Exploiting Support Sets for Answer Set Programs with External Evaluations

Thomas Eiter Michael Fink Christoph Redl Daria Stepanova

\{eiter,fink,redl,dasha\}@kr.tuwien.ac.at
ҒШF

1. Motivation

- HEX-programs extend ASP by external sources
- DL-program $\Pi=\langle\mathcal{O}, \boldsymbol{P}\rangle$, ontology+rules (special case of HEX-programs)
$\mathcal{O}=\left\{\begin{array}{l}\text { (1) Driver } \sqsubseteq \neg \text { Customer (4) worksIn }(d 1, r 3) \\ \text { (2) } \exists \text {.worksIn } \sqsubseteq \text { Driver } \\ \text { (3) } \text { ECarDriver } \sqsubseteq \text { wriver } \\ \text { (6) } \text { ECarDriver }(d 1)\end{array}\right\}$

- Evaluation of HEX-programs: multiple calls to external sources are expensive!
- Aim of this work: avoid multiple calls

- Contributions:
- (Non-)ground support sets as optimization means
- Application examples:
- DL-programs (DL-Lite $\mathcal{A}_{\mathcal{A}}$) and
- Query Answering (QA) over ASP
- Implementation in DLVHEX and experiments

2. Support Sets

- Support Sets encode partial info about external source
- Ground Support Set for $a=$ DL[worksIn \uplus goTo $; \neg$ Cust $](d 1)$:
$S=\left\{\operatorname{TgoTo}\left(d_{1}, r 4\right)\right\}$ for all assignments $\mathrm{A} \supseteq S: \mathbf{A} \models a$
- Complete Support Family \mathcal{S} for a : for all \mathbf{A} there is $S \in \mathcal{S}: \mathbf{A} \supseteq S$
- Nonground Support Set \boldsymbol{S} for $\boldsymbol{a}(\mathbf{X})$ is of form $\langle\boldsymbol{N}, \gamma\rangle$, where
- N : set of signed nonground literals over input predicates of $\boldsymbol{a}(\boldsymbol{X})$
- γ : function, selecting groundings of N, that are support sets for $a(c)$
- $S_{1}=\left\langle\left\{\operatorname{TgoTo}\left(X, X^{\prime}\right)\right\}, \top\right\rangle$, where
\top returns 1 for all groundings of $\operatorname{TgoTo}\left(X, X^{\prime}\right)$
- $S_{2}=\langle\emptyset, \gamma\rangle$, where

$\gamma: \mathcal{C} \times\{\emptyset\} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ is s.t. $\gamma(c, \emptyset)=\mathbf{1}$ iff $\operatorname{EDriver}(\boldsymbol{c}) \in \mathcal{A}$ of \mathcal{O}

3. Using Support Sets

- Standard HEX-Program Evaluation:
- From Π construct $\hat{\Pi}$ with all external \boldsymbol{a} substituted by \boldsymbol{e}_{a}
- Add $e_{a} \vee \boldsymbol{n} \boldsymbol{e}_{a}$ to $\hat{\Pi}$, where $\boldsymbol{n} \boldsymbol{e}_{a}$ corresponds to negation of \boldsymbol{e}_{a}
- For each $\hat{\mathbf{A}} \in \boldsymbol{A} \boldsymbol{S}(\hat{\boldsymbol{\Pi}})$, check compatibility (i.e. $\mathbf{T} \boldsymbol{e}_{a} \in \hat{\mathbf{A}}$ iff $\mathbf{A} \models \boldsymbol{a}$?) and minimality (i.e. exclude self-support)

- New Approach:

- Support Sets in AS Search: for $S \in \mathcal{S}^{+}(a)$ (resp. $S \in \mathcal{S}^{-}(a)$) adding $S \cup\left\{\mathbf{F e}_{a}\right\}$ (resp. $\boldsymbol{S} \cup\left\{\mathbf{T} \boldsymbol{e}_{\boldsymbol{a}}\right\}$) to Π prunes not compatible A
Compatibility Check: with complete support families for all \boldsymbol{a} of Π external source accesses can be fully eliminated
- Support sets must be small and easily computable!
- DL-programs over consistent DL-Lite $\mathcal{A}_{\mathcal{A}}$ ontologies:
- size is at most 2
- computation is tractable
- Also: QA over positive ASP (e.g. subproblems)

4. Benchmark Results

- t : time in seconds, p : size of instance
- m : bound on number of computed AS
- +Sup (-Sup): using support sets (resp. standard computation)
- first (all) AS: computing first (resp. all) answer sets

Other benchmarks:

- Default rules over university LUBM ontology
- Graph non-3-colorability problem

5. Conclusion and Outlook

Results:

- Support sets are viewed as knowledge compilation
- Experimental results show significant improvements for practical applications: DL-programs over $\boldsymbol{D L}$-Lite $\boldsymbol{\mathcal { A }}_{\mathcal{A}}$ and QA over postive ASP

Future work:

- Sophisticated algorithms for nogood grounding, coverage checking
- Exploiting info about the program by support sets
- Further optimization techniques
- Calvanese, D.; Lembo, D.; Lenzerini, M.; and Rosati, R.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning, 2007, 39(3):385-429.

- Eiter, T.; Fink, M.; Krennwallner, T.; Redl, C.; and Schüller, P.

Efficient HEX-program evaluation based on unfounded sets.
Journal of Artificial Intelligence Research, volume 49, pages 269-321, February 2014.

