops, namely L1 = {a, b} and L2 = {c, d}.
Given a logic program P and a loop L in P , the following two sets of rules are associated

with them:

R+
(L,P) = {r | r 2 P,H(r) \ L 6= ;, B+

(r) \ L 6= ;},
R�

(L,P) = {r | r 2 P,H(r) \ L 6= ;, B+
(r) \ L = ;}.

17

In the following, when the program P is clear from the context, we will write R+
(L,P) as

R+
(L), and R�

(L,P) as R�
(L).

Intuitively, R+
(L) contains rules in the loop, and they give rises to edges connecting vertices

in L in the positive dependency graph G
P

; on the other hand, R�
(L) contains those rules about

atoms in L that are out of the loop. For instance, for the program P in Example 5 and its two
loops L1, L2, we have that:

R+
(L1) = {a b. b a.} R�

(L1) = {a not c.}
R+

(L2) = {c d. d c.} R�
(L1) = {c not a.}

For a loop L in a logic program P , one can observe that ; is the only answer set of R+
(L).

Therefore, an atom in the loop cannot be in any answer set unless it is derived using some other
rules, i.e., those from R�

(L). This motivates the definition of loop formulas.

Definition 3 Let P be a logic program and L a loop in it. Then, the loop formula associated
with L (under P), denoted by miLF (L,P), or simply LF (L) when P is clear from the context,
is the following implication:

⇣_
L
⌘
�

0

@
_

r2R�(L)

B(r)

1

A

Example 6 Consider again the program P in Example 5. With two loops L1 and L2 as described
above, we have that LF (L1) = (a _ b) � ¬c and LF (L2) = (c _ d) � ¬a. Adding these two
loop formulas to Comp(P) will eliminate the model {a, b, c, d}, and the remaining models,
namely {a, b} and {c, d} are exactly the answer sets of P .

The following theorem shows the correctness of this translation.

Theorem 1 [76] Let P be a logic program, Comp(P) its completion, and LF the set of loop
formulas associated with the loops of P . We have that for any set of atoms, it is an answer set
of P iff it is a model of Comp(P) [LF .

We have presented the basic loop formulas for normal logic programs. This approach has
gained interest from the KR community and there have been following works covering further
aspects, namely:

• a generalization of Theorem 1 to cover disjunctive programs, programs with nested ex-
pressions in [48],

• exploration of a model-theoretic counterpart of loop formulas [67],

• explanation of the blow up of number of loop formulas [75],

• development of loop formulas for circumscription [69], disjunctive logic programs [68],
for non-ground programs [70], and for first-order stable semantics [71].

18

2.4 Multi-Context Systems

Formalization of multi-context systems

This Section summarizes the formalization of Heterogeneous Nonmonotonic Multi-Context Sys-
tems (MCSs) proposed in [19], which serves as the base of this thesis. The idea behind MCSs is
to allow different logics to be used in different contexts, and to model information flow among
contexts via bridge rules. The notion of logic is defined as follows.

Definition 4 ([19]) A logic L = (KB
L

,BS
L

,ACC
L

) is composed of the following compo-
nents:

1. KB
L

is the set of well-formed knowledge bases of L. We assume that each element of
KB

L

is a set.

2. BS
L

is the set of possible belief sets,

3. ACC
L

: KB
L

! 2

BS
L is a function describing the “semantics” of the logic by assigning

to each element of KB
L

a set of acceptable sets of beliefs.

This notion is generic as it captures well-known logics (defined over a signature ⌃) such as:

• Default logic [84]:

– KB: the set of default theories based on ⌃,

– BS: the set of deductively closed set of ⌃-formulas,

– ACC(kb): the set of kb’s extensions.

• Normal logic programs under answer set semantics [55]:

– KB: the set of normal logic programs over ⌃,

– BS: the set of sets of atoms over ⌃,

– ACC(kb): the set of kb’s answer sets.

• Propositional logic under the closed world assumption [18]:

– KB: the set of propositional formulas over ⌃,

– BS: the set of deductively closed set of propositional ⌃-formulas, (i.e., Cn(S) =

S),

– ACC(kb): the (singleton set containing the) set of kb’s consequences under closed
world assumption, i.e., ACC(') = Cn(CWA(')), where CWA(') = {'}[{¬p |
p 2 ⌃ ^ ' 6|= p}.

Based on logics, bridge rules are introduced to provide a uniform way of interlinking het-
erogeneous information sources as follows.

19

Definition 5 ([19]) Let L = {L1, . . . , Ln

} be a set of logics. An L
k

-bridge rule over L, 1
k n, is of the form

s (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : p
m

) (2.2)

where 1 r
k

 n, p
k

is an element of some belief set of L
r

k

, and for each kb 2 KB
k

, it holds
that kb [{s} 2 KB

k

.

Here, head(r) is used to denote the head of a bridge rule r. Bridge rules refer in their bodies
to other contexts and can thus add information to a context based on what is believed or disbe-
lieved in other contexts. In contrast to Giunchiglia’s (monotonic) multi-context systems [57],
there is no single, global set of bridge rules in MCSs. Instead, each context knows only its own
bridge rules. This can be emphasized by adding the local context identifier to the heads of the
bridge rules when necessary. Now that the means for connecting contexts is available, MCSs
can be formally defined.

Definition 6 ([19]) A multi-context system M = (C1, . . . , Cn

) consists of a collection of con-
texts C

i

= (L
i

, kb
i

, br
i

) where L
i

= (KB
i

,BS
i

,ACC
i

) is a logic, kb
i

is a knowledge base
(an element of KB

i

), and br
i

is a set of L
i

-bridge rules over {L1, . . . , Ln

}.

Example 7 ([20]) As a simple example, consider M = (C1, C2), where the contexts are dif-
ferent views of a paper by its co-authors A1 and A2 who reason in different logics. In C1, we
have Classical Logic as L1, and

• the knowledge base kb1 = {unhappy � revision},

• the bridge rules br1 = {unhappy (2 : work)}.

Intuitively, if A1 is unhappy with the paper, then she wants a revision, and if A2 finds that the
paper needs more work, then A1 feels unhappy.

In C2, we have Answer Set Programming as L2, and

• the knowledge base kb2 = {accepted good , not ¬accepted},

• the bridge rules br2 = {work (1 : revision); good not (1 : unhappy)}.

Intuitively, A2 thinks that the paper, if good, is usually accepted; moreover, she infers that more
work is needed if A1 wants a revision, and the paper is good if there is no evidence that A1 is
unhappy.

Example 8 The scenario from Example 1 can be formalized by a multi-context system M =

(C1, C2), where we have in both contexts L1, L2 as Answer Set Programming, and:

• kb1 =

⇢
at_col(X) see_col(X).

¬at_col(X) ¬see_col(X).

�
[R [F [F1

• br1 =

⇢
at_row(X) (2 : at_row(X)).

¬at_row(X) _ covered_row(X) not (2 : see_row(X)), (1 : row(X)).

�

20

• kb2 =

⇢
at_row(X) see_row(X).

¬at_row(X) ¬see_row(X).

�
[R [F [F2

• br2 =

⇢
at_col(X) (1 : at_col(X)).

¬at_col(X) _ covered_col(X) not (1 : see_col(X)), (2 : col(X)).

�
,

where

• R =

8
>>>>>><

>>>>>>:

joker_in at_row(X).
joker_in at_col(X).

at_row(X) joker_in, row(X), not ¬at_row(X).
¬at_row(X) joker_in, row(X), at_row(Y), X 6= Y.

at_col(X) joker_in, col(X), not ¬at_col(X).
¬at_col(X) joker_in, col(X), at_col(Y), X 6= Y.

9
>>>>>>=

>>>>>>;

• F = {row(1). row(2). row(3). col(1). col(2). col(3).}

• F1 = {¬see_col(2). ¬see_col(3).}

• F2 = {see_row(1).}

Intuitively, C1 formalizes Batman’s knowledge about the magic box and C2 formalizes that
of Robin, respectively. The facts in F represent the magic box of size 3 ⇥ 3. F1 and F2 show
what Batman and Robin see, respectively: Batman sees that Joker is neither in columns 2 nor
3, while Robin sees that Joker is on row 1. The rules in R make sure that there is only one
fact of each predicate at_row and at_col holds in each local model of each context when the
fact joker_in is set to true, i.e., Joker’s position is uniquely determined in both Batman and
Robin’s mind. The rest of local rules in kb1 and kb2 determine whether Joker is in and if yes,
his position based on what can be seen locally by Batman, Robin, and from the other. The latter
is communicated by bridge rules in br1, br2.

Semantics of multi-context systems

The semantics of an MCS is defined in terms of special belief states, which are sequences S =

(S1, . . . , Sn

) such that each S
i

is an element of BS
i

. Intuitively, S
i

should be a belief set of
the knowledge base kb

i

; however, also the bridge rules must be respected. To this end, kb
i

is
augmented with the conclusions of its bridge rules that are applicable. More precisely, a bridge
rule r of form (5) is applicable in S, if p

i

2 S
c

i

, for 1 i j, and p
k

2 S
c

k

, for j+1 k m.
Denote by by app(R,S) the set of bridge rules r 2 R that are applicable in S. Then,

Definition 7 ([20]) A belief state S = (S1, . . . , Sn

) of a multi-context system M is an equilib-
rium iff S

i

2 ACC
i

(kb
i

[{head(r) | r 2 app(br
i

, S)}), 1 i n.

An equilibrium thus is a belief state which contains for each context an acceptable belief set,
given the belief sets of the other contexts.

Example 9 ([20]) Reconsidering M = (C1, C2) from Example 7, we find that M has two
equilibria, namely:

21

• E1 = (Cn({unhappy , revision}), {work}), and

• E2 = (Cn({unhappy � revision}), {good , accepted}),

where Cn(·) is the set of all classical consequences.
As for E1, the bridge rule of C1 is applicable in E1, and Cn({unhappy , revision}) is the

(single) acceptable belief set of kb1[{unhappy}; the first bridge rule of C2 is applicable in E1,
but not the second; clearly, {work} is the single answer set of kb2 [{work}.

As for E2, the bridge rule of C1 is not applicable in E2, and Cn({unhappy � revision}) =
Cn(kb1); now the second bridge rule of C2 is applicable but not the first, and {good , accepted}
is the single answer set of kb2 [{good}.

Example 10 Consider the multi-context system M from Example 8. This MCS has a sin-
gle equilibrium S = (S1, S2) where S1 = F [F1 [F3 and S2 = F [F2 [F3 where
F3 = {joker_in, at_row(1),¬at_row(2),¬at_row(3), at_col(1),¬at_col(2),¬at_col(3)}.
This equilibrium ideed reflects the intuition in the scenario in Example 1, where Batman and
Robin together can infer the location of Joker, while any single one of them, without communi-
cation, cannot accomplish this task.

Example 11 Let M = (C1, C2, C3, C4) be an MCS such that all L
i

are ASP logics, with alpha-
bets A1 = {a}, A2 = {b}, A3 = {c, d, e}, A4 = {f, g}. Suppose

– kb1 = ;, br1 = {a (2 : b), (3 : c)};

– kb2 = ;, br2 = {b (4 : g)};

– kb3 = {c d; d c}, br3 = {c _ e not (4 : f)};

– kb4 = {f _ g }, br4 = ;.

One can check that S = ({a}, {b}, {c, d}, {g}) is an equilibrium of M .

Similar to answer sets of modular logic programs [41], equilibria suffer from groundedness
problems due to cyclic justifications: the bridge rules might be applied unfoundedly. In Exam-
ple 7, the equilibrium E1 can be concluded because of the cycle

(1 : unhappy)! (1 : revision)! (2 : work)! (1 : unhappy),

which is the only cyclic justification for unhappy in E1. More specifically, if any of the formula
in the above cycle is evaluated to true then all other formulas in this cycle are also evaluated to
true , hence one has E1 as an equilibrium of the MCS in Example 7.

To overcome this, [19] proposed grounded equilibria. The latter are defined in terms of a
GL-reduct which transforms M = (C1, . . . , Cn

), given a belief state S = (S1, . . . , Sn

), into
another MCS MS

= (CS

1 , . . . , C
S

n

) that behaves nomotonically, such that a unique minimal
equilibrium exists; if it coincides with S, we have groundedness.

Formally, CS

i

= (L
i

, red
i

(kb
i

, S), brS
i

), where red
i

(kb
i

, S) maps kb
i

and S to a monotonic
core of L

i

and brS
i

is the GL-reduct of br
i

wrt S, i.e., it contains s (c1 : p1), . . . , (cj : p
j

)

for each rule of form (2.2) in br
i

such that p
k

62 S
r

k

for k = j + 1, . . . ,m. In addition, the
following reducibility conditions are assumed:

22

(i) red
i

(kb
i

, S
i

) is antimonotonic in S
i

,

(ii) S
i

is acceptable for kb
i

iff ACC
i

(red
i

(kb
i

, S
i

)) = {S
i

}, and

(iii) red
i

(kb
i

, S) [H
i

= red
i

(kb
i

[H,S), for each H
i

✓ {head(r) | r 2 br
i

}

Grounded equilibria are then defined as follows.

Definition 8 ([19]) A belief state S = (S1, . . . , Sn

) is a grounded equilibrium of M iff S is the
unique minimal equilibrium of MS , where minimality is componentwise wrt ✓.

Example 12 ([41]) Consider again Example 9: naturally, red1(kb1, S) is identity and red2(kb2, S)
is the GL-reduct. Then, E1 is not a grounded equilibrium of M because ME1 has a single min-
imal equilibrium (Cn(unhappy � revision), ;) 6= E1. On the other hand, one can check that
E2 is indeed a grounded equilibrium of M .

Another semantics of MCS, the well-founded semantics, was also introduced and the details
can be found in [19]. In this thesis, the general equilibria semantics is of our main concern and
the main purpose is to design and implement efficient algorithms to compute equilibria of an
MCS.

Centralized evaluation of multi-context systems

The computation of equilibria for a given MCS has been realized by a declarative implementa-
tion using HEX-programs [43] which can be evaluated using the dlvhex system.9 HEX-programs
extend disjunctive logic programs with access to external information by means of so-called ex-
ternal atoms.

Focusing on ground (variable-free) HEX-programs, we say that an ordinary atom is a pred-
icate p(c1, . . . , cn) where p, and c1, . . . , cn are constants. An external atom is of the form

&g [v](w)

where v, and w are fixed length lists of constants, and &g is an external predicate name. Intu-
itively, an external atom provides a way for deciding the truth value of g(w) in an external source
which is accessed providing the extension of predicates v as input.

A HEX rule r is of the form

↵1 _ . . . _ ↵
k

 �1, . . . ,�m, not�
m+1, . . . , not�n (2.3)

m, k � 0, where all ↵
i

are ordinary atoms and all �
j

are ordinary or external atoms. As usual, a
rule r is a constraint, if k = 0. Furthermore, a HEX-program (or program) is a finite set of HEX
rules. The semantics of HEX-programs is defined considering interpretations I over the ordinary
Herbrand base HBP of a program P and a set of constants C. An interpretation I satisfies an
external atom ↵ = &g [v](w) (denoted I |= ↵), iff f&g

(I, v,w) = 1, where v 2 Cn and w 2 Cm

and f&g

is a (fixed) function f&g

: 2

HBP ⇥Cn+m ! {0, 1}, representing the (semantics of the)
9http://www.kr.tuwien.ac.at/research/systems/dlvhex/

23

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

corresponding external source. For an ordinary atom ↵, a rule r, or a program P , the satisfaction
relation I |= ↵ (respectively I |= r or I |= P) is defined as usual.

The FLP-reduct [46] of P wrt. I is the set fP I ✓ P of all rules r of form (2.3) in P such
that I |= �

i

, for all i 2 {1, . . . ,m} and I 6|= �
j

, for all j 2 {m+ 1, . . . , n}. Eventually, I is an
answer set of P , if I is ✓-minimal model of fP I .10

For a more detailed account of HEX and its relation to MCS, see [35].
Concerning the purpose of evaluating MCS via HEX-programs, given an MCS M , we as-

semble a program P (M) for computing equilibria of M as follows, where 1 i n. An
arbitrary truth assignment to beliefs is guessed:

a
i

(p) _ a
i

(p). for all p 2 ⌃

i

(2.4)

Each bridge rule of form (2.2) is evaluated by the corresponding HEX rules, wrt. the guess:

b
i

(s) a
c1(p1), . . . , ac

j

(p
j

), not a
c

j+1(pj+1), . . . , not ac
m

(p
m

). (2.5)

Finally, constraints ensure that answer sets of the program correspond to equilibria:

 not &con_out i [ai, bi](). (2.6)

Given an interpretation I , let AI

i

= {p | a
i

(p) 2 I}, 1 i n, denote a belief set for con-
text C

i

(corresponding to the guess on ⌃

i

in (2.4)), and let BI

i

= {s | b
i

(s) 2 I} denote the set of
bridge rule heads, from bridge rules br

i

, which are applicable wrt. the guessed belief state. Each
external atom in (2.6) represents ACC

i

: it returns true iff context C
i

accepts a belief set upon
input of BI

i

, which corresponds to the guessed AI

i

. Formally, we define f&con_out
i

(I, a
i

, b
i

) = 1

iff there exists an S 2 ACC
i

(kb
i

[BI

i

) such that S = AI

i

.

Proposition 2 ([20]) Answer sets I of P (M) correspond 1-1 to equilibria SI of M , where
I ⌦ SI

= (SI

1 , . . . , S
I

n

) and SI

i

= {p | a
i

(p) 2 I}, i = 1, . . . , n.

For further details on a concrete implementation we refer the reader to the MCS-IE sys-
tem [15]. This thesis pursues a more sophisticated approach, i.e., we design and implement
distributed algorithms, to compute equilibria of MCSs. During evaluation, there is no central-
ized component that controls the communication between contexts. Each context independently
runs an instance of the algorithm and communicates with each other to exchange beliefs as well
as to detect and break cycles. These novel contributions are described in Part II of the thesis.

10 For a program P without external atoms, the answer sets of P coincide with the ones of [54].

24

Part II

Algorithms for Multi-Context Systems

25

CHAPTER 3
Basic Distributed Algorithm and
Realization with Loop Formulas

This chapter introduces a very first, basic, truly distributed algorithm for evaluating equilibria of
an MCS and detailed proofs. The algorithm takes a general setting as input, that is, each context
has a minimal knowledge about the whole system; or in other words, it just knows the interface
with direct neighbors (parents and children contexts) but not the topological information or any
further metadata of the system. Under this setting, we concentrate on distributeness, the most
fundamental aspect of the thesis. Later chapters shift the focus towards optimization techniques
when more metadata is provided.

Besides the basic algorithm that deals with general MCSs, we take a closer look into systems
whose contexts are built upon ASP logics. This setting allows for a special treatment of bridge
rules by compiling them into the local knowledge bases using loop formulas. As such, one can
exploit off-the-shelf SAT solvers to compute local belief sets at each context, and need to make
just one call to this local solving process instead of multiple calls with respect to multiple inputs
provided by children contexts. The trade-off is that the single call needs to guess for bridge
atoms from the compiled-away bridge rules, which will be analyzed in Chapter 8.

3.1 Basic Algorithm for Multi-Context Systems

Taking a local stance, we consider a context C
k

and compute those parts of (potential) equilibria
of the system which contain coherent information from all contexts that are ‘reachable’ from
C
k

.

Basic notions

Let us start defining some concepts required. The notion of import closure formally captures
reachability.

27

In(1)

C1

C2 C3

C4

(a) Import neighborhood of C1

IC (1)

C1

C2 C3

C4

(b) Import closure of C1

Figure 3.1: Import neighborhood and Import closure

Definition 9 (Import Closure) Let M = (C1, . . . , Cn

) be an MCS. The import neighborhood
of a context C

k

is the set

In(k) = {c
i

| (c
i

: p
i

) 2 B(r), r 2 br
k

} .

Moreover, the import closure IC (k) of C
k

is the smallest set S such that (i) k 2 S and (ii) for
all i 2 S, In(i) ✓ S.

Alternatively, we can constructively characterize

IC (k) = {k} [
S

j�0 IC
j

(k) ,

where IC 0
(k) = In(k), and IC j+1

(k) =
S

i2IC j(k) In(i). Note that the import closure of any
context is finite, i.e., for an MCS M = (C1, . . . , Cn

) and C
k

from M , |IC (k)| n.

Example 13 Consider M in Example 11. Then In(1) = {2, 3}, In(2) = In(3) = {4}, and
In(4) = ;; the import closure of C1 is IC (1) = {1, 2, 3, 4} (see Figure 3.1).

Based on the import closure we define partial equilibria.

Definition 10 (Partial Belief States and Equilibria)
Let M = (C1, . . . , Cn

) be an MCS, and let ✏ /2
S

n

i=1BS
i

. A partial belief state of M is a
sequence S = (S1, . . . , Sn

), such that S
i

2 BS
i

[{✏}, for 1 i n.
A partial belief state S = (S1, . . . , Sn

) of M is a partial equilibrium of M wrt. a context C
k

iff i 2 IC (k) implies S
i

2 ACC
i

(kb
i

[{head(r) | r 2 app(br
i

, S)}), and if i 62 IC (k), then
S
i

= ✏, for all 1 i n.

As an aside, IC (k) essentially defines a subsystem M 0 of M that is connected by bridge rules.
We use partial equilibria of M instead of equilibria of M 0 to keep the original MCS M intact.
Our view is similar to unnamed attributes in a relational database; essentially, we reference con-
texts in an MCS by position as in standard equilibria. Alternative representations of equilibria

28

S1

✏

S1

...

...

...

✏

✏

✏

...

...

...

✏

T
i

T
i

...

...

...

...

...

...

S
n

T
n

S
j

T
j

S
j

(= T
j

)

S =

T =

S ./ T =

Figure 3.2: Joining Partial Belief States

for subsystems are possible but would prohibit to easily talk about the initial M without addi-
tional mappings from M 0 to M . Thus, for the purpose here it is more convenient to use the
reference-by-position approach.

For combining partial belief states S = (S1, . . . , Sn

) and T = (T1, . . . , Tn

), we define their
join S ./ T as the partial belief state (U1, . . . , Un

) such that

(i) U
i

= S
i

, if T
i

= ✏ or S
i

= T
i

,

(ii) U
i

= T
i

, if T
i

6= ✏ and S
i

= ✏,

for all 1 i n. Figure 3.2 illustrates this operator. Note that S ./ T is void, if some S
i

, T
i

are from BS
i

but different. The join of two sets S and T of partial belief states is then naturally
defined as S ./ T = {S ./ T | S 2 S, T 2 T }.

Example 14 Consider two sets of partial belief states:

S = { (✏, {b}, ✏, {¬f, g}) , (✏, {¬b}, ✏, {f,¬g}) } and

T =

8
<

:

(✏, ✏, {¬c,¬d, e}, {¬f, g}),
(✏, ✏, {c, d,¬e}, {¬f, g}),
(✏, ✏, {¬c,¬d,¬e}, {f,¬g})

9
=

; .

Their join is given by

S ./ T =

8
<

:

(✏, {b}, {¬c,¬d, e}, {¬f, g}),
(✏, {b}, {c, d,¬e}, {¬f, g}),
(✏, {¬b}, {¬c,¬d,¬e}, {f,¬g})

9
=

; .

The basic algorithm

Given an MCS M and a starting context C
k

, we aim at finding all partial equilibria of M wrt. C
k

in a distributed way. To this end, we design an algorithm DMCS, whose instances run indepen-
dently at each context node and communicate with each other for exchanging sets of partial
belief states. This provides a method for distributed model building, and the DMCS algorithm
can be applied to any MCS such that appropriate solvers for the respective context logics are

29

available. As a main feature of DMCS, it can also compute projected partial equilibria, i.e., par-
tial equilibria projected to a relevant portion of the signature of the import closure of the starting
context. This can be exploited for specific tasks like, e.g., local query answering or consistency
checking. When computing projected partial equilibria, the information communicated between
contexts is minimized, keeping communication cost low.

In the sequel, we present a basic version of the algorithm, abstracting from low-level imple-
mentation issues. Moreover, it is assumed that the topology of the overall MCS is not known at
context nodes (in Chapter 4, we present optimized algorithms when such topology information
is given). The idea is as follows: starting from context C

k

, we visit the import closure of C
k

by expanding the import neighborhood at each context like in a depth-first search, maintaining
the set of visited contexts in a set hist , until a leaf context is reached, or a cycle is detected by
noticing the presence of the current context in hist . A leaf context simply computes its local
belief sets, transforms all belief sets into partial belief states, and returns this result to its par-
ent (invoking context, Figure 3.3a). In case of a cycle (Figure 3.3c), the context detecting the
cycle, say C

i

, must also break it, by (i) guessing belief sets for the “export” interface of C
i

,
(ii) transforming the guesses into partial belief states, and (iii) returning them to the invoking
context.

The results of intermediate contexts are partial belief states, which can be joined, i.e., consis-
tently combined, with partial belief states from their neighbors; an intermediate context returns
its local belief sets, joined with the results from its neighbors, as final result (Figure 3.3b).

For computing projected partial equilibria, the algorithm offers a parameter V , the rel-
evant interface. Given a (partial) belief state S and set V ✓ ⌃ of variables, the restric-
tion of S to V , denoted S|

V

, is given by the (partial) belief state S0
= (S1|V , . . . , Sn

|
V

),
where S

i

|
V

= S
i

\V if S
i

6= ✏, and ✏|
V

= ✏; the restriction of a set of (partial) belief states S to
V is S|

V

= {S|
V

| S 2 S}.
Let V (k) = {p

i

| (c
i

: p
i

) 2 B(r), r 2 br
k

} denote the import interface of context C
k

. By
V ⇤

(k) =

S
i2IC (k)V (i), the recursive import interface of C

k

, we refer to the interface of the
import closure of C

k

.
Given a context C

k

, we have two extremal cases: (1) V = V ⇤
(k) and (2) V = ⌃. In

Case (1), DMCS basically checks for consistency on the import closure of C
k

by computing
partial equilibria projected to interface variables only. In Case (2), the algorithm computes
partial equilibria wrt. C

k

. Between these two, by providing a fixed interface V , problem-specific
knowledge (such as query variables) and/or infrastructure information can be exploited to keep
computations focused on relevant projections of partial belief states.

The projections of partial belief states are cached in every context such that re-computation
and the recombination of belief states with local belief sets are kept at a minimum.

We assume that each context C
k

has a background process (or daemon in Unix terminology)
that waits for incoming requests of the form (V, hist), upon which it starts the computation
outlined in Algorithm 3.1. This process also serves the purpose of keeping the cache c(k)
persistent. We write C

i

.DMCS(V, hist) to specify that we send (V, hist) to the process at context
C
i

and wait for its return message.

Algorithm 3.1 uses the following primitives:

30

C
`

lsolve((✏, . . . , ✏)) = S

(V, hist) S

(a) Leaf context

C
i

C
`

C
j

(V, hist)

(V
,

hi
st
[{

i

})S̀ S
j

S
i

=
S

S2S`./Sj
lsolve(S)

(b) Intermediate context

C
i

V

C
j

C
t

C
`

hist =
{
.

.

.

,

i

,

.

.

. }

(c) Cycle breaking

Figure 3.3: Basic Distributed Algorithm - Casewise

• function lsolve(S) (Algorithm (c)): augments the knowledge base kb of the current con-
text with the heads of bridge rules in br that are applicable wrt. partial belief state S,
computes local belief sets using function ACC, combines each local belief set with S,
and returns the resulting set of partial belief states; and

• function guess(V,C
k

): guesses all possible truth assignments for the relevant interface
wrt. C

k

, i.e., for ⌃
k

\ V .1

DMCS proceeds in the following way:

(a) check the cache for an appropriate partial belief state;

(b) check for a cycle;

1In order to relate variables to context signatures, V can either be a vector of sets, or variables in V are prefixed
with context ids; for simplicity, we kept V as a set without further assumptions.

31

Algorithm 3.1: DMCS(V, hist) at C
k

= (L
k

, kb
k

, br
k

)

Input: V : relevant interface, hist : visited contexts
Data: c(k): static cache
Output: set of accumulated partial belief states

(a) if c(k) is not empty then return c(k)
S := ;

(b) if k 2 hist then // cyclic: guess local beliefs wrt. V
(c) S := guess(V,C

k

)

else // acyclic: collect neighbor beliefs and add local ones
T := {(✏, . . . , ✏)} and hist := hist [{k}

(d) foreach i 2 In(k) do
if for some T 2 T , T

i

= ✏ then
T := T ./ C

i

.DMCS(V, hist)

(e) foreach T 2 T do S := S [lsolve(T)
(f) c(k) := S|

V

return S|
V

Algorithm 3.2: lsolve(S) at C
k

= (L
k

, kb
k

, br
k

)

Input: S: partial belief state S = (S1, . . . , Sn

)

Output: set of locally acceptable partial belief states

T := ACC
k

(kb
k

[{head(r) | r 2 app(br
k

, S)})
return {(S1, , . . . , S

k�1, Tk

, S
k+1, . . . , Sn

) | T
k

2 T}

(c) if a cycle is detected, then guess partial belief states of the relevant interface of the context
running DMCS;

(d) if no cycle is detected, but import from neighbor contexts is needed, then request partial
belief states from all neighbors and join them;

(e) compute local belief states given the imported partial belief states collected from neigh-
bors;

(f) cache the current (projected) partial belief state.

The next examples illustrate evaluation runs of DMCS for finding all partial equilibria with
different MCS. We start with an acyclic run.

Example 15 Reconsider M from Example 11. Suppose the user invokes C1.DMCS(V, ;),
where V = {a, b, c, f, g}, to trigger the evaluation process. Next, C1 forwards in (d) requests to

32

C2 and C3, which both call C4. When called for the first time, C4 calculates in (e) its own belief
sets and assembles the set of partial belief states

S4 = {(✏, ✏, ✏, {f,¬g}), (✏, ✏, ✏, {¬f, g})} .

After caching S4|V in (f), C4 returns S4|V = S4 to one of the contexts C2, C3 whose request
arrived first. On second call, C4 simply returns to the other context S4|V from the cache.

C2 and C3 next call lsolve (in (e)) two times each, which results in S2 = S resp. S3 = T
with S, T from Example 14.

S = { (✏, {b}, ✏, {¬f, g}) , (✏, {¬b}, ✏, {f,¬g}) } and

T =

8
<

:

(✏, ✏, {¬c,¬d, e}, {¬f, g}),
(✏, ✏, {c, d,¬e}, {¬f, g}),
(✏, ✏, {¬c,¬d,¬e}, {f,¬g})

9
=

; .

Thus,

S2|V = { (✏, {b}, ✏, {¬f, g}) , (✏, {¬b}, ✏, {f,¬g}) } and

S3|V =

8
<

:

(✏, ✏, {¬c}, {¬f, g}),
(✏, ✏, {c}, {¬f, g}),
(✏, ✏, {¬c}, {f,¬g})

9
=

; .

C1, after computing in (d)

S2|V ./ S3|V =

8
<

:

(✏, {b}, {¬c}, {¬f, g}),
(✏, {b}, {c}, {¬f, g}),
(✏, {¬b}, {¬c}, {f,¬g})

9
=

;

calls lsolve in (e) thrice to compute the final result:

S1|V =

8
<

:

({a}, {b}, {c}, {¬f, g}),
({¬a}, {b}, {¬c}, {¬f, g}),
({¬a}, {¬b}, {¬c}, {f,¬g})

9
=

; .

The next example illustrates the run of DMCS on a cyclic topology.

Example 16 Let M = (C1, C2, C3) be an MCS such that each L
i

is an ASP logic, and

– kb1 = ;, br1 = {a not (2 : b)};

– kb2 = ;, br2 = {b (3 : c)}; and

– kb3 = ;, br3 = {c _ d not (1 : a)}.

Figure 3.4 shows the cyclic topology of M . Suppose that the user sends a request to C1 by
calling C1.DMCS(V, ;) with V = {a, b, c}.

33

C1

V c(1) : S1

C2

c(2) : S2

C3

c(3) : S3

S0
1|V

S3|
V

S2|
V

Figure 3.4: A cyclic topology

In step (d) of Algorithm 3.1, C1 calls C2.DMCS(V, {1}), then context C2 issues a call
C3.DMCS(V, {1, 2}), thus C3 invokes C1.DMCS(V, {1, 2, 3}). At this point, the instance of
DMCS at C1 detects a cycle in (b) and guesses the partial belief states

S 0
1 = {({a}, ✏, ✏), ({¬a}, ✏, ✏)}

for ⌃1 \ V . Then, following the dotted lines in Figure 3.4, the set S 0
1|V = S 0

1 is the return value
for the request from C3, who joins it with an initial empty belief state (✏, ✏, ✏), gives us T and
then calls lsolve(T) for each T 2 T in (e), resulting in

S3 =

8
<

:

({¬a}, ✏, {c,¬d}),
({¬a}, ✏, {¬c, d}),
({a}, ✏, {¬c,¬d})

9
=

; .

The next step of C3 is to return S3|V back to C2, which will proceed as C3 before. The result
is the set of belief states

S2 =

8
<

:

({¬a}, {b}, {c}),
({¬a}, {¬b}, {c}),
({a}, {¬b}, {¬c})

9
=

; ,

which will be sent back to C1 as S2|V . Notice that belief state ({¬a}, {¬b}, {c}) is inconsistent
in C1, but will be eventually eliminated once C1 evaluates S2|V with lsolve.

Next, C1 will join S2|V with (✏, ✏, ✏), which yields S2|V , and then use this result to call
lsolve. The union gives us

S1 = {({¬a}, {b}, {c}), ({a}, {¬b}, {¬c})} ,

which is also sent back to the user as final result.

Given an MCS M = (C1, . . . , Cn

) and a context C
k

, using the recursive import interface
of C

k

, i.e., V ⇤
(k), as the relevant interface is a safe (lower) bound for the correctness of Algo-

rithm 3.1. In what follows, let M , C
k

, and V ⇤
(k) as above.

Theorem 3 (Correctness of DMCS with partial equilibrium) For all V ◆ V ⇤
(k), S0 2 C

k

.DMCS(V, ;)
iff there exists a partial equilibrium S of M wrt. C

k

such that S0
= S|

V

.

34

To prove this theorem, we first prove the following Lemmas 4 and 5. The latter aims at
simplifying the proof for the cyclic case, based on the notion of converting cyclic MCSs to
acyclic ones.

Lemma 4 For any context C
k

and partial belief state S of an MCS M = (C1, . . . , Cn

),
app(br

k

, S) = app(br
k

, S|
V

) for all V⌃ ◆ V ◆ V ⇤
(k).

Proof For any r 2 app(br
k

, S), we have that for all (c
i

: p
i

) 2 B+
(r) : p

i

2 S
c

i

and for all
(c

j

: p
j

) 2 B�
(r) : p

j

/2 S
c

j

. We need to show that p
i

2 S
c

i

|
V

c

i

^ p
j

/2 S
c

j

|
V

c

j

. Indeed:
We have V ✓ V⌃) V

c

j

✓ V⌃
j

) S
c

j

|
V

c

j

✓ S
c

j

. Therefore, p
j

/2 S
c

j

) p
j

/2 S
c

j

|
V

c

j

.
Now, assume that p

i

/2 S
c

i

|
V

. From the fact that p
i

2 S
c

i

, it follows that p
i

/2 V
c

i

, hence
p
i

/2 V ⇤
(k). But this is in contradiction with the fact that p

i

appears in the body of a bridge rule.
Therefore, r 2 app(br

k

, S|
V

). ⇤

The next Lemma 5 is based on the following notions that convert cyclic MCSs to acyclic
ones and show that they have corresponding equilibria. The idea is to introduce an additional
context Cg

k

for every cycle breaker C
k

and to modify the bridge rules of C
k

as well as its parent
contexts. We start with a function ren that renames part of bridge rules.

Definition 11 Let C
k

be a context in an MCS M , and let V be an interface for running DMCS.
The renaming function ren is defined as follows:

• For an atom a: ren(a, k, V) =

⇢
ag if a 2 ⌃

k

\ V
a otherwise

• For a context index c: ren(c, k, V) =

⇢
c if c 2 {1, . . . , n}
c otherwise

• For a bridge atom (c
i

: p
i

): ren((c
i

: p
i

), k, V) = (ren(c
i

, k, V) : ren(p
i

, k, V))

• For a bridge body B = {(c1 : p1) . . . (cj : pj)}:

ren(B, k, V) = {ren((c
i

: p
i

), k, V) | (c
i

: p
i

) 2 B}

• For a bridge rule r = head(r) B(r):

ren(r, k, V) = head(r) ren(B(r), k, V)

• For a set of bridge rules br : ren(br , k, V) = {ren(r, k, V) | r 2 br}

• For a context C
i

= (L
i

, kb
i

, br
i

) in M : ren(C
i

, k, V) = (L
i

, kb
i

, ren(br
i

, k, V)).

35

For two contexts C
i

and C
j

, the former is called a parent of the latter with respect to an
interface V , denoted by parent(C

i

, C
j

, V) iff there exists a bridge rule r 2 br
i

such that there
exists (c : p) 2 B(r) and p 2 ⌃

j

\ V).
A set of contexts {C

c1 , Cc2 , . . . , Cc

`

} of an MCS M is called a cycle wrt. an interface V iff

parent(C
c

`

, C1) ^
^

1i`�1

parent(C
c

i

, C
c

i+1)

One can pick an arbitrary context in this set to be its cycle-breaker. Given an MCS M , there
are several way to choose a (finite) set of its contexts to be cycle-breakers. In Algorithm DMCS,
Step (d) practically establishes the cycle-breakers based on the order that elements in In(k) are
iterated. For the next definition, we are interested in this particular set of cycle-breakers.

Definition 12 Given an MCS M = (C1, . . . , Cn

) and let CBr

M

= {C
c1 , . . . , Cc

j

} be the set of
cycle-breakers for M based on the application of DMCS on M starting from context C

r

. The
conversion of M to an equal acyclic M? based on CBr

M

and an interface V is done as follows:

Let C 0
i

= (L
i

, kb
i

, br 0
i

) =

⇢
ren(C

i

, i, V) if C
i

2 CBr

M

C
i

otherwise

Let C 00
i

= (L
i

, kb
i

, br 00
i

) = �
C

k

2CB
M

ren(C 0
i

, k, V)

Let C 000
i

= (L
i

, kb
i

, br 000
i

) where br 000
i

=

⇢
br 00

i

[{a (i : ag)} if C
i

2 CBr

M

br 00
i

otherwise

For each C
j

2 CB
M

, introduce C
j

= (L
j

, kb
j

, br
j

) where br
j

= ; and kb
j

= {ag _ ¬ag |
a 2 ⌃

j

\ V }. Then M?

= (C 000
1 , . . . , C 000

n

, C
c1 , . . . , Cc

j

).

Lemma 5 Let M be an MCS and M? be its conversion to an acyclic MCS as in Definition 12.
Then the equilibria of M and M? are in 1-1 correspondence.

Proof (Sketch) Let (R1) and (R2) be the runs of DMCS on M and M?, respectively. Due to
the selection of CBr

M

to construct M?, both (R1) and (R2) have the same order visiting the
contexts, except that when (R1) revisits a cycle-breaker C

k

2 CBr

M

, its counterpart (R2) visits
C
k

. At these corresponding locations:

• (R1) calls guess(V,C
k

) at Step (c), and

• (R2) calls lsolve({✏, . . . , ✏}) at Step (e) since C
k

is a leaf context.

The construction of the local knowledge base of C
k

gives us exactly the guess on C
k

. Fur-
thermore, these guesses are passed on to the parent contexts of C

k

and then later on unified by
the additional bridge rules a (k : ag) introduced in br 000

k

. Therefore, the belief combina-
tions (Step (d)) done at C

k

are executed on the same input on two runs (R1) and (R2). The
correspondence of equilibria hence follows. ⇤

36

Proof (Theorem 3) Thanks to Lemma 5, we now need to prove Theorem 3 only for the acyclic
case and automatically get the result for the cyclic case.
()) We start by showing soundness of DMCS. Let S0 2 C

k

.DMCS(V, ;) such that V ◆ V ⇤
(k).

We show now that there is a partial equilibrium S of an acyclic M w.r.t. C
k

such that S0
= S|

V

.
We proceed by structural induction on the topology of M .

Base case: C
k

is a leaf with In(k) = ; and br
k

= ; and k /2 hist . This means that (d) is not
executed, hence, in (e), lsolve runs exactly once on (✏, . . . , ✏), and we get as result the set of all
belief states S = lsolve((✏, . . . , ✏)) = {(✏, . . . , ✏, T

k

, ✏, . . . , ✏) | T
k

2 ACC
k

(kb
k

)}. We now
show that S0 2 S|

V

. Towards a contradiction, assume that there is no partial equilibrium S =

(S1, . . . , Sn

) of M w.r.t. C
k

such that S0
= S|

V

. From In(k) = ;, we get that IC (k) = {k},
thus the partial belief state (✏, . . . , ✏, T

k

, ✏, . . . , ✏) 2 S is a partial equilibrium of M w.r.t. C
k

.
Contradiction.

Induction step: assume that the import neighborhood of context C
k

is In(k) = {i1, . . . , im}
and

Si1
= C

i1 .DMCS(V, hist [{k}),
...

Si

m

= C
i

m

.DMCS(V, hist [{k}).

Then by the induction hypothesis, for every S0i
j 2 Si

j , there exists a partial equilibrium Si

j of
M w.r.t. C

i

j

such that Si

j |
V

= S0i
j .

Let S = C
k

.DMCS(V, hist). We need to show that for every S0 2 S , there is a partial
equilibrium of M w.r.t. C

k

such that S0
= S|

V

. Indeed, since In(k) 6= ;, Step (d) is executed;
let

T = Si1 ./ · · · ./ Si

m

be the result of combining partial belief states from calling DMCS at C
i1 , . . . , Ci

m

. Furthermore,
let S =

S
{lsolve(S) | S 2 T } be the result of executing Step (e). Eventually, S0 2 S|

V

. Since
every DMCS at C

i1 , . . . , Ci

m

returns its partial equilibria w.r.t. C
i

j

projected to V , we have that
every T 2 T is a partial equilibrium w.r.t. C

i

j

projected to V . M is acyclic and we have visited
all contexts from In(k), thus by Lemma 4 we get that for every T 2 T , app(br

k

, T) gives us
all applicable bridge rules r regardless of T

j

= ✏ in T , for j /2 In(k). Hence, for all T 2 T ,
lsolve(T) returns only partial belief states, where each component is projected to V except the
kth component. As every T 2 T preserves applicability of the rules by Lemma 4, we get that
for every S0 2 S|

V

, there exists a partial equilibrium S of M w.r.t. C
k

such that S0
= S|

V

.

(() We give now a proof for completeness of DMCS by structural induction on the topology of
an acyclic M . Let S = (S1, . . . , Sn

) be a partial equilibrium of M w.r.t. C
k

and let S0
= S|

V

.
We show now that S0 2 C

k

.DMCS(V, ;).

Base case: C
k

is a leaf context. Then in executing C
k

.DMCS(V, ;), step (d) is ignored and
step (e) is called with input (✏, . . . , ✏), and lsolve((✏, . . . , ✏)) gives us all belief sets S of C

k

. As S
is an equilibrium of M wrt. C

k

, S 2 S; hence, S0
= S|

V

will be returned from C
k

.DMCS(V, ;).

37

Induction case: suppose that the import neighborhood of context C
k

is In(k) = {i1, . . . , im}.
Let the restriction of S to every context C

i

j

2 In(k) be denoted by Si

j , where:

Si

j

= (S0
1, . . . , S

0
n

) where S0
`

=

⇢
S
`

if ` 2 IC (i
j

)

✏ otherwise

Informally speaking, this restriction keeps only belief sets of the contexts reachable from C
i

j

and sets those of non-reachable contexts to ✏. By the induction hypothesis, Si

j |
V

is computed
by C

i

j

.DMCS(V, ;) for all i
j

2 In(k). We will show that S|
V

is computed by C
k

.DMCS(V, ;).
Indeed, because we are considering an acyclic M , it holds that Si

j |
V

is also returned from a
call C

i

j

.DMCS(V, {k}), as k plays no role in further calls from C
i

j

to its neighbors. This means
that after step (d), T contains a T = S

i1 .// S
i

m

where S
i

j

appears at position i
j

in S.
Since S is a partial equilibrium of M wrt. C

k

, we have that S
k

2 ACC
k

(kb
k

[{head(r) |
r 2 app(br

k

, S)}). Furthermore, by choosing V ◆ V ⇤
(k), Lemma 4 tells us that the appli-

cability of bridge rules is preserved under the projection of belief sets to V . This gives us that
S
k

2 lsolve(T) in step (e), and hence S0
= S|

V

is returned from C
k

.DMCS(V, ;). ⇤

We can compute partial equilibria at C
k

if we use V⌃. This holds because using V⌃ preserves
all belief sets returned from step (e), as the projection at step (f) takes no effect.

Corollary 6 S is a partial equilibrium of M wrt. C
k

iff S 2 C
k

.DMCS(V⌃, ;).

Under the assumption that M has a single root context C1, i.e., such that i 2 IC (1) for all
2 i n, DMCS computes equilibria. (Disconnected contexts in M can be always connected
to a new root context using simple bridge rules. An MCS with a self-loop context can also be
converted to a single root context using Definition 12.)

Corollary 7 S is an equilibrium of the MCS M iff S 2 C1.DMCS(V⌃, ;) for a single root
context C1.

An analysis of the algorithm yields the following upper bound on the computational com-
plexity and communication activity.

Proposition 8 In a run of DMCS with an interface V :

(1) the total number of calls to lsolve is exponentially bound by n⇥ |V |, i.e., O(2

n⇥|V |
).

(2) the number of messages exchanged between contexts C
i

, where i 2 IC (k), is bounded by
2 · |E(k)|, where E(k) = {(i, c

j

) | i 2 IC (k), r 2 br
i

, (c
j

: p
j

) 2 B(r)}.

Proof
(1) For a context C

k

, let the number of calls to its local solver be denoted by c(k). It is decided
in computing T in Step (d), which is bounded by the maximal number of combined partial belief
sets from its neighbors. Formally speaking:

c(k) ⇧

i2In(k)2
|V \⌃

i

| 2

|In(k)|⇥|V | 2

n⇥|V |

38

Hence for the whole MCS, the upper bound of calls to lsolve in a run of DMCS is

c = ⌃1kn

c(k) n⇥ 2

n⇥|V |

(2) For a context C
k

of an MCS M = (C1, . . . , Cn

), the set E(k) contains all dependencies
from contexts C

i

for i 2 IC (k). We visit all (i, j) 2 E(k) exactly twice during DFS-traversal
of M : once when calling C

j

.DMCS(V, hist) at C
i

, and once when retrieving S|
V

from C
j

in C
i

.
Furthermore, the caching technique in Step (a) prevents recomputation on already visited nodes,
thus prevents recommunication in the subtree of any visited node. The claim hence follows. ⇤

Discussion

Algorithm DMCS naturally proceeds “forward” in the import direction of context C
k

. Thus,
starting from there, it computes partial equilibria which cover C

k

and contexts in its import
closure. All other contexts will be ignored; in fact, they are unknown to all contexts in the
closure. While partial equilibria may exist for C

k

and its import closure, the whole MCS could
have no equilibrium, because, e.g., (P1) contexts that access beliefs from C

k

or its closure get
inconsistent, or (P2) an isolated context or subsystem is inconsistent.

Enhancements of DMCS may deal with such situations: As for (P1), the context neighbor-
hood may include both importing and supporting contexts. Intuitively, if C

i

imports from C
j

,
then C

i

must register to C
j

. By carefully adapting DMCS, we can then solve (P1). However,
(P2) remains; this needs knowledge about the global system topology.

A suitable assumption is the existence of a manager M that is reachable from every context
C
i

in the system, which can ask M whether some isolated inconsistent context or subsystem
exists. If M affirms, C

i

’s DMCS simply returns ;, eliminating all partial equilibria.
In an attempt to improve improving decentralization and information encapsulation, we can

weaken the manager assumption by introducing routers. Instead of asking the manager, a context
C
i

queries an assigned router R, which collects the necessary topology information for C
i

or
makes a cache look-up. The information exchange between C

i

and R is flexible, depending on
the system setting, and could contain contexts that import information from C

i

, or isolated and
inconsistent contexts.

A further advantage of topological information is that C
i

can recognize cyclic and acyclic
branches upfront, and the invocation order of the neighborhood can then be optimized, by start-
ing with all acyclic branches before entering cyclic subsystems. The caching mechanism can be
adapted for acyclic branches, as intermediate results are complete and the cache is meaningful
even across different evaluation sessions.

In our setting, we are safe assuming that V ⇤
(k) ✓ V . But this is not needed if M resp.

the import closure of C
k

has no join-contexts, i.e., contexts which have at least two parents. If
we have access to path information in M at each context, we could calculate V on the fly and
change it accordingly during MCS traversal. In particular, for tree-shaped or ring topology of
M , we can restrict V to the locally shared interface between C

k

and its import neighbors, i.e.,
restricting V to the bridge atoms of br

k

. In presence of join-contexts, V must be made “big
enough,” e.g., using path information.Furthermore, join-contexts may be eliminated by virtually

39

splitting them, if orthogonal parts of the contexts are accessed. This way, scalability to many
contexts can be achieved.

In Chapter 4, we will present optimization techniques when topological information of the
system is available.

3.2 Realization with Loop Formulas

Algorithm DMCS incorporates in step (e) via lsolve the bridge rules br
k

into the local knowledge
base kb

k

, given belief input from a belief state T , and then computes the belief sets; this is done
for all T 2 T .

In certain settings, it is possible to compile br
k

into kb
k

, yielding some kb0
k

, such that the
belief sets of kb0

k

are precisely the possible belief sets T
k

in the return value of any lsolve(S);
hence, the for-loop in step (e) can be replaced by a single join S := T ./ B

k

|
V

, where B
k

are
the acceptable belief sets of kb0

k

, properly converted to partial belief states.
For example, this is possible for classical logics L

k

(assuming that contexts are not self-
referential), or ASP logics. This is because there are well-known transformations of ASP pro-
grams P into equivalent classical theories �(P), such that the answer sets of P are given by the
classical models of �(P), which hinge on loop formulas (Section 2.3).

In this section, we develop loop formulas for MCS, by which bridge rules can be compiled
into a local classical theory. In fact, we combine this with a loop formula transformation of
ASP programs into classical theories; this enables us to obtain particular equilibria satisfying
groundedness. Roughly, we adapt the notion of support formulas in such a way that also bridge
rules have an effect on loops (e.g., a (1 : c) on the loop above), but we distinguish local
support and bridge support.

Loop formulas for MCS

We assume that in M = (C1, . . . , Cn

), all logics L
i

are ASP logics with ⌃

i

= A
i

and ⌃ = A.
Furthermore, we assume that all heads of bridge rules are (disjunctive) facts (this is no loss of
generality). This allows us to adapt disjunctive loop formulas to encode bridge rules as classical
theories.

Notice that in the definition of bridge rules in MCSs, the head of a bridge rule can be an
element of the knowledge base of the logic. In the particular contexts that we adopt here, such
a head can be (i) a disjunctive rule, (ii) a set of disjunctive rules, (iii) or even any propositional
formula that has an equivalent representation to a set of disjunctive rules. One can see that the
two last cases are reducible to the first one. Moreover, when having a disjunctive rule in the
head of a bridge rule, it is possible to replace this head by a fresh auxiliary atom and put the
disjunctive rule, with body increased with the auxiliary atom, into the knowledge base of the
context. Therefore, in the sequel, it is enough to consider only bridge rules whose heads are
disjunctive facts.

Let ¬.A = {¬a | a 2 A} and, as usual,
W
F =

W
f2F f and

V
F =

V
f2F f (note thatW

; = ? and
V
; = >).

40

For any ASP rule r, we then define

(r) =
^

B+
(r) ^

^
¬.B�

(r) �
_

H(r) ,

and for any set R of ASP rules, (R) =

V
r2R (r).

The support formula of a set A ✓ A w.r.t. an ASP rule r is

"(A, r) =
^

B+
(r) ^

^
¬.B�

(r) ^
^

¬.(H(r) \A) ,

and w.r.t. any set R of ASP rules, "(A,R) =

W
r2R "(A, r).2

To build support formulas w.r.t. a bridge rule r of form (2.2), we convert it to an ASP rule
`(r) by replacing (c

k

: p
k

) with p
k

, 1 k m; for any bridge rule set R, we let `(R) = {`(r) |
r 2 R}.

We identify the support rules and the external support rules of a set of ASP rules R w.r.t. a
set A ✓ A as

SR(A,R) = {r 2 R | H(r) \A 6= ;} and
ER(A,R) = {r 2 R | H(r) \A 6= ;, B+

(r) \A = ;} ,

respectively (note the SR(A,R) are not minimizing).
We next define necessary dependency relations. In a set R of ASP rules, we say that a

depends on b, denoted a ! b, if a 2 H(r) and b 2 B+
(r) for some rule r 2 R. The set of

dependencies in context C
i

is then the set of all pairs a!
i

b such that a! b in kb
i

[`(br
i

).
Based on this, we define the dependency graph of an MCS and loops for contexts and MCS.

Definition 13 (Dependency Graph and Loops) The dependency graph of a multi-context sys-
tem M = (C1, . . . , Cn

) is the directed graph G = (A,
S

1in

!
i

).
A loop of C

i

(resp., M) is any set L ✓ A
i

(resp., L ✓ A) of atoms such that the subgraph
of G induced by L is strongly connected.

Note that each singleton {a} is a loop. Figure 3.5 illustrates the dependency graph of the
system in Example 11, in which singleton loops are hidden for simplification. A non-trivial loop
here is {c, d}.

Example 17 Consider M = (C1) and M 0
= (C 0

1), where

kb1 =

⇢
a b
b a

�
, br1 =

⇢
a (1 : b)
b (1 : a)

�
,

kb 01 =

⇢
c d
d c

�
, br 01 =

⇢
c not (1 : d)
d not (1 : c)

�
.

The loops of C1 are {a}, {b}, and {a, b}, and those of C 0
1 are {c}, {d}, and {c, d}. Moreover,

{a, b} is also the only loop of M (at the global level), while {c, d} is not that of M 0.
2 [48] calls "(A, r) the external support formula, which is not entirely true in our setting.

41

a

b e c d

g f

1

1

2

3

3

Figure 3.5: Dependency Graph of the MCS in Example 11

Next we define the local loop formula of a context.

Definition 14 (Local Loop Formulas) Let L be a loop of context C
i

. Then the loop formula
for L w.r.t. C

i

is

�(L, C
i

) =

⇣_
L
⌘
� "(L,ER(L, kb

i

) [SR(L, `(br
i

))) .

Furthermore, the loop formula of context C
i

is the conjunction �(C
i

) =

V
L �(L, C

i

) of all
loops L of C

i

.

Example 18 Continuing Example 17, L1 = {a, b} has the loop formula (i) �(L1, C1) = a_b �
b _ a. Indeed, both rules of br1 are support rules of C1 w.r.t. L1, which has no external support
rules in kb1; thus �(L1, C1) = a _ b � "(L1, `(br1)), and "(L1, `(br1)) = b _ a. Similarly,
L0
1 = {c, d} has the loop formula (ii) �(L0

1, C
0
1) = c _ d � ¬d _ ¬c.

Experts on loop formulas will notice that (i) is weaker than the loop formula a _ b � ?
of the program {a b; b a}, and admits {a, b} as a model of the translation; this complies
with the MCS semantics. Similarly, (ii) is weaker than c _ d � ? but can eliminate the model
{c, d}. Finally, we have �({a}, C1) = a � b, �({b}, C1) = b � a, �({c}, C 0

1) = c � d _ ¬d,
and �({d}, C 0

1) = d � c _ ¬c.

The intuition behind the translation is that we distinguish between supports at the local and
bridge levels. At the local level, support for a loop must come from the outside of the loop
(hence called external support); while at the bridge level, the loop can support itself. When the
same loop L without external support appears in both local and global levels, the self-support
from SR remedies the empty support from ER. This way, we get the equilibrium semantics of
MCSs. We now can transform the whole MCS into a formula.

42

Definition 15 (MCS loop transformation) Given the multi-context system M = (C1, . . . , Cn

)

with ASP logics, let

⇡(C
i

) = �(C
i

) ^ (kbi) ^ (`(bri)) , 1 i n, and

⇡(M) =

n^

i=1

⇡(C
i

) .

Here, ⇡(C
i

) describes the belief sets of C
i

, depending on valuations of the atoms in bridge rule
bodies; ⇡(M) just aligns descriptions. The next result shows that this transformation correctly
captures the equilibria of M .

Theorem 9 The equilibria of any M with ASP logics correspond one-to-one to the models of
the formula ⇡(M).

Note that by this theorem, consistency of M (i.e., existence of some equilibrium) maps to a
distributed SAT problem.

Proof ()) Let S = (S1, . . . , Sn

) be an equilibrium of the MCS M . We have that S
i

is an
answer set of

R
i

= kb
i

[{head(r) | r 2 app(br
i

, S)}.

We show now that I =
S

1in

S
i

is a model of ⇡(M) by showing that, for all 1 i n,

(i) I |= (kb
i

),

(ii) I |= (`(br
i

)), and

(iii) I |= �(C
i

).

Part (i): From S
i

being an answer set of R
i

, we get S
i

|= r for all r 2 kb
i

. It follows that
S
i

|= (r), hence S
i

|= (kb
i

), and finally, we get that I |= (kb
i

).

Part (ii): Take an arbitrary bridge rule r 2 br
i

of form (2.2):

• If r /2 app(br
i

, S), then either there exists (c
h

: p
h

) in r such that p
h

/2 S
c

h

for 1 h j,
or there exists (c

k

: p
k

) in r such that p
k

2 S
c

k

for j + 1 k m. Since the sets ⌃

i

are pairwise disjoint, we get that I does not satisfy the antecedent of (`(r)), that is,V
B+

(`(r)) ^
V

¬.B�
(`(r)).

• If r 2 app(br
i

, S), then for all (c
h

: p
h

) for 1 h j, p
i

2 S
c

i

, and for all (c
k

: p
k

) for
j + 1 k m, p

k

/2 S
c

k

. As the sets ⌃
i

are pairwise disjoint, we have that I satisfies
the antecedent of (`(r)). Furthermore, since r is applicable in S, head(r) was added
to R

i

to determine S
i

, thus I |= head(r) and so we have that I satisfies the consequent
of (`(r)).

43

In both cases we can derive that I |= (`(r)) for all r 2 br
i

, and eventually I |= (`(br
i

)).
Part (iii): Now take an arbitrary loop L ✓ A

i

of C
i

. We have to show that

I |=
⇣_

L
⌘
� "(L,ER(L, kb

i

) [SR(L, `(br
i

))) (3.1)

holds. If L \ S
i

= ;, then (3.1) holds vacuously. Otherwise, I |=
W
L, so we have to show that

I satisfies the consequent of (3.1), i.e., for some r 2 ER(L, kb
i

) [SR(L, `(br
i

)), we get

I |=
^

B+
(r) ^

^
¬.B�

(r) ^
^

¬.(H(r) \ L) . (3.2)

Recall that S
i

is an answer set of R
i

, it is a minimal model of RS

i

i

under subset inclusion.
We obtain that T = S

i

\ L is not a model of RS

i

i

. Hence, there exists an r̄ 2 RS

i

i

such that
T |= B(r̄) and T 6|= H(r̄), thus B+

(r̄) ✓ T and B�
(r̄) \ T = ;.

We have that there is a rule r 2 R
i

such that r̄ is the reduced rule r by the GL-reduct. Since
T ✓ S

i

, we get S
i

|= B(r), as S
i

6|= B�
(r) follows from r̄ 2 RS

i

i

. This means that S
i

|= H(r),
hence S

i

\H(r) 6= ;. Since T 6|= H(r̄), we also get that T \H(r) = ;. Thus, L \H(r) 6= ;.
We obtain two cases for r 2 R

i

:

• r 2 kb
i

: from B+
(r̄) ✓ T we get B+

(r) \ L = ;, and from L \H(r) 6= ; we can then
conclude r 2 ER(L, kb

i

). We have to show that S
i

|= "(L, r), that is

– S
i

|=
V
B+

(r),

– S
i

|=
V
¬.B�

(r), and

– S
i

|= ¬.(H(r) \ L).

The first two items hold by S
i

|= B(r). The last item holds since T \H(r) = ;, hence
(S

i

\ L) \H(r) = S
i

\ (H(r) \ L) = ;. Since r 2 ER(L, kb
i

), we set r = r and obtain
that (3.2) is true, hence also (3.1) holds.

• r 2 {head(r0) | r0 2 app(br
i

, S)}: there exists a rule r0 2 app(br
i

, S) of form (2.2) such
that r = head(r0) and for all (c

i

: p
i

) in r0, 1 i j, we have p
i

2 S
c

i

, and for all
(c

k

: p
k

) in r0, j + 1 k m, we have p
k

/2 S
c

k

. From L \ H(r) 6= ; we have that
L \H(head(r0)) 6= ; and thus `(r0) 2 SR(L, `(br

i

)). We have to show for each S
i

that
S
i

|= "(L, `(r0)), that is

– S
i

|=
V
B+

(`(r0)),

– S
i

|=
V
¬.B�

(`(r0)), and

– S
i

|= ¬.(H(`(r0)) \ L).

Since the sets ⌃

i

are pairwise disjoint, the first two items hold as S
i

|= B(r) and I is
then a model of the body of `(r0). The last one holds since T \H(head(r0)) = ;, hence
(S

i

\ L)\H(head(r0)) = S
i

\ (H(head(r0)) \ L) = ;. Since `(r0) 2 SR(L, `(br
i

)), we
set `(r0) = r and obtain that (3.2) is true, hence also (3.1) holds.

44

We have shown that (i)–(iii) holds, and as a result, we get that I is a model of ⇡(M).

(() Let I be a model of ⇡(M). We can create a belief state S = (S1, . . . , Sn

), where each
S
i

= I|⌃
i

, and show that S is an equilibrium of M (note that the sets S
i

are pairwise disjoint
as the sets ⌃

i

are pairwise disjoint). We have to show that each S
i

2 ACC
i

(kb
i

[H
i

), where
H

i

= {head(r) | r 2 app(br
i

, S)}, i.e., each S
i

is an answer set of kb
i

[H
i

.
We show the following:

(i) S
i

is a model of (kb
i

[H
i

)

S

i

= kbSi

i

[H
i

and

(ii) S
i

is minimal.

Part (i): By I |= (kb
i

) we immediately get that S
i

|= (kb
i

) (since the sets ⌃

i

are pairwise
disjoint), hence S

i

|= kb
i

and also S
i

|= kbSi

i

.
Moreover, we have that I |= (`(br

i

)), that is, for all r
`

2 `(br
i

) we have I |= (r
`

). Let
r 2 br

i

of form (2.2) such that r
`

= `(r). We have two cases:

• I 6|=
V

B+
(r

`

) or I 6|=
V
¬.B�

(r
`

): there exists a p
i

2 B+
(r

`

) such that p
i

/2 I or a
p
k

2 B�
(r

`

) such that p
k

2 I. Since p
i

, p
k

are uniquely determined (as follows from
our disjoint language assumption), we have that there exists (c

i

: p
i

) in r, 1 i j, or
(c

k

: p
k

) in r, j + 1 k m. Thus, from our construction of S, we obtain p
i

/2 S
c

i

or
p
k

2 S
c

k

, and so we have that r /2 app(br
i

, S). We conclude that head(r) /2 H
i

.

• I |=
V
B+

(r
`

) and I |=
V
¬.B�

(r
`

) and I |=
W

H(r
`

): for some p
i

2 B+
(r

`

), p
k

2
B�

(r
`

), we have p
i

2 I and p
k

/2 I. Moreover, there exists a p
h

2 H(r
`

) such that
p
h

2 I. As the sets ⌃

i

are pairwise disjoint, all p
i

, p
k

, p
h

are uniquely determined, i.e.,
for all of p

i

, p
k

, p
h

we have (c
i

: p
i

) in r (1 i j), (c
k

: p
k

) in r (j + 1 k m),
and some p

h

2 H(s), where s = head(r). By our construction of S, we obtain that all
p
i

2 S
c

i

, and all p
k

/2 S
c

k

, thus r 2 app(br
i

, S), and so is head(r) 2 H
i

. Since there
exists a p

h

2 I, we obtain that p
h

2 S
i

, and so S
i

|= head(r).

To sum up, S
i

|= H
i

and S
i

|= kbSi

i

, therefore (i) holds.

Part (ii): Assume that there is a model T
i

⇢ S
i

of kbSi

i

[H
i

.
We first show that (1) for every a 2 S

i

\ T
i

, there exists a rule r such that a 2 H(r) and
H(r)\T

i

= ;. Indeed, assume that no such rule exists; this means that for every rule r such that
a 2 H(r), H(r) \ T

i

6= ;. Suppose that H(r) = {a, b, d1, . . . , d
k

} and b 2 T
i

. Now consider
the singleton loop L = {a}, it must hold that

I |= a �
^

B+
(r) ^

^
¬.B�

(r) ^
^

¬.(H(r) \ {a})

In other words:

I |= a �
^

B+
(r) ^

^
¬.B�

(r) ^ (¬b ^ ¬d1 ^ . . . ^ ¬d
k

) (3.3)

Since a 2 S
i

, b 2 S
i

, and all signatures are pairwise disjoint, (3.3) does not hold, claim (1)
follows.

45

Under this observation, we now construct a loop as follows. Pick a 2 S
i

\ T
i

, and set
L = {a}. For all rules r where a 2 H(r) and H(r) \ T

i

= ;,i.e., T
i

6|= H(r), since T
i

|= r,
we have that T

i

6|= B+
(r). If B+

(r) = ;, r is a fact and we come to a contradiction; Part (ii) is
proved. Otherwise, we collect all b 2 B+

(r) such that b /2 T
i

into L. Since we work with a finite
Herbrand base and never encounter a fact, we will eventually end up with L = {a1, . . . , a

k

} in
which all members depend on each other, a loop. Note that L ⇢ S

i

and L * T
i

.
For this loop, we have that

I |=
⇣_

L
⌘
� "(L,ER(L, kb

i

) [SR(L, `(br
i

))) (3.4)

Since L ✓ S
i

, it must be the case that I |= "(L,ER(L, kb
i

) [SR(L, `(br
i

))). We try to
find a rule r satisfying that I |=

V
B+

(r) ^
V
¬.B�

(r) ^
V
¬.(H(r) \ L). It can be either

(a) r 2 ER(L, kb
i

) or (b) r 2 SR(L, `(br
i

)).
Case (a): r 2 ER(L, kb

i

) means that H(r) \ L 6= ; and B+
(r) \ L = ;. Similar to proving

claim (1), one can show that H(r) \ T
i

6= ;, i.e., T
i

6|= H(r); hence T
i

6|= B+
(r). This means

that there exists some b 2 B+
(r) such that b /2 T

i

. By the construction of L and the fact that
H(r) \ L 6= ;, we have that b 2 L; therefore B+

(r) \ L 6= ;, a contradiction.
Case (b): Similar to proving claim (1), one can show that H(r)\T

i

6= ;; therefore, H(r) /2 H
i

.
On the other hand, since I |=

V
B+

(r) ^
V
¬.B�

(r) ^
V

¬.(H(r) \ L), we have that I |=V
B+

(r) ^
V
¬.B�

(r), which makes sure that r 2 app
i

(br
i

[S), thus r 2 H
i

, a contradiction
to the previous observation.

We have shown that such a rule r satisfying that I |=
V

B+
(r)^

V
¬.B�

(r)^
V
¬.(H(r)\L)

can not be found, hence I does not satisfy the loop formula wrt. L. This completes our part of
proving the minimality of S

i

. Therefore, each S
i

is an answer set of kb
i

[H
i

and hence S is an
equilibrium of M . ⇤

Example 19 For M and M 0 from Example 17, we have
⇡(M)= (b � a) ^ (a � b) ^ (a _ b � a _ b), and

⇡(M 0
)= (c � d) ^ (d � c) ^ (¬c � d) ^ (¬d � c) ^

(c � d_¬d) ^ (d � c_¬c) ^ (c_ d � ¬c_¬d) .

Clearly, ⇡(M) has the models ; and {a, b}, while it can be checked that ⇡(M 0
) has no model.

Example 20 Let us reconsider M from Example 11. We have

⇡(C1): (C1) = b ^ c � a and �(C1) = a � b ^ c

⇡(C2): (C2) = g � b and �(C2) = b � g

⇡(C3): (C3) = (d� c) ^ (c� d) ^ (¬f � c_ e) and

�(C3) = (c � d _ (¬e ^ ¬f)) ^ (d � c) ^
(c _ d � (¬e ^ ¬f)) ^ (e � (¬f ^ ¬c))

⇡(C4): (C4) = f _ g and �(C4)= (f �¬g) ^ (g�¬f).

The formula ⇡(M) = ⇡(C1) ^ · · · ^ ⇡(C4) has three models, namely {a, b, c, d, g}, {b, e, g},
and {f}. They correspond to the three projected equilibria of M shown in Example 15.

46

Loop formulas for grounded equilibria

As we already saw in Section 2.4, equilibria lack groundedness in general, as cyclic bridge
rules might be applied unfoundedly as for example a (1 : b) and b (1 : a) in Exam-
ple 17. To overcome this, grounded equilibria were proposed in [19] for certain MCS’s, in
which bridge rules intuitively act under ASP semantics. Our transformation ⇡ can be adapted to
capture grounded equilibria. We restrict here to normal ASP logics L

i

, i.e., KB
i

is the set of all
normal (disjunction-free) ASP programs (this ensures a technical reducibility condition for L

i

).
Adapting Definitions 14 and 15, we define global loop formulas.

Definition 16 (Global Loop Formulas) Let L be a loop of MCS M = (C1, . . . , Cn

). The loop
formula for L w.r.t. M is

�(L,M) =

⇣_
L
⌘
� "(L,

n[

i=1

ER(L, kb
i

[`(br
i

))) ,

and the loop formula of M is the conjunction �(M) =

V
L �(L,M) for all loops L of M .

Furthermore, we let

⇡GE(M) = �(M) ^
n^

i=1

((kbi) ^ (`(bri))) .

We then can show that ⇡GE captures grounded equilibria.

Theorem 10 The grounded equilibria of any M with normal ASP logics correspond one-to-one
to the models of ⇡GE(M).

Proof (Sketch) Consider an MCS M = (C1, . . . , Cn

) and a belief state S = (S1, . . . , Sn

).
Given that the logics at all contexts C

i

are normal ASP, we have that red
i

(kb
i

, S)
i

are GL-
reducts. Let P =

S
n

i=1(kbi [`(br
i

)). One can show that the GL-reduct of P wrt. S is:

PS

=

n[

i=1

(red
i

(kb
i

, S
i

) [`(br
i

)

S

)

which is in one-to-one correspondence to MS

= (CS

1 , . . . , C
S

n

), where CS

i

= (L
i

, red
i

(kb
i

, S
i

),
brS

i

). The only difference is that the renamed bridge rules `(br
i

) are used in PS while the
original ones are in MS , but the correspondence is guaranteed due to the assumption of disjoint
signatures between contexts.

On the other hand, the global loop formula ⇡GE(M) in Definition 16 is exactly the loop
formula for P . Using P as an intermediate step to connect M and ⇡GE(M), one can show the
one-to-one correspondence between the models of M and its global loop formula. ⇤

Example 21 The MCS M in Example 17 has

⇡GE(M) = (a � b) ^ (b � a) ^ (a _ b � ?) ,

as the external support rules ER({a, b}, kb1 [`(br1)) = ;. The only model of ⇡GE(M) is ;,
which corresponds to the grounded equilibrium of M .

47

a

b e c d

g f

1

1

2

3

3

4 4

Figure 3.6: Dependency Graph of the MCS in Example 22

Example 22 Let us modify the MCS in Example 11 to M 0 so that br4 = {f _g (1 : a)} and
kb4 = ;. This creates a global loop L = {a, b, g} as shown in Figure 3.6, and the corresponding
loop formula is

�(M 0
) = a _ b _ g � ?

since there is no external support rule for this loop. Furthermore, compared to Example 20, we
have that (C4) = > and �(C4)= (f � a^¬g)^ (g� a^¬f). With these changes, the models
of ⇡GE(M) are {c, d} and {e}, which are in correspondence with the grounded equilibria of
M 0: (;, ;, {c, d}, ;) and (;, ;, {e}, ;).

Note that DMCS cannot be run straightforwardly on ⇡GE(M), as the formulas in ⇡GE(M)

are intermingled and prohibit a clear context separation. Intuitively, this is due to the en-
coded groundedness check. We can overcome this easily by extending M 0 for ⇡(M) above
to M 00

= (C0, C 0
1, . . . , C

0
n

), where C0 = (L0,⇡GE(M), br0) has propositional logic L0 and
br0=

S
n

i=1{a (i : a) | a 2 A
i

}; intuitively, C0 filters out grounded equilibria. We then run
DMCS on M 00 at C0.

Algorithm for SAT-based MCS

With the notion of loop formulas for MCS, bridge rules can be compiled away into the corre-
sponding local theory. Hence, there is no need to evaluate bridge rules and one can make just
a single call to lsolve, instead of invoking lsolve for every combined input from neighbor con-
texts. On the other hand, we have to pay the price of guessing for all bridge atoms in the original
bridge rules in this single call, and later filter out unsatisfiable guesses by combining local belief
sets with belief states returned from the neighbors.

In this section, we present an adaptation of Algorithm DMCS to the loop formulas-based
setting. First, we replace in M each context C

i

with C 0
i

= (L0
i

,⇡(C
i

)

0, br0), where L0
i

is proposi-

48

Algorithm 3.3: DMCS�SAT(V, hist) at C
k

Input: V : relevant interface, hist : visited contexts
Data: c(k): static cache
Output: set of accumulated partial belief states

(a) if 9(V 0,S) 2 c(k) such that V ✓ V 0 then return S|
V

V 0
:= V [⌃

k

(b) T := SAT(⇡(C
k

)

0
)

S := {(res
k

(T, 1), . . . , res
k

(T, n)) | T 2 T}
(c) if k /2 hist then

T := {(✏, . . . , ✏)} and hist := hist [{k}
(d) foreach i 2 In(k) do

if for some T 2 T , T
i

= ✏ then
T := T ./ C

i

.DMCS(V, hist)

(e) S := S ./k
V

T
update-cache(c(k), V 0,S)

return S|
V

tional logic, ⇡(C
i

)

0 is a renaming of ⇡(C
i

) such that variables in different contexts are disjoint,
and br0 contains the bridge rules {a

i

 (j : a
j

);¬a
i

 (j : ¬a
j

)} for every renamed original
atom a occurring in both ⇡(C

i

) and ⇡(C
j

), i 6= j. Applying the algorithm to M 0, we obtain the
equilibria of M .

This respective algorithm DMCS�SAT, shown in Algorithm 3.3 implements exactly the
above idea. It first checks for the cache in step (a) and returns if the partial belief states had been
computed already. Otherwise, step (b) makes a call to a SAT solver with the loop formulas of the
context. The algorithm then converts each SAT model from this call into a belief state shape and
stores it in S . Then, if no cycle is detected (step (c)), we make further calls to the neighbors and
combine them in step (d). After that, the consistent belief states from neighbors are combined
with the local guesses (step (e)) and the cache is updated. Note that when a cycle is detected,
we do not need to perform any additional handling, as step (b) already takes care of guessing for
bridge atoms from the neighbor contexts. This algorithm uses the following primitives:

• res
k

(A, i) =

(
A|⌃

i

if i 2 In(k) [{k}
✏ otherwise,

which restricts a belief set A over ⌃ to a belief set A0 2 BS
i

s.t. i is in the import
neighborhood of C

k

or i = k.

• For combining partial belief states S = (S1, . . . , Sn

) and T = (T1, . . . , Tn

), we define
their join S ./k

V

T as the partial belief state (U1, . . . , Un

) with (i) U
k

= S
k

, if T
k

= ✏ _
S
k

=T
k

|
V

, and (ii) U
i

= S
i

, i 6= k, if T
i

= ✏_S
i

=T
i

, and (iii) U
i

= T
i

, if T
i

6= ✏^S
i

= ✏,

49

for all 1 i n. Note that S ./k
V

T is void, if some S
i

, T
i

are from BS
i

but different.
The join of two sets S and T of partial belief states is then naturally defined as

S ./k
V

T = {S ./k
V

T | S 2 S, T 2 T }.

Theorem 9 may be generalized to contexts with extensions of ASP logics that have loop
formula characterizations, like those in [48,66]. Furthermore, we have developed such a charac-
terization for modular logic programs [30], which feature modules akin to imperative programs
and have increased expressiveness.

Note that this loop formula characterization of equilibria may lead in the worst case to an
exponential blow-up in the size of the MCS. This is not surprising, as standard loop formulas [48,
68, 76] also face this situation, and [75] show that this unavoidable, under the widely believed
assumption from computational complexity theory that polynomial time computations cannot
be simulated with small propositional formulas. A remedy would be to encode bridge rules in
answer set programs. Note however, that some ASP solvers like ASSAT rely internally on loop
formulas and SAT solving techniques for model search; thus the expected performance gain
from a short ASP encoding might not always surface in practice.

50

CHAPTER 4
Topology-based Optimized Algorithm

In Chapter 3, we introduced a generic algorithm DMCS to compute partial equilibria of an MCS
under an assumption of the availability of solvers at each local context. As a basic version,
we did not take into account any further metadata rather than the minimal information that a
context must know: the interface with every neighboring context. As one can see in Chapter 8,
experiments for an instantiation of DMCS with answer set programming contexts revealed some
scalability issues which can be tracked down to the following problems:
(1) contexts are unaware of context dependencies in the system beyond their neighbors, and thus

treat each neighbor in a generic way. Specifically, cyclic dependencies remain undetected
until a context, seeing the invocation chain, requests models from a context in the chain.
Furthermore, a context C

k

does not know whether a neighbor C
i

already requests models
from another neighbor C

j

which then would be passed to C
k

; hence, C
k

makes possibly a
superfluous request to C

j

.
(2) a context C

i

returns the combination of its local models with the models received from all
neighboring contexts. As contexts may have multiple models, the number of models can
become huge as the size of the system respectively neighbors increases. In fact, this is one
of the main performance obstacles.
In this Chapter, we address the issue of optimization; there is an urgent need for this in

order to increase the scalability of distributed MCS evaluation. Resorting to methods from
graph theory, we aim at decomposing, pruning, and improved cycle breaking for dependencies in
multi-context systems. Focusing on (1), we describe a decomposition method using biconnected
components of inter-context dependencies. Based on this we can break cycles and prune acyclic
parts before evaluating the system and create an acyclic query plan. To address (2), we foster a
partial view of the system, which is often sufficient to reach a satisfactory answer. This way we
can make a compromise between partial information and performance. We thus define a set of
variables for each import dependency in the system to project the models in each context to the
bare minimum such that they continue to be meaningful. In this manner, we can omit needless
information and circumvent excessive model combinations.

51

The Chapter will begin with motivating examples for the optimizing techniques, which are
presented in details in Section 4.2. And finally, Section 4.3 describes algorithm DMCSOPT,
which intertwines decomposition and pruning with variable projection to gain some performance
for MCS evaluation.

4.1 Motivating Scenario

We first present a scenario in Example 23 as a running example for this Chapter. The corre-
sponding encoding is given in Example 24. Then, Example 25 analyzes some observations as
the first hints to our optimization techniques.

Example 23 (Scientists Group) A group of four scientists, Alice, Bob, Charlie, and Deni, just
finished their conference visit and are now arranging a trip back home. They can choose between
going by train or by car (which is usually slower than the train); and if they use the train, they
should bring along some food. Moreover, Charlie and Deni have additional information from
home that might affect their decision.

Charlie has a daughter, Fiona. He is fine with either transportation option, but if Fiona is sick
then he wants to use the fastest transport to get home. Deni just got married, and her husband,
Eddie, wants her to come back as soon as possible. He urges her to try to come home even
sooner, while Deni tries to yield to her husband’s plea.

If they go by train, Charlie is responsible for buying provisions. He might choose either
salad or peanuts. The options for beverages are coke or juice. Bob is a modest person as long as
he gets home. He agrees to any choice that Charlie and Deni select for vehicle but he dislikes
coke. Alice is the leader of the group and prefers to go by car, but if Bob and Charlie want to go
by train then she would not object. A problem is that Alice is allergic to nuts.

Charlie and Deni do not want to bother the group with their personal circumstances and
communicate just their preferences, which is sufficient for reaching an agreement. Alice decides
which option to take based on the information she gets from Bob and Charlie.

For further references, we map the name Alice, Bob, and so on to 1, 2, . . ., 6, respectively.

An important note is that similar scenarios have already been investigated in the realm of
multi-agent systems (see, e.g., [22] on social answer set programming). We do not aim at in-
troducing a new semantics for such scenarios; our example is meant to be a plain showcase
application of MCS. We stress that MCS have potential as a host for KR formalisms, just like
answer set programs have; however, here we concentrate on efficient MCS evaluation.

Example 24 The scenario in Example 23 can be encoded as an MCS M = (C1, . . . , C6), where
all L

i

are ASP logics and

C1 : kb1 =

⇢
car1 not train1.
? nuts1.

�
and br1 =

⇢
train1 (2 : train2), (3 : train3).
nuts1 (3 : peanuts3).

�

C2 : kb2 = {? not car2, not train2.}

br2 =

⇢
car2 (3 : car3), (4 : car4).

train2 (3 : train3), (4 : train4), not (3 : coke3).

�

52

1

2

4

3

5

6

(a) Diamond-ring

B1

B2 B3

1

2 3

3

3

4

4

4

5

6

(b) Diamond-ring block tree

Figure 4.1: Topologies and Decomposition of Scientist Group Example

C3 : kb3 =

⇢
car3 _ train3. train3 urgent3.

salad3 _ peanuts3 train3. coke3 _ juice3 train3

�

br3 =

⇢
urgent3 (6 : sick6).
train3 (4 : train4)

�

C4 : kb4 =
�
car4 _ train4

and br4 =

�
train4 (5 : sooner5)

C5 : kb5 =
�
sooner5 soon5

and br5 =

�
soon5 (4 : train4)

C6 : kb6 =
�
sick6 _ fit6

and br6 = ;

The context dependencies of M are shown in Fig. 4.1a. M has three equilibria, namely:

– ({train1}, {train2}, {train3, urgent3, juice3, salad3}, {train4}, {soon5, sooner5}, {sick6});

– ({train1}, {train2}, {train3, juice3, salad3}, {train4}, {soon5, sooner5}, {fit6}); and

– ({car1}, {car2}, {car3}, {car4}, ;, {fit6}).

Example 25 Consider an MCS M = (C1, . . . , C7) with dependencies between contexts as
outlined in Figure 4.2a. When the user queries C1 and just cares about the local belief sets in
C1, then in the evaluation process, C4 can discard all local belief sets from C5 and C6 when
returning to an invocation from C2 or C3. However, when C1 calls C2 (or C3), the invoked
context must carry local belief sets from C4 in its answers to C1. The reason is that belief sets
from C4 can cause inconsistent joins at C1 for partial belief states returned from C2 and C3,
while those from C5 to C7 only directly contribute to computing local belief sets at C4. Note
that all belief sets from C4 to C7 play no role in determining the applicability of bridge rules in
C1.

53

C1

query

C2 C3

C4

C5 C6

C7

(a) Original Topology

C1

C2 C3

(✏, ✏, S3)
(✏
, S

2
, S

3
) (✏, ✏, S

3)

(b) Triangle

C1

query

C2 C3

C4

C5 C6

C7

(c) Transitive Reduction

Figure 4.2: Topology of Example 25 (two stacked zig-zag diamonds)

Now, if we just take a subset of the system including C1, C2, and C3 into account, assuming
that C1 has bridge rules with atoms of form (2 : p2) and (3 : p3) in the body, and C2 with atoms
(3 : p3). That is, C1 depends on both C2 and C3, while C2 depends on C3 (see Fig. 4.2b). A
straightforward approach to evaluate this modified MCS is to ask in C1 for the belief sets of C2

and C3. But as C2 also depends on C3, we would need another query from C2 to C3 to evaluate
C2 w.r.t. the belief sets of C3. This shows that there is some evident redundancy in this approach,
as C3 will need to compute its belief sets twice. Simple caching strategies could mellow out the
second belief state building in C3; nonetheless, when C1 asks C3, the context will transmit back
its belief states, thus consuming network resources.

Moreover, when C2 asks for the partial equilibria of C3, it will receive a set of partial equi-
libria that covers the belief sets of C3 and in addition all contexts in the import closure IC (3).
This is excessive from the view of C1, as it only needs to know the truth of (2 : p2) and (3 : p3).
However, C1 needs the belief states of both C2 and C3 in reply of C2: if C2 only reports its
own belief sets (which are consistent w.r.t. C3), then C1 has no chance to align the belief sets
received from C2 with those received from C3. Realizing that C2 also reports the belief sets of
C3, no call to C3 must be made.

4.2 Decomposition of Nonmonotonic MCS

Based on the observations in the above Section, we present an optimization strategy which pur-
sues two orthogonal goals: (i) to prune dependencies in an MCS and cut superfluous trans-
missions, belief state building, and joining of belief states; and (ii) to minimize information in
transmissions.

54

Graph-theoretic concepts

We start with defining the topology of an MCS.

Definition 17 (Topology) The topology of an MCS M = (C1, . . . , Cn

) is the directed graph
G

M

= (V,E), where V = {1, . . . , n} and (i, j) 2 E iff some rule in br
i

has an atom (j:p) in
the body.

The first optimization technique is made up of three graph operations. We get a coarse view
of the topology by splitting it into biconnected components, which form a tree representation of
the MCS. Then, edge removal techniques yield acyclic structures.

In the sequel, we will use standard terminology from graph theory (see [17]); graphs are
directed by default.

For any graph G and set S ✓ E(G) of edges, we denote by G\S the maximal subgraph of G
that has no edges from S. For a vertex v 2 V (G), we denote by G\v the subgraph of G induced
by V (G)\{v}.

A graph is weakly connected if replacing every directed edge by an undirected edge yields
a connected graph. A vertex c of a weakly connected graph G is a cut vertex, if G\c is discon-
nected. A biconnected graph is a weakly connected graph without cut vertices.

A block in a graph G is a maximal biconnected subgraph of G. Let T (G) = (B [C, E)
denote the undirected bipartite graph, called block tree of graph G, where

(i) B is the set of blocks of G,

(ii) C is the set of cut vertices of G,

(iii) and (B, c) 2 E with B 2 B and c 2 C iff c 2 V (B).

Note that T (G) is a rooted tree for any weakly connected graph G; for arbitrary graphs, it is a
forest.

Example 26 Consider the graph in Figure 4.2a. One can check that 4 is the only cut vertex and
there are two blocks of this graph: the subgraphs induced by {1, 2, 3, 4} and {4, 5, 6, 7}.

The next example shows the block tree of our scenario in Example 23.

Example 27 The topology G
M

of M in Example 24 is shown in Figure 4.1a. It has two cut
vertices, namely 3 and 4; thus the block tree T (G

M

) (Figure 4.1b) contains the blocks B1, B2,
and B3, which are subgraphs of G

M

induced by {1, 2, 3, 4}, {4, 5}, and {3, 6}, respectively.

Pruning

In acyclic topologies, like the triangle presented in the previous section, we can exploit a min-
imal graph representation to avoid unnecessary calls between contexts, namely, the transitive
reduction of the graph G

M

. Recall that the transitive reduction of a directed graph G is the
graph G� with the smallest set of edges (with respect to set inclusion) whose transitive closure

55

1

2 3

4

5

(a) A strongly connected component

1

2 3

4

5

(b) Acyclic topology

Figure 4.3: Ear Decomposition Example

equals the one of G. Note that G� is unique if G is acyclic. For instance, the graph in Figure 4.2c
is the unique transitive reduction of the one in Figure 4.2a.

Another essential part of our optimization strategy is to break cycles by removing edges from
topologies. To this end, we use ear decompositions of cyclic graphs. A block may have multiple
cycles which are not necessarily strongly connected, thus we first decompose cyclic blocks into
their strongly connected components. The topological sort of these components yield a sequence
of nodes r1, . . . , rs that are used as entry points to each component. The next step is to break
cycles. An ear decomposition of a strongly connected graph G rooted at a node r is a sequence
P = hP0, . . . , Pm

i of subgraphs of G such that

(i) G = P0 [· · · [P
m

,

(ii) P0 is a simple cycle (i.e., has no repeated edges or vertices) with r 2 V (P0), and

(iii) each P
i

(i > 0) is a non-trivial path (without cycles) whose endpoint t
i

is in P0[· · ·[Pi�1,
but the other nodes are not.

Let cb(G,P) be the set of edges containing (`0, r) from P0 and the last edge (`
i

, t
i

) from each
P
i

, i > 0.

Example 28 Take, as an example, a strongly connected graph G in Figure 4.3a. An ear decom-
position of G rooted at node 1 is P = hP0, P1, P2, P3i where

– V
P0 = {1, 2, 3}, E

P0 = {(1, 2), (2, 3), (3, 1)}

– V
P1 = {2, 4, 3}, E

P1 = {(2, 4), (4, 3)}

56

– V
P2 = {2, 5, 3}, E

P2 = {(2, 5), (5, 3)}

– V
P3 = {1, 4}, E

P4 = {(1, 4)}

The last edges of P
i

are dashed. Together they form the set cb(G,P) = {(3, 1), (4, 3), (5, 3),
(1, 4)}. Removing these edges results in an acyclic topology as in Figure 4.3b.

Intuitively, ear decomposition is used to remove cycles from the original system. With the
obtained acyclic topology, algorithms for evaluating MCSs can be designed more conveniently.
The trade off is that for any removed edge (`, t) from the original system, context C

`

now has to
guess for variables from C

t

, even though in the new system, C
`

is a leaf context. The following
example shows the application of the optimization techniques above to our running scenario.

Example 29 Block B1 of T (G
M

) is acyclic, and the transitive reduction gives B�
1 with edges

{(1, 2), (2, 3), (3, 4)}. B2 is cyclic, and hB2i is the only ear decomposition rooted at 4; removing
cb(B2, hB2i) = {(5, 4)}, we obtain B0

2 with edges {(4, 5)}. B3 is acyclic and already reduced.
Fig. 4.1b shows the final result (dotted edges are removed).

The graph-theoretic concepts introduced here, in particular the transitive reduction of acyclic
blocks and the ear decomposition of cyclic blocks, are used to implement the first optimization
of MCS evaluation outlined above. Intuitively, in each block, we apply ear decomposition to
get rid of cycles (with the trade-off of guessing), and then use transitive reduction to minimize
communication. Given the transitive reduction B� of an acyclic block B 2 B, and a total
order on V (B�

) that extends B�, one can evaluate the respective contexts in reverse order for
computing partial equilibria at some context C

k

: the first context simply computes its local belief
sets which—represented as a set of partial belief states S0—constitutes an initial set of partial
belief states T0. In any iterative Step i, T

i�1 is updated by joining it with the local belief sets S
i

of the context under consideration. Given T
k

(after updating with S
k

) for context C
k

, it holds
that T

k

|
V

⇤(k) is the set of partial equilibria at C
k

(restricted to contexts in V (B�
)).

Refined recursive import

Next, we define the second part of our optimization strategy which handles minimization of
information needed for transmission between two neighboring contexts C

i

and C
j

. For this pur-
pose, we refine the notion of recursive import interface in a context w.r.t. a particular neighbor,
and a given (sub-)graph.

Definition 18 Given an MCS M = (C1, . . . , Cn

) and a subgraph G of G
M

, for an edge (i, j) 2
E(G), the recursive import interface of C

i

to C
j

w.r.t. G is V ⇤
(i, j)

G

= {V ⇤
(i) \

S
`2G|

j

⌃

`

}
where G|

j

contains all nodes in G reachable from j.

Example 30 Consider the MCS in Example 24, we have that the recursive import interface
V ⇤

(1) = {train2, train3, peanuts3, car3, coke3, car4, train4, sooner5, sick6}.
When we take into account just the block B1, the refined recursive import interface V ⇤

(1, 2)
B

�
1

can be archieved by removing bridge atoms from contexts that belong to other blocks B2 and
B3, which results in {train2, train3, peanuts3, car3, coke3, car4, train4}

57

Intuitively, if a context is a cut vertex c in G
M

, one can drop all entries S
i

(i 6= c) from the
partial belief states computed at c, and pass this result to the parent block of c in T (G

M

), without
compromising the computation of compatible (restricted) belief sets at the parent. Recursive
import interfaces w.r.t. blocks in G

M

reflect this property, which can be exploited for minimizing
the information transmitted.

Algorithms

Algorithms 4.1 and 4.2 combine the optimization techniques outlined above. Intuitively, algo-
rithm OptimizeTree takes a block tree T as input together with parent cut vertex c

p

and root
cut vertex c

r

. It traverses T in a DFS-way and calls OptimizeBlock on every block. The result
of the latter calls are removed edges F ; after all blocks have been processed, the final result of
OptimizeTree is a pair of all edges removed from blocks in T , and a labeling v for the remaining
edges. OptimizeBlock takes a graph G and calls subroutine CycleBreaker for cyclic G, which
decomposes G into its strongly connected components, creates an ear decomposition P for each
component G

c

, and breaks cycles by removing edges cb(G
c

, P). For the resulting acyclic sub-
graph of G (or if G was already acyclic), OptimizeBlock computes the transitive reduction G�.
All edges removed from G are returned. OptimizeTree continues computing the labeling v for
the remaining edges, building on the recursive import interface, but keeping relevant interface
variables of child cut vertices and removed edges. It can be shown that:

Proposition 11 For any context C
k

in an MCS M , OptimizeTree(T (G
M

), k, k) returns a pair
(F, v) such that

(i) the subgraph G of G
M

\F induced by IC (k) is acyclic, and

(ii) in any block B of G and for all (i, j) 2 E(B), it holds that v(i, j) ◆ V ⇤
(i, j)

B

.

Proof Item (i) is trivial to see since CycleBreaker is applied in Algorithm 4.2. To prove item (ii),
let us look at two cases in which an edge (`, t) is removed from the original topology at Step (a)
of Algorithm 4.1:

• (`, t) is removed by CycleBreaker: this causes that certain nodes in the graph cannot
reach t via `. However, the interface that C

t

provides is already attached to v(i, j) via
V ⇤

(c
p

)|⌃
t

.

• (`, t) is removed by transitive reduction: this does not change the reachability of t from
other nodes; therefore, the interface that C

t

provides is already included in V ⇤
(i, j)

B

0 .

This argument gives us property (ii). ⇤

The following proposition shows the computational complexity of our algorithm.

Proposition 12 For any context C
k

in an MCS M , OptimizeTree(T (G
M

), k, k) runs in time
polynomial (quadratic) in the size of T (G

M

) resp. G
M

.

58

Proof First, we estimate the complexity to compute v(i, j) in loop (a).

v(i, j) := V ⇤
(i, j)

B

0 [
[

c2C0

V ⇤
(c

p

)|⌃
c

[
[

(`,t)2E

V ⇤
(c

p

)|⌃
t

On the one hand, the refined recursive import V ⇤
(i, j)0

B

is defined as (Definition 18):

V ⇤
(i, j)0

B

= {V ⇤
(i) \

[

`2B0|
j

⌃

`

}

where B0|
j

contains all nodes reachable from j.
On the other hand, since all signatures disjoint, we have that

[

c2C0

V ⇤
(c

p

)|⌃
c

[
[

(`,t)2E

V ⇤
(c

p

)|⌃
t

= V ⇤
(c

p

)|S
c2C0 ⌃c

[
S

(`,t)2E

⌃
t

Since the recursive import interface for a node k is defined as V ⇤
(k) =

S
i2IC (k)V (i),

the expression to compute v(i, j) is in the end a combination of set intersection, union, and
projection. With an implemetation of sets using hash set, that is, look up takes O(1), these
operators can be implemented in linear time. Therefore, v(i, j) can be computed in linear time
in the size of the signatures of contexts in the system.

Given G
M

, the block tree graph T (G
M

) can be constructed in linear time [94]. Ear-
decomposition (Step (c)) can also be done in linear time [93]. Transitive reduction (Step (d))
can be computed in quadratic time with respect to the number of edges in the block.

OptimizeTree(T (G
M

), k, k) iterates through all blocks. Assume that we have m blocks
B1 . . . , Bm

, and each B
i

contains n
i

edges, where n = ⌃

m

i=1ni

is the total number of edges in
the original graph. Let t

i

be the time to process block B
i

. Then the bound of the total processing
time can be assessed as follows:

t = ⌃

m

i=1ti ⌃

m

i=1n
2
i

 (⌃

m

i=1ni

)

2
= n2.

Therefore, if we ignore loop (a), OptimizeTree can be done in quadratic time in the size of
the original input, i.e., the size of G

M

. ⇤

Given the topology of an MCS, we need to represent a stripped version of it which contains
both the minimal dependencies between contexts and interface variables that need to be trans-
ferred between contexts. This representation will be a query plan that can be used for execution
processing. Syntactically, query plans have the following form.

Definition 19 (Query Plan) A query plan of an MCS M w.r.t. context C
k

is any labeled sub-
graph ⇧ of G

M

induced by IC (k) with E(⇧) ✓ E(G
M

), and edge labels v : E(G)! 2

⌃.

For any MCS M and context C
k

of M , not every query plan is suitable for evaluating M;
however, the following query plan is in fact effective.

Definition 20 (Effective Query Plan) Given an MCS M and a context C
k

, the effective query
plan of M with respect to C

k

is ⇧

k

= (V (G), E(G)\F, v) where G is the subgraph of G
M

induced by IC (k) and (F, v) = OptimizeTree(T (G
M

), k, k).

59

Algorithm 4.1: OptimizeTree(T = (B [C, E), c
p

, c
r

)

Input: T : block tree, c
p

: identifies level in T , c
r

: identifies level above c
p

Output: F : removed edges from
S
B, v: labels for (

S
B)\F

B0
:= ;, F := ;, v := ; // initialize siblings B0 and return values

if c
p

= c
r

then
B0

:= {B 2 B | c
r

2 V (B)}
else

B0
:= {B 2 B | (B, c

p

) 2 E}

foreach sibling block B 2 B0 do // sibling blocks B of parent c
p

E := OptimizeBlock(B, c
p

) // prune block
C0

:= {c 2 C | (B, c) 2 E ^ c 6= c
p

} // children cut vertices of B
B0

:= B\E, F := F [E
(a) foreach edge (i, j) of B0 do // setup interface of pruned B

v(i, j) := V ⇤
(i, j)

B

0 [
S

c2C0 V ⇤
(c

p

)|⌃
c

[
S

(`,t)2E V ⇤
(c

p

)|⌃
t

foreach child cut vertex c 2 C0 do // accumulate children
(b) (F 0, v0) := OptimizeTree(T\B, c, c

p

)

F := F [F 0, v := v [v0

return (F, v)

Algorithm 4.2: OptimizeBlock(G : graph, r : context id)
F := ;
if G is cyclic then

(c) F := CycleBreaker(G, r) // ear decomposition of strongly connected components

(d) Let G� be the transitive reduction of G\F
return E(G) \ E(G�

) // removed edges from G

In the next section, we show how to use ⇧

k

for MCS evaluation. As it is clear from the
context that we will use effective query plans, we omit the word effective and use query plans
instead.

4.3 Evaluation with Query Plans

Given an MCS M and a starting context C
k

, we aim at finding all projected partial equilibria of
M w.r.t. C

k

in a distributed way. To this end, we design an algorithm called DMCSOPT that
is based on the algorithm DMCS in [31], but exploits properties of the optimization techniques
described above. As a by-product, we obtain a simplification, because explicit cycle breaking is
not needed. At each context node, an instance of DMCSOPT runs independently and commu-

60

nicates with other instances for exchanging sets of partial belief states. This provides a method
for distributed model building, such that DMCSOPT can be deployed to any MCS where appro-
priate solvers for the respective context logics are available. The main feature of DMCSOPT
is that it computes projected partial equilibria based on a query plan. This can be exploited for
specific tasks like, e.g., local query answering or consistency checking. When computing pro-
jected partial equilibria, the information communicated between contexts is minimized, keeping
communication cost low.

In the sequel, we present a basic version of the algorithm, abstracting from low-level imple-
mentation issues. The idea is as follows: we start with context C

k

and traverse a given query
plan by expanding the outgoing edges of that plan at each context, like in a depth-first search,
until a leaf context is reached. A leaf context C

i

simply computes its local belief sets, transforms
all belief sets into partial belief states, and returns this result to its parent. If the leaf C

i

contains
(j : p) in bodies of bridge rules such that there is no context C

j

to visit in the query plan—this
means we broke a cycle by removing the last edge to C

j

—, all possible truth assignments to the
import interface to C

j

are considered.
The result of any context C

i

is a set of partial belief states, which amounts to the join, i.e.,
the consistent combination, of its local belief sets with the results of its neighbors; the final result
is obtained from C

k

. To keep recomputation and recombination of belief states with local belief
sets at a minimum, partial belief states are cached in every context.

Algorithm 4.3 shows our distributed algorithm, DMCSOPT, with its instance at a context
C
k

that runs in a background process (or daemon in Unix). On input of the id c of a predecessor
context (which the process awaits), it proceeds based on an (acyclic) query plan ⇧

r

w.r.t. context
C
r

, i.e., the starting context of the system. The algorithm maintains a cache cache(k) at C
k

,
which is kept persistent by the background process. It uses the following helper functions:

• C
i

.DMCSOPT(c): send id c to DMCSOPT at context C
i

and wait for its result.

• guess(V): guess all possible truth assignments for the interface variables V .

• lsolve(S) (Algorithm (c)): given a partial belief state S, augment kb
k

with all heads from
bridge rules br

k

applicable w.r.t. S (=: kb0
k

), compute local belief sets by ACC(kb0
k

), and
merge them with S; return the resulting set of partial belief states.

The steps of Algorithm 4.3 are explained as follows:
(a)+(b) check the cache, and if it is empty get neighbor contexts from the query plan, request

partial belief states from all neighbors and join them;
(c) if there are (i : p) in the bridge rules br

k

such that (k, i) /2 E(⇧

r

), and no neighbor
delivered the belief sets for C

i

in step (b) (i.e., T
i

= ✏), we have to call guess on the
interface v(c, k) and join the result with T (intuitively, this happens when edges had been
removed from cycles);

(d) compute local belief states given the imported partial belief states collected from neigh-
bors; and

(e) return the locally computed belief states and project to the variables in v(c, k) for non-root
contexts; this is the point were we mask out parts of the belief states that are not needed
in contexts the lie in a different block of T (G

M

).

61

Algorithm 4.3: DMCSOPT(c : context id of predecessor) at C
k

= (L
k

, kb
k

, br
k

)

Data: ⇧
r

: query plan w.r.t. starting context C
r

and label v, cache(k): cache
Output: set of accumulated partial belief states

(a) if cache(k) is not empty then
S := cache(k)

else
T := {(✏, . . . , ✏)}

(b) foreach (k, i) 2 E(⇧

r

) do T := T ./ C
i

.DMCSOPT(k) // neighbor belief sets

(c) if there is i 2 In(k) s.t. (k, i) /2 E(⇧

r

) and T
i

= ✏ for T 2 T then
T := guess(v(c, k)) ./ T // guess for removed dependencies in ⇧

r

S := ;
(d) foreach T 2 T do S := S [lsolve(T) // get local beliefs w.r.t. T

cache(k) := S

(e) if (c, k) 2 E(⇧

r

) (i.e., C
k

is non-root) then
return S|

v(c,k)

else
return S

Theorem 14 shows that DMCSOPT is sound and complete. To prove it, we need Proposi-
tion 13 to claim that partial equilibria returned from DMCS and DMCSOPT are in correspon-
dence. But first, we need the following supportive notion.

Definition 21 Let C
k

be a context of an MCS M , and let ⇧
k

be the query plan as in Defini-
tion 20. For each block B of ⇧

k

, the block interface of B, whose root vertex is c
B

, is

V
B

= {p 2 v(i, j) | (i, j) 2 E(B)} [⌃

c

B

.

Let C
i

be a context in B. The self-recursive import interface of C
i

in B is

V ⇤
(i)

B

= ⌃

i

[
[

(i,`)2E(⇧
k

)

V ⇤
(i, `)

B

.

Proposition 13 Let C
k

be a context of an MCS M , let ⇧
k

be the query plan as in Definition 20
in which C

k

belongs to block B of ⇧
k

and let V =

S
B2⇧

k

V
B

. Then,

(i) for each S0 2 DMCSOPT(k) called from C
c

where (c, k) 2 E(⇧

k

) or c = k, there exists
a partial equilibrium S 2 C

k

.DMCS(V, ;) such that S0
= S|

V

⇤(c,k)
B

if (c, k) 2 E(⇧

k

) or
S0

= S|
V

⇤(k)
B

if c = k;

(ii) for each S 2 C
k

.DMCS(V, ;), there exists some S 2 DMCSOPT(k) called from C
c

such
that S0

= S|
V

⇤(c,k)
B

if (c, k) 2 E(⇧

k

) or S0
= S|

V

⇤(k)
B

if c = k.

62

1

2

3

4

5

6

7

8

9

10

11

12

Figure 4.4: Possible cycle breakings

For the detailed proof of Proposition 13, we refer the reader to Section 4.4.

Theorem 14 Let C
k

be a context of an MCS M , let ⇧
k

be the query plan as in Definition 20
and let bV = {p 2 v(k, j) | (k, j) 2 E(⇧

k

)}. Then,

(i) for each S0 2 C
k

.DMCSOPT(k), there exists a partial equilibrium S of M w.r.t. C
k

such
that S0

= S|b
V

; and

(ii) for each partial equilibrium S of M w.r.t. C
k

, there exists an S0 2 C
k

.DMCSOPT(k) such
that S0

= S|b
V

.

Proof (i) Let S0 2 C
k

.DMCSOPT(k) be a result from DMCSOPT. By Proposition 13 (i) for
c = k, there exists an S00 2 C

k

.DMCS(V, ;) such that S0
= S00|

V

⇤(k)
B

, where we choose
V =

S
B2⇧

k

V
B

. Note that V ⇤
(k) ✓ V as V collects all bridge atoms from all blocks, which

might contain blocks not reachable from k. By Theorem 3, there exists a partial equilibrium S
of M such that S00

= S|
V

. Thus, we have that
S0

= (S|
V

)|
V

⇤(k)
B

= S|
V

⇤(k)
B

because V ⇤
(k)

B

✓ V

= S|b
V

because bV ✓ V ⇤
(k)

B

(ii) Let S be a partial equilibrium of M . By Theorem 3, there exists S00 2 C
k

.DMCS(V, ;) such
that S00

= S|
V

where we choose V =

S
B2⇧

k

V
B

. As above, V ⇤
(k) ✓ V . By Proposition 13 (ii)

for c = k, there exists S0 2 C
k

.DMCSOPT(k) such that S0
= S00|

V

⇤(k)
B

. As above, we have
that S0

= S|b
V

. ⇤

4.4 Proof of Proposition 13

To support the proof of Proposition 13, we need the following lemmas.

63

Lemma 15 Assume that the import neighborhood of context C
k

is In(k) = {i1, . . . , im}, no
(k, i

j

) is removed from the original topology by OptimizeBlock(B, c
B

), and

S 0i1
= DMCSOPT(k) at C

i1 Si1
= C

i1 .DMCS(V
B

, ;)
...

...
S 0i

m

= DMCSOPT(k) at C
i

m

Si

m

= C
i

m

.DMCS(V
B

, ;)

such that for every partial equilibrium S0 2 S 0i
j , there exists S 2 Si

j such that S0
= S|

V

⇤(k,i
j

)
B

.
Let T 0

= S 0i1 .// S 0i
m and T = Si1 .// Si

m . Then, for each T 0 2 T 0, there
exists T 2 T such that T 0

= T |
Vinput (1,m) with Vinput(`1, `2) =

S
`2
j=`1

V ⇤
(k, i

j

)

B

.

Proof We prove by induction on the number of neighbors in In(k).
Base case: In(k) = {i}, the claim trivially holds.
Induction case: In(k) = {i1, . . . , i

`

}, U 0
= S 0i1 .// S 0i

`�1 , U = Si1 .// Si

`�1 , and
for each U 0 2 U 0, there exists U 2 U such that U 0

= U |
Vinput(1,`�1)

. We need to show that for
each T 0 2 U 0 ./ S 0i

` , there exists a T 2 U ./ Si

` such that T 0
= T |

Vinput (1,`).
Assume that the opposite holds, i.e., there exists T = U 0 ./ S0 where U 0 2 U 0 and S0 2 S 0i

` ,
and for all U 2 U , S 2 Si

` such that U 0
= U |

Vinput (1,`�1) and S0
= S|

V

⇤(k,i
`

)
B

, we have that
U ./ S is void.

This means there exists a context C
t

reachable from C
k

by two different ways, one via i
`

and the other via one of i1, . . . , i
`�1 such that U

t

6= ✏, S
t

6= ✏, U
t

6= S
t

, and either

(i) U 0
t

= ✏ or S0
t

= ✏, or

(ii) U 0
t

= S0
t

6= ✏

Case (i) cannot happen because C
t

is reachable from C
k

, hence Vinput(1, ` � 1) \ ⌃

t

6= ;
and V ⇤

(k, i
`

) \ ⌃

t

6= ;.
Concerning case (ii), we have that U

t

|
Vinput (1,`�1) = S

t

|
V

⇤(k,i
`

) 6= ✏, hence there exists a 2
U
t

\U
t

|
Vinput (1,`�1) and a /2 S

t

|
V

⇤(k,i
`

). This means that Vinput(1, `� 1)\⌃
t

6= V ⇤
(k, i

`

)\⌃
t

.
However, from Definition 18 of recursive import interface, we have that V ⇤

(k, i
x

)

B

=

V ⇤
(k) \

S
`2B|

k

⌃

`

where B|
i

x

contains all nodes in B reachable from i
x

, it follows that
V ⇤

(k, i
`

) and V ⇤
(k, i

j

) for any 1 j ` � 1 that reaches t, share the same projection to
⌃

t

, hence Vinput(1, `� 1) \ ⌃

t

= V ⇤
(k, i

`

) \ ⌃

t

.
We reach a contradiction, and therefore Lemma 15 is proved. ⇤

Lemma 16 The join operator ./ has the following properties, given arbitrary belief states S,
T , U with the same size:

(i) S ./ S = S

(ii) S ./ T = T ./ S

(iii) S ./ (T ./ U) = (S ./ T) ./ U .

64

S
i

= ✏ T
i

= ✏ U
i

= ✏ S
i

= T
i

T
i

= U
i

U
i

= S
i

R
i

W
i

Y Y Y Y Y Y ✏ ✏

Y Y N Y N N U
i

U
i

Y N Y N N Y T
i

T
i

Y N N N Y N T
i

T
i

N N N void void
N Y Y N Y N S

i

S
i

N Y N N N Y S
i

S
i

N N N void void

N N Y Y N N S
i

S
i

N N N void void

N N N

Y Y Y S
i

S
i

Y N N void void
N Y N void void
N N N void void

Table 4.1: Possible cases when joining at position ith

These properties also hold for sets of belief states.

Proof The first two properties are trivial to prove. We will prove associativity.
Let R = S ./ (T ./ U) and W = (S ./ T) ./ U . Consider doing the joins from left to

right. At each position i (1 i n), R
i

and W
i

are determined by locally comparing S
i

, T
i

and U
i

. If we reach inconsistency, the process terminates and void is returned; otherwise, we
conclude the value for R

i

, W
i

and continue to the next position. The final join is returned if
position n is processed without any inconsistency.

All possible combination of S
i

, T
i

, and W
i

are shown in Table 4.1. One can see that we
always have the same outcome for R

i

and W
i

. Therefore, we have in the end either R = W or
both are void . This concludes that the join operator ./ is commutative. ⇤

Lemma 17 Let C
i

and C
j

be two contexts in M such that they are in the same block after
OptimizeTree and there is a directed path from C

i

to C
j

, and that

Si

= DMCSOPT(k) at C
i

;

Sj

= DMCSOPT(k) at C
j

.

Then Si

= Si ./ Sj .

Proof The use of cache in DMCSOPT does not change the result and can be disregarded, i.e.,
we can assume without loss of generality that cache(k) = ; in DMCSOPT. Indeed, cache(k)
is filled with the result of the computation when it is empty (i.e., when C

k

is accessed the first

65

time), and is after that never changed and DMCSOPT just returns cache(k), i.e., the value of
the computation with empty cache(k).

Under the above assumption, Lemma 17 can be proven by taking any path C
i

= C
p1 , . . . , Cp

h

=

C
j

that connects C
i

to C
j

, and arguing that for each index ` 2 {1, . . . , h}, it holds that
Sp

`

= Sp

` ./ Sj

(?). Indeed, we can show this by an induction on the path.

Base case: ` = h, statement (?) holds as we have Sp

h ./ Sj

= Sj ./ Sj

= Sj by identity
(Lemma (16), (i)).

Induction case: consider ` < h, and suppose we already established by the induction hypothesis
that Sp

`+1
= Sp

`+1 ./ Sj .
Now by definition of Sp

` and DMCSOPT, it holds that Sp

`

= lsolve(T)

1 and T is, by
the statements (b) and (c), of the form T = Sp

`+1 ./ T 0; this holds because there is an edge
(p

`

, p
`+1) in E, and because ./ is commutative and associative (Lemma (16), (ii) and (iii)). By

the induction hypothesis, we get

T = Sp

`+1 ./ T 0
= (Sp

`+1 ./ Sj

) ./ T 0
= Sj ./ (Sp

`+1 ./ T 0
),

that is, T is of the form Sj ./ T 00.
Next, lsolve(T) does not change the value of any component of any interpretation I in T

that is defined in Sj ; that is, lsolve(T) ./ Sj

= lsolve(T). This means Sp

`

= lsolve(T) =

lsolve(T) ./ Sj

= Sp

` ./ Sj , which proves statement (?) holds for `.
Eventually, we get for ` = 1 that Si

= Sp1
= Sp1 ./ Sj

= Si ./ Sj . ⇤

Based on Lemma 17, we have the following result.

Lemma 18 Assume that the import neighborhood of context C
k

is In(k) = {i1, . . . , im}, and

Si1
= DMCSOPT(k) at C

i1

...
Si

m

= DMCSOPT(k) at C
i

m

.
Furthermore, suppose that edge (k, i

j

) was removed by the optimization process (1 j
m), and that C

i

`

is a neighbor of C
k

such that there exists a path from k to i
j

through i
`

in the
optimized topology. Then it holds that Si

`

= Si

` ./ Si

j . In other words, the input to DMCSOPT
at C

k

is not affected by the removal of (k, i
j

).

Proof Since C
i

j

and C
i

`

are directed children of C
k

, it follows that they belong to the same
block. Therefore, by Lemma 17 we have that Si

`

= Si

` ./ Si

j . ⇤

Proof (Proposition 13) We proceed by structural induction on the block tree of an MCS M .
First, we consider the case where the topology of M is a single block B. In this case, the
interface passed to DMCS is V = V

B

.
Base case: C

k

is a leaf. Then we now compare a call DMCSOPT(k) at C
k

and C
k

.DMCS(V, ;),
where V = V ⇤

(k)
B

= ⌃

k

. Algorithm 3.1 returns local belief sets of C
k

projected to V and
Algorithm 4.3 returns plain local belief sets, the claim follows as V = V ⇤

(k)
B

= ⌃

k

.
1With abuse of notation, we write lsolve(T) for

S
T2T lsolve(T)

66

Induction case: Assume that the import neighborhood of context C
k

is In(k) = {i1, . . . , im},
and

S 0i1
= DMCSOPT(k) at C

i1 Si1
= C

i1 .DMCS(V
B

, ;)
...

...
S 0i

m

= DMCSOPT(k) at C
i

m

Si

m

= C
i

m

.DMCS(V
B

, ;)

such that for every partial equilibrium S0 2 S 0i
j , there exists S 2 Si

j such that S0
= S|

V

⇤(k,i
j

)
B

.
There are two cases. First, no edge (k, i

j

) is removed by the optimization procedure. Then,
by Lemma 15, we have the correspondence between the input to DMCSOPT and DMCS at C

k

.
On the other hand, assume that an edge (k, i

j

) was removed by the optimization process.
The removal can be from either transitive reduction or ear decomposition. In the former case,
Lemma 18 shows that the input to C

k

is not affected by the removal of this edge. For the latter
case, the removal can be one of three possibilities as illustrated in Figure 4.4, assuming that
context C1 gets called:

(i) (6, 1), the last edge of the simple cycle P0 = {1, 2, 3, 4, 5, 6}

(ii) (9, 6), the last edge of path P1 = {5, 7, 8, 9, 6}

(iii) (12, 2), the last edge of path P2 = {3, 10, 11, 12}

Cases (i) and (iii) differ from case (ii) in the sense that a cycle will be recognized by DMCS
why for case (ii), no cycle is detected along the corresponding path.

Now, consider when (k, i
j

) is removed in situations similar to cases (i) and (iii), DMCSOPT
will issue a guess at Step (c) of Algorithm 4.3 on v(k, i

j

), which includes V ⇤
(c

B

)|⌃
i

j

= V
B

\
⌃

i

j

. On the other hand, DMCS will recognize the cycle at C
i

j

and issue a guess on V
B

\ ⌃

i

j

at
Step (c) of Algorithm 3.1. Therefore, the guess is fed equally to C

k

.
When (k, i

j

) is removed in situations similar to case (ii), all guesses of C
k

on the interface
from C

i

j

will be eventually filtered when being combined with the local belief states computed
by C

i

j

, at the starting node of the path containing (k, i
j

) as the last edge (in the ear decomposi-
tion). In Figure 4.4, this is node 5.

In all cases, we have that whenever there is an input T 0 into lsolve in DMCSOPT(k) called
by C

c

, there is an input T to lsolve in C
k

.DMCS(V
B

, ;). Therefore, the claim on the output
holds.

Now that Proposition 13 holds for a single leaf block. One can see that the upper blocks
only need to import the interface beliefs from the cut vertices (also the root contexts of the lower
blocks). Under the setting of V =

S
B2⇧

k

V
B

, results from DMCSOPT and DMCS projected to
the interface of the cut vertices are identical. Therefore, the upper blocks receive the same input
regarding the interfaces of the cut vertices in running both algorithms. And therefore the final
results projected to V ⇤

(k)
B

are in the end the same. ⇤

67

CHAPTER 5
Streaming Algorithm

In Chapter 4, we presented optimized algorithms for preprocessing MCSs, which take the topol-
ogy information of an MCS into account and first partition the global systems into a tree of
blocks. Inside each block, we apply advanced decomposition techniques, namely ear decompo-
sition and transitive reduction. The former aims at removing cycles from the original topology,
making it easier for communicating between contexts when computing equilibria. The latter, on
the other hand, takes as input the acyclic topology and cuts off as many connections as possible
while guaranteeing reachability, to minimize communication. As a side effect, the interface be-
tween contexts must be updated accordingly to compensate the deleted connection links. More-
over, the decomposition of the whole topology into a block tree helps to keep local information
within each block and therefore reduces a significant amount of information transferred in the
global system.

This preprocessing builds up a query plan which is then used as input for our new algorithm
DMCSOPT for evaluating equilibria of an MCSs. As one can see in Chapter 8, DMCSOPT
shows substantial improvements compared to the basic algorithm DMCS regarding the number
of contexts in an MCS it can handle. However, the experimental results also reveal limitations
that DMCSOPT encountered, i.e., when the sizes of the local signatures at each context and the
interface between contexts increase, DMCSOPT also suffers from bottlenecks.

These limitations stem from the way in which models are exchanged between contexts. For
example, suppose context C1 accesses information from several other contexts C2, . . . , Cm

,
called its neighbors. Consider a simple setting where the information flow is acyclic, meaning
that none of the neighbors (directly or indirectly) accesses information from C1. Furthermore,
assume that n2, . . . , nm

are the numbers of partial equilibria that exist at the neighbors, respec-
tively. Intuitively, a partial equilibrium at a context is an equilibrium of the subsystem induced by
information access. By the current approach for distributed evaluation, all the partial equilibria
are returned to the parent context C1.

Before any local model computation can take place at the parent, it needs to join, i.e., to
properly combine the partial equilibria obtained from its neighbors. This may result in n2 ⇥
n3 ⇥ · · · ⇥ n

m

partial models to be constructed (each one providing a different input for local

69

model computation) which may not only require considerable computation time but also exhaust
memory resources. In fact, memory can be exhausted before local model computation at C1 has
even been initiated, i.e., before any (partial) equilibrium is obtained.

Note however that if instead of the above procedure each neighbor would transfer back just
a portion of its partial equilibria, then the computation at C1 can avoid such a memory blowup.
Moreover, this strategy also helps to reduce inactive running time at C1 while waiting for all
neighbors to return all models as it can already start local computing while the neighbors are
producing more models.

In general, it is indispensable to trade more computation time, due to recomputations, for
less memory if eventually all partial equilibria at C1 shall be computed. This is the idea under-
lying a streaming evaluation method for distributed MCS. It is particularly useful when a user is
interested in obtaining just some instead of all answers from the system, but also for other real-
istic scenarios where the current evaluation algorithm does not manage to output under resource
constraints in practice any equilibrium at all.

In this chapter, we pursue the idea sketched above and turn it into a concrete algorithm for
computing partial equilibria of a distributed MCS in a streaming fashion. Its main features are
briefly summarized as follows:

• the algorithm is fully distributed, i.e., instances of its components run at every context and
communicate, thus cooperating at the level of peers;

• upon invocation at a context C
i

, the algorithm streams, i.e. computes, k � 1 partial
equilibria at C

i

at a time; in particular setting k = 1 allows for consistency checking of
the MCS (sub-)system.

• issuing follow-up invocations one may compute the next k partial equilibria at context C1

until no further equilibria exist; i.e., this evaluation scheme is complete.

• local buffers can be used for storing and exchanging local models (partial belief states) at
contexts, avoiding the space explosion problem.

Note that as this chapter mainly studies the streaming aspect of the algorithm, we simplify
the presentation by not mentioning the interface between contexts. The principles presented
here can be applied for both DMCS and DMCSOPT by adapting the interface and pruning the
topology at preprocessing time. Furthermore, we assume to work with acyclic MCSs. Treatment
of cyclic cases can be easily achieved by adding guessing code to the solving component as in
DMCS and DMCSOPT.

To the best of our knowledge, a similar streaming algorithm has neither been developed for
the particular case of computing equilibria of a MCS, nor more generally for computing models
of distributed knowledge bases. Thus, the results obtained in this chapter are not only of interest
in the setting of heterogeneous MCS, but they are also relevant in general for model computation
and reasoning over distributed (potentially homogeneous) knowledge bases like e.g. distributed
SAT instances.

70

Solver

Handler

Output

Joiner

C
i

C
j1

...

C
j

m

request (k1, k2)

 k belief states

Figure 5.1: DMCS-STREAMING Architecture

5.1 Basic Streaming Procedure

Given an MCS M , a starting (root) context C
r

, and an integer k, we aim at finding at most k
partial equilibria of M w.r.t. C

r

in a distributed and streaming way. While the aspect of distribut-
edness has been investigated in the DMCS and DMCSOPT algorithms, adding the streaming as-
pect is not easy as one needs to take care of the communication between contexts in a nontrivial
way. In this section, we present our algorithm DMCS-STREAMING which allows for gradual
streaming of partial equilibria between contexts. This section describes a basic version of the
algorithm, which concentrates on transferring packages of k equilibria with one return message.
The system design is extendable to a parallel version, whose idea is discussed in Section 5.2.

In DMCSOPT, the reply to a request of a parent contains all partial equilibria from one
context. This means that communication between contexts is synchronous—one request gets
exactly one answer. While this is the easiest way to send solutions, it is very ineffective with
larger MCS instances, as a small increase in the size of the alphabet may force the creation
of many (partial) equilibria, which in turn may exceed memory limitations. The goal of this
work is to develop an algorithm which allows for asynchronous communication for belief state
exchange, i.e., one request for a bounded number of k (partial) equilibria may result in at most k
solutions. This way we can restrict memory needs and evaluate multi-context systems that could
not be handled by the algorithms in Chapter 4.

The basic idea is as follows: each pair of neighboring contexts can communicate in multiple
rounds, and each request has the effect to receive at most k partial equilibria. Each commu-
nication window of k partial equilibria ranges from the k1-th partial equilibrium to the k2-th
(= k1 + k � 1). A parent context C

i

requests from a child context C
j

a pair (k1, k2), and then
receives at a future time point a package of at most k partial equilibria. Receiving ✏ indicates
that C

j

has fewer than k1 models.
Important subroutines of the new algorithm DMCS-STREAMING take care of receiving the

requests from parents, receiving and joining answers from neighbors, local solving and returning
results to parents. They are reflected in four components: Handler, Solver, Output, and Joiner
(only active in non-leaf contexts); see Figure 5.1 for an architectural overview.

All components except Handler (shown in Algorithm 5.1) communicate using message
queues: Joiner has j queues to store partial equilibria from j neighbors, Solver has one queue to

71

Algorithm 5.1: Handler(k1, k2: package range) at C
i

Output.k1 := k1, Output.k2 := k2,
Solver.k2 := k2, Joiner.k := k2 � k1 + 1

call Solver

Algorithm 5.2: Solver() at C
i

Data: Input queue: q, maximal number of models: k2

count := 0

while count < k2 do
(a) if C

i

is a leaf then S := ;
(b) else call Joiner and pop S from q

if S = ✏ then count := k2

(c) while count < k2 do
pick the next model S? from lsolve(S)
if S? 6= ✏ then

push S? to Output.q
count := count + 1

else break

refresh() and push ✏ to Output.q

hold joined equilibria from Joiner, and Output has a queue to carry results from Solver. As our
purpose is to bound space usage, each queue has a limit on the number of entries. When a queue
is full (resp., empty), the enqueuing writer (resp., dequeuing reader) is automatically blocked.
Furthermore, getting an element also removes it from the queue, which makes room for other
partial equilibria to be stored in the queue later. This property frees us from synchronization
technicalities.

Algorithms 5.2 and 5.3 show how the two main components Solver and Joiner work. They
use the following primitives:

• lsolve(S): works as lsolve in DMCS and DMCSOPT, but in addition may return only
one answer at a time and may be able to tell whether there are models left. Moreover, we
require that the results from lsolve are returned in a fixed order, regardless of when it is
called. This property is the key to guarantee the correctness of our algorithm.

• get_first(`1, `2, k): send to each neighbor from c
`1 to c

`2 a request for the first k partial
equilibria, i.e., k1 = 1 and k2 = k; if all neighbors in this range return some models then
store them in the respective queues and return true; otherwise, return false as one of the
neighbor is inconsistent.

72

• get_next(`, k): pose a request asking for the next k equilibria from neighbor C
c

`

; if C
c

`

sends back some models, then store them in the queue q
`

and return true; otherwise, return
false as the neighbor already exhaustively returned its partial equilibria from the previous
request. Note that this subroutine needs to keep track of which range has been already
asked for to which neighbor by maintaining a set of counters. A counter wrt. a neighbor
C
c

`

is initialized to 0 and is increased each time get_next(`, k) is called. When its value is
t, the request to C

c

`

asks for the t’th package of k models, i.e., models in the range given
by k1 = (t� 1) ⇥ k + 1 and k2 = t⇥ k. When get_first(`1, `2, k) is called, all counters
in range [`1, `2] are reset to 0.

• refresh(): reset all counters and flags of Joiner to their starting states, e.g., first_join to
true , all counters to 0.

The process at each context C
i

is triggered when a message from a parent arrives at the
Handler, which contains the range (k1, k2). Then Handler notifies Solver to compute up to k2
models, and Output to collect the ones in the requested range (k1, k2) and return them to the
parent. Furthermore, it sets the package size at Joiner to k = k2 � k1 + 1 in case C

i

needs to
query further neighbors (cf. Algorithm 5.1).

When receiving a notification from Handler, Solver first prepares the input for its local
solver. If C

i

is a leaf context then the input S simply is the empty set assigned in Step (a);
otherwise, Solver has to trigger Joiner (Step (b)) for input from neighbors. With input fed from
neighbors, the subroutine lsolve is used in Step (c) to compute at most k2 results and send them
to the output queue.

The Joiner, only activated for intermediate contexts as discussed, gathers partial equilibria
from the neighbors in a fixed ordering and stores the joined, consistent input to a local buffer.
It communicates just one input at a time to Solver upon request. The fixed joining order is
guaranteed by always asking the first package of k models from all neighbors at the beginning
in Step (d). In subsequent rounds, we begin with finding the first neighbor C

c

`

that can return
further models (Step (e)), and reset the query to ask for first packs of k models from neighbors
from C

c1 to C
c

`�1 . When all neighbors run out of models in Step (f), the joining process reaches
its end and sends ✏ to Solver.

Note that while proceeding as above guarantees that no models are missed, it can in general
lead to multiple considerations of combinations (inputs to Solver). Using a fixed size cache
might mitigate these effects of recomputation, but since limitless buffering again quickly exceeds
memory limits, recomputation is an inevitable part of trading computation time for less memory.

The Output component simply reads from its queue until it receives ✏ or reaches k2 models
(cf. Algorithm 5.4). Upon reading, it throws away the first k1 � 1 models and only keeps the
ones from k1 onwards. Eventually, if fewer than k1 models have been returned by Solver, then
Output will return ✏ to the parent.

Example 31 Let M = (C1, . . . , Cn

) be an MCS such that for a given integer m > 0, we
have n = 2

m+1�1 contexts, and let ` > 0 be an integer. Let all contexts in M have ASP logics.

73

Algorithm 5.3: Joiner() at C
i

Data: Queue q1, . . . , queue q
j

for In(i) = {c1, . . . , cj}, buffer for partial equilibria: buf ,
flag first_join

while true do
if buf is not empty then

pop S from buf , push S to Solver.q
return

if first_join then
(d) if get_first(1, j, k) = false then

push ✏ to Solver.q
return

else first_join := false

else
` := 1

(e) while get_next(`, k) = false and ` j do ` := `+ 1

if 1 < ` j then
get_first(1, `� 1, k)

(f) else if ` > j then
push ✏ to Solver.q
return

for S1 2 q1, . . . , Sj

2 q
j

do add S1 ./ · · · ./ S
j

to buf

For i < 2

m, the context C
i

= (L
i

, kb
i

, br
i

) has,

kb
i

= {aj
i

_ ¬aj
i

 t
i

| 1 j `} and (5.1)

br
i

=

⇢
t
i

 (2i : a12i) · · · t
i

 (2i : a`2i)
t
i

 (2i+ 1 : a12i+1) · · · t
i

 (2i+ 1 : a`2i+1)

�
,

and for i � 2

m, we let C
i

have

kb
i

= {aj
i

_ ¬aj
i

| 1 j `} and br
i

= ; . (5.2)

Intuitively, M is a binary tree-shaped MCS with depth m and `+ 1 is the size of the alphabet in
each context. Figure 5.2 shows such an MCS with n = 7 contexts and depth m = 2; the internal
contexts have knowledge bases and bridge rules as in (31), while the leaf contexts are as in (5.1).
The directed edges show the dependencies of the bridge rules. Such a system M has equilibria
S = (S1, . . . , Sn

) with S
i

= {ak
i

, t
i

}, for 1 k `.
To compute one equilibrium of M using either DMCS or DMCSOPT, one needs to trans-

fer packages of 2` partial equilibria from each context to its parent (because each context C
i

74

Algorithm 5.4: Output() at C
i

Data: Input queue: q, starting model: k1, end model: k2

buf := ; and count := 0

while count < k1 do
pick an S from Output.q
if S = ✏ then count := k2 + 1

else count := count + 1

while count < k2 + 1 do
wait for an S from Output.q
if S = ✏ then count := k2 + 1

else
count := count + 1

add S to buf

if buf is empty then
send ✏ to parent

else
send content of buf to parent

C1

C2 C3

C4 C5 C6 C7

Figure 5.2: Binary tree MCS

computes all subsets of {a1
i

, . . . , a`
i

}, where ` was chosen as an input of this Example). Each
intermediate context receives two times 2` results from 2 children, have the join of 22` input to
feed into lsolve. It then invokes lsolve these many times and only then can it return the whole
2

` models to the parent. In the mean time, the corresponding parent has to wait for this input.
On the other hand, Algorithm DMCS-STREAMING only needs to transfer a single model

between each pair of connected context, which is a significant saving. The following explanation
gives the details. For simplicity, we choose m = 1, ` = 5, i.e., M = (C1, C2, C3). Querying
C1 with a package size of k = 1 first causes the query to be forwarded to C2 in terms of a pair
k1 = k2 = 1. As a leaf context, C2 invokes the local solver and eventually gets five different

75

models. However, it just returns one partial equilibrium back to C1, e.g., (✏, {a12}, ✏). Note that
t2 is projected away since it does not appear among the atoms of C2 accessed in bridge rules
of C1. The same happens at C3 and we assume that it returns (✏, ✏, {a23}) to C1. At the root
context C1, the two single partial equilibria from its neighbors are consistently combined into
(✏, {a12}, {a23}). Taking this as an input to the local solving process, C1 can eventually compute
5 answers, but in fact just returns one of them to the user, e.g., S = ({a11, t1}, {a12}, {a23}).

The following proposition shows the correctness of our algorithm.

Proposition 19 Let M = (C1, . . . , Cn

) be an MCS, i 2 {1, . . . , n} and let k � 1 be an integer.
On input (1, k) to C

i

.Handler, C
i

.Output returns up to k different partial equilibria with respect
to C

i

, and in fact k if at least k such partial equilibria exist.

Proof Note that the components Handler and Output simply take care of the communication
part of DMCS-STREAMING. Output makes sure that the models sent back to the invokers are
in correspondence with the request that Handler got. The other routines Joiner and Solver are
the main components that play the role of Step (b) and (d) in Algorithm 4.3, respectively.

To prove the correctness of DMCS-STREAMING, we just need to show that the input to
lsolve is complete in the sense that if Step (e) of Algorithm 5.3 is exhaustively executed, the full
join of partial equilibria from the neighboring contexts is delivered.

Formally, assume that the current context’s import neighborhood is {1, 2, . . . ,m}. Assume
that for neighbor C

i

where 1 i m, the full partial equilibria are T
i

and the returned packages
of size k are denoted by T

i,1, . . . , Ti,p
i

, that is, T
i

= T
i,1 [. . . [T

i,p

i

. For the correctness of
the algorithm, we assume that T

i,1, . . . , Ti,p
i

is a fixed partition of T
i

. This is possible when, for
example, lsolve always returns answers in a fixed order. We need to show that the accumulation
of the join by Algorithm 5.3 is actually T1 .// T

m

.
Indeed, each possible join T1,i1 ./ T2,i2 .// T

m,i

m

is considered by Joiner, which
performs a lexicographical traversal of all suitable combinations. Formally speaking, let F (p, q),
where q < q, denote the join result of neighbors from p to q, that is, F (p, q) = T

p

./ T
p+1 ./

. . . ./ T
q

. According to the lexicographical order, we have that the accumulation of Joiner isS
p1
j=1[T1,j ./ F (2,m)] = F (1,m) as demonstrated in Table 5.1.

This shows that the input to lsolve is complete. Hence, DMCS-STREAMING is correct. ⇤

76

T1,1 ./ T2,1 .// T
m�1,1 ./ T

m,1 [
T1,1 ./ T2,1 .// T

m�1,1 ./ T
m,2 [

.
T1,1 ./ T2,1 .// T

m�1,1 ./ T
m,p

m

[
T1,1 ./ T2,1 .// T

m�1,2 ./ T
m,1 [

T1,1 ./ T2,1 .// T
m�1,2 ./ T

m,2 [
.

T1,1 ./ T2,1 .// T
m�1,2 ./ T

m,p

m

[
.

T1,1 ./ T2,1 .// T
m�1,p

m�1 ./ T
m,1 [

T1,1 ./ T2,1 .// T
m�1,p

m�1 ./ T
m,2 [

.
T1,1 ./ T2,1 .// T

m�1,p
m�1 ./ T

m,p

m

[
.

T1,1 ./ T2,p2 .// T
m�1,1 ./ T

m,1 [
.

T1,1 ./ T2,p2 .// T
m�1,p

m�1 ./ T
m,p

m

[
.

T1,p1 ./ T2,1 .// T
m�1,p1 ./ T

m,1 [
.

T1,p1 ./ T2,p2 .// T
m�1,p

m�1 ./ T
m,p

m

= T1,1 ./ T2,1 .// T
m�1,1 ./ F (m,m) [

.
T1,1 ./ T2,1 .// T

m�1,p
m�1 ./ F (m,m) [

.
T1,1 ./ T2,p2 .// T

m�1,1 ./ F (m,m) [
.

T1,1 ./ T2,p2 .// T
m�1,p

m�1 ./ F (m,m) [
.

T1,p1 ./ T2,p2 .// T
m�1,p

m�1 ./ F (m,m)

= T1,1 ./ T2,1 .// F (m� 1,m) [
.

T1,1 ./ T2,p2 .// F (m� 1,m) [
.

T1,p1 ./ T2,p2 .// F (m� 1,m)

= [T1,1 ./ F (2,m)] [. . . [[T1,p1 ./ F (2,m)]

= F (1,m).

Table 5.1: Accumulation of Joiner

77

5.2 Parallelized Streaming

As the reader may have anticipated, the strategy of ignoring up to k1 models and then collecting
the next k is not likely to be the most effective. The reason is that each context uses only one
Solver, which in general has to serve more than one parent, i.e., requests for different ranges
of models of size k. When a new parent context requests models, we have to refresh the state
of Solver and Joiner and redo from scratch. This is unavoidable, unless a context satisfies the
specific property that only one parent can call it.

Another possibility to circumvent this problem is parallelization. The idea is to serve each
parent with a set of the Handler, Joiner, Solver and Output components. In this respect, the
basic interaction between each unit is still as shown in Figure 5.1, with the notable difference
that each component now runs in an individual thread. The significant change is that Solver does
not control Joiner but rather waits at its queue to get new input for the local solving process. The
Joiner independently queries the neighbors, combines partial equilibria from neighbors, and puts
the results into the Solver queue.

The effect is that we do not waste recomputation time for unused models. However, in prac-
tice, unlimited parallelization also faces a similar problem of exhausting resources as observed
in DMCSOPT. While DMCSOPT runs out of memory with instances whose local theories
are large, unlimited parallel instances of the streaming algorithm can exceed the number of
threads/processes that the operating system can support, e.g., in topologies that allow contexts
to reach other contexts using alternative paths such as the diamond topology. In such situations,
the number of threads generated is exponential in the number of pairs of connected contexts,
which prohibits scaling to large system sizes.

A compromise between the two extreme approaches is to have a bounded parallel algorithm.
The underlying idea is to create a fixed-size pool of multiple threads and components, and when
incoming requests cannot be served with the available resources, the algorithm continues with
the basic streaming procedure, i.e., to share computational resources (the components in the sys-
tem) between different parents at the cost of recomputation and unused models. This approach
is targeted for future work.

78

CHAPTER 6
Dynamic Multi-Context Systems

From Chapters 3 to 5, we have presented a series of algorithms for computing partial equilibria
of a Multi-Context System with respect to a starting context. The common feature of all these
algorithms is that they all operate on static systems, meaning that the interlinks between contexts
are fixed before evaluation, by the grounded context identifiers specified in bridge rules.

However, a characteristics that comes with many distributed application scenarios is that the
environment is open, at least to some extent, meaning that participating knowledge sources and
their contents may change over time and are not known a priori. This is in contrast with the static
nature of current MCS in the sense that participating contexts and the corresponding information
exchange need to be fixed completely at design time. Thus, atoms in bridge rules always point
to a particular belief from a concrete context. This is prohibitive to formalizing systems where
part of the behavior is instantiated at run-time only.

In this Chapter, we address the above shortcoming of the MCS formalism concerning open
environments of information exchange, that is when at design time the concrete knowledge
sources participating in an information exchange are not known. Intuitively, what is needed
to cope with such scenarios is a formalism for information exchange which is closer towards
a peer-to-peer (P2P) approach, where so-called peers can at any time join or leave the system
dynamically [1]. To this end, we present Dynamic Nonmonotonic Multi-Context Systems, which
consist of schematic contexts that may leave some information interlinkage open at design time;
this linkage is established by a configuration step at run time, in which concrete contexts and
information imports between them are wired.

More specifically, this Chapter contributes the following:

• We formalize dynamic multi-context systems, which extend the MCS formalism with
so-called schematic bridge rules. Intuitively, schematic bridge rules may contain place
holders that can range over both context identifiers and beliefs. Their semantics is de-
fined via suitable notions of substitution and binding, where a context substitution maps
context holders to concrete contexts and a binding maps schematic belief atoms to ade-
quate concrete beliefs. To take into account that a perfectly matching belief might not

79

exist, we use (unless exact substitution is forced) a ‘similarity’-based binding of beliefs in
which schematic beliefs are bound to ‘similar’ beliefs, which is assessed by a similarity
function. To determine such beliefs, we foresee a matchmaking component as an oracle
which returns on a call a list with similar beliefs. More precisely, it provides simple term
substitutions according to an underlying similarity measure.

• We consider the problem of finding an instantiation of a dynamic multi-context system,
starting from a specific context, i.e., a concrete “configuration” of the (open) system. To
solve it, we first present a basic algorithm for computing configurations of dynamic MCS.
As the number of configurations can be very large in general, we then consider differ-
ent heuristics to generate ‘good’ ones, which take topological structure and/or different
criteria of qualities of individual matches (bindings) into account. The algorithm is fully
distributed, i.e., instances run at different contexts, and the configurations are found by
local computations plus communication.

Using dynamic MCS, a broader range of application scenarios can be modeled which re-
quire the flexibility of taking changing context into account. In particular, group formation to
satisfy information needs of heterogeneous components, with possible selection among different
alternatives, can be readily expressed.

The remainder of this Chapter is structured as follows. The next Section presents a motivat-
ing scenario, which is used as a running example in this Chapter. Section 6.2 introduces basic
notions for Dynamic MCS, where we provide their formal definition and semantics in terms
of instantiation to ordinary MCS. Section 6.3 recaptures the idea of binding dynamic MCSs to
original ones. Finally, Section 6.4 contains then the description of our basic distributed config-
uration algorithm and discussions of refinements such as, e.g., different heuristics to drive the
configuration.

6.1 Motivating Scenario

We first present in this section a motivating scenario for dynamic MCS. Example 32 describes
the scenario informally. Then, the encoding for local knowledge bases is shown in Example 33.
Finally, Example 34 gives the encoding of a static setting of the scenario.

Example 32 At the beginning of each semester, students in a group (including Alice, Bob, and
Carol) need to choose courses from their curriculum. For each possible course, the students have
three possible decisions, namely select, hesitate, and eliminate (in decreasing order). Intuitively,
there is a potential for selecting a course if one finds it interesting. However, if the lecturer is
known to be hard to please, they fear that it might be tough (or impossible) to get good marks
and potentially eliminate the course. If there are reasons for both selecting and eliminating—or
none—they are then in the state of hesitation, which dominates the other two potential decisions.

Moreover, the final decision of each student is supported by the decisions of their friends.
If some friend gives a positive (resp., negative) opinion about a particular course, and no other
friend shares an opposite opinion, then the group will adjust their final decision accordingly.

80

According to this strategy, the students do not specify in advance for a course which friends
they will consult. This depends on the friends they will meet at the course orientation meeting.
While attending the orientation meeting and exchanging opinions, every student in the group
finally comes up with a list of courses that conforms with the choices of their colleagues.

For example, Alice may believe that if Bob hesitates or selects a course, then this is a positive
sign, because he is very cautious; on the other hand, if Bob eliminates a course, then this is a
negative sign. But she has a different opinion about Carol’s choice, namely she is encouraged
only when Carol selects the course and is discouraged otherwise. Carol, who is a bit more
careful, might only accept that Bob’s selection (resp., elimination) of the course as a positive
(resp., negative) hint, i.e., she has no bias when Bob is hesitating. Finally, Bob may interpret the
opinions of the two girls in the same way as Carol does with his, i.e., mapping selections to be
positive, elimination to be negative, and having no preference w.r.t. hesitance.

Regarding the course on Answer Set Programming, Bob finds it interesting, but Alice has
the impression that the professor is very demanding; they ask Carol, who has no special opinion
about it. One of the outcomes of the discussion is that Bob and Carol will select this course
while Alice hesitates.

The current MCS setting is sufficient to formalize the last part of the discussion between
Alice, Bob, and Carol (Example 34), but lacks dynamicity to formalize the general setting.

Example 33 We will now model Example 32 as an answer set program. Let R
i

be a set of the
following rules:

s
i

 ps
i

, not h
i

, not e
i

e
i

 pe
i

, noth
i

, not inc
i

s
i

 ph
i

, not ps
i

, not h
i

, not e
i

, inc
i

e
i

 ph
i

, dec
i

h
i

 ps
i

, not e
i

, dec
i

ps
i

 inter
i

h
i

 ph
i

, not inc
i

, not dec
i

pe
i

 hprof
i

h
i

 pe
i

, not ph
i

, inc
i

ph
i

 ps
i

, pe
i

ph
i

 not ps
i

, not pe
i

The atoms have the following meaning: s
i

, h
i

, and e
i

stand for the three decisions: select,
hesitate, and eliminate, respectively. Similarly, ps

i

, ph
i

, and pe
i

stand for the potential to select,
hesitate, and eliminate a course, resp. A course is interesting if inter

i

is true, and a professor
is hard to please if hprof

i

is true. The atoms inc
i

and dec
i

mean that a student inclines and
declines to select a course, respectively.

The program
P1 = R1 [{hprof 1}

has one answer set {e1, pe1, hprof 1}, the program

P2 = R2 [{inter2}

noindent has the answer set {s2, ps2, inter2}, while P3 = R3 has the answer set {h3, ph3}.
Intuitively, P1 represents Alice’s mind. She thinks that the professor is hard to please

(hprof 1), hence she potentially eliminates (pe1) the course and will eliminate it (e1) if no more
support information is provided. On the other hand, P2 represents Bob’s mind. He is really

81

interested in the course (inter2) and selects it (s2) based on his potential of selecting the course
(ps2). Carol, modeled by P3, adds no personal view about the course. She is currently hesitating
(h3, ph3) in taking the course; her final decision can change depending on decisions of other
friends.

Example 34 Let M 0
= (C1, C2, C3) be an MCS such that all L

i

are ASP logics, with alphabets
A

i

= {s
i

, h
i

, e
i

, ps
i

, ph
i

, pe
i

, inter
i

, hprof
i

, inc
i

, dec
i

}, 1 i 3. Suppose kb
i

= P
i

, with P
i

taken from Example 33, and

br1 =

8
<

:

inc1 (2 : s2), not (3 : h3), not (3 : e3), not (1 : dec1)
inc1 (2 : h2), not (3 : h3), not (3 : e3), not (1 : dec1)
dec1 (2 : e2), not (3 : s3), not (1 : inc1)

9
=

;,

br2 =

⇢
inc2 (1 : s1), not (3 : e3), not (2 : dec2)
dec2 (3 : e3), not (1 : s1), not (2 : inc2)

�
, and

br3 =

⇢
inc3 (2 : s2), not (1 : e1), not (3 : dec3)
dec3 (1 : e1), not (2 : s2), not (3 : inc3)

�

One can check that

S = ({h1, pe1, hprof 1, inc1}, {s2, ps2, inter2}, {s3, ph3, inc3})

is an equilibrium of M 0. Intuitively, M 0 models the discussion between Alice (C1), Bob (C2),
and Carol (C3). Comparing this to Example 33, the decision of Bob influences those of Alice and
Carol, as Alice now hesitates about the course even though having the potential of eliminating
it, while Carol decided to select the course although she was hesitating about it before.

Next, we turn to define Dynamic MCS, which can be used to formalize the general setting
of the motivating scenario and similar situations satisfactorily.

6.2 Basic Notions for Dynamic Nonmonotonic Multi-Context
Systems

Let Vctx be a vocabulary of context holders,1 and let ⌃ =

S
⌃

i

be a set of (possibly shared)
signatures. Unless stated otherwise, elements from Vctx (resp., ⌃) are denoted with first letter
in upper case (resp., lower case). Furthermore, we define the set ⌃@ (resp., ⌃⇠) of exact (resp.,
similar) schematic beliefs as the set of symbols @[p] (resp., [p]) for all p in ⌃. Let bel(@[p]) =
bel([p]) = p be a function for extracting the belief symbol from a schematic belief.

Definition 22 A dynamic multi-context system M = {C1, . . . , Cn

} is a set of schematic con-
texts C

i

= (L
i

, kb
i

, sbr
i

), where

1We use the term ‘holder’ rather than ‘variable’ to avoid confusion with variables as introduced for relational
MCS [49].

82

• L
i

= (KB
i

,BS
i

,ACC
i

) is a logic based on a signature ⌃

i

,

• kb
i

2 KB
i

is a knowledge base, and

• sbr
i

is a set of L
i

-schematic-bridge rules (s-bridge rules for short) of the form

s B(r),�(r) (6.1)

with B(r)=(X1 : P1), . . . , (Xj

: P
j

), not (X
j+1 : Pj+1), . . . , not (Xm

: P
m

), where

(1) each sb
`

= (X
`

, P
`

), 1 ` m, is a schematic bridge atom (s-bridge atom for
short) in which X

`

2M [Vctx either refers to a context in M or is a context holder,
and P

`

2 ⌃ [⌃@ [⌃⇠ is either a belief (i.e., P
`

2 ⌃) or a schematic belief (P
`

2
⌃@ [⌃⇠); and

(2) �(r) = Y11 6= Y12 , . . . Yk1 6= Y
k2 is a (possibly empty) list of inequality atoms Y

i1 6=
Y
i2 (1 i k) where Y

i1 , Yi2 are two different context holders from X1, . . . , Xm

.

For simplicity, we assume that context holders in rules are standardized apart, i.e., there
exist no two context holders with the same name in two different rules, as they can be bound to
different contexts.

Example 35 A group of n students in Example 32 can be modeled as a dynamic MCS M =

{C1, . . . , Cn

}, where, for each C
i

= (L
i

, kb
i

, sbr
i

) 2 M , L
i

is an ASP logic, kb
i

= R [F
i

,
with R from Example 33 and F

i

✓ {inter
i

, hprof
i

}, and sbr
i

is the following set of schematic
bridge rules:

sbr
i

=

(
inci (X

i

: [posi]), not (Yi : [negi]), not (i : deci), Xi

6= Y
i

deci (Z
i

: [negi]), not (Ti

: [posi]), not (i : inci), Zi

6= T
i

)
.

The first rule expresses that student i should be inclined to take a course, if some student in
the group has a positive opinion and some other student does not have a negative opinion, and
student i herself is not declining to take the course. The second rule is similar, but for declining
the course.

Here, the context holders set is Vctx = {X
i

, Y
i

, Z
i

, T
i

}, and the local signature at each
context C

i

is ⌃
i

= A
i

[{pos
i

,neg
i

} with A
i

taken from Example 34. We use here only similar
schematic beliefs, namely [posi] and [negi].

Dynamic MCS differ from original MCS in the sense that s-bridge atoms in general are not
specifically bound to some beliefs of other dynamic contexts in the system, but rather represent
a collection of possibilities to point to different beliefs in other contexts. From a topological
point of view, such a high-level representation incurs numerous dependencies between dynamic
contexts in general. However, most of these dependencies are not reflected in intended instan-
tiations, which provides evidence not to aim at defining equilibria of dynamic MCS in a direct
way. Hence, for defining semantics one rather considers how to bind them to original MCS.
We consider such bindings next, starting with the notion of binding a schematic bridge atom to
ordinary bridge atoms based on potential matches.

83

A context substitution is a map � : (M [Vctx) ! M such that for every inequality atom
Y
i1 6= Y

i2 occurring in bridge rules of a context C 2 M , it holds that �(Y
i1) 6= �(Y

i2). For
a context C

k

, we denote by �|
C

k

the restriction of � to C
k

, i.e., the subset of � containing
only maps from a context holder appearing in an s-bridge rule in C

k

. Due to the assumption of
standardization of context holders, the set of restrictions of � to all individual contexts in M is
a partitioning of �.

The application of a context substitution � to an s-bridge atom sb = (X : P) is �(sb) =

(C
j

: P) where P 2 ⌃@[⌃⇠[⌃j

, and either X = C
j

or X 2 Vctx satisfying (X 7! C
j

) 2 �.
Intuitively, the application of a context substitution is responsible for instantiating a potential
context holder of an s-bridge atom.

Example 36 Let � = {X1 7! C2, Y1 7! C3} be a context substitution. Then the application
of � to sb1 = (X1 : [pos1]) and sb2 = (Y1 : [neg1]) is sb 01 = �(sb1) = (C2 : [pos1]) and
sb02 = �(sb2) = (C3 : [neg1]), respectively.

Let f
M

: ⌃⇥ ⌃ ! [0, 1] be a function measuring the similarity between beliefs in an MCS
M , where higher similarity of beliefs p and q is reflected by a larger value of f

M

(p, q). In
particular, f

M

(p, q) = 1 means that p and q are considered to have highest similarity (especially,
if they are identical) and f

M

(p, q) = 0 that p and q are completely dissimilar. We do not commit
to a particular function f

M

here, which may depend on the application; in what follows, we
just assume that some such function f

M

has been fixed and is available, for instance consider
similarity of terms as defined by WordNet [79] or different types of matches on Larks [91]
specifications.

Definition 23 Given an MCS M , a similarity function f
M

, and a threshold t, a term substitution
from C

i

to C
j

in M w.r.t. f
M

and t, denoted by ⌘t
M

(C
i

, C
j

), is a relation ⌘t
M

(C
i

, C
j

) = {(a, b) |
a 2 ⌃

i

, b 2 ⌃

j

, f
M

(a, b) > t}.

By ⌘t
M

we denote the collection of all pairwise term substitutions in M . The density of M
w.r.t. ⌘t

M

is d
⌘

t

M

= |{(C
i

, C
j

) | ⌘t
M

(C
i

, C
j

) 6= ;}|. In the sequel, we pick a default value t = 0;
furthermore, we use ⌘ instead of ⌘0

M

when M is clear from the context.
The application of a term substitution ⌘ to an s-bridge atom sb = (C

j

: P) in context C
i

,
denoted by ⌘(sb), is defined by

(i) if P = a, then ⌘(sb) = {(C
j

: a)} if a 2 ⌃

j

, and ; otherwise;

(ii) if P 2 ⌃@, then ⌘(sb) = {(C
j

: b) | (bel(P), b) 2 ⌘(C
i

, C
j

), f
M

(bel(P), b) = 1};

(iii) if P 2 ⌃⇠, then ⌘(sb) = {(C
j

: b) | (bel(P), b) 2 ⌘(C
i

, C
j

)}.

Intuitively, the application of a term substitution to an s-bridge atom only applies to s-bridge
atoms with instantiated context holders, and then collects all possible substitutions for the schematic
belief P .

84

f
M

s1 h1 e1 s2 h2 e2 s3 h3 e3

pos1 0.0 0.0 0.0 0.9 0.6 0.0 0.7 0.0 0.0
neg1 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.6 0.7
pos2 0.7 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0
neg2 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.6
pos3 0.6 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
neg3 0.0 0.0 0.7 0.0 0.0 0.8 0.0 0.0 0.0

Table 6.1: Interesting part of similarity function

Example 37 Continue with Example 36, suppose that we have a similarity function f
M

whose
interesting part is described in Table 6.1; and for the rest, f

M

takes value 1 if the two parameters
are identical and 0 otherwise.

The values of f
M

are taken in conformity with the scenario in Example 32, e.g., Alice
trusts the select and hesitate decisions of Bob as a positive sign at a measurement of 0.9 and
0.6, respectively. She considers Bob eliminating the course as a negative sign of 0.8. Hence,
f
M

(pos1, s2) = 0.9, f
M

(pos1, h2) = 0.6, and f
M

(neg1, e2) = 0.8. On the other hand, Alice is
encouraged only when Carol selects the course, but with less confidence as f

M

(pos1, s3) = 0.7;
and she interprets other choices from Carol as discouragement with f

M

(neg1, h3) = 0.5, and
f
M

(neg1, e3) = 0.7. The next rows in Table 6.1 show the opinions of Bob and Carol about the
decisions of the others. Note that they do not take hesitance into account.

The term substitutions from C1 to C2 and C3 w.r.t. f
M

are ⌘(C1, C2) = {(pos1, s2),
(pos1, h2), (neg1, e2)}, and ⌘(C1, C3) = {(pos1, s3), (neg1, h3), (neg1, e3)}, respectively. The
applications of these substitution to sb01 and sb02 are ⌘(sb01) = {(C2 : s2), (C2 : h2)} and
⌘(sb02) = {(C3 : e3)}.

Based on � and ⌘, the notion of a bridge substitution is simply defined by their composition.

Definition 24 Let � be a context substitution of M . The bridge substitution ✓ for an s-bridge
atom sb w.r.t. � is ✓(sb) = ⌘(�(sb)).

Thus, intuitively, the bridge substitution of an s-bridge atom is done in two steps. First,
one uses � to instantiate the context holders, and then ⌘ takes effect to instantiate the schematic
beliefs.

Example 38 The bridge substitution of the s-bridge atom sb1 from Example 36 w.r.t. � from
the same example and ⌘ from Example 37 is ✓(sb1) = ⌘(�(sb1)) = {(C2 : s2), (C2 : h2)}.
Similarly, we have ✓(sb2) = {(C3 : h3), (C3 : e3)}.

Let us now turn to bridge rules. Given a schematic bridge rule r of form (6.1) in a context
C
i

, a context substitution � is called a substitution of r iff there exist bridge substitutions ✓
`

w.r.t. � for all schematic bridge atoms sb
`

in B(r), i.e., for 1 ` m, such that ✓
`

(sb
`

) 6= ;.
The bindings of r w.r.t. � are defined as the set of bound rules r� where each bound rule is
obtained by replacing sb

`

= (X : P) in B(r) with

85

(i) some bridge atom (C
i

: b) such that (C
i

: b) 2 ✓
`

(sb
`

), if sb
`

2 B+
(r); and

(ii) the sequence of negated bridge atoms not (C
i

: b1), . . . , not (Ci

: b
k

) such that {(C
i

:

b1), . . . , (Ci

: b
k

)} = ✓
`

(sb
`

); if sb
`

2 B�
(r).

The size m of r� is determined by m = ⇧sb
`

2B+(r)|✓`(sb`)|.

Example 39 Continuing our example, pick r as the first s-bridge rule from Example 35 and
consider it in context C1 representing Alice’s mind. Furthermore, regard the context substitution
� from Example 36. Taking the term substitutions of Example 37 into account, r� consists of
two bound rules, namely the first two rules from br1 in Example 34.

Given a set R of s-bridge rules of a context C and a context substitution �, the binding
of R w.r.t. � is defined as R� =

S
r2R r�. Then, the binding of a context C w.r.t. a context

substitution � is given by C� = (kb, sbr�).

Definition 25 Given a dynamic MCS M and a context substitution �, the set M� = {C1�, . . . ,
C
`

�}, is a binding of M with respect to a context C
k

iff

1. {C1, . . . , C
`

} ✓M

2. � is a substitution for all s-bridge rules in all contexts C1, . . . , C
`

, and

3. {C1, . . . , C
`

} =

S
C

j

2{C1...C
`

}{C | r 2 sbr
j

� ^ (C : a) 2 B(r)} [{C
k

}.

Intuitively, a binding of M with respect to a substitution � and a context C
k

consists of a
subset of the contexts of M , which must contain C

k

(hence condition 1 and 3), which is properly
instantiated by ✓ (condition 2) and, moreover, closed in the sense that every selected context,
except for C

k

, is used for instantiating bridge rules of other chosen contexts (condition 3).

The notions of belief state and equilibrium are then inherited from ordinary MCS.

Definition 26 A belief state of M� is a sequence S = (S1, . . . , S
`

) of belief sets, one S
i

for
each C

i

�. Such a belief state is an equilibrium of M w.r.t. C
k

and � iff for all 1 i `, it
holds that S

i

2 ACC
i

(kb
i

[head(r) | r 2 app(sbr
i

�, S)).

The quality of a binding is simply the average of the similarities of all matches used in the
binding.

Definition 27 The quality of an MCS binding M� is

1

|U| ·
X

(a,b)2U

f
M

(a, b)

where U is the set of matches used in the binding, i.e., U = {(a, b) | a = bel(P) ^ sb = (X :

P) 2 C
i

, 1 i ` ^ (C
j

: b) 2 ✓(sb), 1 j `}, where ✓ = ⌘ � �.

We now give a detailed example on binding from a dynamic MCS to an original one (parts
of the details below can be found in previous examples).

86

Example 40 Take an instance of the general dynamic MCS in Example 35 with n = 3: M =

(C1, C2, C3), where

• for each C
i

= (L
i

, kb
i

, sbr
i

), where 1 i 3, L
i

is an ASP logic;

• the local knowledges are kb1 = R1 [{hprof 1}, kb2 = R2 [{inter2}, and kb3 = R3,
where R

i

is taken from Example 33;

• the schematic bridge rules are taken from Example 35, where 1 i 3:

sbr
i

=

(
inci (X

i

: [posi]), not (Yi : [negi]), not (i : deci), Xi

6= Y
i

deci (Z
i

: [negi]), not (Ti

: [posi]), not (i : inci), Zi

6= T
i

)
.

Take the following context substitution:

� =

8
<

:

X1 7! C2, Y1 7! C3, Z1 7! C2, T1 7! C3,

X2 7! C1, Y2 7! C3, Z2 7! C3, T2 7! C1,

X3 7! C2, Y3 7! C1, Z3 7! C1, T3 7! C2

9
=

; .

Applying � on the schematic bridge atoms, we first get:

�(X1 : [pos1]) = (C2 : [pos1]) �(Y1 : [neg1]) = (C3 : [neg1])

�(Z1 : [neg1]) = (C2 : [neg1]) �(T1 : [pos1]) = (C3 : [pos1])

�(X2 : [pos2]) = (C1 : [pos2]) �(Y2 : [neg2]) = (C3 : [neg2])

�(Z2 : [neg2]) = (C3 : [neg2]) �(T2 : [pos2]) = (C1 : [pos2])

�(X3 : [pos3]) = (C2 : [pos3]) �(Y3 : [neg3]) = (C1 : [neg3])

�(Z3 : [neg3]) = (C1 : [neg3]) �(T3 : [pos3]) = (C2 : [pos3])

Now, take the similarity function f
M

from Table 6.1, the term substitution with a threshold
t = 0.5 between contexts in M can be shown as follows:

⌘(C1, C2) = {(pos1 , s2), (pos1 , h2), (neg1 , e2)} ⌘(C1, C3) = {(pos1 , s3), (neg1 , e3)}

⌘(C2, C1) = {(pos2 , s1), (neg2 , e1)} ⌘(C2, C3) = {(pos2 , s3), (neg2 , e3)}

⌘(C3, C1) = {(pos3 , s1), (neg2 , e1)} ⌘(C3, C2) = {(pos3 , s2), (neg2 , e2)}

Combining � and ⌘, we get the following bridge atoms from s-bridge atoms:

87

✓(X1 : [pos1]) = {(C2 : s2), (C2 : h2)} ✓(Y1 : [neg1]) = {(C3 : h3), (C3 : e3)}

✓(Z1 : [neg1]) = {(C2 : e2)} ✓(T1 : [pos1]) = {(C3 : s3)}

✓(X2 : [pos2]) = {(C1 : s1)} ✓(Y2 : [neg2]) = {(C3 : e3)}

✓(Z2 : [neg2]) = {(C3 : e3)} ✓(T2 : [pos2]) = {(C1 : s1)}

✓(X3 : [pos3]) = {(C2 : s2)} ✓(Y3 : [neg3]) = {(C1 : e1)}

✓(Z3 : [neg3]) = {(C1 : e1)} ✓(T3 : [pos3]) = {(C2 : s2)}

With these bridge atoms, one can form the following bridge rules (Example 34):

sbr1� =

8
<

:

inc1 (2 : s2), not (3 : h3), not (3 : e3), not (1 : dec1)
inc1 (2 : h2), not (3 : h3), not (3 : e3), not (1 : dec1)
dec1 (2 : e2), not (3 : s3), not (1 : inc1)

9
=

;,

sbr2� =

⇢
inc2 (1 : s1), not (3 : e3), not (2 : dec2)
dec2 (3 : e3), not (1 : s1), not (2 : inc2)

�
, and

sbr3� =

⇢
inc3 (2 : s2), not (1 : e1), not (3 : dec3)
dec3 (1 : e1), not (2 : s2), not (3 : inc3)

�
.

Then, M� = (C1�, C2�, C3�) is a binding of M with respect to C1. One can check that all
conditions in Definition 25 are satisfied. The quality of this binding is

0.9 + 0.6 + 0.7 + 0.8 + 0.6 + 0.7 + 2⇥ (0.7 + 0.6 + 0.8 + 0.7)

14

= 0.707.

6.3 From Dynamic to Ordinary Multi-Context Systems

Recapturing the idea of binding a dynamic MCS M to an original one, starting from a context
Croot , one needs

1. to know all potential neighbors C
j

for a context C
i

and the term substitutions ⌘(C
i

, C
j

)

between them;

2. a strategy to start from Croot and to expand the system by first determining a context
substitution � for each context term in the s-bridge rules of Croot , and then continuing the
process at each neighbor, until a closed system is obtained;

3. some decision criteria to guide the process to come up with a most suitable substitution to
bind M .

Task (1) is in fact matching beliefs from different contexts. This problem shares similar-
ities with the matchmaking problem in Multi-Agent Systems (MAS), which has been widely
considered [82, 91]. Our work here is not doing matchmaking but rather using the matchmaker

88

as a building block to configure the inter-linkage between contexts in a dynamic MCS to form
ordinary ones. As such, we assume that there exists a matchmaker MatchMaker which, upon a
call MatchMaker(P,C

i

) from a context C
i

, returns a set of potential neighbors such that

• if P is a schematic variable in ⌃@, then N is the set of context names C
j

where the term
substitution ⌘(C

i

, C
j

) contains at least one pair (bel(P), a) with f
M

(bel(P), a) = 1;

• if P is a schematic variable in ⌃⇠, then N is the set of context names C
j

where the term
substitution ⌘(C

i

, C
j

) is nonempty;

• if P = p is an atom from ⌃, then N is the set of all contexts C
j

such that p 2 ⌃

j

.

Further queries to the matchmaker such as MatchMaker(C
i

, C
j

) can give back ⌘(C
i

, C
j

)

and/or the value of f
M

for the pairs of atoms from this term substitution. This information is
used for calculating the quality of the system after instantiating.

The main problems that we solve here are those in (2) and (3). Concerning (2), we present a
backtracking algorithm to enumerate all possible context substitutions �, in a distributed, peer-
to-peer like setting. This means that each context, knowing only its potential neighbors by
asking the matchmaker, can only locally choose the matches for its own s-bridge atoms, which
consequently decides its real neighbors in the resulting MCS, and then has to ask these neighbors
to continue the configuration (hence our algorithm is called lconfig).

The process starts at Croot and continues in a Depth-First Search (DFS) manner, carrying
along the context substitution � built up so far, until for all chosen contexts their s-bridge atoms
are bound.

Regarding (3), we propose general methods to compare the outcome of different substitu-
tions on two main aspects, namely

(Q1) the matching quality of the bound rules, and

(Q2) the topological quality of the resulting MCS.

These methods can be seen as heuristics that can be plugged into the basic version of lconfig to
get the context substitutions returned ordered by quality.

For clarity and simplicity, in the sequel, we first present the very basic version of lconfig
with generic possibilities for optimization. We then briefly go through such possibilities, where
we choose some interesting ones to discuss in more detail and suggest potential realizations of
them.

6.4 Multi-Context Systems Configuration

Basic algorithm

The question is now how one can actually compute substitutions as sketched above. We present
a basic configuration algorithm which computes concrete bindings for a dynamic MCS. We

89

Algorithm 6.1: lconfig(Croot , R,�) at C
k

Input: Croot : root context, R: set of s-bridge rules, �: context substitution
Output: context susbstitution for C

k

Data: obuf
r

for every r 2 R: substitutions for r

if R = ; then
(a) Cnew := get_contexts(�|

C

k

) \ (get_contexts(� \ �|
C

k

) [{Croot})
if Cnew 6= ; then return invoke_neighbors(Croot , Cnew ,�)
else return {�}

(b) else
(c) pick r from R

obuf
r

:= bind_rule(�(r), B(r),�)
ctx_sub := ;
while obuf

r

6= ; do
(d) pick �0 from obuf

r

obuf
r

:= obuf
r

\ {�0}
ctx_sub := ctx_sub [lconfig(Croot , R \ {r},�0

)

return ctx_sub

start with a particular context in the system and gradually invoke some neighbors to get further
solutions.2

Given a dynamic MCS M and a starting context Croot , the algorithm lconfig presented in
this section aims at enumerating all possible context substitutions that can lead to a binding for
M , in a distributed way. It mutually calls an algorithm invoke_neighbors and makes use of the
following primitives:

• a function get_contexts(�), which takes a context substitution � (containing substitutions
of form X 7! C) as input and returns the set of contexts C used in �.

• a DFS subroutine bind_rule, which given an s-bridge rule r as input consults the match-
maker MatchMaker and returns all context substitutions for the non-ordinary s-bridge
atoms of r.

The algorithm lconfig has several parameters: the context Croot where the configuration
started, the set R of s-bridge rules left to be bound, and the context substitution � built up so far.

Intuitively, in a context C
k

, lconfig first utilizes bind_rule in a DFS manner to enumerate
all possible context substitutions for the s-bridge atoms in sbr

k

(Step (b)). When this is done, in
Step (a) it only refers to newly chosen contexts via a set Cnew and calls invoke_neighbors to get
the context substitutions of all members in Cnew .

2In centralized settings, one might instead compute substitutions by making use of more standard declarative
solvers, e.g., such as ASP solvers with external information access, for example, the dlvhex system (http://www.
kr.tuwien.ac.at/research/systems/dlvhex/).

90

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Algorithm 6.2: invoke_neighbors(Croot , N,�) at C
k

Input: Croot : root context, N : set of neighbors, �: context substitution
Output: context substitutions for all neighbors of C

k

(e) if N = ; then return {�}
else

(f) pick C
j

from N
obuf

C

j

:= C
j

.lconfig(Croot , sbr j ,�)

ctx_sub := ;

while obuf
C

j

6= ; do
(g) pick �0 from obuf

C

j

obuf
C

j

:= obuf
C

j

\ {�0}
(h) N 0

:= N \ (get_contexts(�0
) [{C

j

})
ctx_sub := ctx_sub [invoke_neighbors(Croot , N 0,�0

)

return ctx_sub

The algorithm invoke_neighbors has the same parameters Croot and � as lconfig, and carries
in addition a set N of newly chosen neighbors of C

k

where local configuration needs to be done.
The algorithm first picks a neighbor C

j

and calls lconfig at this context (Step (f)) to get all context
substitutions updated with local substitutions for C

j

, stored in obuf
C

j

. Then, in Step (g), it picks
each substitution from obuf

C

j

and continues invoking the remaining contexts in N . Note that in
Step (h), the set of remaining neighbors to invoke is recomputed in N 0, as some of the contexts
in N might already be chosen by the call to C

j

and thus they are already invoked.
When all invocations of neighbors have finished, the substitution computed at this point is

returned and is treated by lconfig either as an intermediate result for the context that invoked it,
or as the final result for the user.

Example 41 Take the setting from Example 39 and run bind_rule over the rule body with a
starting empty substitution. The call is bind_rule(B, ;) in which B = {(X1 : [pos1]), (Y1 :

[neg1])}. Assume that the first s-bridge atom chosen at Step (i) is sb = (X1 : [pos]). A
call MatchMaker([pos1], C1) to the matchmaker returns N = {C2, C3}. The routine then tries
all possibilities to bind sb and works recursively to bind the rest of the body. For example, if it
chooses to bind X1 to C2, then the next call will be bind_rule({(Y1 : [neg1])}, {X1 7! C2})
which returns {{X1 7! C2, Y1 7! C3}} as the set of all context substitutions in which X1

is mapped to C2. The binding continues with X1 7! C3 and in the end, we get two context
substitutions, namely {X1 7! C2, Y1 7! C3} and {X1 7! C3, Y1 7! C2}.

Example 42 This example illustrates the run of lconfig and invoke_neighbors on a dynamic
MCS from Example 35 with a pool of n = 3 contexts. Starting from C1 we can pick one s-bridge
rule from the non-empty set of s-bridge rules at (c), say the first one from Example 35. According

91

Algorithm 6.3: bind_rule(I, B,�) at C
k

Input: I: set of inequality atoms, B: set of s-bridge atoms, �: context substitution
Output: substitutions for B

(i) if 9a = (X : P) non-ordinary in B then
N := MatchMaker(P,C

k

) // N : set of potential neighbors
if @(X 7! C) in � then

dup := {C
i

2 N | (Y 7! C
i

) 2 � ^ (X 6= Y) 2 I}
N := N \ dup
ctx_sub := ;
while N 6= ; do

(j) choose a context C
j

from N
N := N \ {C

j

}
ctx_sub := ctx_sub [bind_rule(I, B \ {a},� [{X 7! C

j

})
return ctx_sub

else if �(X) 2 N then
return bind_rule(I, B \ {a},�)

else return ;
else return {�}

to Example 41, the subroutine bind_rule returns a set of two possible context substitutions. Let
us pick � = {X1 7! C2, Y1 7! C3} from this set and continue calling lconfig for the last rule.
This gives two possible extensions of �, one of which extends � to {X1 7! C2, Y1 7! C3, Z1 7!
C2, T1 7! C3}.

Having this context substitution carried to the next recursive call of lconfig, we reach the
point where R = ;, get Cnew = {C2, C3}, and continue calling lconfig at C2 or C3. The
algorithm proceeds and in the end, we get a number of context substitutions; one of them is

� =

8
<

:

X1 7! C2, Y1 7! C3, Z1 7! C2, T1 7! C3,

X2 7! C1, Y2 7! C3, Z2 7! C3, T2 7! C1,

X3 7! C2, Y3 7! C1, Z3 7! C1, T3 7! C2

9
=

; .

This substitution yields the MCS system in Example 34.

Bounded Enumeration. When the pool size gets large, enumerating all bindings for each
bridge rule and all bridge substitutions becomes infeasible. A practical approach would be to
compute only a small number of bindings for each rule, and also just a few substitutions at each
context. For the remainder of this section, let us use b and n to denote corresponding limits.

We have presented the basic algorithm for enumerating all possible context substitutions of
a dynamic MCS M w.r.t. a context C

k

in M with which M can be bound to original MCS. To
keep it simple, in steps (c), (d), (f), (g), (i), and (j), we nondeterministically pick either a rule, a
context substitution, or a context as no supporting information is provided. This leaves a lot of
room for optimization. Furthermore, we did not mention how to deal with irregular cases such

92

as when the matchmaker returns no potential neighbor, or the size of the partial MCS has passed
some boundary; furthermore, no caching has been foreseen.

In the following subsection, we discuss different heuristics to enhance the search process
when more support information is available, so that the context substitutions will be returned in
some quality driven order. After that, we briefly describe a strategy for cutting off when reaching
a size boundary, hence a possibility to tolerate partial bindings.

Quality-driven local configuration

Quality for the topology (Q
T

). Our experimental results reveal that evaluating equilibria of
MCS in general does not scale up to very large systems, and [31] and [8] showed that limitations
on some specific topologies such as the diamond topology exist. Hence, one of the purposes for
configuration is to constrain the size/topology of the resulting system to some boundary, e.g.,
by trying to reuse as many contexts from the local configuration of the parent as possible; or
by trying to avoid troublesome topological properties, such as ones having join contexts, i.e.,
contexts C

i

which are accessed from different contexts C
j

and C
j

0 which in turn are accessed
(possibly by intermediate contexts) from a single context C

k

, or cycles.
For this purpose, the selection of neighbors (Step (j)) is crucial. To support a context C

k

with
more information for this task, we do a one-step look-ahead at all of its potential neighbors. In
general, looking ahead into a potential neighbor C

i

can give back any information that C
i

is able
to infer from its own knowledge and information provided by the matchmaker. In this work, our
setting allows the look-ahead to return the number of s-bridge atoms in C

i

, denoted by nba
i

.
We define in the following different heuristic possibilities of the topological quality function

to reflect attempts to have the resulting MCS in some restricted shape (the smaller the value of
the function, the better is the quality).

Assume that having started the configuration from context Croot , we are now doing local
configuration at context C

k

, choosing a binding for a schematic bridge belief [p], considering
the possible match (p, q) to a context C

i

. As the context substitution � is carried along, one
can easily extract the set of chosen contexts so far, which is denoted here by C. Consider the
following topological quality functions:

(H1) quality
i,k

= nba
i

: with this function, we prefer potential neighbors with fewer s-bridge
atoms.

(H2) quality
i,k

=

(
0 if C

i

2 C
1 otherwise.

This function gives priority to contexts which are already chosen, hence to keep the size
of the resulting system small. On the other hand, this tends to introduce cycles.

One can imagine more complicated quality functions; for instance, to take the topology of
the system built up so far into account in order to avoid cycles or join contexts. To this end, one
must transfer not only the substitution � between contexts, but also the system topology (i.e.,
the respective graph).

93

Along the same lines, for Step (c) (resp., (i)) one can define quality functions, for instance
based on some syntactic criteria combined with some history information, to provide an heuristic
ranking for choosing the next rule (resp., the next non-ordinary s-bridge atom).
Quality for bindings of a schematic rule (Q

S

). This type of quality measures the closeness
between the bindings and the intended meaning of the schematic rule based on the matching
quality of each single s-bridge atom. Notice that after getting the schematic substitution ⌘ from
the matchmaker, ✓ is determined by the context substitution �. Each realization of � gives us a
possibility to bind the schematic rules. What we need is a means to compare these possibilities.
To make it generic, we define the quality function ⇢ of a bound rule r0 2 r� of a schematic rule
r of form (6.1) as follows:

⇢(r0) = op

8
<

:

↵ | sb = (X : P) 2 B(r)^
(C

j

: b) 2 ✓(sb) ^ (bel(P), b) 2 ⌘(C
i

, C
j

)^
(C

j

: b) 2 B(r0) ^ f
M

(bel(P), b) = ↵

9
=

; .

Basically, we take the measure of similarity of all bindings used to construct r0 and apply an
operator op on top. Here, op is generic and can be instantiated to any operator for a specific use.
For example, two plausible options are (i) op = min, and (ii) op = avg.

Roughly, in case (i), following an overly cautious approach, the quality of the whole binding
is determined as the minimal quality of all matches of the s-bridge atoms in its body. In a
different approach, case (ii) takes all matches into account and respects a contribution of each
match in the overall quality of the rule. Depending on different philosophies to establish the
overall quality of a binding that is based on bindings of each single schematic bridge atom, one
can provide more complicated operators and plug them into this scheme.

To benefit from this quality, one can sort the output buffer obuf
r

(resp., obuf
C

j

) according to
Q

S

in Step (d) (resp., (g)), and then pick the best context substitution up to this point to continue
with.
Combined quality (Q

C

). The two types of quality functions above look into two aspects of the
resulting system, namely the (Q

T

) topology and the (Q
S

) similarity in meaning of the bindings.
To exploit the latter, one needs to enumerate all possible bindings for a rule.

When we have a limit on the number of solutions (see discussion above), it is very important
to approximate Q

T

when choosing a binding, since then one cannot compute all bindings of a
rule, and then sort them.

To this end, we modify Q
T

in a way that it also takes care of the quality of the match.
Intuitively, when two potential contexts are equally ranked by Q

T

, one looks at the quality of
the match, i.e., approximating Q

S

, to rank them. More specifically, the heuristic functions H1
and H2 are changed to:

(H3) quality
i,k

= nba
i

� ↵, and

(H4) quality
i,k

=

(
�↵ if C

i

2 C
2� ↵ otherwise,

where ↵ is the quality of the match being considered to bind the current s-bridge atom.

94

Dealing with irregular cases

In practice, it is convenient for the user to have the possibility to specify an upper bound for
the size of the resulting system. However, a full substitution respecting the given limit may not
always exist. A flexible approach to deal with such a situation, rather than to increase the bound,
is to cut off when reaching the boundary and to tolerate partial answers.

By cutting off, more precisely we mean to remove all unbound negative s-bridge atoms from
s-bridge rules, and remove all s-bridge rules with unbound positive bridge atoms. Intuitively,
this amounts to considering a system where any further contexts that would exist for binding are
considered to return empty belief sets (and thus the respective bridge atoms are pre-evaluated
accordingly). Note that one also needs to undo the on-going substitutions for such s-bridge
rules, and this might trigger the cancellation of substitutions in a backward manner: since once
a context is not used anymore for instantiating other contexts, it is not needed and the part of the
substitution w.r.t. this context should be removed from the final result.

Another case in which cutting off might be used is when substitutions do not exist due to
non-existent matchings, i.e., when the matchmaker does not return any match for a schematic
constant. We can apply the same strategy as above, i.e., remove the corresponding s-bridge atom
if it appears in the negative body of an s-bridge rule, or remove the whole s-bridge rule if the
s-bridge atom is in its positive body.

The cutoff is in fact easy to implement. One can create a dummy context C0 which has only
a single belief dumb with the unique acceptable belief set ; (i.e., intuitively dumb is false , and
all beliefs in every other context are matchable to dumb. Then cutting off as discussed above is
simply achieved by matching unbound s-bridge atoms to (C0 : dumb).

Prototype implementation

A prototype implemetation of the configuration algorithm was reported in [32] with experimental
results on different dynamic topologies. As this implementation was independently developed
from the DMCS system, it will not be covered in Chapters 7 and 8. For more details on the
implementation and experimental results, we refer the reader to [32].

95

Part III

Implementation and Evaluation of
Multi-Context Systems

97

CHAPTER 7
The DMCS System

A preliminary system description of DMCS was given in [9]. This Chapter provides more tech-
nical hints and updates on the newest features of the system. Following the content here, one
can get an insightful on the implementation of the system in order to extend or modify it for
further improvement. We start with describing the system architecture at both levels: the global
distributed setting (Section 7.1) and the local level at each node (Section 7.2). The wrapper
to communicate with local solvers is explained in Section 7.3. Finally, instructions to use the
system are given in Section .1.

7.1 Global Level Architecture

Figure 7.1 illustrates the architecture of the global MCS distributed setting, which has the fol-
lowing main components:

(i) a front-end dmcsc for the user to query the system;

(ii) daemons dmcsd, where each of them represents a node which contains a set of contexts;
the daemons interact with each other. A node is identified by a hostname and a port which
are shared by its contexts to communicate to other contexts. Details on the architecture of
these daemons are in Section 7.2;

(iii) a manager dmcsm holding meta information about the system that has been collected from
the contexts, such as system topology, the interface of exchanging beliefs between pairs
of dmcsd. Right now, dmcsm is implemented in a simplified version, that is, it takes
care of system initialization, while more sophisticated functionalities such as computing
the optimal interface, removing connection to create optimal topologies are simulated by a
configuration file generated by a generator called dmcsgen (see Section .1 for instructions
on how to generate the test cases).

99

N3

dmcsd
N2

dmcsd

N1

dmcsd

N4

dmcsd

client
dmcsc

manager
dmcsm

partial equilibria requests

registration query

Figure 7.1: Distributed MCS Setting

The regions between pairs of nodes which have big arrows covered by dashed line represent
the connection links between them. Each link between two nodes N

i

, N
j

is established once
when a context of N

i

first requests to another context of N
j

and is kept while the system is run-
ning. Multiple requests and returns of results between two contexts belonging to N

i

and N
j

are
transferred via just one connection. This approach saves the implementation from exponential
blowup of connections to be created, thus enable scalability in terms of system size. The running

100

of the system includes the following stages:

1. System start-up. Each dmcsd starts up in two phases. First, it initializes the contexts
and let them read the local knowledge bases as well as the bridge rules. Then, all con-
texts register at dmcsm and provide their information such as hostname, port, signatures,
and bridge rules. After this, dmcsm computes the system topology, optimizes the com-
municating interface, and returns corresponding information (neighbors and interface) to
each context. Then, the second initialization phase is carried out at each node as contexts
establish network connections with their neighbors. This stage ends with every dmcsd
starting to listen to its own port for incoming requests from other daemons or from dmcsc
as described next.

However, as dmcsm is now implemented at its simplified version, its main purpose is
to keep all contexts not to immediately connect to each other but wait until all finishing
their local reading, parsing, and setting up the server component for listening to requests.
Other purposes are simulated by configuration files, therefore, this stage is accomplished
by letting each context read the configuration file to get its neighbor list (parents and
children) and the interface of exchanging beliefs to those.

2. Querying the system. When the user wants to know partial equilibria of the system wrt a
starting context C

k

(in Figure 7.1, this is context C1), she uses dmcsc to pose the query.
The daemon dmcsc inquiries dmcsm to get the hostname and port of C

k

, which is done
now by reading the system configuration. Then, dmcsc establishes a connection to C

k

,
which is in fact the connection to the daemon holding C

k

, and sends it the request of the
form (k1, k2), where [k1, k2] is the range of equilibria to be returned when 1 k1 k2;
while [0, 0] is the special request for all equilibria.

3. Evaluating the system. After dmcsc has sent a request to C
k

, the context checks whether
it needs beliefs from neighboring contexts. If not, then C

k

is a leaf context and it can
simply compute the local models, convert them into partial belief states and return to the
user. Otherwise, C

k

is an intermediate context and needs to send further requests to the
neighbors. Essentially, those requests look just as the one sent from dmcsc, and every
neighboring context will process them in a uniform manner. As such, each neighbor will
be asked for models in a range [1, s] only, where s is a pre-specified package size, except
for the special setting in which all request is [0, 0] and each context returns all partial
equilibria at once.

Back to the “streaming” setting, after all neighbors return their partial equilibria to C
k

,
it combines these in a consistent way, which might result in 0 or more partial equilibria.
In case the combination gives no partial equilibria, C

k

has to issue further requests to the
neighbors, starting from [s+ 1, 2s] at the first neighbor, and so on, i.e., [2s+ 1, 3s] at the
first neighbor, until reaching the total number of equilibria at this one, then back to [1, s]
at the first neighbor and [s+ 1, 2s] at the second one; this way, all possible combinations
of results from the neighbors will be considered.

When there are consistent combinations from the neighbors, C
k

picks each of them in
some order to evaluate the bridge rules, updates the local knowledge base, computes par-

101

tial equilibria wrt each update, and selects those in range [k1, k2] to return to the user.
If this range has not yet been covered, C

k

has to issue further requests to its neighbors,
following the same manner as above. The process continues until partial equilibria in the
expected range are returned, or all combinations of partial equilibria from the neighbors
are considered. The latter case means that the total number of partial equilibria is smaller
than k2.

7.2 Architecture At Local Nodes

This section describes the internal architecture at local nodes, which is presented in Figure 7.2.
The figure illustrates an intermediate nodes with two parents and two children nodes. When
removing the lower part of the figure, we have the architecture of leaf nodes.

Each squared rectangle represents a thread, and the rounded-corners rectangle represents
a group of threads which together form the core of a context. This part is further detailed in
Figure 7.3. The threads communicate with each other via a special shared-memory means, the
Concurrent Message Queues (CMQ). Each CMQ allows for atomic read and write operations
from threads knowing the pointer to it. When a queue is empty, any thread reading from it must
wait for something to be written in. The content from the queue that has just been read is also
flushed from the queue. Furthermore, each CMQ has a pre-fixed size k; when the queue is full,
any thread trying to write to it must wait until some other thread reads something from the queue
to make some free space. This way, we automatically obtain synchronization and have an upper
polynomial bound on the memory consumption for storing intermediate partial equilibria wrt
the number of contexts in the system. The latter is very important when local contexts are ASP
programs or SAT theories that usually produce exponentially many local models.

Looking into more details on the threads, there is a pair of Handler and Output threads for
each parent node. The Handler is created when a parent node sends the first request to the current
node, and then this thread is kept alive to listen to further requests from the same node. Each
Handler is accompanied with an Output thread, which is responsible to sending results back to
the same node. In fact, the Output thread is created from the corresponding Handler. On the
other direction, for intermediate nodes, there is a pair of NOut and NIn threads to communicate
with a child node. NOut takes care of sending requests and NIn waits for the results. As a
consequence, NOut talks to Handler and NIn listens to Output of the child node, respectively.

Since each node can have more than one context which share one communication channel
(Handler and Output, NOut and NIn), there must be some means to deliver the requests and
results to the right recipient. It can be done inside Handler and NIn, but this approach will make
these components complicated as they have to handle tasks beyond their functionalities. Thus,
we introduced dispatchers for this purpose; they are:

• RequestDispatcher: dispatches requests from Handler to the right context. This requires
the receiver’s identifier to be added to the request.

• JoinerDispatcher: conceptually, it helps dispatching partial equilibria from NIn to the
right context. This requires adding the identifier of the context to the results, which in turn

102

Handler Output Handler Output

Request Dispatcher Output Dispatcher

Context Context

Joiner Dispatcher

NOut NIn NOut NIn

external requests external partial equilibria
internal requests internal partial equilibria

notifications

Figure 7.2: Local Node’s Architecture

forces this identifier to be attached to the requests, thus the neighboring context can keep
track of where to return the results.

Practically, to save communication cost, partial equilibria are not passed from NIn to
JoinerDispatcher and then to Context. Instead, NIn only informs JoinerDispatcher with
a notification of the form (c, n) where c is the identifier of the receiving context and n
is the number of available partial equilibria for Context. Then, JoinerDispatcher notifies
the corresponding context to directly read n partial equilibria from the CMQ of that NIn.

103

Requests
Dispatcher

Cycle Breaker

Evaluator

Bridge Rules
Evaluator

Joiner

+

Joiner DispatcherNOut NIn

Output
Dispatcher

requests partial equilibria

heads notifications

Figure 7.3: Contexts Components

Hence, to support messages dispatching, the requests are in fact of the form (sender , receiver ,
k1, k2), where k1, k2 determine the answer range as described in Section 7.1, and sender ,
receiver are identifiers of the contexts involving in the communication, respectively. Another
thread responsible to dispatch partial equilibria to the right communication channels, not the
contexts, is OutputDispatcher.

We next zoom in the core of Context in Figure 7.3. The figure depicts component threads
of an intermediate context, which consists of the following threads: Evaluator, CycleBreaker,
Joiner, and BridgeRulesEvaluator; leaf contexts just contain of Evaluator.

When receiving a request from RequestDispatcher, a leaf context simply uses Evaluator
to compute its local models, then turns them into partial equilibria form and feeds them to the
thread OutputDispatcher.

For intermediate contexts, the process is more involved. Based on a history H of context
identifiers sent along with the request, RequestDispatcher can detect whether a cycle started by
the current context C exists, by checking the presence of C’s identifier in H .

If no cycle was detected, the request is sent to Evaluator, which then forwards it to Joiner,
where further requests are initiated to neighboring contexts via NOut. The Joiner then waits for

104

Engine

Instantiator Evaluator

DLVEngine ClaspEngine DLVInstant DLVInstant DLVEval ClaspEval

instList
1..*

evalList
1..*

Figure 7.4: Class Diagram for Wrapping Local Solvers

notifications from JoinerDispatcher of the form (c, n), where c is the identifier of this context.
Once this notification is received, Joiner goes to the respective NIn (coupled with the thread
NOut that sent out the request) and reads out n partial equilibria.

After all neighbors have returned some partial equilibria, Joiner combines them and rules
out inconsistent combinations, i.e., it processes the operator ./ defined in Section 3.1. Outcomes
of the joining process are passed to BridgeRulesEvaluator, which evaluate bridge rules of the
current context to produce bridge heads of the applicable rules. These heads are added to the
local theory, and each updated theory is then evaluated by Evaluator. The local models from
this process are then combined with the corresponding partial equilibria (marked by having
the same head) to form new resulting partial equilibria of the current context, for returning to
OutputDispatcher.

If a cycle was detected, the request is sent to CycleBreaker, which makes guesses on the
bridge atoms of the bridge rules, and then feeds each of these guesses into Evaluator for lo-
cal solving. Therefore, in this case, no invocation to neighbors, no joining, nor bridge rules
evaluation are needed. The local models computed from the guessed input will be sent to
OutputDispatcher without being combined with input from the neighbors. Eventually, these
models based on guessing will be fed into the same context later following the chain of calls. At
that point, the combining of the output from Evaluator and the joint input from Joiner will have
to check whether any inconsistency appears, and only consistent combinations can go through.

The only technical issue left for clarification is how one organizes the interface with external
solvers, to execute the function lsolve inside Evaluator. We discuss this design next.

7.3 Wrapping the Local Solvers

Figure 7.3 shows that the local solving process is done in the Evaluator thread, which calls
a particular engine instance associated with a local knowledge base of a context. The design
presented in this section however pursues a more generic purpose, i.e., to provide a uniform
interface to call different kinds of external solvers from a context in DMCS. To do this, three
layers are needed as depicted by three abstract classes in in Figure 7.4:

• Engine: subclasses of this class represent different kinds of reasoning engines, e.g.,

105

DVL,1 clasp2 for evaluating ASP programs, RacerPro 3 for ontological reasoning, relsat4

for SAT solving, etc.

• Instantiator: each engine can have multiple instantiators. Each instantiator takes care of
a local knowledge base which is identified by a string (either a filename or a URL to the
storage of the local knowledge base). In other words, an instantiator is corresponding to a
local context.

• Evaluator: this layer is present to allow future possibilities of parallelizing the local solv-
ing process. Evaluators created by an instantiator share a local knowledge base; more
sophisticated algorithms are needed to control the parallelization of multiple evaluators in
an efficient way.

Note that by exploiting polymorphism, the developer just needs to operate on pointers, say
enp, inp, and evp to the three respective abstract classes Engine, Instantiator, Evaluator.
Choosing the type of engines for enp is done via calling a static method create() of the
respective subclass of Engine. Then, creating an instantiator for inp wrt a local knowledge base
whose path is a string kbspec is done via calling createInstantiator(kbspec) from
enp. And finally, creating an evaluator for evp is done by calling createEvaluator()
from inp. Once an evaluator is available via evp, local solving can be triggered through a
method named solve.

7.4 DMCS System Usage

The DMCS implementation has two main command-line tools for generating test data and re-
alizing the algorithms proposed in this thesis. This section present full instructions on invoking
these tools.

Generating test cases with dmcsgen

The main purpose of dmcsgen is to aid experiments on the DMCS system with automatically
generated test cases that reflecting different aspects of MCSs, including system topologies, sys-
tem size, local theory size, interface size. dmcsgen also generates query plans and returns plans
that define the interface between contexts at run time. The former defines the importing inter-
face while the latter defines the exporting one. This replaces the current missing functionality of
dmcsm. Moreover, command lines to run the whole system are also generated for the purpose
of automatic testing. To invoke this tool, we use:

dmcsGen [OPTIONS]

where OPTIONS can be:
1http://www.dlvsystem.com
2http://potassco.sourceforge.net/
3http://www.racer-systems.com/
4http://code.google.com/p/relsat/

106

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.racer-systems.com/
http://code.google.com/p/relsat/

• --help: print help message

• --gen-data=0/1: 0 to disable generating data, i.e., only generate command lines, and
1 to enable this option

• --contexts=N1: set the number of contexts (system size)

• --atoms=N2: set the number of ground atoms per context (local theory size)

• --interface=N3: set the number of atoms used for creating the interface between
contexts

• --bridge-rules=N4: set the maximum number of bridge rules between pairs of con-
texts. When generating, to vary the number of bridge rules, we iterate N4 rounds, and for
each round, have a probability of 50% to create a bridge rule.

• --topology=N5: set the topology type. There are in total 9 different types of topolo-
gies. Use option --help for more details.

• --prefix=STR1: set a string as prefix for all files generated in a single test case.

• --dmcspath=STR2: set the path to the DMCS binaries.

• --startup-time=N6: set start up time (in seconds) to call dmcsc after initializing
all contexts.

• --packsize=N7: set the package size as the number of partial equilibria in each re-
turn message. N7>0 triggers streaming mode while N7=0 triggers the original DMCS
algorithms (with or without the topological optimization).

• --timeout=N8: set a time out (in seconds).

As the result, dmcsgen generates

• N1 text files with .lp extension, containing N1 contexts’ local theories

• N1 text files with .br extension, containing sets of bridge rules of the contexts

• N1 text files with .qp (resp., .oqp) extension, containing the query plans of the contexts
in case of original (resp., optimal) topology.

• N1 text files with .rp (resp., .orp) extension, containing the return plans of the contexts
in case of original (resp., optimal) topology.

• a file called client.qp containing the signatures of all contexts in the system, for the
purpose of returning results with atom names in stead of internal encoding to the user.

• several .txt files containing command lines that can be used to manually test the system.

• several .sh files containing shell scripts used to automatically test the system in different
modes: original or optimal topologies, non-streaming or streaming algorithms, and in case
of streaming, whether to finish after the first package of results.

107

Running the system with dmcsm, dmcsc and dmcsd

The actual DMCS system is activated via three binaries: a dmcsm simulates a simple manager,
N dmcsd running as daemons to represent N contexts, and a dmcsc used as a client to trigger
the querying to a dmcsd. We need to start these binaries in the following order:
First, start dmcsm as:

dmcsm [--help] --port=PORT --system-size=N

where PORT is the port where the manager listens to, and N is the number of contexts in the
system.
Second, start N dmcsd as follows:

dmcsd [--help] OPTIONS

where OPTIONS are:

• --context=N1: set the context identifier (ranging from 0 to N-1).

• --port=N2: set the port where the current context listens to.

• --manager=HOST:PORT: set hostname and port of the manager (must be in correspon-
dence to the options set by dmcsm).

• --system-size=N3: set system size, which is N.

• --queue-size=N4: (optional) set interal concurrent message queues’ size.

• --belief-state-size=N5: set belief state size of every context. Note that to sim-
plify the experiment, we let all contexts have the same local theory size, which is generated
from the option --atoms of dmcsgen.

• --packsize=N6: (optional) set size of package, i.e., the number of partial belief states,
to be transferred back in each return message.

• --kb=STR1: set the filename containing the local theory.

• --br=STR2: set the filename containing the bridge rules.

• --queryplan=STR3: set the filename containing the query plan wrt. the original topol-
ogy

• --optqueryplan=STR4: set the filename containing the query plan wrt. the optimal
topology

• --returnplan=STR5: set the filename containing the return plan. Depending on the
mode (original or optimal) one would like to run, the return plan will be set to either
generated files with extensions .rp or .orp.

108

Finally, start dmcsc as follows:

dmcsc [--help] OPTIONS

where OPTIONS are:

• --hostname=STR1: set hostname of the context to be queried.

• --port=N1: set port of the context to be queried.

• --root=N2: set indentifier of the context to be queried.

• --signature=STR2: set the filename to the file that contains signatures of all contexts
in the system, which is client.qp in case of automatically generated.

• --belief-state-size=N3: set the (uniform) belief state size of all contexts in the
system.

• --loop=0/1: set a flag to indicate whether we would like to immediately finish after
the first round of answers, in streaming mode.

• --k1=N4 --k2=N5: set the range of partial belief states one would like to query. Set-
ting N4=N5=0 requests for all answers; otherwise, it must hold that 0 < N4 <= N5.

Availability

Further information regarding our DMCS system can be found at http://www.kr.tuwien.
ac.at/research/systems/dmcs/index.html. The source code is publicly hosted at
http://sourceforge.net/projects/dmcs/.

109

http://www.kr.tuwien.ac.at/research/systems/dmcs/index.html
http://www.kr.tuwien.ac.at/research/systems/dmcs/index.html
http://sourceforge.net/projects/dmcs/

CHAPTER 8
Experimental Evaluation

This Chapter provides a thorough experimental evaluation of different aspects of the prototype
DMCS implementation describe in the Chapters above, to compare different algorithms (basic,
topology-based optimization, and streaming) for evaluating partial equilibria (PE) in an MCS.

We carried out the experiments on a host system using 4-core Intel(R) Xeon(R) CPU 3.0GHz
processor with 16GB RAM, running Ubuntu Linux 12.04.1. Furthermore, we use DLV [build
BEN/Sep 28 2011 gcc 4.3.3] as a back-end ASP solver. Next, we explain how the benchmark is
set up before going into the experimental and interpreting its results.

8.1 Benchmark Setup

The idea is to analyze the strong and weak points of each algorithm with respect to different pa-
rameters, namely system topology, system size, local theory size, and interface size. Specifically,
we considered MCSs with topologies as in Figure 8.1, including:

• Binary Tree (T): Binary trees grow balanced, i.e., every level execept the last one is com-
plete. With this topology, no edge needs to be removed to form the optimal topology;
however, as every intermediate node is a cut-vertex, the import interface in the query plan
is drastically reduced which leads to an extreme improvement in the performance of the
evaluation.

• (Stack of) Diamond (D): a diamond consists of 4 nodes connecting as C1 to C4 in Fig-
ure 8.1b. A stack of diamonds combines multiple diamonds in a row, i.e., stacking m
diamonds in a tower of 3m + 1 contexts. Similar to Binary Tree, no edge is removed in
decomposition to get the query plan. Wrt this topology, every context connecting two dia-
monds is a cut-vertex. As such, the import interface in the query plan is refined after every
diamond, which helps reducing a significant amount of repetition of PEs in evaluation.

• (Stack of) Zig-Zag Diamonds (Z): a zig-zag diamond is an ordinary diamond with a con-
nection between the two middle contexts, as depicted by contexts C1 to C4 in Figure 8.1c.

111

C1

C2 C3

C4 C5 C6 C7

(a) Binary Tree (T)

C1

C2 C3

C4

C5 C6

C7

(b) Diamond (D)

C1

C2 C3

C4

C5 C6

C7

(c) Zig-Zag (Z)

C1

C2

C3

C4

C4

(d) Ring (R)

Figure 8.1: Topologies for testing DMCS algorithms

A stack of zig-zag diamonds is built in the same way as above. Moreover, this topology
is interesting as after removing two edges per block, the query plan turns into a linear
topology.

• Ring (R): unlike the above topologies that are acyclic, ring is a cyclic topology consisting
of a cycle (Figure 8.1d). The query plan removes the connection from context C

n

to C1

and then carries the interface between these two all the way back to C1. This topology
requires guessing and checking in any DMCS algorithm, and this arbitrary factor makes
it very unpredictable to say which algorithm performs better in general.

The other quantitative parameters are represented as a quadruple of the form P = (n, s, b, r),
where1

• n is the system size (number of contexts),

• s is the local theory size (number of ground atoms in a local theory),

• b is the number of local atoms that can be used as bridge atoms in other contexts, in other
words, the number of interface atoms, and

• r is the maximal number of bridge rules. Note that when generating bridge rules, the
generator uses a probability of 50% to generate a bridge rule while iterating from 1 to r,
hence the average number of generated bridge rules is r/2. Furthermore, we allow bridge
bodies of size 1 or 2.

Under this setting, a test configuration can be formulated as X/(n, s, b, r) where X 2 {T,D,Z,R}
representing the topology and n, s, b, r are integers representing the quantitative, or in other
words, size-related parameters. As we would like to run several instances over one configura-
tion, the final formulation of a test instance is X

i

/(n, s, b, r), where i is the index of the test
instance.

1See Appendix .1 for how to generate the test data wrt these parameters.

112

a1 a2 a3 a4 a5 a6 a7 a8

Figure 8.2: Local Theories’ Structure

Inside each context, the local theories are structured as follows. Context C
i

has s ground
atoms indicated by a

i,1, . . . , ai,s. Rules are of the form a
i,j

 not a
i,k

where:

• if j is odd then k = j + 1;

• otherwise, we randomly choose k to be j � 1 or j + 1 with a probability of 50% for each
possibility.

In case if k > s then the rule does not exist. An example of a context with local theory size is 8
can be illustrated with the dependency graph as in Figure 8.2. With this setting, a local context
has 2m answer sets, where m 2 [0, s/2].

8.2 Experiments

We ran an exhaustive set of benchmarks under the setup described in Section 8.1. Based on
some initial testing while varying all the experiments, we decided for the parameter tuple P =

(n, s, b, r), we vary the following variables accordingly:

• n was chosen based on the topology:

– T : n 2 {7, 10, 15, 31, 70, 100}

– D: n 2 {4, 7, 10, 13, 25, 31}

– Z: n 2 {4, 7, 10, 13, 25, 31, 70}

– R: n 2 {4, 7, 10, 13, 70}

• s, b, r are fixed to either 10, 5, 5 or 20, 10, 10, respectively.

Each parameter setting is tested on 5 instances. For each instance, we measure the total
running time and the total number of returned PEs on DMCS, DMCSOPT in non-streaming and
streaming mode. In particular for the latter mode, DMCS-STREAMING, we asked for different
number k of answers, namely 1, 10, and 100. This input parameter also influences the size of the
packages transferred between contexts, i.e., at most k PEs are transferred in one message from
a context to an invoker. As in streaming mode, asking for more than one PE may require more
than one round to complete the total number of answers, it is interesting to see how fast the first
set of answers arrives compared to the time consumed to get the whole answer. Therefore, with
k = 10 and k = 100, we compare the running time of these two cases.

113

8.3 Observations and Interpretations

Tables 8.1—8.8 display the test results of the experiments as explained in Section 8.2. For the
runs where both running time and total number of answers are reported, or in streaming mode
with k = 1, we used “—” to denote timeout. Otherwise, the syntax (m) is used to denote that
the test run was timed out and m PEs were received up to that time. From these data, several
interesting properties can be observed and the interpretation opens up a number of interesting
issues for further deep investigation.

In the sequel, we present our analysis of the data on the following aspects:

• comparing DMCS and DMCSOPT

• comparing streaming and non-streaming modes

• effect of the package size

• role of the topologies

114

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

T

1
/
(7
,
1
0
,
5
,
5
)

0.
15

50
0.

03
7

0.
01

0.
01

0.
17

10
0.

16
0.

41
7

1.
29

0.
57

50
1.

83
0.

52
7

1.
70

T

2
/
(7
,
1
0
,
5
,
5
)

0.
22

19
2

0.
04

12
0.

01
0.

01
0.

16
10

0.
16

0.
15

10
0.

14
0.

27
10

0
0.

26
0.

55
12

1.
78

T

3
/
(7
,
1
0
,
5
,
5
)

0.
41

19
2

0.
04

7
0.

01
0.

01
0.

08
10

0.
08

0.
17

7
0.

68
0.

41
10

0
0.

41
0.

55
7

1.
80

T

4
/
(7
,
1
0
,
5
,
5
)

2.
61

15
36

0.
08

36
0.

01
0.

01
0.

10
10

0.
10

0.
05

10
0.

05
0.

84
10

0
0.

84
0.

59
36

1.
89

T

5
/
(7
,
1
0
,
5
,
5
)

4.
90

26
56

0.
08

28
0.

01
0.

01
0.

10
10

0.
10

0.
04

10
0.

05
0.

94
56

4.
95

0.
59

28
1.

84
T

1
/
(1
0
,
1
0
,
5
,
5
)

0.
23

16
0

0.
04

12
0.

01
0.

02
0.

17
10

0.
17

0.
73

10
0.

73
0.

58
10

0
0.

61
1.

18
12

3.
68

T

2
/
(1
0
,
1
0
,
5
,
5
)

1.
71

11
04

0.
05

12
0.

02
0.

02
0.

15
10

0.
15

0.
57

6
2.

74
0.

97
10

0
0.

98
1.

26
12

3.
90

T

3
/
(1
0
,
1
0
,
5
,
5
)

12
.7

8
57

60
0.

06
18

0.
02

0.
01

0.
07

10
0.

07
0.

18
10

0.
18

1.
30

10
0

1.
30

1.
29

18
4.

01
T

4
/
(1
0
,
1
0
,
5
,
5
)

18
.9

0
96

00
0.

09
32

0.
02

0.
02

0.
08

10
0.

08
0.

05
10

0.
05

1.
51

10
0

1.
51

1.
25

32
3.

85
T

5
/
(1
0
,
1
0
,
5
,
5
)

17
6.

33
56

32
0.

09
4

0.
02

0.
02

0.
06

6
0.

43
0.

23
4

2.
25

0.
80

52
4.

32
1.

72
4

5.
25

T

1
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
12

12
0.

03
0.

03
0.

32
10

0.
31

0.
56

10
0.

55
10

.0
7

10
0

10
.0

9
4.

70
12

14
.4

7
T

2
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
16

28
0.

03
0.

03
0.

31
10

0.
30

0.
47

10
0.

47
10

.2
9

10
0

10
.2

8
5.

17
28

15
.8

3
T

3
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
16

3
0.

03
0.

03
0.

29
10

0.
28

2.
16

3
52

.4
2

7.
87

10
0

7.
86

9.
27

3
27

.8
1

T

4
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
23

24
0.

03
0.

03
0.

12
10

0.
12

0.
09

10
0.

09
2.

53
10

0
2.

53
12

.0
4

24
36

.5
5

T

5
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
25

88
0.

03
0.

03
0.

19
10

0.
18

0.
32

10
0.

33
1.

78
10

0
1.

79
1.

89
88

5.
70

T

1
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
16

48
0.

04
0.

04
0.

28
10

0.
28

0.
21

10
0.

22
3.

40
10

0
3.

32
5.

64
48

16
.9

8
T

2
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
16

16
0.

04
0.

07
0.

37
10

0.
33

1.
60

10
1.

54
7.

60
10

0
7.

67
5.

44
16

16
.5

1
T

3
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
18

24
0.

04
0.

04
0.

32
10

0.
36

0.
89

8
2.

83
6.

83
10

0
6.

84
5.

51
24

16
.7

7
T

4
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
24

18
0.

03
0.

04
0.

24
10

0.
23

0.
21

10
0.

20
5.

89
10

0
5.

94
20

.1
3

18
61

.3
9

T

5
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
38

24
0.

04
0.

04
0.

20
10

0.
20

0.
10

6
0.

38
8.

08
10

0
8.

11
6.

02
24

20
6.

09
T

1
/
(7
0
,
1
0
,
5
,
5
)

—
0

0.
29

8
0.

08
0.

08
0.

79
10

0.
82

4.
24

8
12

.9
9

23
.6

1
10

0
22

.8
7

84
.8

2
8

10
5.

88
T

2
/
(7
0
,
1
0
,
5
,
5
)

—
0

0.
31

16
0.

08
0.

08
0.

39
10

0.
40

1.
13

10
1.

12
11

.1
2

10
0

11
.1

8
29

.7
0

16
94

.3
1

T

3
/
(7
0
,
1
0
,
5
,
5
)

—
0

0.
31

8
0.

08
0.

08
0.

44
10

0.
43

1.
21

8
3.

79
15

.2
4

10
0

15
.0

3
28

.1
4

8
85

.2
9

T

4
/
(7
0
,
1
0
,
5
,
5
)

—
0

0.
35

8
0.

08
0.

07
0.

43
10

0.
41

43
.7

8
8

13
3.

24
13

.2
9

10
0

13
.3

1
43

.9
4

8
15

5.
90

T

5
/
(7
0
,
1
0
,
5
,
5
)

—
0

0.
58

28
0.

08
0.

08
0.

54
10

0.
59

2.
96

10
2.

96
27

.7
1

10
0

27
.7

2
95

.9
5

28
33

3.
49

T

1
/
(1
0
0
,
1
0
,
5
,
5
)

—
0

0.
47

32
0.

11
0.

11
0.

54
10

0.
56

1.
85

10
1.

77
19

.1
3

10
0

19
.5

8
46

.1
7

32
14

2.
32

T

2
/
(1
0
0
,
1
0
,
5
,
5
)

—
0

0.
50

10
0.

11
0.

11
0.

52
10

0.
50

1.
01

6
3.

27
19

.9
3

10
0

20
.1

0
55

.5
0

10
16

8.
88

T

3
/
(1
0
0
,
1
0
,
5
,
5
)

—
0

0.
53

84
0.

13
0.

11
0.

59
10

0.
58

2.
05

10
1.

99
19

.7
8

10
0

20
.0

6
89

.5
2

84
27

6.
10

T

4
/
(1
0
0
,
1
0
,
5
,
5
)

—
0

0.
59

72
0.

11
0.

11
0.

57
10

0.
58

7.
19

10
7.

25
17

.2
9

10
0

17
.3

0
11

8.
75

72
37

8.
13

T

5
/
(1
0
0
,
1
0
,
5
,
5
)

—
0

0.
64

36
0.

11
0.

11
0.

49
10

0.
48

0.
34

10
0.

34
15

.5
9

10
0

15
.0

1
21

7.
98

36
(3

6)

Ta
bl

e
8.

1:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

115

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

T

1
/
(7
,
2
0
,
1
0
,
1
0
)

33
7.

58
25

34
4

0.
72

73
6

0.
01

0.
01

0.
06

10
0.

06
0.

05
10

0.
05

2.
42

68
7.

44
0.

30
10

0
0.

31
T

2
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

0.
58

20
8

0.
01

0.
01

0.
05

10
0.

05
0.

05
10

0.
05

0.
37

10
0

0.
37

0.
19

10
0

0.
18

T

3
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

1.
19

84
0

0.
01

0.
01

0.
05

10
0.

05
0.

05
10

0.
05

0.
67

10
0

0.
67

0.
23

10
0

0.
23

T

4
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

1.
74

20
16

0.
01

0.
01

0.
05

10
0.

05
0.

04
10

0.
04

2.
56

10
0

2.
56

0.
24

10
0

0.
25

T

5
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

30
.5

1
17

08
8

0.
01

0.
01

0.
08

10
0.

08
0.

08
10

0.
08

3.
71

10
0

3.
72

1.
10

10
0

1.
10

T

1
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

0.
48

22
4

0.
02

0.
02

0.
06

10
0.

06
0.

05
10

0.
05

2.
11

60
8.

69
0.

46
10

0
0.

46
T

2
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

0.
85

25
6

0.
02

0.
02

0.
06

10
0.

05
0.

05
10

0.
05

0.
39

10
0

0.
39

0.
46

64
1.

95
T

3
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

1.
94

17
92

0.
02

0.
02

0.
04

10
0.

05
0.

04
10

0.
04

0.
32

10
0

0.
33

0.
20

10
0

0.
20

T

4
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

2.
64

17
6

0.
02

0.
02

0.
11

10
0.

11
0.

10
10

0.
10

1.
13

10
0

1.
14

0.
36

10
0

0.
36

T

5
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

3.
25

32
00

0.
02

0.
02

0.
06

10
0.

06
0.

05
10

0.
05

0.
99

10
0

1.
01

0.
42

10
0

0.
41

T

1
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

0.
57

22
4

0.
03

0.
03

0.
47

10
0.

46
0.

42
10

0.
42

8.
30

10
0

8.
35

10
.5

6
10

0
10

.5
5

T

2
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

1.
07

57
6

0.
03

0.
03

0.
08

10
0.

09
0.

08
10

0.
08

1.
09

10
0

1.
09

0.
35

10
0

0.
35

T

3
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

1.
56

76
8

0.
03

0.
03

0.
11

10
0.

10
0.

10
10

0.
10

2.
79

10
0

2.
75

0.
48

10
0

0.
47

T

4
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

3.
29

40
0.

03
0.

03
0.

34
10

0.
36

0.
31

10
0.

31
3.

15
10

0
3.

14
1.

30
40

10
.0

9
T

5
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

5.
69

33
6

0.
03

0.
03

0.
14

10
0.

12
0.

13
10

0.
13

1.
98

10
0

1.
95

0.
44

10
0

0.
46

T

1
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

1.
43

72
0.

04
0.

04
0.

12
10

0.
11

0.
10

10
0.

10
2.

30
10

0
2.

26
0.

56
72

1.
75

T

2
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

2.
25

67
2

0.
04

0.
04

0.
12

10
0.

14
0.

12
10

0.
12

2.
22

10
0

2.
27

0.
72

10
0

0.
68

T

3
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

2.
96

32
0.

04
0.

04
0.

14
10

0.
13

0.
20

10
0.

20
2.

98
10

0
2.

99
2.

93
32

72
.6

8
T

4
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

3.
36

89
6

0.
04

0.
04

0.
16

10
0.

17
0.

12
10

0.
12

3.
72

10
0

3.
72

0.
81

10
0

0.
80

T

5
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

22
.5

3
38

4
0.

04
0.

04
0.

17
10

0.
18

0.
13

10
0.

15
7.

71
10

0
7.

74
0.

77
10

0
0.

81
T

1
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

3.
52

14
4

0.
08

0.
08

0.
31

10
0.

32
0.

24
10

0.
23

11
.4

4
10

0
11

.3
8

1.
56

80
4.

63
T

2
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

5.
35

19
2

0.
08

0.
08

0.
50

10
0.

47
0.

30
10

0.
30

7.
83

10
0

7.
82

7.
56

64
23

.9
1

T

3
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

5.
95

57
6

0.
08

0.
08

0.
24

10
0.

23
0.

20
10

0.
22

5.
16

10
0

5.
20

0.
99

10
0

0.
94

T

4
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

7.
02

64
8

0.
09

0.
08

0.
35

10
0.

35
0.

21
10

0.
28

5.
82

10
0

5.
85

1.
21

10
0

1.
24

T

5
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

20
.3

1
22

4
0.

08
0.

08
0.

29
10

0.
29

0.
25

10
0.

24
17

.8
9

10
0

24
.8

1
2.

75
10

0
3.

85
T

1
/
(1
0
0
,
2
0
,
1
0
,
1
0
)

—
0

6.
34

10
56

0.
11

0.
11

0.
32

10
0.

33
0.

55
10

0.
58

6.
57

10
0

6.
51

11
.7

4
10

0
11

.8
2

T

2
/
(1
0
0
,
2
0
,
1
0
,
1
0
)

—
0

6.
40

70
4

0.
12

0.
11

0.
33

10
0.

33
0.

28
10

0.
30

6.
06

10
0

6.
11

1.
59

10
0

1.
57

T

3
/
(1
0
0
,
2
0
,
1
0
,
1
0
)

—
0

8.
31

12
80

0.
11

0.
11

0.
54

10
0.

55
0.

89
10

0.
86

7.
19

10
0

7.
46

2.
87

10
0

2.
90

T

4
/
(1
0
0
,
2
0
,
1
0
,
1
0
)

—
0

25
.4

5
26

88
0.

11
0.

11
0.

34
10

0.
35

0.
31

10
0.

32
11

.6
1

10
0

11
.8

2
1.

58
10

0
1.

57
T

5
/
(1
0
0
,
2
0
,
1
0
,
1
0
)

—
0

32
.6

3
16

0
0.

11
0.

11
0.

40
10

0.
38

0.
35

10
0.

36
8.

21
10

0
7.

91
3.

70
96

11
.2

6

Ta
bl

e
8.

2:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

116

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

D

1
/
(4
,
1
0
,
5
,
5
)

0.
02

8
0.

02
8

0.
01

0.
01

0.
26

8
1.

83
0.

26
8

1.
82

0.
42

8
1.

40
0.

42
8

1.
40

D

2
/
(4
,
1
0
,
5
,
5
)

0.
25

19
6

0.
09

86
0.

01
0.

00
0.

16
10

0.
16

0.
11

10
0.

11
0.

25
10

0
0.

25
0.

50
86

1.
51

D

3
/
(4
,
1
0
,
5
,
5
)

0.
40

19
2

0.
07

24
0.

01
0.

01
0.

03
10

0.
03

0.
02

6
0.

30
0.

27
76

1.
20

0.
68

24
2.

18
D

4
/
(4
,
1
0
,
5
,
5
)

0.
52

16
8

0.
06

24
0.

01
0.

01
0.

04
6

0.
22

0.
03

6
0.

21
0.

45
52

3.
04

0.
48

24
1.

56
D

5
/
(4
,
1
0
,
5
,
5
)

1.
90

11
20

0.
13

84
0.

01
0.

01
0.

04
10

0.
04

0.
03

10
0.

03
0.

66
10

0
0.

67
0.

31
84

0.
89

D

1
/
(7
,
1
0
,
5
,
5
)

2.
67

15
68

0.
28

11
2

0.
14

0.
14

0.
37

10
0.

37
0.

36
10

0.
36

1.
45

10
0

1.
45

1.
99

10
0

1.
99

D

2
/
(7
,
1
0
,
5
,
5
)

3.
74

32
0

0.
23

16
0.

14
0.

14
0.

21
10

0.
20

0.
42

10
0.

41
2.

43
10

0
2.

43
3.

91
16

11
.9

6
D

3
/
(7
,
1
0
,
5
,
5
)

10
.4

4
32

64
0.

36
72

0.
14

0.
14

0.
22

10
0.

21
0.

21
10

0.
21

1.
04

10
0

1.
04

5.
23

72
15

.9
2

D

4
/
(7
,
1
0
,
5
,
5
)

12
.9

3
15

36
0.

30
24

0.
14

0.
14

0.
39

10
0.

39
0.

37
6

1.
26

2.
75

10
0

2.
77

4.
07

24
12

.4
4

D

5
/
(7
,
1
0
,
5
,
5
)

13
.6

8
15

36
0.

43
48

0.
14

0.
14

0.
43

10
0.

43
1.

58
10

1.
58

3.
37

10
0

3.
35

4.
70

48
14

.5
2

D

1
/
(1
0
,
1
0
,
5
,
5
)

24
.1

5
17

28
0.

56
16

0.
32

0.
32

0.
84

10
0.

84
1.

30
10

1.
32

4.
70

10
0

4.
66

32
.6

0
16

10
1.

94
D

2
/
(1
0
,
1
0
,
5
,
5
)

50
.1

5
19

20
0.

54
16

0.
32

0.
32

1.
23

10
1.

22
2.

27
10

2.
27

5.
70

10
0

5.
69

32
.6

9
16

98
.4

5
D

3
/
(1
0
,
1
0
,
5
,
5
)

—
0

1.
03

3
0.

32
0.

32
26

.7
7

10
26

.6
4

3.
37

3
81

.8
0

—
0

(0
)

45
7.

01
3

(3
)

D

4
/
(1
0
,
1
0
,
5
,
5
)

—
0

1.
15

72
0.

32
0.

32
0.

63
10

0.
54

1.
14

10
1.

21
7.

75
10

0
7.

75
52

.3
7

72
17

7.
31

D

5
/
(1
0
,
1
0
,
5
,
5
)

—
0

2.
00

8
0.

32
0.

32
0.

55
10

0.
55

2.
09

8
6.

40
9.

10
56

74
.2

4
27

8.
94

8
(8

)
D

1
/
(1
3
,
1
0
,
5
,
5
)

—
0

1.
65

72
0.

72
0.

83
1.

62
10

1.
65

1.
61

8
5.

20
12

.1
6

10
0

12
.1

7
16

2.
78

52
(7

6)
D

2
/
(1
3
,
1
0
,
5
,
5
)

—
0

2.
44

8
0.

79
0.

76
1.

16
6

3.
58

1.
17

6
3.

60
34

.4
5

28
39

3.
00

—
0

(0
)

D

3
/
(1
3
,
1
0
,
5
,
5
)

—
0

4.
04

6
0.

75
0.

71
1.

21
6

2.
57

4.
96

6
21

.8
9

19
.0

9
60

11
7.

02
—

0
(0

)
D

4
/
(1
3
,
1
0
,
5
,
5
)

—
0

4.
38

24
0.

83
0.

80
1.

81
10

1.
80

1.
82

10
1.

81
16

.1
6

52
11

7.
91

—
0

(0
)

D

5
/
(1
3
,
1
0
,
5
,
5
)

—
0

9.
03

64
0.

76
0.

72
1.

27
10

1.
17

1.
19

10
1.

16
12

.5
1

10
0

12
.5

3
—

0
(0

)
D

1
/
(2
5
,
1
0
,
5
,
5
)

—
0

37
.5

0
9

13
.8

1
13

.7
4

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

D

2
/
(2
5
,
1
0
,
5
,
5
)

—
0

78
.6

8
16

8
13

.6
6

13
.4

6
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
D

3
/
(2
5
,
1
0
,
5
,
5
)

—
0

96
.3

7
16

13
.7

0
13

.6
7

31
.6

6
10

30
.9

7
36

1.
19

10
36

1.
28

49
9.

09
10

0
50

1.
42

—
0

(0
)

D

4
/
(2
5
,
1
0
,
5
,
5
)

—
0

11
3.

33
12

13
.9

0
13

.9
4

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

D

5
/
(2
5
,
1
0
,
5
,
5
)

—
0

12
4.

88
19

13
.8

6
14

.0
7

12
3.

47
10

12
2.

82
21

1.
46

10
21

1.
30

—
0

(0
)

—
0

(0
)

D

1
/
(3
1
,
1
0
,
5
,
5
)

—
0

14
2.

19
6

55
.2

2
55

.4
6

17
7.

68
10

17
6.

17
—

0
(0

)
—

0
(0

)
—

0
(0

)
D

2
/
(3
1
,
1
0
,
5
,
5
)

—
0

18
5.

71
11

2
55

.4
3

55
.3

7
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
D

3
/
(3
1
,
1
0
,
5
,
5
)

—
0

31
2.

69
56

56
.3

9
56

.0
4

21
1.

35
10

21
1.

47
—

0
(0

)
—

0
(0

)
—

0
(0

)
D

4
/
(3
1
,
1
0
,
5
,
5
)

—
0

—
0

55
.7

8
55

.1
2

87
.4

2
10

88
.4

7
20

9.
15

10
20

9.
50

—
0

(0
)

—
0

(0
)

D

5
/
(3
1
,
1
0
,
5
,
5
)

—
0

—
0

56
.9

7
56

.1
5

23
7.

93
10

23
9.

03
—

0
(0

)
—

0
(0

)
—

0
(0

)

Ta
bl

e
8.

3:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

117

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

D

1
/
(4
,
2
0
,
1
0
,
1
0
)

0.
92

12
80

0.
72

10
24

0.
01

0.
01

0.
03

10
0.

03
0.

02
10

0.
02

0.
18

10
0

0.
18

0.
16

10
0

0.
16

D

2
/
(4
,
2
0
,
1
0
,
1
0
)

1.
74

96
0

0.
34

28
8

0.
01

0.
01

0.
02

10
0.

02
0.

02
10

0.
02

0.
19

60
1.

39
0.

14
10

0
0.

14
D

3
/
(4
,
2
0
,
1
0
,
1
0
)

6.
96

17
76

0.
65

19
2

0.
01

0.
01

0.
02

10
0.

02
0.

02
10

0.
02

0.
38

10
0

0.
43

0.
26

36
3.

31
D

4
/
(4
,
2
0
,
1
0
,
1
0
)

7.
96

89
6

0.
47

22
4

0.
01

0.
01

0.
04

10
0.

04
0.

04
10

0.
04

0.
89

10
0

0.
88

0.
25

10
0

0.
25

D

5
/
(4
,
2
0
,
1
0
,
1
0
)

—
0

5.
00

20
16

0.
01

0.
01

0.
03

10
0.

03
0.

02
10

0.
03

0.
40

10
0

0.
41

0.
16

10
0

0.
17

D

1
/
(7
,
2
0
,
1
0
,
1
0
)

16
5.

29
40

96
0.

84
36

0.
14

0.
14

0.
19

10
0.

19
0.

18
10

0.
19

1.
18

10
0

1.
19

3.
98

36
74

.0
3

D

2
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

1.
92

25
6

0.
14

0.
14

0.
21

10
0.

21
0.

21
10

0.
21

1.
69

10
0

1.
66

4.
53

10
0

4.
47

D

3
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

7.
19

33
6

0.
14

0.
14

0.
19

10
0.

19
0.

19
10

0.
19

1.
31

10
0

1.
29

3.
16

10
0

3.
11

D

4
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

45
.3

2
12

48
0.

14
0.

14
0.

17
10

0.
17

0.
17

10
0.

17
0.

50
10

0
0.

50
0.

32
10

0
0.

33
D

5
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

48
5.

04
16

00
0.

14
0.

14
0.

19
10

0.
19

0.
19

10
0.

19
1.

70
10

0
1.

69
1.

28
10

0
1.

27
D

1
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

7.
90

12
8

0.
32

0.
32

0.
41

10
0.

41
0.

41
10

0.
41

—
0

(0
)

8.
16

10
0

8.
18

D

2
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

41
.3

7
11

4
0.

32
0.

32
0.

45
10

0.
45

0.
56

10
0.

56
14

.8
2

10
0

14
.8

2
34

.9
3

10
0

34
.9

4
D

3
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

85
.4

5
12

6
0.

32
0.

32
0.

45
10

0.
46

0.
46

10
0.

53
16

.9
7

10
0

16
.9

9
65

.4
3

10
0

65
.4

4
D

4
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

25
6.

82
13

60
0

0.
32

0.
32

0.
57

10
0.

57
0.

56
10

0.
56

5.
75

10
0

5.
75

8.
94

10
0

8.
94

D

5
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

0.
32

0.
32

0.
39

10
0.

39
0.

40
10

0.
39

2.
21

10
0

2.
22

2.
11

10
0

2.
11

D

1
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

38
.9

7
57

6
0.

76
0.

80
0.

99
10

0.
99

0.
99

10
0.

99
5.

44
10

0
5.

45
5.

11
10

0
5.

12
D

2
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

46
.2

7
48

0
0.

72
0.

72
1.

14
10

1.
11

1.
05

10
1.

06
9.

00
10

0
9.

07
23

.6
1

10
0

23
.6

4
D

3
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

28
8.

35
90

0.
76

0.
72

1.
54

10
1.

47
1.

32
8

4.
82

9.
28

94
18

.5
2

5.
28

90
15

.8
1

D

4
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

29
5.

47
24

0
0.

83
0.

76
1.

20
10

1.
05

1.
12

10
1.

19
6.

80
10

0
6.

84
22

.2
4

10
0

22
.2

4
D

5
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

—
0

0.
72

0.
76

1.
19

10
1.

17
1.

15
10

1.
16

11
.7

7
10

0
11

.6
5

12
.2

0
10

0
12

.1
6

D

1
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

58
6.

73
91

2
14

.0
8

13
.9

4
19

.0
9

10
19

.3
0

19
.0

9
10

19
.1

5
54

.9
5

10
0

55
.1

2
53

.2
3

10
0

53
.2

2
D

2
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

—
0

13
.7

6
13

.8
3

28
.2

9
10

28
.4

0
28

.4
7

10
28

.6
7

—
0

(0
)

—
0

(0
)

D

3
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

—
0

13
.8

3
13

.8
7

20
.6

2
10

20
.6

6
21

.1
4

10
21

.0
2

—
0

(0
)

—
0

(0
)

D

4
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

—
0

13
.9

0
13

.5
3

19
.1

3
10

18
.9

9
19

.2
4

10
19

.2
0

—
0

(0
)

—
0

(0
)

D

5
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

—
0

14
.0

1
13

.9
9

—
0

(0
)

73
.0

7
10

73
.5

1
—

0
(0

)
—

0
(0

)
D

1
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

56
.5

1
56

.0
5

23
4.

31
10

23
6.

10
18

3.
22

10
18

2.
01

—
0

(0
)

—
0

(0
)

D

2
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

55
.8

4
55

.7
6

77
.4

1
10

76
.8

5
77

.2
9

10
77

.5
3

—
0

(0
)

—
0

(0
)

D

3
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

55
.9

5
56

.0
5

71
.4

8
10

72
.8

4
11

2.
35

10
11

2.
14

—
0

(0
)

—
0

(0
)

D

4
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

55
.9

9
56

.3
1

76
.2

8
10

76
.2

3
76

.0
7

10
76

.2
8

—
0

(0
)

—
0

(0
)

D

5
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

56
.3

6
54

.9
1

70
.6

5
10

69
.5

0
68

.7
5

10
69

.2
3

—
0

(0
)

—
0

(0
)

Ta
bl

e
8.

4:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

118

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

Z

1
/
(4
,
1
0
,
5
,
5
)

0.
17

40
0.

04
16

0.
09

0.
01

0.
34

10
0.

34
0.

23
8

0.
88

0.
99

40
3.

20
0.

69
16

2.
27

Z

2
/
(4
,
1
0
,
5
,
5
)

0.
20

36
0.

05
12

0.
09

0.
01

0.
65

8
2.

84
0.

19
4

0.
51

1.
13

36
3.

56
0.

69
12

2.
26

Z

3
/
(4
,
1
0
,
5
,
5
)

0.
43

16
0

0.
11

48
0.

09
0.

01
0.

52
10

0.
52

0.
19

6
0.

57
0.

72
10

0
0.

72
0.

38
36

4.
00

Z

4
/
(4
,
1
0
,
5
,
5
)

0.
63

22
4

0.
12

32
0.

09
0.

01
0.

24
10

0.
24

0.
04

8
0.

37
0.

86
10

0
0.

86
0.

37
16

5.
03

Z

5
/
(4
,
1
0
,
5
,
5
)

1.
09

88
0.

15
16

0.
09

0.
01

0.
19

10
0.

19
0.

03
8

0.
26

1.
97

88
5.

95
0.

66
16

2.
33

Z

1
/
(7
,
1
0
,
5
,
5
)

1.
97

19
2

0.
06

8
0.

51
0.

02
1.

74
10

1.
74

5.
20

6
15

.8
3

10
.3

1
10

0
10

.3
0

6.
25

8
19

.0
5

Z

2
/
(7
,
1
0
,
5
,
5
)

4.
50

22
0

0.
11

14
0.

51
0.

02
2.

17
10

2.
16

0.
21

10
0.

21
8.

56
10

0
8.

56
6.

45
14

19
.6

6
Z

3
/
(7
,
1
0
,
5
,
5
)

17
.8

0
28

6
0.

12
8

0.
51

0.
02

0.
65

10
0.

65
0.

05
8

1.
88

6.
62

10
0

6.
62

6.
51

8
19

.7
8

Z

4
/
(7
,
1
0
,
5
,
5
)

14
3.

21
33

28
0.

23
24

0.
51

0.
02

0.
63

10
0.

62
0.

05
8

0.
52

13
.0

9
10

0
13

.1
1

7.
60

24
70

.3
9

Z

5
/
(7
,
1
0
,
5
,
5
)

—
0

0.
42

48
0.

51
0.

02
0.

63
10

0.
63

0.
35

6
1.

02
6.

69
10

0
6.

63
4.

31
24

14
7.

65
Z

1
/
(1
0
,
1
0
,
5
,
5
)

43
7.

45
13

44
0.

10
4

1.
83

0.
02

6.
32

8
12

.7
3

1.
72

4
37

.2
0

47
.1

5
96

94
.7

6
49

.7
3

4
15

2.
54

Z

2
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
15

16
1.

83
0.

02
2.

18
10

2.
23

1.
07

8
3.

45
26

.1
0

10
0

26
.2

2
26

.4
1

16
25

4.
15

Z

3
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
19

36
1.

83
0.

02
5.

94
10

5.
93

0.
47

10
0.

47
28

.4
7

10
0

28
.5

3
89

.4
1

36
33

8.
14

Z

4
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
21

8
1.

84
0.

02
2.

26
10

2.
20

1.
61

4
19

.4
5

30
.1

9
70

(7
0)

55
.9

5
8

27
9.

51
Z

5
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
29

16
1.

83
0.

02
14

4.
31

10
14

4.
17

18
.8

0
4

32
4.

72
26

9.
74

10
0

27
0.

24
10

3.
39

16
(1

6)
Z

1
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
36

40
5.

81
0.

03
8.

62
10

8.
66

1.
51

6
8.

39
12

5.
21

10
0

12
5.

77
46

7.
77

22
(2

2)
Z

2
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
42

48
5.

82
0.

03
11

.4
6

10
11

.6
6

0.
75

10
0.

75
—

0
(0

)
—

0
(0

)
Z

3
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
58

12
5.

80
0.

03
28

.8
2

6
93

.6
1

0.
93

6
1.

90
—

0
(0

)
—

0
(0

)
Z

4
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
88

4
5.

80
0.

03
37

.8
1

6
19

7.
21

10
.5

4
4

12
1.

94
—

0
(0

)
—

0
(0

)
Z

5
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
88

60
5.

82
0.

03
11

.5
0

10
11

.4
7

0.
48

10
0.

48
13

6.
36

52
(1

00
)

24
8.

20
24

(2
4)

Z

1
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
57

16
51

6.
79

0.
06

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

2
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
66

8
52

0.
64

0.
06

—
0

(0
)

32
.8

4
6

10
3.

05
—

0
(0

)
—

0
(0

)
Z

3
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
77

12
52

1.
11

0.
06

—
0

(0
)

47
6.

09
8

(8
)

—
0

(0
)

—
0

(0
)

Z

4
/
(2
5
,
1
0
,
5
,
5
)

—
0

0.
96

24
51

0.
86

0.
06

—
0

(0
)

19
.6

2
10

19
.5

0
—

0
(0

)
—

0
(0

)
Z

5
/
(2
5
,
1
0
,
5
,
5
)

—
0

1.
99

32
51

8.
69

0.
06

—
0

(0
)

4.
63

8
18

.8
4

—
0

(0
)

—
0

(0
)

Z

1
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
60

8
—

0.
07

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

2
/
(3
1
,
1
0
,
5
,
5
)

—
0

0.
90

20
—

0.
07

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

3
/
(3
1
,
1
0
,
5
,
5
)

—
0

1.
54

36
—

0.
07

—
0

(0
)

28
.7

5
8

57
.6

7
—

0
(0

)
—

0
(0

)
Z

4
/
(3
1
,
1
0
,
5
,
5
)

—
0

1.
73

16
—

0.
07

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

5
/
(3
1
,
1
0
,
5
,
5
)

—
0

2.
05

14
—

0.
07

—
0

(0
)

23
.3

4
10

20
.0

5
—

0
(0

)
—

0
(0

)
Z

1
/
(7
0
,
1
0
,
5
,
5
)

—
0

1.
51

6
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

2
/
(7
0
,
1
0
,
5
,
5
)

—
0

2.
31

21
—

0.
17

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

3
/
(7
0
,
1
0
,
5
,
5
)

—
0

2.
31

40
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

4
/
(7
0
,
1
0
,
5
,
5
)

—
0

3.
37

33
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Z

5
/
(7
0
,
1
0
,
5
,
5
)

—
0

3.
57

72
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Ta
bl

e
8.

5:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

119

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

Z

1
/
(4
,
2
0
,
1
0
,
1
0
)

6.
90

42
88

2.
37

21
76

0.
09

0.
01

0.
18

10
0.

17
0.

03
10

0.
03

1.
17

10
0

1.
17

0.
18

48
0.

90
Z

2
/
(4
,
2
0
,
1
0
,
1
0
)

23
.2

4
71

68
4.

33
10

24
0.

09
0.

01
0.

12
10

0.
12

0.
02

10
0.

02
0.

39
10

0
0.

39
0.

10
68

0.
34

Z

3
/
(4
,
2
0
,
1
0
,
1
0
)

25
.9

7
46

08
2.

66
64

0
0.

09
0.

01
0.

12
10

0.
12

0.
02

10
0.

02
0.

59
10

0
0.

58
0.

11
84

0.
45

Z

4
/
(4
,
2
0
,
1
0
,
1
0
)

46
.8

9
17

92
0

14
.5

7
15

36
0.

09
0.

01
0.

13
10

0.
13

0.
02

10
0.

02
0.

74
10

0
0.

75
0.

10
64

0.
49

Z

5
/
(4
,
2
0
,
1
0
,
1
0
)

—
0

—
0

0.
09

0.
01

0.
18

10
0.

17
0.

02
10

0.
02

4.
44

64
13

.4
5

0.
16

64
0.

59
Z

1
/
(7
,
2
0
,
1
0
,
1
0
)

6.
22

10
60

0.
19

84
0.

51
0.

02
1.

03
10

1.
02

0.
17

10
0.

17
4.

41
10

0
4.

39
3.

28
44

23
.7

0
Z

2
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

3.
66

64
0.

51
0.

02
0.

80
6

3.
29

0.
34

6
1.

22
—

0
(0

)
1.

95
52

14
.8

6
Z

3
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

4.
73

44
8

0.
51

0.
02

0.
64

10
0.

62
0.

04
10

0.
04

9.
30

10
0

9.
34

0.
46

32
2.

53
Z

4
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

32
.6

4
76

8
0.

51
0.

02
0.

66
10

0.
66

0.
04

10
0.

04
8.

69
10

0
8.

72
0.

26
80

1.
42

Z

5
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

40
3.

90
39

84
0.

51
0.

02
0.

60
10

0.
60

0.
04

10
0.

04
5.

12
10

0
5.

05
0.

22
40

2.
19

Z

1
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

11
.6

1
48

1.
85

0.
02

32
.7

1
4

24
4.

10
0.

72
6

6.
18

—
0

(0
)

3.
97

12
(8

8)
Z

2
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

16
.8

4
72

0
1.

84
0.

02
2.

24
10

2.
26

0.
05

10
0.

05
—

0
(0

)
0.

85
48

4.
60

Z

3
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

37
.4

0
19

2
1.

85
0.

02
2.

30
10

2.
28

0.
06

10
0.

06
18

.7
5

10
0

18
.8

4
0.

36
24

3.
55

Z

4
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

12
3.

55
25

6
1.

84
0.

02
2.

20
10

2.
28

0.
06

10
0.

06
10

.9
9

84
22

.0
2

1.
14

16
26

.3
5

Z

5
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

26
9.

31
16

8
1.

81
0.

02
2.

27
10

2.
28

0.
06

10
0.

06
43

.2
0

10
0

43
.2

3
2.

85
20

24
.2

2
Z

1
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

46
.7

4
16

8
6.

02
0.

04
12

.0
4

10
11

.7
6

0.
42

10
0.

41
—

0
(0

)
0.

65
68

2.
62

Z

2
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

63
.6

9
53

6
5.

80
0.

03
7.

80
10

7.
83

0.
07

10
0.

07
11

9.
56

10
0

12
1.

83
0.

49
64

1.
55

Z

3
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

86
.6

8
28

8
8.

47
0.

36
11

.7
0

10
11

.2
5

0.
58

10
0.

62
95

.3
3

10
0

17
3.

33
1.

59
36

7.
24

Z

4
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

11
4.

47
48

5.
84

0.
03

7.
05

10
7.

08
0.

07
10

0.
07

65
.4

4
10

0
65

.3
8

1.
35

32
10

.3
2

Z

5
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

—
0

5.
85

0.
03

11
.7

7
10

11
.7

9
0.

16
10

0.
16

97
.4

7
52

40
4.

02
1.

08
10

0
1.

08
Z

1
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

88
.2

9
12

80
52

7.
30

0.
06

—
0

(0
)

0.
14

10
0.

14
—

0
(0

)
7.

81
32

32
.9

7
Z

2
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

10
9.

93
22

4
52

5.
83

0.
06

—
0

(0
)

0.
14

10
0.

14
—

0
(0

)
2.

78
16

23
.3

5
Z

3
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

20
0.

73
30

0
52

6.
13

0.
06

—
0

(0
)

0.
13

10
0.

13
—

0
(0

)
0.

86
36

8.
17

Z

4
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

26
7.

01
57

6
51

3.
87

0.
06

—
0

(0
)

0.
82

10
0.

78
—

0
(0

)
—

0
(0

)
Z

5
/
(2
5
,
2
0
,
1
0
,
1
0
)

—
0

—
0

52
6.

88
0.

06
59

8.
36

10
59

9.
26

0.
13

10
0.

13
—

0
(0

)
5.

28
40

54
.8

1
Z

1
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

50
.2

9
76

8
—

0.
08

—
0

(0
)

27
.5

5
10

27
.5

3
—

0
(0

)
—

0
(0

)
Z

2
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

13
4.

79
10

24
—

0.
08

—
0

(0
)

0.
18

10
0.

18
—

0
(0

)
41

.9
1

64
18

8.
89

Z

3
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

14
2.

42
96

—
0.

08
—

0
(0

)
0.

60
10

0.
60

—
0

(0
)

29
.8

1
16

41
2.

42
Z

4
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

32
6.

03
44

—
0.

08
—

0
(0

)
1.

76
10

1.
77

—
0

(0
)

—
0

(0
)

Z

5
/
(3
1
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
0.

08
—

0
(0

)
1.

57
10

1.
60

—
0

(0
)

22
.9

0
10

0
22

.8
7

Z

1
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

37
1.

55
11

20
—

0.
18

—
0

(0
)

3.
83

10
3.

83
—

0
(0

)
—

0
(0

)
Z

2
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

37
3.

68
14

4
—

0.
18

—
0

(0
)

6.
74

10
6.

78
—

0
(0

)
—

0
(0

)
Z

3
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

47
7.

78
51

2
—

0.
18

—
0

(0
)

0.
99

10
0.

99
—

0
(0

)
—

0
(0

)
Z

4
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
0.

18
—

0
(0

)
9.

85
10

9.
82

—
0

(0
)

—
0

(0
)

Z

5
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
0.

18
—

0
(0

)
1.

04
10

1.
08

—
0

(0
)

—
0

(0
)

Ta
bl

e
8.

6:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

120

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

R

1
/
(4
,
1
0
,
5
,
5
)

0.
38

40
0.

33
12

0.
17

0.
01

1.
84

10
1.

84
1.

54
6

59
.9

9
1.

93
40

6.
40

1.
63

12
5.

67
R

2
/
(4
,
1
0
,
5
,
5
)

0.
71

60
0.

24
18

—
29

9.
68

7.
92

10
7.

92
0.

47
10

0.
47

4.
35

60
16

.5
5

1.
07

18
3.

65
R

3
/
(4
,
1
0
,
5
,
5
)

0.
79

96
0.

10
8

0.
01

—
0.

24
10

0.
24

3.
51

4
24

.4
9

4.
08

96
13

.3
1

0.
86

8
2.

78
R

4
/
(4
,
1
0
,
5
,
5
)

1.
57

28
0.

14
4

—
15

4.
89

11
.3

5
10

11
.3

2
2.

82
4

31
.2

4
9.

77
28

55
.6

5
1.

19
4

4.
01

R

5
/
(4
,
1
0
,
5
,
5
)

1.
85

14
4

0.
16

24
—

—
14

.8
5

10
14

.8
4

2.
18

6
9.

07
2.

65
10

0
2.

67
0.

92
24

3.
18

R

1
/
(7
,
1
0
,
5
,
5
)

8.
44

62
4

0.
27

14
0.

64
—

2.
11

9
4.

27
16

.6
4

7
52

.5
5

4.
91

99
10

.3
8

11
.3

8
14

37
.3

5
R

2
/
(7
,
1
0
,
5
,
5
)

13
.4

7
12

0
0.

18
24

—
0.

02
—

0
(0

)
4.

50
6

16
.3

8
—

0
(0

)
10

.0
1

24
32

.2
3

R

3
/
(7
,
1
0
,
5
,
5
)

62
.0

9
11

04
0.

14
4

0.
31

0.
02

6.
66

9
20

.2
9

10
6.

75
2

(2
)

9.
63

10
0

9.
58

8.
99

4
28

.9
6

R

4
/
(7
,
1
0
,
5
,
5
)

13
0.

29
22

68
0.

37
28

0.
02

—
1.

82
10

1.
83

62
.2

9
4

25
8.

51
5.

18
10

0
5.

23
18

.5
4

28
60

.0
3

R

5
/
(7
,
1
0
,
5
,
5
)

—
0

1.
14

80
—

—
—

0
(0

)
—

0
(0

)
19

.5
7

10
0

19
.5

8
—

0
(0

)
R

1
/
(1
0
,
1
0
,
5
,
5
)

19
9.

38
19

94
0.

59
14

0.
03

—
2.

41
10

0.
66

—
0

(0
)

7.
45

10
0

42
.7

4
51

9.
89

14
(0

)
R

2
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
59

24
—

0.
02

5.
24

10
5.

25
14

8.
61

4
(1

0)
6.

38
10

0
6.

35
—

0
(0

)
R

3
/
(1
0
,
1
0
,
5
,
5
)

—
0

0.
69

16
0.

44
—

2.
33

10
2.

32
—

0
(0

)
9.

77
10

0
10

.5
2

—
0

(0
)

R

4
/
(1
0
,
1
0
,
5
,
5
)

—
0

1.
48

3
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

5
/
(1
0
,
1
0
,
5
,
5
)

—
0

1.
81

32
0.

63
—

20
.2

5
8

41
.4

5
—

0
(0

)
19

.6
9

10
0

19
.6

7
—

0
(0

)
R

1
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
26

24
0.

03
0.

03
0.

59
10

0.
59

33
9.

92
10

33
9.

65
2.

35
10

0
2.

33
—

0
(0

)
R

2
/
(1
3
,
1
0
,
5
,
5
)

—
0

0.
88

12
—

0.
87

—
0

(0
)

7.
60

1
(4

)
—

0
(0

)
—

0
(0

)
R

3
/
(1
3
,
1
0
,
5
,
5
)

—
0

1.
12

32
1.

77
—

1.
32

10
1.

32
—

0
(0

)
2.

17
10

0
2.

16
—

0
(0

)
R

4
/
(1
3
,
1
0
,
5
,
5
)

—
0

1.
37

10
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

5
/
(1
3
,
1
0
,
5
,
5
)

—
0

1.
91

28
0.

67
—

6.
61

9
23

.8
2

—
0

(0
)

21
1.

88
98

(9
8)

—
0

(0
)

R

1
/
(7
0
,
1
0
,
5
,
5
)

—
0

2.
16

4
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

2
/
(7
0
,
1
0
,
5
,
5
)

—
0

4.
48

16
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

3
/
(7
0
,
1
0
,
5
,
5
)

—
0

4.
76

12
—

0.
16

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

4
/
(7
0
,
1
0
,
5
,
5
)

—
0

5.
20

24
0.

17
0.

16
10

1.
42

9
23

1.
02

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

5
/
(7
0
,
1
0
,
5
,
5
)

—
0

9.
35

6
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)

Ta
bl

e
8.

7:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

121

To
po

/P
ar

am
et

er
D

M
C

S
D

M
C

S
O

P
T

D
M

C
S

-S
TR

E
A

M
IN

G

tim
e

#
tim

e
#

k
=

1
k
=

1
0

k
=

1
0
0

O
R

IG
O

PT
O

R
IG

O
PT

O
R

IG
O

PT
1s

t
#

A
ll

1s
t

#
A

ll
1s

t
#

A
ll

1s
t

#
A

ll

R

1
/
(4
,
2
0
,
1
0
,
1
0
)

24
4.

44
19

20
0.

62
12

8
—

0.
01

—
0

(0
)

0.
20

10
0.

21
—

0
(0

)
1.

13
32

12
.2

3
R

2
/
(4
,
2
0
,
1
0
,
1
0
)

40
1.

64
40

96
1.

38
11

2
0.

01
0.

01
0.

60
7

3.
17

0.
20

7
0.

94
3.

91
96

8.
16

3.
73

28
53

2.
66

R

3
/
(4
,
2
0
,
1
0
,
1
0
)

—
0

22
.8

5
15

36
0.

77
—

2.
44

7
7.

80
—

0
(0

)
18

.9
6

10
0

19
.0

0
6.

79
48

40
.1

0
R

4
/
(4
,
2
0
,
1
0
,
1
0
)

—
0

20
2.

16
38

4
—

—
—

0
(0

)
—

0
(0

)
31

2.
33

98
(9

8)
—

0
(0

)
R

5
/
(4
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

12
.4

9
94

49
.0

8
11

0.
06

4
(4

)
R

1
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

7.
44

80
0

—
0.

02
—

0
(0

)
0.

06
10

0.
06

1.
74

10
0

1.
75

0.
79

36
4.

24
R

2
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

23
.0

9
14

59
2

0.
02

—
4.

48
6

21
.2

5
—

0
(0

)
17

.1
9

99
59

.7
1

—
0

(0
)

R

3
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

66
.3

6
25

6
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

4
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

21
3.

82
14

4
0.

02
—

1.
55

9
5.

03
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

5
/
(7
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

1
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

4.
95

25
6

—
30

5.
31

—
0

(0
)

0.
06

10
0.

06
—

0
(0

)
24

.1
8

32
(9

6)
R

2
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

5.
40

48
—

0.
02

—
0

(0
)

1.
34

4
18

.3
6

—
0

(0
)

91
.0

1
8

(8
)

R

3
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

48
.5

1
14

40
—

0.
02

—
0

(0
)

0.
06

10
0.

06
—

0
(0

)
0.

79
10

0
0.

79
R

4
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

5
/
(1
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

1
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

47
.1

7
38

4
0.

03
0.

03
54

.3
0

3
(8

)
0.

48
10

0.
47

—
0

(0
)

—
0

(0
)

R

2
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

76
.2

1
64

0.
03

—
2.

24
4

19
.3

5
—

0
(0

)
65

.9
6

57
(8

4)
—

0
(0

)
R

3
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

84
.1

5
24

0.
69

19
.4

7
1.

98
7

11
.0

1
1.

74
4

24
.9

7
14

.4
9

96
36

.9
5

—
0

(0
)

R

4
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

18
7.

01
25

44
—

0.
03

—
0

(0
)

0.
33

10
0.

33
—

0
(0

)
20

.8
8

10
0

20
.7

5
R

5
/
(1
3
,
2
0
,
1
0
,
1
0
)

—
0

21
2.

75
72

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

1
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

41
7.

71
11

2
—

—
—

0
(0

)
—

0
(0

)
—

0
(0

)
—

0
(0

)
R

2
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

3
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

4
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

R

5
/
(7
0
,
2
0
,
1
0
,
1
0
)

—
0

—
0

—
—

—
0

(0
)

—
0

(0
)

—
0

(0
)

—
0

(0
)

Ta
bl

e
8.

8:
R

un
tim

e
in

se
cs

,t
im

eo
ut

60
0

se
cs

(—
)

122

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30 35 40 45 50

DMCS
DMCSOPT

R
10,10,5,5

Z
10,10,5,5

D
10,10,5,5

T
10,10,5,5

R
7,10,5,5

Z
7,10,5,5

D
7,10,5,5

T
7,10,5,5

Figure 8.3: DMCS v.s. DMCSOPT in non-streaming mode

DMCS v.s. DMCSOPT

We first compare DMCS and DMCSOPT. Figure 8.3 shows the running time of these two
algorithms in computing all partial equilibria, i.e., non-streaming mode, of 5 instances of the
respective parameter settings (here denoted as Xn,s,b,r due to space reason). In this mode, it is
clearly the case that DMCSOPT outperforms DMCS. This can be explained by the fact that when
one aims at computing all answers, DMCS always produces many more PEs than DMCSOPT,
since one PE returned by DMCSOPT can be obtained from projecting many PEs returned by
DMCS on the imported interface. Furthermore, all intermediate results are transferred in one
message, which makes no difference in terms of the number of communications between two
algorithms. As such, DMCS must spend more time on processing possibly exponentially many
more input and it is no surprise that it is consistently slower than DMCSOPT.

However, the observation is not the same in streaming mode. Figure 8.4 shows the running
time of DMCS and DMCSOPT in streaming mode to compute the first 100 unique PEs for
T (25, 10, 5, 5) and first 10 of those for D/Z(10, 10, 5, 5) and R(4, 10, 5, 5), on 5 instances of
each setting. On a first view, we noticed that DMCSOPT is consistently slower than DMCS.
This might raise questions for the correctness of the result; however, it is not a surprise. Note
again that one PE returned by DMCSOPT should be corresponding to several PEs returned by
DMCS. Hence, to complete the first k unique answers in DMCS corresponds to only a few
number of unique answers in DMCSOPT.

Therefore, comparing the performance of DMCS and DMCSOPT by measuring the time
they need to compute the first k answers in streaming mode seems not fair. For a proper com-
parison, we took the time when both algorithms finishing the first round of answers into account
(denoted by DMCS-1st and DMCSOPT-1st in Figure 8.4). With this setting, we observed that:

• There are many instances that DMCSOPT finishes the first round faster than DMCS. This

123

 1

 10

 100

T1 T2 T3 T4 T5

DMCS-1st
DMCSOPT-1st

DMCS-100
DMCSOPT-100

(a) T (25, 10, 5, 5)

 0.1

 1

 10

 100

D1 D2 D3 D4 D5

DMCS-1st
DMCSOPT-1st

DMCS-10
DMCSOPT-10

(b) D(10, 10, 5, 5)

 0.1

 1

 10

 100

 1000

Z1 Z2 Z3 Z4 Z5

DMCS-1st
DMCSOPT-1st

DMCS-10
DMCSOPT-10

(c) Z(10, 10, 5, 5)

 0.1

 1

 10

 100

R1 R2 R3 R4 R5

DMCS-1st
DMCSOPT-1st

DMCS-10
DMCSOPT-10

(d) R(4, 10, 5, 5)

Figure 8.4: DMCS v.s. DMCSOPT in streaming mode

confirms the effect of using the query plan.

• However, there are cases that DMCS wins. This can be explained as follows. First of all,
in streaming mode, we transfer only a package of k PEs at a time; therefore, the effect
of reducing the amount of total work to be done between DMCS and DMCSOPT does
not always apply as in the non-streaming mode. Furthermore, at every local context, we
compute k PEs, and then project them to the output interface before returning the results
to the invoker. According to this strategy, when a context C

i

returns k1 PEs in non-
streaming mode and k2 PEs in streaming to another context C

j

, it might happen that k2
is much smaller than k1, hence does not provide enough input for C

j

to compute k PEs
to return to its parent. Therefore, C

j

will need to issue more requests to C
i

asking for
further packages of k PEs, e.g., [k + 1, 2k], [2k + 1, 3k], etc, and this costs more time
for DMCSOPT to even compute the first set of PEs at the root context to the end user.
Another approach is to always compute k unique PEs before returning to a parent context.

124

But this strategy risks to compute even all local models before k unique PEs can be found.

Overall, there is not much difference in running time when DMCSOPT is slower than
DMCS, except for instance R3 (Figure 8.4d). This however comes from a different rea-
son: the cyclic topology with guess-and-check’s effects, which play a much more impor-
tant role than choosing between DMCS and DMCSOPT. We will analyze this case in
Section 8.3.

Streaming v.s. non-streaming DMCS

In the previous section, we compared DMCS and DMCSOPT in both streaming and non-streaming
mode. We now look into another orthogonal aspect: comparing these two modes when running
the same algorithm.

Figure 8.5 compares the running time in non-streaming with streaming mode of DMCS (8.5a),
DMCSOPT to compute the first 10, 100 PEs with small systems/local theories (8.5b), and with
large systems/local theories (8.5c). For each parameter setting, we show the running time of five
instances, each with three above runnning modes. Except for Ring that behaves abnormally due
to the involvement of guess-and-check, one can see that:

• For DMCS, the streaming mode is definitely worth pursuing since DMCS in non-streaming
mode times out in many cases (see also Figure 8.3), while in streaming mode we still could
find some answers after a reasonable time.

• For DMCSOPT, the situation is a bit different as the streaming mode loses against the
non-streaming one on small instances. This is due to the recomputation that the streaming
mode pays for transferring just a portion of PEs between contexts; furthermore, there
are duplications between answers which wastes even more recomputation. But when one
moves to larger systems and local theories, the streaming mode starts gaining back. But it
does not always win, since recomputation still significantly takes time in some cases.

To sum up, when the system is small enough, one should try the non-streaming mode as it
does not suffer the problem of recomputation and duplication of PEs between different rounds
of computation. But for large systems, the streaming mode can rescue us from timing out. Even
though we have to pay for recomputation, it still helps in cases when one only needs some but
not all answers, for example, in answering queries bravely.

Effects of the package size in streaming mode

We have just concluded that the streaming mode helps with large systems/local theories in (many
practical) cases, when only a portion of the results is needed, e.g., in brave query answering.
The open question is: “What is the optimal number of PEs should be transferred in each return
message between pairs of contexts?” We will analyze the experimental results on the streaming
mode with package sizes 1, 10, and 100 to give some hints for this question.

Figure 8.6 shows the average time to compute 1 PE of DMCSOPT in streaming mode with
respect to three package sizes. One can see that transferring just a single PE with the purpose
of getting the first answer is acceptable in most of the case, in particular the situation where

125

no guessing is needed. However, a small package size is sometime better, as one can save
communication time (sending once with a package of, for example, 10 PEs instead of sending
ten times, each time a package with a single PE). This setting (small package sizes like 10) will
be more effective when communication plays a big factor in the total running time of the system,
which happens in real application where contexts are located at physically distributed nodes. In
such cases, computing 10 PEs should be faster than computing 1 PE in 10 consecutive times.

Furthermore, having package of size 1 is not safe in cases where guessing is applied, e.g.,
instance R3(4, 20, 10, 10). For these cases, a large enough package size might help to cover the
correct guess; but in general, there is no guarantee for such a coverage. To thoroughly solve this
problem, one needs to apply conflict learning on the whole MCS evaluation.

Also, it is interesting to see that with package size 100, DMCSOPT usually ends up with
timeout. The reason is that there are many duplications and once DMCSOPT is stuck with a
local search branch that promises fewer than 100 PEs, the algorithm will lose time here without
finding new unique answers and will eventually time out.

As a suggestion to find a good package size with a specific setting (topology, system size,
local theory size) is to run the system on a set of training tests and apply binary search on the
package sizes.

Roles of topologies

Taking a quick glance through all plots from Figure 8.3 to 8.6, one can see a pattern that the
algorithms, especially the optimizations, perform better on tree than on zigzag and diamond,
depending on whether it is DMCS or DMCSOPT, and worst on ring.

System topology does play an important role here. The aspects that affect the performance
of the algorithms are (i) number of connections, (ii) the structure of block trees and cut vertices,
and (iii) acyclicity vs. cyclicity.

Regarding (i), the topology introduces the number of connections based on the system size.
As such, tree has fewer connections than diamond and zigzag, which reduces not only commu-
nication time but also local solving time as fewer requests are made; and the performance of
DMCS on these topologies proves this observation. If one follows this argument, then ring must
be the topology that offer the best performance. However, this is actually not the case due to
aspect (iii) that we will shortly analyze.

Concerning (ii), tree can be ultimately optimized as every intermediate node is a cut vertex.
Hence, when applying the query plan for DMCSOPT, we can strip off beliefs in PEs returned
from child contexts to a parent context. In other words, only local beliefs from a context C

i

are
needed for transferring back to its parents. This drastically decreases the amount of information
to be communicated, and more importantly, the number of calls to lsolve as there is no duplica-
tion with respect to the local beliefs in a result package (when beliefs from a child context C

j

are
carried along in the returning message, there can be two different PEs identical on the interpre-
tation on the beliefs of C

i

, which might cause recomputation at its parents). Due to this special
property, DMCSOPT performs extremely well on the tree topology, and it can scale to hundreds
of contexts compare to smaller system sizes that can be handled on the other topologies.

Comparing diamond and zigzag, they have the same number of cut vertexes. However,
zigzag is converted to a linear topology with the optimal query plan (with 2 edges removed

126

per zigzag diamond as shown in Figure 8.1c), and therefore can be operated much faster than
diamond. In Figure 8.6, DMCSOPT scales to 70 contexts and still has a better average time to
compute one answer on zigzag than on diamond with 25 contexts.

With respect to (iii), ring is a cyclic topology while the other topologies are acyclic. The
consequence is that any algorithm evaluating this topology has to do guess-and-check at one
context in the topology, while for the other the process can be carried out in a bottom-up man-
ner. When guess-and-check is involved, making the right guess is the most important thing to
do, even more important than reducing communication and calls to local solving by other op-
timization techniques. Since our current implementation does not deploy conflict learning for
constraining the search space, guessing is done in a totally trivial way, i.e., gradually proceed
from guessing for all beliefs to be false up to all of them to be true, in an binary increasing
manner. Therefore, it is not surprising that the result of running DMCS and DMCSOPT on this
topology does not follow any pattern (Figure 8.7, Table 8.7 and 8.8). It absolutely depends on
a specific instance in which whether the above sequential guessing luckily arrives at the result.
Therefore, we frequently see that DMCS outperforms DMCSOPT in streaming mode, as in such
cases, guessing at the root context (after detecting the cycle) is more effective than guessing at
the parent of the root context according to the optimal query plan.

Based on these observations, one can come up with the best strategy to evaluate different
types of topologies; and more importantly, when dealing with MCSs having arbitrary topolo-
gies, it would be beneficial to decompose the system into parts with familiar topologies on
which efficient strategies are known, and then study how to combine these different strategies to
evaluate the whole system. This task is beyond the scope of this thesis and can be regarded as
an interesting issue for future research.

Summary

To sum up, we have analyzed the experimental results of our DMCS prototype implementation
on different aspects. The analysis shows that there is no absolute winner between different
algorithms (DMCS vs. DMCSOPT) in different running modes (streaming vs. non-streaming,
with different package size), on different topologies. What comes out from these observations is
a guideline to choose the setup that fits specific instances in practice, some issues are still open
for further investigation, which can be briefly recapitulate as follows:

• choose DMCSOPT over DMCS in non-streaming mode, except for cyclic topologies;

• in streaming mode, intelligently choose an appropriate package size, by for example, do-
ing binary search on this criteria on some training instances;

• decompose random topologies into parts whose topologies have effective strategies to
evaluate, and study how to combine the strategies for the over all system.

127

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R4,10,5,5Z10,10,5,5D10,10,5,5T10,10,5,5

(a) DMCS

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R4,10,5,5Z10,10,5,5D10,10,5,5T10,10,5,5

(b) DMCSOPT with small systems and local theories

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25 30

Non-Streaming
Streaming-10

Streaming-100

R4,20,10,10Z10,20,10,10D10,20,10,10T31,20,10,10

(c) DMCSOPT with large systems and local theories

Figure 8.5: Non-streaming v.s. streaming under DMCS and DMCSOPT

128

 0.001

 0.01

 0.1

 1

 10

 100

 1000

-5 0 5 10 15 20 25

Streaming-1
Streaming-10

Streaming-100

R4,20,10,10Z70,20,10,10D25,20,10,10T100,20,10,10

Figure 8.6: DMCSOPT’s avg. time to find 1 PE in streaming mode with different package sizes

 1

 10

 100

 1000

-2 0 2 4 6 8 10 12 14 16 18

DMCS-100
DMCSOPT-100

R
4,20,10,10

R
7,10,5,5

R
4,10,5,5

Figure 8.7: DMCS v.s. DMCSOPT in streaming with package size 100 on ring

129

CHAPTER 9
Related Work, Conclusions

and Future Work

9.1 Related Work

Distributed reasoning algorithms

In [86], the authors described evaluation of monotone MCS with classical theories using SAT
solvers for the contexts in parallel. They used a (co-inductive) fixpoint strategy to check MCS
satisfiability, where a centralized process iteratively combines results of the SAT solvers. Apart
from being not truly distributed, an extension to nonmonotonic MCS is non-obvious; also, no
caching was used.

Distributed tableaux algorithms for reasoning in distributed ontologies are defined in [88,
90]. They can be used to decide consistency of distributed description logic knowledge bases,
provided that the distributed TBox is acyclic. The DRAGO system is an implementation of this
approach.

The authors of [2] presented a framework of peer-to-peer inference systems. Local theories
of propositional clause sets share atoms, and a special algorithm can be used for consequence
finding. As we pursue the dual problem of model building, the application for our needs is
not straightforward. Similarly, [14] developed a distributed algorithm for query evaluation in
a MCS framework based on defeasible logic. Here, contexts are built using defeasible rules,
and the algorithm can determine for a given literal l three values: whether l is (not) a logical
conclusion of the MCS, or whether it cannot be proved that l is a logical conclusion. Again,
applying this approach to model building is not easy.

Our work on computing equilibria for distributed multi-context systems is clearly related to
work on solving constraint satisfaction problems (CSP) and SAT solving in a distributed setting;
Yokoo et al. [96] survey some algorithms for distributed CSP solving, which are usually devel-
oped for a setting where each node (agent) holds exactly one variable, the constraints are binary,
communication is done via messages, and every node holds constraints in which it is involved.

131

This is also adopted by later works [50] but can be generalized [96]. The predominant solution
method are backtracking algorithms. In [62], a suite of algorithms was presented for solving
distributed SAT (DisSAT), based on a random assignment and improvement flips to reduce con-
flicts. However, the algorithms are geared towards finding a single model, and an extension to
streaming multiple (or all) models is not straightforward; for other works on distributed CSP and
SAT, this is similar. A closer comparison, in which the nature of bridge rules and local solvers
as in our setting is considered, remains to be done.

In relation to the topology-based optimization techniques described in Chapter 4, bicon-
nected components are used in [6] to decompose constraint satisfaction problems. The decom-
position is used to localize the computation of a single solution in the components of undirected
constraint graphs. Like our approach, we are based on directed dependencies, which allows us
to use a query plan for MCS evaluation.

Regarding the streaming algorithm mentioned in Chapter 5, very recently, a model stream-
ing algorithm for HEX-programs (which generalize answer set programs by external information
access) has been proposed [38]. It bares some similarities to the one in this work, but is rather
different. There, monolithic programs are syntactically decomposed into modules (akin to con-
texts in MCS) and models are computed in a modular fashion. However, the algorithm is not
fully distributed and allows exponential space use in components. Furthermore, it has a straight-
forward strategy to combine partial models from lower components to produce input for the
upper component.

Distributed configuration

The problem that we considered in dynamic MCS shares some similarities with configuration
in Multi-Agent Systems using matchmaking. In this setting [91], provider agents advertise their
capabilities to middle agents; requester agents do not directly go to a provider but first ask
some middle agent whether it knows of providers with desired capabilities; the middle agent
matches the request against the stored advertisements and returns the information about appro-
priate providers to the requester. In our setting, the matchmaker plays the role of the middle
agent. A context has both roles, it is seen as a requester when being instantiated, and as a
provider when being used to instantiate s-bridge atoms from other contexts.

A configuration problem for multi-agent system that is in a sense orthogonal respectively
complementary to matchmaking is coalition formation. Here, the problem is the assembly of
a group of agents for cooperation in order to get some task down (assuming that the agents al-
ready know that cooperation is possible) [87]. However, this problem is only remotely related to
our configuration problem. Agents have goals and intentions, and decide their participation in a
coalition based on utility and reward in a rational manner. This leads in interaction with other
agents to complex behaviors, which may be studied using game-theoretic methods and tools.
Contexts instead lack such goal and reward orientation, and offer in an altruistic manner infor-
mation exchange in order to enable the assembly of an MCS. Thus, from a coalition formation
point of view, the MCS configuration problem is trivial. The problems gets more complicated
if constraints are imposed (e.g., on the solution size or quality), but there is still a difference:
at no point, some context may decide not to participate in an MCS as it concludes its payoff is
insufficient, or it is being cheated.

132

Naturally related to dynamic MCS are peer-to-peer (P2P) systems. However, in typical mod-
els such as the Peer-Grid [1], a global system semantics does not play a role: peers are strictly
localized and can join/leave the system at anytime. Our approach, on the other hand, aims at
global model building for an ordinary MCS that is dynamically constructed, where the first step
is instantiation, and then the (distributed) evaluation kicks in; this tacitly assumes that no rele-
vant contexts disappear during configuration and evaluation of the configured system. We note
that also [26] proposed a global model semantics for P2P systems, which is based on epistemic
logic, and presented a distributed algorithm for query answering. This algorithm evaluates P2P
mappings dynamically, but no system configuration like in our approach is performed. Simi-
larly, [13] considered distributed query answering in a given P2P system of contexts, but under
preferences using an argumentation based approach; however, no dynamic configuration in a
potentially open environment is performed.

9.2 Conclusions

In this thesis, we have explored an area that has not been considered before: design, imple-
ment, and analyze truly distributed algorithms to evaluate partial equilibria of Heterogeneous
Nonmonotonic Multi-Context Systems. As the results, we have come up with a basic algorithm
DMCS to compute partial equilibria in a meta level, under the availability of the local solvers
for local contexts. Then two main improvements were investigated, namely a topology-based
optimization algorithm DMCSOPT and a streaming mode to compute partial equilibria in a
gradual way by the algorithm DMCS-STREAMING. Eventually, both DMCS and DMCSOPT
can be deployed in DMCS-STREAMING that allows to switch on/off the streaming mode. As
an additional explorative branch, we looked into the problem of configuring dynamic MCS.

All proposed algorithms were realized in a prototype implementation which is publically
available as open source. The implementation allows to switch between different algorithms
and modes by simply changing the commandline arguments. On top of this implementation, we
did exhaustive experiments to compare the performance of DMCS, DMCSOPT in streaming and
non-streaming modes and gave an insight analysis on the experimental results. This shows ad-
vantages, disadvantages as well as the time/memory trade off between the algorithms in different
situations which are determined by parameters such as system topology, size of local theories,
size of the interface, number of answers required by the user. From this result, one can choose
the setting (algorithm and mode) that fits her need best in finding partial equilibria in an MCS.
Furthermore, experiences gained from these works together with observations on practical needs
leads to interesting and promising future work that we present next.

9.3 Future Work

Besides a number of solid results from this thesis, several research problems and implementation
issues are still open for further investigations. This section covers main directions for future
works on MCSs, including further research problems for dynamic MCS, implementation issues
to enhance DMCS performance, investigation of grounding-on-the-fly strategy to evaluate non-

133

ground MCS, and the potential of establishing a distributed heterogeneous stream reasoning
framework based on MCS.

Further research problems for dynamic MCS

On the foundational side, a study of the computational complexity of dynamic MCS, and in
particular of the configuration problem, could reveal important insight into computational re-
sources needed to solve this problem, and may help to identify classes of systems for which it is
efficiently solvable; here, the distribution and possible parallelism are interesting aspects. Fur-
thermore, an improvement of the configuration algorithm, and in particular a deep investigation
into heuristics would be an interesting task. Another aspect related to this is linkage cost. The
size of a configuration is a crude measure of such cost, which clearly can be refined, taking, e.g.,
besides the topology also the cost (or value) of accessing particular beliefs into account.

On the implementation side, an obvious task is the implementation of a full-fledged configu-
ration system that includes rich matchmaking, e.g., as in LARKS [91] instead of just hard-coded
matches. Finally, another issue are applications of dynamic MCS. The student example in the
Introduction suggests to consider possible applications in social group formation, complement-
ing e.g., recent work in social Answer Set Programming [22,23]. Another, less mundane area is
configuration of small heterogeneous information systems, in which generic components (e.g.,
some domain ontologies, some decision component, and some fact base) must be suitably in-
stantiated, given various possibilities. Here matchmaking may play an important role, e.g., if
aspects like different levels of abstraction in the context knowledge bases should be handled.
The usage of logic-based matchmaking approaches (cf. the work of [81]), in combination with
other techniques, might here be worthwhile to consider. In particular, configuration of small
systems in mobile environments, where openness is a natural requirement, to further the use of
multi-context systems in ambient intelligence [5, 13] would be interesting.

Implementation issues for DMCS

As already shown in Chapter 5, parallelization is the next step to improve DMCS performance.
The current architecture is well-prepared to allow this extension as each Context can spawn
multiple Evaluator threads to be executed in parallel. However, naive parallelism will yield
redundant recomputation. An important issue here is how to share information between threads.
One possibility is that each Evaluator returns not only just the heads to be added to the local
knowledge base but also its internal state when computing up to k local belief sets, then this
information can be reused in other Evaluator to start its computation to search for the (k+1)-th
belief set for the next request. Recently, multi-threaded ASP has been proposed in [53]. This
work can serve as a starting investigation point to bring parallelism to DMCS.

In the current implementation of DMCS, polynomial boundary of memory for storing the
(partial) belief states is guaranteed by restricting the size of the Concurrent Message Queues
to a number k. This however does not give us a strong upper bound of the memory usage,
as it will depend on the number of threads created during computation. Furthermore, memory
allocation and deallocation are called in every execution of the contexts: allocate memory to
store partial belief states from neighboring contexts, to hold results of local solving; deallocate

134

memory when reading new partial belief states from neighbors, or after sending results back
to parents. This requires in general exponentially many allocations and deallocations, which
is expensive for the performance. To overcome these limitations, we can shift the memory
management to DMCS instead of counting on the operating system as now, by implementing
memory pools that have fixed sizes, hence strict bounds. Moreover, the pools request memory
from the operating system only once at initialization, and provide allocation, deallocation-like
functions for DMCS. Internally, the pools just need simple marking techniques to keep track of
memory parts that have been requested and occupied by different components of DMCS. This
way, time consuming interactions with the operating system regarding memory manipulation
will be reduced significantly.

Last but not least regarding the implementation of DMCS, currently there are only a few
interfaces to other external solver, namely an ASP solver DLV, a SAT solver named relsat,1, and
clasp which can serve both as an ASP and a SAT solver. This restricts the current reasoning
power to just ASP and SAT solving. To involve more diverse reasoning capabilities into the sys-
tem, a natural task is to integrate more solvers into it, such as RacerPro,2 Pellet3 for ontological
reasoning, PostgreSQL,4 MySQL5 for database querying, etc. This task is well-prepared in the
current DMCS infrastructure with a general purpose design for wrapping the local solvers (c.f.
Section 7.3).

Grounding-on-the-fly for non-ground ASP-based MCS

Concerning the implementation of DMCS only for ASP, it follows the conventional approach of
ASP solving by first grounding the local knowledge bases and bridge rules (under the assumption
that all exchanged ground beliefs are known in advanced), then the evaluation is carried out on
the ground version of the MCS. This approach requires to store all ground rules and to expand
local, neighbor signatures prior to evaluation, where not all these rules are necessary.

Recently, a new approach to evaluate ASP programs without pre-grounding has been pro-
posed. According to this approach, the grounding process is done on-the-fly during computation.
There are two basic actions: to propagate and to make a choice. The former is first executed to
derive new facts from available ground facts given in the program. Then, at each later step, mak-
ing a choice is followed by a propagation. A choice is done by grounding a rule and guessing
either this rule instance is applicable or not. The process finds an answer set when there is no
choice left and no conflict is derived during computation. Examples of solvers implementing
this method are ASPeRix [72, 73], GASP [83], and OMiGA [34].

Investigating grounding-on-the-fly DMCS is certainly an interesting direction to pursue in
the future. One can predict that this approach can be benefitial to compute the first equilibria
when conflicts are rare, but more precise classification of cases when grounding-on-the-fly out-
performs pre-grounding needs a thorough comparison between the two approaches on a wide

1http://code.google.com/p/relsat/
2http://www.racer-systems.com/
3http://clarkparsia.com/pellet/
4http://www.postgresql.org/
5http://www.mysql.com/

135

http://code.google.com/p/relsat/
http://www.racer-systems.com/
http://clarkparsia.com/pellet/
http://www.postgresql.org/
http://www.mysql.com/

range of test cases. From the results, one can give useful suggestions to the users which method
they should use in which application scenarios.

Conflict learning in DMCS

Until now, the DMCS algorithms simply combine partial belief states from neighboring con-
texts to rule out inconsistent combinations, and then call external solvers for local solving. In
ASP and SAT solving, conflicts-driven evaluation is well-known to improve the performance
drastically [12,52]. Given the current optimizations and experimental results on DMCS, conflict
learning is the key to gain further performance and scalability for the system. As DMCS consid-
ers local solvers as black boxes, the conflicts to learn are those between contexts. For example,
knowing in advance that pushing a belief set containing p(a) and q(b) into a local theory will
always make this theory inconsistent, one can ignore input with this property to avoid redundant
calls to the local solvers and speed up the computation. There has been only one proposal fol-
lowing this idea [7], but finding constraints requires computing at the beginning all models at
each local context, and a context can push a constraint such as “do not send me answers con-
taining p(a) and q(b)” to its neighbors. This approach is not applicable in our stream setting
(Chapter 5) and is incompatible with our effort of restricting memory consumption to a fixed,
non-exponential boundary.

The idea of bringing conflict-learning techniques from ASP and SAT solving to DMCS
implicitly assumes a pre-grounding step for the bridge rules. Another novel approach is to
explore non-ground conflict learning, inspired by the grounding-on-the-fly idea in the previous
Section. This calls for a new branch of research on non-ground conflict learning in ASP.

Query answering in multi-context systems

All algorithms proposed and implemented in this thesis aim at evaluating partial equilibria in
MCSs, in other words, model building. Another interesting aspect of knowledge representation
and reasoning that will make MCSs more practical in real life application is query answering.
In such applications, the user poses a query asking for the truth of a belief at a context and the
system searches for possibly remote evidences to conclude either the belief is true of false, the
whole model building process is not required and therefore, one can get a better performance.

Note that in the most general MCS setting, we do not have the notion of non-ground queries,
hence only yes/no queries can be posed in this setting. When one considers a narrower setting
of MCSs with relational information exchanging and beliefs represented in terms of predicates
such as ASP, sophisticated techniques such as magic sets [3] can help in dealing with intelligent
grounding to reduce the search space.

Distributed heterogeneous stream reasoning potential

In this work, we approach evaluating MCSs from a top-down and static angle; that is, at eval-
uation, the system consists of contexts with fixed local theories (rules and ground facts) and

136

bridge rules.6 The user posts a query and wait for the results, a Human-Active System-Passive
interaction model. However, this model cannot meet application scenarios, especially in sensor
networks, social networks, or smart cities, in which fixed queries are placed at a context and live
answers are expected automatically under the continuous arrival of streams of input data at leaf
contexts, a similar view when moving from traditional database management systems (DBMSs)
to data stream management systems (DSMSs). This new bottom-up and dynamic approach on
MCSs raises a whole new range of interesting and challenging research issues. Once these issues
are successfully resolved, MCSs will have a new power of providing distributed heterogeneous
stream reasoning frameworks that allow for novel applications in dynamic environments, which
are valuable for recent efforts in realizing smart-cities applications.

6Chapter 6 tackles the problem of configuring dynamic MCSs to static ones before evaluation. Furthermore, the
dynamic aspect there concerns about the topology of the system rather than contexts’ data.

137

.1 DMCS System Usage

The DMCS implementation has two main command-line tools for generating test data and re-
alizing the algorithms proposed in this thesis. This section present full instructions on invoking
these tools.

Generating test cases with dmcsgen

The main purpose of dmcsgen is to aid experiments on the DMCS system with automatically
generated test cases that reflecting different aspects of MCSs, including system topologies, sys-
tem size, local theories size, interface size. dmcsgen also generate query plans and return plans
that define the interface between contexts at run time. The former defines the importing interface
while the latter defines the exporting ont. This is in replace to the current missing functionality
of dmcsm. Moreover, command lines to run the whole system are also generated for the purpose
of automatic testing. To invoke this tool, we use:

dmcsGen [OPTIONS]

where OPTIONS can be:

• --help: print help message

• --gen-data=0/1: 0 to disable generating data, i.e., only generate command lines, and
1 to enable this option

• --contexts=N1: set number of contexts (system size)

• --atoms=N2: set number of ground atoms per context (local theory size)

• --interface=N3: set number of atoms used for creating the interface between con-
texts

• --bridge-rules=N4: set maximum number of bridge rules between pairs of con-
texts. When generating, to vary the number of bridge rules, we iterate N4 rounds, and for
each round, have a probability of 50% to create a bridge rule.

• --topology=N5: set topology type. There are in total 9 different types of topologies.
Use option --help for more details.

• --prefix=STR1: set a string as prefix for all files generated in a single test case.

• --dmcspath=STR2: set path to the DMCS binaries.

• --startup-time=N6: set start up time (in seconds) to call dmcsc after initializing
all contexts.

• --packsize=N7: set package size as the number of partial equilibria in each return
message. N7>0 triggers streaming mode while N7=0 triggers the original DMCS algo-
rithms (with or without the topological optimization).

138

• --timeout=N8: set a time out (in seconds).

As the result, dmcsgen generates

• N1 text files with .lp extension, containing N1 contexts’ local theories

• N1 text files with .br extension, containing sets of bridge rules of the contexts

• N1 text files with .qp (resp., .oqp) extension, containing the query plans of the contexts
in case of original (resp., optimal) topology.

• N1 text files with .rp (resp., .orp) extension, containing the return plans of the contexts
in case of original (resp., optimal) topology.

• a file called client.qp containing the signatures of all contexts in the system, for the
purpose of returning results with atom names in stead of internal encoding to the user.

• several .txt files containing command lines that can be used to manually test the system.

• several .sh files containing shell scripts used to automatically test the system in different
modes: original or optimal topologies, non-streaming or streaming algorithms, and in case
of streaming, whether to finish after the first package of results.

Running the system with dmcsm, dmcsc and dmcsd

The actual DMCS system is activated via three binaries: a dmcsm simulates a simple manager,
N dmcsd running as daemonds to represent N contexts, and a dmcsc used as a client to trigger
the querying to a dmcsd. We need to start these binaries in the following order:
Firstly, start dmcsm as:

dmcsm [--help] --port=PORT --system-size=N

where PORT is the port where the manager listens to, and N is the number of contexts in the
system.
Secondly, start N dmcsd as follows:

dmcsd [--help] OPTIONS

where OPTIONS are:

• --context=N1: set the context identifier (ranging from 0 to N-1).

• --port=N2: set the port where the current context listens to.

• --manager=HOST:PORT: set hostname and port of the manager (must be in correspon-
dence to the options set by dmcsm).

• --system-size=N3: set system size, which is N.

139

• --queue-size=N4: (optional) set interal concurrent message queues’ size.

• --belief-state-size=N5: set belief state size of every context. Note that to sim-
plify the experiment, we let all contexts have the same local theory size, which is generated
from the option --atoms of dmcsgen.

• --packsize=N6: (optional) set size of package, i.e., the number of partial belief states,
to be transferred back in each return message.

• --kb=STR1: set filename containing the local theory.

• --br=STR2: set filename containing the bridge rules.

• --queryplan=STR3: set filename containing the query plan wrt. the original topology

• --optqueryplan=STR4: set filename containing the query plan wrt. the optimal
topology

• --returnplan=STR5: set filename containing the return plan. Depending on the
mode (original or optimal) one would like to run, the return plan will be set to either
generated files with extensions .rp or .orp.

Finally, start dmcsc as follows:

dmcsc [--help] OPTIONS

where OPTIONS are:

• --hostname=STR1: set hostname of the context to be queried.

• --port=N1: set port of the context to be queried.

• --root=N2: set indentifier of the context to be queried.

• --signature=STR2: set filename to the file that contains signatures of all contexts in
the system, which is client.qp in case of automatically generated.

• --belief-state-size=N3: set the (uniform) belief state size of all contexts in the
system.

• --loop=0/1: set a flag to indicate whether we would like to immediately finish after
the first round of answers, in streaming mode.

• --k1=N4 --k2=N5: set the range of partial belief states one would like to query. Set-
ting N4=N5=0 requests for all answers; otherwise, it must hold that 0 < N4 <= N5.

140

Bibliography

[1] Karl Aberer, Magdalena Punceva, Manfred Hauswirth, and Roman Schmidt. Improving
data access in p2p systems. IEEE Internet Computing, 6(1):57–67, 2002.

[2] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and
Laurent Simon. Distributed reasoning in a peer-to-peer setting: Application to the semantic
web. J. Artif. Intell. Res., 25:269–314, 2006.

[3] Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets for dis-
junctive datalog programs. Artif. Intell., 187:156–192, 2012.

[4] Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damásio. Mweb: A principled
framework for modular web rule bases and its semantics. ACM Trans. Comput. Log.,
12(2):17, 2011.

[5] Grigoris Antoniou, Constantinos Papatheodorou, and Antonis Bikakis. Reasoning about
context in ambient intelligence environments: A report from the field. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, rinciples of Knowledge Representation
and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto,
Ontario, Canada, May 9-13, 2010, pages 557–559. AAAI Press, May 2010.

[6] Jean-François Baget and Yannic S. Tognetti. Backtracking through biconnected compo-
nents of a constraint graph. In Bernhard Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington,
USA, August 4-10, 2001, pages 291–296. Morgan Kaufmann, August 2001.

[7] Seif El-Din Bairakdar. Local optimization for multi-context systems with constraint push-
ing. Master’s thesis, Vienna University of Technology, April 2011.

[8] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Kren-
nwallner. Decomposition of distributed nonmonotonic multi-context systems. In Tomi
Janhunen and Ilkka Niemelä, editors, Logics in Artificial Intelligence - 12th European
Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume
6341 of Lecture Notes in Computer Science, pages 24–37. Springer, September 2010.

[9] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Kren-
nwallner. The dmcs solver for distributed nonmonotonic multi-context systems. In Tomi

141

Janhunen and Ilkka Niemelä, editors, Logics in Artificial Intelligence - 12th European
Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume
6341 of Lecture Notes in Computer Science, pages 352–355. Springer, September 2010.

[10] Sabrina Baselice, Piero A. Bonatti, and Giovanni Criscuolo. On finitely recursive pro-
grams. In Verónica Dahl and Ilkka Niemelä, editors, Logic Programming, 23rd Inter-
national Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings,
Lecture Notes in Computer Science, pages 89–103. Springer, 2007.

[11] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

[12] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of satisfiabil-
ity. In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[13] Antonis Bikakis and Grigoris Antoniou. Defeasible contextual reasoning with argu-
ments in ambient intelligence. IEEE Transactions on Knowledge and Data Engineering,
22(11):1492–1506, 2010.

[14] Antonis Bikakis, Grigoris Antoniou, and Panayiotis Hassapis. Strategies for contextual
reasoning with conflicts in ambient intelligence. Knowledge and Information Systems,
April 2010.

[15] Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The MCS-IE System for
Explaining Inconsistency in Multi-Context Systems. In Logics in Artificial Intelligence -
12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Pro-
ceedings, volume 6341 of Lecture Notes in Computer Science, pages 356–359. Springer,
2010.

[16] Piero A. Bonatti. Reasoning with infinite stable models. Artif. Intell., 156(1):75–111, 2004.

[17] Adrian Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Textx in Math-
ematics. Springer, 2008.

[18] Genevieve Bossu and Pierre Siegel. Saturation, nonmonotonic reasoning and the closed-
world assumption. Artif. Intell., 25(1):13–63, 1985.

[19] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-
context systems. In Proceedings of the Twenty-Second AAAI Conference on Artificial In-
telligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 385–390. AAAI
Press, 2007.

[20] Gerhard Brewka, Thomas Eiter, and Michael Fink. Nonmonotonic Multi-Context Systems:
A Flexible Approach for Integrating Heterogeneous Knowledge Sources. In Marcello
Balduccini and Tran Cao Son, editors, Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion of

142

His 65th Birthday, volume 6565 of Lecture Notes in Computer Science, pages 233–258.
Springer, 2011.

[21] Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default reasoning.
In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 268–
273, 2007.

[22] Francesco Buccafurri and Gianluca Caminiti. Logic programming with social features.
Theory and Practice of Logic Programming, 8(5-6):643–690, 2008.

[23] Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi. A logic language with
stable model semantics for social reasoning. In Maria Garcia de la Banda and Enrico
Pontelli, editors, 24th International Conference on Logic Programming (ICLP’08), Udine,
Italy, December 9-13 2008, volume 5366 of Lecture Notes in Computer Science, pages
718–723. Springer, 2008.

[24] Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive logic programs with
inheritance. TPLP, 2(3):293–321, 2002.

[25] Sasa Buvac, Vanja Buvac, and Ian A. Mason. Metamathematics of contexts. Fundam.
Inform., 23(2/3/4):263–301, 1995.

[26] Diego Calvanese, Guiseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Logi-
cal foundations of peer-to-peer data integration. In 23rd ACM Symposium on Principles of
Database Systems (PODS’04). ACM, 2004.

[27] Jan Chomicki. Depth-bounded bottom-up evaluation of logic program. J. Log. Program.,
25(1):1–31, 1995.

[28] Jan Chomicki and Tomasz Imielinski. Finite representation of infinite query answers. ACM
Trans. Database Syst., 18(2):181–223, 1993.

[29] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, 1977.

[30] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular non-
monotonic logic programming revisited. In Patricia M. Hill and David Scott Warren, edi-
tors, Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA,
July 14-17, 2009. Proceedings, volume 5649 of Lecture Notes in Computer Science, pages
145–159. Springer, 2009.

[31] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Distributed
nonmonotonic multi-context systems. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May
9-13, 2010. AAAI Press, 2010.

143

[32] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Dynamic dis-
tributed nonmontonic multi-context systems. In Gerhard Brewka, Victor Marek, and
Miroslaw Truszczynski, editors, Nonmonotonic Reasoning, Essays Celebrating its 30th
Anniversary, Lexington, Kentucky, U.S.A., October 22–25, 2010, volume 31, pages 63–88.
College Publications, 2011.

[33] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Model stream-
ing for distributed multi-context systems. In Alessandra Mileo and Michael Fink, editors,
2nd International Workshop on Logic-based Interpretation of Context: Modeling and Ap-
plications, volume 738 of CEUR Workshop Proceedings, pages 11–22, May 2011.

[34] Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and Antonius Weinzierl.
OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver. In Luis Fariñas
del Cerro, Andreas Herzig, and Jérôme Mengin, editors, Logics in Artificial Intelligence -
13th European Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Pro-
ceedings, volume 7519 of Lecture Notes in Computer Science, pages 480–483. Springer,
September 2012.

[35] Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambattista Ianni, and
Thomas Krennwallner. Combining nonmonotonic knowledge bases with external sources.
In Silvio Ghilardi and Roberto Sebastiani, editors, Frontiers of Combining Systems, 7th In-
ternational Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceedings,
volume 5749 of Lecture Notes in Computer Science, pages 18–42. Springer, 2009.

[36] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend
of the dlv system. AI Commun., 12(1-2):99–111, 1999.

[37] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. System
description: The dlvk planning system. In Thomas Eiter, Wolfgang Faber, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning, 6th Interna-
tional Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings,
volume 2173 of Lecture Notes in Computer Science, pages 429–433. Springer, 2001.

[38] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, and Peter
Schüller. Pushing efficient evaluation of hex programs by modular decomposition. In
James P. Delgrande and Wolfgang Faber, editors, 11th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, BC, Canada,
May 16-19, 2011, volume 6645 of Lecture Notes in Computer Science, pages 93–106.
Springer, May 2011.

[39] Thomas Eiter, Michael Fink, and João Moura. Paracoherent answer set programming. In
Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth International Conference, KR
2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.

144

[40] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. An update front-end
for extended logic programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczyn-
ski, editors, Logic Programming and Nonmonotonic Reasoning, 6th International Confer-
ence, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173
of Lecture Notes in Computer Science, pages 397–401. Springer, 2001.

[41] Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and general-
ized quantifiers. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Logic Program-
ming and Nonmonotonic Reasoning, 4th International Conference, LPNMR’97, Dagstuhl
Castle, Germany, July 28-31, 1997, Proceedings, volume 1265 of Lecture Notes in Com-
puter Science, pages 290–309. Springer, 1997.

[42] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set programming:
A primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried
Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, editors, Reasoning Web.
Semantic Technologies for Information Systems, 5th International Summer School 2009,
Brixen-Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures, volume 5689
of Lecture Notes in Computer Science, pages 40–110. Springer, 2009.

[43] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming.
In IJCAI, pages 90–96, 2005.

[44] Thomas Eiter and Mantas Simkus. Bidirectional answer set programs with function sym-
bols. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages
765–771, 2009.

[45] Thomas Eiter and Mantas Simkus. FDNC: Decidable nonmonotonic disjunctive logic pro-
grams with function symbols. ACM Trans. Comput. Log., 11(2), 2010.

[46] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In José Júlio Alferes and João Alexandre
Leite, editors, Logics in Artificial Intelligence, 9th European Conference, JELIA 2004,
Lisbon, Portugal, September 27-30, 2004, Proceedings, volume 3229 of Lecture Notes in
Computer Science, pages 200–212. Springer, 2004.

[47] Boi Faltings and Makoto Yokoo. Introduction: Special issue on distributed constraint
satisfaction. Artif. Intell., 161(1-2):1–5, 2005.

[48] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A generalization of the lin-zhao
theorem. Ann. Math. Artif. Intell., 47(1-2):79–101, 2006.

[49] Michael Fink, Lucantonio Ghionna, and Antonius Weinzierl. Relational information ex-
change and aggregation in multi-context systems. In James P. Delgrande and Wolfgang
Faber, editors, 11th International Conference on Logic Programming and Nonmonotonic

145

Reasoning (LPNMR 2011), Vancouver, BC, Canada, 16-19 May, 2011, volume 6645 of
Lecture Notes in Computer Science, pages 120–133. Springer, May 2011.

[50] Jian Gao, Jigui Sun, and Yonggang Zhang. An improved concurrent search algorithm for
distributed csps. In Australian Conference on Artificial Intelligence, pages 181–190, 2007.

[51] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub. Reactive answer set
programming. In James P. Delgrande and Wolfgang Faber, editors, Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancou-
ver, Canada, May 16-19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer
Science, pages 54–66. Springer, 2011.

[52] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pages 386–, 2007.

[53] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Multi-threaded asp solving with
clasp. In ICLP, September 2012.

[54] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In ICLP/SLP, pages 1070–1080, 1988.

[55] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Comput., 9(3/4):365–386, 1991.

[56] Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or contextual reason-
ing=locality+compatibility. Artif. Intell., 127(2):221–259, 2001.

[57] Fausto Giunchiglia. Contextual Reasoning. Epistemologia, Special Issue on I Linguaggi e
le Macchine, 345:345–364, 1992.

[58] Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics or: How we
can do without modal logics. Artif. Intell., 65(1):29–70, 1994.

[59] Ramanathan V. Guha. Contexts: a formalization and some applications. PhD thesis,
Stanford University, 1991.

[60] Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Open answer set program-
ming for the semantic web. J. Applied Logic, 5(1):144–169, 2007.

[61] Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Open answer set program-
ming with guarded programs. ACM Trans. Comput. Log., 9(4), 2008.

[62] Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms. Artif. In-
tell., 161(1–2):89–115, 2005.

[63] Martin Homola. Semantic Investigations in Distributed Ontologies. PhD thesis, Comenius
University, Bratislava, Slovakia, 2010.

146

[64] Guan-Shieng Huang, Xiumei Jia, Churn-Jung Liau, and Jia-Huai You. Two-literal logic
programs and satisfiability representation of stable models: A comparison. In Robin Cohen
and Bruce Spencer, editors, Advances in Artificial Intelligence, 15th Conference of the
Canadian Society for Computational Studies of Intelligence, AI 2002, Calgary, Canada,
May 27-29, 2002, Proceedings, volume 2338 of Springer, pages 119–131. Lecture Notes
in Computer Science, 2002.

[65] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-Huai You. Un-
folding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log.,
7(1):1–37, 2006.

[66] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects
of disjunctive stable models. J. Artif. Intell. Res. (JAIR), 35:813–857, 2009.

[67] Joohyung Lee. A model-theoretic counterpart of loop formulas. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5,
2005, pages 503–508. Professional Book Center, 2005.

[68] Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic programs. In
Catuscia Palamidessi, editor, Logic Programming, 19th International Conference, ICLP
2003, Mumbai, India, December 9-13, 2003, Proceedings, Lecture Notes in Computer
Science, pages 451–465. Springer, 2003.

[69] Joohyung Lee and Fangzhen Lin. Loop formulas for circumscription. In Deborah L.
McGuinness and George Ferguson, editors, Proceedings of the Nineteenth National Con-
ference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Ar-
tificial Intelligence, July 25-29, 2004, San Jose, California, USA, pages 281–286. AAAI
Press / The MIT Press, 2004.

[70] Joohyung Lee and Yunsong Meng. On loop formulas with variables. In Gerhard Brewka
and Jérôme Lang, editors, Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September
16-19, 2008, pages 444–453. AAAI Press, 2008.

[71] Joohyung Lee and Yunsong Meng. First-order stable model semantics and first-order loop
formulas. J. Artif. Intell. Res. (JAIR), 42:125–180, 2011.

[72] Claire Lefèvre and Pascal Nicolas. A first order forward chaining approach for answer
set computing. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic Pro-
gramming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009,
Potsdam, Germany, September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes
in Computer Science, pages 196–208. Springer, 2009.

[73] Claire Lefèvre and Pascal Nicolas. The first version of a new asp solver : Asperix. In
Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic Programming and Non-
monotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,

147

September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes in Computer Science,
pages 522–527. Springer, 2009.

[74] Nicola Leone and Wolfgang Faber. The dlv project: A tour from theory and research to
applications and market. In Maria Garcia de la Banda and Enrico Pontelli, editors, Logic
Programming, 24th International Conference, ICLP 2008, Udine, Italy, December 9-13
2008, Proceedings, volume 5366 of Lecture Notes in Computer Science, pages 53–68.
Springer, 2008.

[75] Vladimir Lifschitz and Alexander A. Razborov. Why are there so many loop formulas?
ACM Trans. Comput. Log., 7(2):261–268, 2006.

[76] Fangzhen Lin and Yuting Zhao. Assat: computing answer sets of a logic program by sat
solvers. Artif. Intell., 157(1-2):115–137, 2004.

[77] John McCarthy. Generality in artificial intelligence. Commun. ACM, 30(12):1029–1035,
1987.

[78] John McCarthy. Notes on formalizing context. In Ruzena Bajcsy, editor, Proceedings
of the 13th International Joint Conference on Artificial Intelligence. Chambéry, France,
August 28 - September 3, 1993, pages 555–562. Morgan Kaufmann, 1993.

[79] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41,
1995.

[80] Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[81] Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini. Semantic matchmaking
as non-monotonic reasoning: A description logic approach. J. Artif. Intell. Res., 29:269–
307, 2007.

[82] Elth Ogston and Stamatis Vassiliadis. Local distributed agent matchmaking. In Carlo Ba-
tini, Fausto Giunchiglia, Paolo Giorgini, and Massimo Mecella, editors, 9th International
Conference on Cooperative Information Systems (CoopIS’01), volume 2172 of Lecture
Notes in Computer Science, pages 67–79. Springer, 2001.

[83] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Gasp: An-
swer set programming with lazy grounding. Fundam. Inform., 96(3):297–322, 2009.

[84] Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980.

[85] Floris Roelofsen and Luciano Serafini. Minimal and absent information in contexts. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30-August 5, 2005, pages 558–563. Professional Book Center, 2005.

148

[86] Floris Roelofsen, Luciano Serafini, and Alessandro Cimatti. Many hands make light work:
Localized satisfiability for multi-context systems. In Ramon López de Mántaras and
Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on Artificial In-
telligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 58–62. IOS Press, August 2004.

[87] Tuomas Sandholm. Distributed rational decision making. In Multiagent Systems – A Mod-
ern Approach to Distributed Artificial Intelligence, chapter 5, pages 201–258.

[88] Luciano Serafini, Alexander Borgida, and Andrei Tamilin. Aspects of distributed and mod-
ular ontology reasoning. In Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), pages 570–575. AAAI Press, 2005.

[89] Luciano Serafini and Paolo Bouquet. Comparing formal theories of context in ai. Artif.
Intell., 155(1-2):41–67, 2004.

[90] Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture for the
semantic web. In Asunción Gómez-Pérez and Jérôme Euzenat, editors, The Semantic
Web: Research and Applications, Second European Semantic Web Conference, ESWC
2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings, Lecture Notes in
Computer Science, pages 361–376. Springer, 2005.

[91] Katia P. Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. Larks: Dynamic match-
making among heterogeneous software agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, 5(2):173–203, 2002.

[92] Tommi Syrjänen. Omega-restricted logic programs. In Thomas Eiter, Wolfgang Faber, and
Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning, 6th
International Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Pro-
ceedings, Lecture Notes in Computer Science, pages 267–279. Springer, 2001.

[93] Jacobo Valdes, Robert Endre Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. SIAM J. Comput., 11(2):298–313, 1982.

[94] Divyanshu Vats and José M. F. Moura. Graphical models as block-tree graphs. CoRR,
abs/1007.0563, 2010.

[95] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 887–898. ACM, 2012.

[96] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfac-
tion: A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

[97] Jia-Huai You, Robert Cartwright, and Ming Li. Iterative belief revision in extended logic
programming. Theor. Comput. Sci., 170(1-2):383–406, 1996.

149

	Basic Notions
	Introduction
	Motivation
	State of the Art
	Reasoning with logic programming under the answer set semantics
	Multi-context systems

	Goals of the Thesis, Main Results, and Structure

	Preliminaries
	Declarative Logic Programming
	Logic Programs under the Answer-Set Semantics
	Syntax of answer-set programs
	Semantics of answer-set programs
	Answer-set solvers

	Loop Formulas
	Multi-Context Systems
	Formalization of multi-context systems
	Semantics of multi-context systems
	Centralized evaluation of multi-context systems

	Algorithms for Multi-Context Systems
	Basic Distributed Algorithm and Realization with Loop Formulas
	Basic Algorithm for Multi-Context Systems
	Basic notions
	The basic algorithm
	Discussion

	Realization with Loop Formulas
	Loop formulas for MCS
	Loop formulas for grounded equilibria
	Algorithm for SAT-based MCS

	Topology-based Optimized Algorithm
	Motivating Scenario
	Decomposition of Nonmonotonic MCS
	Graph-theoretic concepts
	Pruning
	Refined recursive import
	Algorithms

	Evaluation with Query Plans
	Proof of Proposition 13

	Streaming Algorithm
	Basic Streaming Procedure
	Parallelized Streaming

	Dynamic Multi-Context Systems
	Motivating Scenario
	Basic Notions for Dynamic Nonmonotonic Multi-Context Systems
	From Dynamic to Ordinary Multi-Context Systems
	Multi-Context Systems Configuration
	Basic algorithm
	Quality-driven local configuration
	Dealing with irregular cases
	Prototype implementation

	Implementation and Evaluation of Multi-Context Systems
	The DMCS System
	Global Level Architecture
	Architecture At Local Nodes
	Wrapping the Local Solvers
	DMCS System Usage
	Generating test cases with dmcsgen
	Running the system with dmcsm, dmcsc and dmcsd
	Availability

	Experimental Evaluation
	Benchmark Setup
	Experiments
	Observations and Interpretations
	DMCS v.s. DMCSOPT
	Streaming v.s. non-streaming DMCS
	Effects of the package size in streaming mode
	Roles of topologies
	Summary

	Related Work, Conclusions and Future Work
	Related Work
	Distributed reasoning algorithms
	Distributed configuration

	Conclusions
	Future Work
	Further research problems for dynamic MCS
	Implementation issues for DMCS
	Grounding-on-the-fly for non-ground ASP-based MCS
	Conflict learning in DMCS
	Query answering in multi-context systems
	Distributed heterogeneous stream reasoning potential

	DMCS System Usage
	Generating test cases with dmcsgen
	Running the system with dmcsm, dmcsc and dmcsd

	Bibliography

