
Towards Practical Deletion Repair of Inconsistent
DL-programs

Thomas Eiter, Michael Fink, and Daria Stepanova

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink,dasha}@kr.tuwien.ac.at

Abstract. Nonmonotonic Description Logic (DL-) programs couple nonmono-
tonic logic programs with DL-ontologies through queries in a loose way which
may lead to inconsistency, i.e., lack of an answer set. Recently defined repair an-
swer sets remedy this but a straightforward computation method lacks practicality.
We present a novel evaluation algorithm for deletion repair answer sets based
on support sets, which reduces evaluation of DL-LiteA ontology queries to con-
straint matching. This leads to significant performance gains towards inconsistency
management in practice.

1 Introduction

The need for combining rules with ontologies has led to different approaches (see [12]
and references therein). Among them Nonmonotonic Description Logic (DL-) programs
[8] embody a loose coupling of rules and a DL-knowledge base (i.e., ontology) which
the rules can query through special DL-atoms. As the ontology may be enriched before
query evaluation, a bidirectional flow of information enables one to solve advanced
reasoning tasks on top of ontologies. On the other hand, the information flow may lead
to inconsistency, that is, cause a DL-program to lack answer sets (i.e., models).

Example 1. Consider the DL-program Π in Figure 1, which represents information
about children of a primary school and their parents in simplistic form [7]. It has an
ontology O consisting of a concept taxonomy (TBox) T in (1)-(3) and a set A of
assertions (ABox), i.e. facts, about individuals in (4)-(6). The rules P contain further
facts (7), (8) and proper rules: (9) determines fathers from the ontology, upon feeding
information to it; (10) checks, informally, against them for local parent information
(ischildof) that a child has surely not two fathers, unless it is adopted; finally (11)-(12)
single out contact persons for children (by default, the parents); for adopted children,
fathers in O are omitted if some other contact exists. Inconsistency arises as john , who
is not provably adopted, has pat as father by the ontology, and by the local information
possibly also alex .

An inconsistent program may be unusable since it yields no answer set. To cope with
this, notions of DL-program repair (under different semantics) have been formalized
recently [7]. They give rise to so-called repair answer sets under the supposition of

Fig. 1. DL-program Π over a family ontology

O =

(1) Child v ∃.hasParent (2) Adopted v Child (3) Female v ¬Male
(4) Male(pat) (5) Male(john) (6) hasParent(john, pat)

ff

P =

8>>>>>>><>>>>>>>:

(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(X,Y)← DL[Male] boy ; Male](Y),DL[; hasParent](X,Y);

(10) ⊥ ← not DL[; Adopted](X), Y1 6= Y2, hasfather(X,Y1), ischildof (X,Y2),
not DL[Child] boy ; ¬Male](Y2);

(11) contact(X,Y)← DL[; hasParent](X,Y),not omit(X,Y);

(12) omit(X,Y)← DL[; Adopted](X), Z 6= Y, hasfather(X,Y), contact(X,Z).

9>>>>>>>=>>>>>>>;
suitable changes to the ABox (data) of the ontology. As for repair computation, however,
a natural realization of corresponding algorithms turns out to be too naive and does not
scale for practical applications due to large number of ABoxes to be checked in general.

We thus propose an alternative approach for repair answer set computation which
is based on the notion of support sets. Intuitively, a support set for a ground DL-atom
a = DL[λ; Q](t) is a set of assertions which together with the original TBox is sufficient
for the given DL-query Q(t) to be derived.

Our basic method is to precompute small support sets for each DL-atom on a non-
ground level. Then during the DL-program evaluation, for each candidate interpretation
the ground instantiations of the support sets are effectively obtained. These help to prune
the answer set search space and they are also used for the ABox repair construction.

This approach is particularly attractive for DL-LiteA ontologies, for which it scales
much better then the naive approach [7], as the number of necessary support sets is small
and they are easy to compute.

Our contributions on DL-program repair computation are:
(1) We formally establish support sets as sound and complete structures for DL-atom
evaluation avoiding ontology access. Moreover, this characterization is faithfully lifted
to the nonground level, enabling scalability of exploitation.
(2) Nonground support sets for DL-atoms over DL-LiteA ontologies can not only
be efficiently computed, but also turn out to be small. We utilize this fact to devise
an algorithm for the effective computation of deletion repairs of DL-programs under
so-called flp semantics and discuss potential generalizations.
(3) We report experimental results obtained implementing our approach and evalu-
ating its scalability on a set of benchmark scenarios; they provide evidence for the
effectiveness of the method.

2 Preliminaries

We start with briefly recalling DL-programs and repair answer sets; see [8; 7] for details.
Syntax. A DL-program is a pair Π = 〈O, P 〉 of a finite ontology O and a finite set of
rules P defined as follows.
O is a DL-knowledge base (or ontology) over a signature Σo = 〈I,C,R〉 with a set

I of individuals, a set C of concept names and a set R of role names. We assume here
throughout that O = T ∪ A is a consistent DL-LiteA KB [3] with a TBox T and ABox

A, which are sets of axioms capturing taxonomic resp. factual knowledge. Concepts C
and roles R obey the following syntax, where A ∈ C is an atomic concept and U ∈ R
is an atomic role:

C → A | ∃R B → C | ¬C R→ U | U− S → R | ¬R
TBox axioms are of the form C v B and R v S (inclusion axiom), or (func R)

(functionality axiom). ABox contains positive and negative fact assertions.
When the distinction between concepts and roles is immaterial, P denotes a possibly

negated predicate from C ∪R and P is the opposite of P , i.e. P = ¬P and ¬P = P .
The logic program part P of Π = 〈O, P 〉 consists of the rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where each ai, 0 ≤ i ≤ n, is an lp-atom and each bi 1 ≤ i ≤ m, is either an lp-atom or
a DL-atom; here

• an lp-atom is a first-order atom p(t) with predicate p from a set P of predicate
names disjoint with C and R, and constants from the set C = I;
• a DL-atom a(t) is of form DL[λ; Q](t), where

λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2)

is such that for 1 ≤ i ≤ m, Si ∈ C ∪ R, opi ∈ {], −∪} is an update operator, and
pi ∈ P is an input predicate of the same arity as Si—intuitively, opi =] (resp., opi = −∪)
increases Si (resp., ¬Si) by the extension of pi; Q(t) is a DL-query, which is either of
the form (i) C(t), where C is a concept and t is a term; (ii) R(t1, t2), where R is a role
and t1, t2 are terms; or (iii) ¬Q′(t) where Q′(t) is from (i)-(ii). We skip (t) for t = ε1 .
If n = 0, the rule is a constraint.

Example 2 (cont’d). A DL-atom DL[Male] boy ; Male](Y) contained in the rule (9)
of Example 1 first enriches the concept Male in O by the extension of the predicate boy
in P via], and then queries the concept Male over the modified ontology.

Semantics. The semantics of a DL-program Π = 〈O, P 〉 is defined in terms of its
grounding gr(Π) = 〈O, gr(P)〉 over C, i.e., gr(P) contains all ground instances of
rules r in P over C. In the remainder, by default we assume that Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms, where HBΠ is
the usual Herbrand base w.r.t. C and P ; I satisfies an lp-atom a, if a ∈ I and a DL-atom
a of the form (2) if

O ∪ τ I(a) |= Q(c) (3)

where τ I(a) =
⋃m
i=1Ai(I), and

• Ai(I) = {Si(t) | pi(t) ∈ I}, for opi =];
• Ai(I) = {¬Si(t) | pi(t) ∈ I}, for opi = −∪.

Satisfaction of a DL-rule r resp. set P of rules by I is then defined as usual, where
I satisfies not bj if I does not satisfy bj ; I satisfies Π , if it satisfies each r ∈ P . We
denote that I satisfies (is a model of) an object o (atom, rule, etc.) by I |=Oo.

1 We disregard here for simplicity the less used constraints-operator −∩ and subsumption queries.

Example 3 (cont’d). In Example 1, I = {ischildof (john, alex), boy(john)} satis-
fies a = DL[Child] boy ; ¬Male](alex), as O ∪ λI(a) |= ¬Male(alex), while
I 6|=ODL[; Adopted](john), as the input list is empty and O 6|= Adopted(john).

An (flp-)answer set of Π = 〈T ∪ O,A〉 is any interpretation I that is a ⊆-minimal
model of the flp-reduct ΠI

FLP , which maps any set P of rules and I ⊆ HBΠ to the rule
set P IFLP = {rIFLP | r ∈ gr(P)}, where rIFLP = r if the body of r is satisfied, i.e.,
I |=O bi, for all bi, 1 ≤ i ≤ k and I 6|=O bj , for all k < j ≤ m; otherwise, rIFLP is
void.

A DL-program Π is inconsistent, if it has no answer set. An interpretation I is an
(flp-)deletion repair answer set of Π = 〈T ∪ O,A〉, if it is an flp-answer set of some
Π ′ = 〈T ∪ A′, P 〉 where A′ ⊆ A; any such A′ is called a deletion repair of Π .

Example 4 (cont’d). As mentioned, Π is inconsistent; if we drop (4) from A, then
I = {boy(john), ischildof (john, alex), contact(john, pat)} is an answer set. Along
with the facts (7) and (8) the flp-reduct P IFLP contains the ground rule (11), whereX and
Y are substituted by john and pat respectively. The interpretation I1 = {boy(john),
ischildof (john, alex)} is a deletion repair answer set with a deletion repair A′1 =
{Male(pat),Male(john)}.

In DL-LiteA ontologies, inconsistency arises by few assertions.

Proposition 1 (cf. [3]). In DL-LiteA given a TBox T every ⊆-minimal ABox A such
that T ∪ A is inconsistent fulfills |A| ≤ 2.

From this result it is not hard to establish that ≤3 distinct constants occur in such an A.

3 Support Sets

In this section, we introduce support sets for DL-atoms. Intuitively, a support set for a
DL-atom d = DL[λ; Q](t) is a portion of its input that, together with ABox assertions,
is sufficient to conclude that the query Q(t) will evaluate to true, i.e, that given a subset
I ′ ⊆ I of an interpretation I and a setA′ ⊆ A of ABox assertions from the ontology, we
can conclude that I |=O Q(t). The evaluation of d w.r.t. I reduces then to test whether
some support set S = I ′ ∪ A′ exists; to this end, a sufficient collection of such sets S
can be precomputed and stored. Fortunately, for DL-LiteA this is efficiently possible.

To simplify matters and avoid dealing with I ′ separately, it is convenient to introduce
input assertions as follows.

Definition 1. Given a DL-atom d = DL[λ; Q](t), we call Pp(c) an input assertion for
d, if P ◦ p ∈ λ, ◦ ∈ {], −∪} and c ∈ C, where Pp is a fresh ontology predicate; Ad is
the set of all such assertions.

For a TBox T and DL-atom d, let then Td = T ∪ {Pp v P | P] p ∈ λ} ∪ {Pp v
¬P | P −∪p ∈ λ}, and for an interpretation I , letOId = Td∪A∪{Pp(t) ∈ Ad | p(t) ∈ I}.
Then we have:

Proposition 2. For every O = T ∪ A, DL-atom d = DL[λ; Q](t) and interpretation I ,
I |=O d iff I |=OId DL[ε; Q](t) iff OId |= Q(t).

Unlike (3), in OId there is a clear distinction between native assertions and assertions
induced by d w.r.t. I (via facts Pp and axioms Pp v (¬)P), mirroring the lp-input of d.

Now, in view of the property that in DL-LiteA a single assertion is sufficient to
derive a query [3] from a consistent ontology, we obtain support sets as follows.

Definition 2 (Ground Support Sets). Given a ground DL-atom d = DL[λ;Q](t), a
set S of assertions from A∪Ad is a support set for d w.r.t. an ontology O = T ∪ A, if
either (i) S = {P (c)} and Td ∪ S |= Q(t), or (ii) S = {P (c), P ′(d)} such that Td ∪ S
is inconsistent, where c∪d has at most three distinct constants; by SuppO(d) we denote
the set of all such S.

Support sets are linked to interpretations by the following notion.

Definition 3. A support set S of a DL-atom d is coherent with an interpretation I , if for
each Pp(c) ∈ S it holds that p(c) ∈ I .

Example 5 (cont’d). The set {hasParent(john, pat)} is a support set for the DL-atom
DL[; hasParent](john, pat) w.r.t. O, and so is {Male(pat)} for the DL-atom a =
DL[Male] boy ; Male](pat). Moreover, {Pboy(pat)} is in SuppO(a) but incoherent
with minimal models of Π .

The evaluation of d w.r.t. I then reduces to the search for coherent support sets.

Proposition 3. Let d be a ground DL-atom, let O = T ∪A be an ontology, and let I be
an interpretation. Then, I |=O d iff some S ∈ SuppO(d) exists s.t. S is coherent with I .

As a simple consequence, we get:

Corollary 1. Given a ground DL-atom d and an ontology O, there exists an interpreta-
tion I such that I |=O d iff SuppO(d) 6= ∅.

3.1 Nonground Support Sets

Using support sets, we can completely eliminate the ontology access for the evaluation
of DL-atoms. In a naive approach, one precomputes all support sets for all ground
DL-atoms with respect to relevant ABoxes, and then uses them during the repair answer
set computation. This does not scale in practice, since support sets may be computed
that are incoherent with all candidate repair answer sets.

An alternative is to fully interleave the support set computation with the search
for repair answer sets. Here we construct coherent ground support sets for each DL-
atom and interpretation on the fly. As the input to a DL-atom may change in different
interpretations, its support sets must be recomputed, however, since reuse may not be
possible; effective optimizations are not immediate.

A better solution is to precompute support sets on a nonground level, that is,
schematic support sets, prior to repair computation. Furthermore, in that we may leave
the concrete ABox open; the support sets for a DL-atom instance are then easily obtained
by syntactic matching. This leads to the following definition.

Definition 4 (Support Set for Nonground DL-atom). Let d(X) = DL[λ; Q](X) be
a DL-atom and T be a TBox. Let V = {X,Y, Z} be distinct variables such that X ⊆ V
and let C = {a, b, c}. A nonground support set for d w.r.t. T is a set S = {P (Y)}
resp. S = {P (Y), P ′(Y ′)} such that (i) Y ,Y ′ ⊆ V and (ii) for each substitution
θ : V → C, the instance Sθ = {P (Y θ)} (resp. Sθ = {P (Y θ), P ′(Y ′θ)}) is a support
set for d(Xθ) w.r.t. OC = T ∪ AC , where AC is the set of all possible assertions over C.

Here AC takes care for any possible ABox, by considering the maximal ABox
(as O⊆O′ implies SuppO(d)⊆SuppO′(d)); three variables suffice as at most three
different constants are involved.

Example 6 (cont’d). Certainly {hasParent(X,Y)} is a nonground support set for the
DL-atom DL[; hasParent](X,Y), and so are {Male(X)} and {Maleboy(X)} for the
DL-atom a(X) = DL[Male] boy ; Male](X). But also, {Maleboy(X),Female(X)}
is a nonground support set for a(X).

Nonground support sets S are sound, i.e. each instance Sθ that matches withA∪Ad
is a support set of the ground DL-atom dθ w.r.t. O = T ∪ A; they are also complete,
i.e., every support set S of a ground DL-atom d w.r.t. O = T ∪ A results as such
an instance, and thus can be determined by syntactic matching. Clearly, support sets
as defined above may be subsumed by other support sets (e.g., {A(X), R(X,Y)} by
{A(X)} and removed; for space reasons, we omit further discussion here. In the next
section, we discuss how to compute a sufficient set of nonground support sets.

3.2 Determining Nonground Support Sets

Our technique for computing the nonground support sets is based on TBox classification,
which is one of the main ontology reasoning tasks. This reasoning service computes
complete information about the TBox constraints specified at the conceptual level.

More formally, given a TBox T over a signature Σo, the TBox classification Clf (T)
determines all subsumption relations P v (¬)P ′ between concepts and roles P, P ′ in
Σo that are entailed by T . This can be exploited for our goal to compute nonground
support sets, more precisely a complete family S of such sets. Here completeness of
S for a (non-ground) DL-atom d(X) w.r.t. O means that for every θ: X → I and
S ∈ SuppO(d(Xθ)), some S′ ∈ S exists s.t. S = S′θ′ for some extension θ′ of θ to V .

TBox classification is well studied in Description Logics [1]. For example, [9]
discusses it for EL w.r.t. concept hierarchy, and [10] studies it for the OWL 2 QL profile,
which is based on DL-LiteR.

Respective algorithms are thus suitable and also easily adapted for the computation of
(a complete family of) nonground support sets for a DL-atom d(X) w.r.t.O. In principle,
one can exploit Proposition 2 and resort to Td, i.e., compute the classification Clf (Td),
and determine nonground support sets of d(X) proceeding similar as for computing
minimal conflict sets [10]. To determine inconsistent support sets, perfect rewriting [3]
can be done over Pos(T), i.e., the TBox obtained from T by substituting all negated
concepts (roles) ¬C (¬R, ¬∃.R, ¬∃.R−) with positive replacements C (R, ∃.R, ∃.R−).

In practice (and as in our implementation), it nonetheless can be worthwhile to
compute Clf (T) first, as it is reusable for all DL-atoms. The additional axioms in Td,

Algorithm 1: SupRAnsSet : all deletion repair answer sets
Input: Π=〈T ∪ A, P 〉
Output: flpRAS(Π)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in Π
(b) for Î ∈ AS(Π̂) do

Dp ← {a | ea ∈ Î}; Dn ∈ {a | nea ∈ Î}; SÎgr ← Gr(S, Î,A);
(c) if SÎgr(a) 6= ∅ for a ∈ Dp and every S ∈ SÎgr(a) for a ∈ Dn fulfills S ∩ A 6= ∅ then
(d) for all a ∈ Dp do
(e) if some S ∈ SÎgr(a) exists s.t. S ∩ A = ∅ then pick next a

else remove each S from SÎgr(a) s.t. S ∩ A ∩
S
a′∈Dn SÎgr(a

′) 6= ∅
(f) if SÎgr(a) = ∅ then pick next Î

end
(g) A′ ← A \

S
a′∈Dn SÎgr(a

′);
(h) if flpFND(Î , 〈T ∪ A′, P 〉) then output Î|Π

end
end

i.e., those of form Pp v (¬)P (according to the update operators), are handled when
determining the nonground support sets for a particular DL-atom from Clf (T).

Example 7 (cont’d). Consider the DL-atom a = DL[Male] boy ; Male](X) in our run-
ning example. For computing a complete family S of nonground support sets for a w.r.t.
O, we may refer to Ta = T ∪ {Maleboy vMale} and its classification Clf (Ta). Hence,
S1 = {Male(X)} and S2 = {Maleboy(X)} are the only unary nonground support
sets of a. Further nonground support sets are obtained computing minimal conflict sets,
yielding {P (X),¬P (X)} for each P ∈ C∪R, as well as {Maleboy(X),¬Male(X)},
{Male(X), Female(X)}, and {Maleboy(X),Female(X)}. However, since we are in-
terested in completeness w.r.t.O andO is consistent, pairs not involving input assertions
can be dropped (as they will not have a match inA). The remaining two sets are supersets
of S2, therefore S = {S1, S2} is a complete family of support sets for a w.r.t. O.

4 Repair Answer Set Computation

We are now ready to describe our algorithm for computing deletion repair answer sets
with the use of support sets. DL-programs are evaluated usually (as in DLVHEX) by
means of a rewriting Π̂ of gr(Π), where DL-atoms a are replaced by ordinary atoms ea
(replacement atoms), together with a guess on their truth by additional ‘choice’ rules
eavnea, where nea stands for negation of ea. We denote interpretations of Π̂ by Î , and
use Î|Π to denote their restriction to the original language of Π .

A basic algorithm for computing repair answer sets was given in [7]. It checks
whether candidates Î (i.e., answer sets of Π̂) yield repair answer sets by solving a corre-
sponding ontology repair problem (ORP). Intuitively, solutions to an ORP correspond to
(potentially) modified ABoxes A′ (not necessarily obtained by deletion, i.e. subsets of

A) such that all DL-atoms evaluate as guessed in Î (formally Î is a compatible set of
〈T ∪ A′, P 〉, cf. [7]); they are computed through multiple calls to the external ontology
via a query interface to evaluate DL-atoms under varying ABoxes. A final foundedness
check (subset minimality of Î|Π w.r.t. Π ′Î|ΠFLP = 〈T ∪ A′, P Î|ΠFLP 〉) establishes repair
answer sets.

Our new algorithm SupRAnsSet (see Algorithm 1), avoids instead multiple interface
calls and merely needs to access the ontology once. Given a (ground) DL-program Π
for input, SupRAnsSet proceeds as follows. We start (a) by computing a complete
family S of nonground support sets for each DL-atom. Afterwards the replacement
program Π̂ is created and its answer sets are computed one by one. Once an answer
set Î of Π̂ is found (b), we first determine the sets of DL-atoms Dp (resp. Dn) that are
guessed true (resp. false) in Î . Next, for all ground DL-atoms in Dp ∪Dn, the function
Gr(S, Î,A) instantiates S to relevant ground support sets, i.e., that are coherent with
Î and match with A ∪ Aa. We then check in (c) for atoms in Dp (resp. Dn) without
support (resp. input only support). If either is the case, we skip to (b), the next model
candidate, since no repair exists for the current one. Otherwise, in a loop (d) over atoms
in Dp—except for those supported input only (e)—we remove support sets S that are
conflicting w.r.t. Dn. Intuitively, this is the case if S hinges on an assertion α ∈ A
that also supports some atom a′ ∈ Dn (hence α needs to be deleted; note that due to
consistency of A, even inconsistent support of a′ leaves no choice). If this operation
leaves the atom from Dp under consideration without support (check at (f)), then no
repair exists and the next model candidate is considered. Otherwise (exiting the loop
at (g)), a potential deletion repair A′ is obtained from A by removing assertions that
occur in any support set for some atom a′ ∈ Dn. An eventual check (h) for foundedness
(minimality) w.r.t. A′ determines whether a deletion repair answer set has been found.

Example 8 (cont’d). Suppose {ea, neb}⊆ Î for a= DL[; hasParent](john, pat) and
b= DL[Male] boy ; Male](pat). Then, SÎgr(a)= {{hasParent(john, pat)}} we get

to the else part of Step (e) where nothing is removed from SÎgr(a), since SÎgr(b) =
{{Male(pat)}} and SÎgr(a) ∩ SÎgr(b) = ∅. Hence, at Step (g) we must drop Male(pat)
from A to make Î a deletion repair answer set.

As can be shown, algorithm SupRAnsSet correctly computes the deletion repair
answer sets of the input DL-program. For the completeness part, i.e., that all deletion
repair answer sets are indeed produced, the following proposition is crucial.

Proposition 4. Given a DL-program Π , let Î be an answer set of Π̂ such that I = Î|Π
is an answer set of Π = 〈T ∪ A, P 〉. If Î is a compatible set for Π ′ = 〈T ∪ A′, P 〉
where A′ ⊇ A, then I is an answer set for Π ′ = 〈T ∪ A′, P 〉.

Armed with this result, we establish the correctness result.

Theorem 1 SupRAnsSet is sound and complete w.r.t. deletion repair answer sets.

5 Implementation and Experiments

We implemented Algorithm SupRAnsSet within the DLVHEX evaluation framework2,
which allows us to effectively compute deletion repair answer sets for DL-LiteA. In
order to profit from existing DLVHEX data structures (e.g. for parsing) and optimization
methods (such as nogood learning, etc.), we pursued a declarative ASP approach to real-
ize SupRAnsSet . This applies to (a) computing complete nonground support families
and to (b) searching candidate deletion repair answer sets and deletion repairs.

As for (a), we use a (stratified) logic program that intuitively mimics perfect rewriting
to compute classifications relevant for support set computation on top. The logic program
reifies concepts (roles, etc.), as well as positive replacements. Facts express subsump-
tions in Pos(T), their contra-positives, and the duality of concepts (roles, etc.) and
positive replacements of their negation. A simple rule transitively closes the subsumption
relation; support sets are naturally expressed (and thus computed), using unary and
binary predicates to represent respective support for a DL-atom, the query and relevant
concepts (roles) as from the input signature.

Concerning (b), non-ground rules (see below) are added to Π̂ for the purpose of
filtering candidate deletion repair answer sets as done by SupRAnsSet . Therefore, the
language of Π̂ is extended to include support set information. For any nonground support
set S that covers a ground DL-atom a, the additional rules are of the form:

S̄A ← r(S), nea; supa ← r(S), ea, not S̄A; ← ea,not supa ;

where r(S) is a suitable representation of S, i.e., using predicates p(X) for input
assertions Pp(X), resp. pP (X) (npP (X)) for ABox assertions P (X) (¬P (X)). Fur-
thermore, pP , npP , and supa are fresh predicates not in P , and S̄A refers to npP (X)
(resp. pP (X)) if S ∩ A 6= ∅ and the assertion is positive (resp. negative), otherwise it
is void. With further constraints ← pP (X), npP (X), the resulting program intuitively
prunes candidates Î , resp. encodes deletion repair candidates, according to SupRAnsSet .

Experimental Setup. We have evaluated the approach by comparing it with ordinary
answer set computation on two scenarios. They were run on a Linux server with two
12-core AMD 6176 SE CPUs/128GB RAM using DLVHEX 2.3.0; a timeout of 120 secs
was set for each run.
Family Benchmark. The first benchmark is derived from our running example. We fixed
two ABoxes with A50 and A1000, of different size, where A50 contains 50 children (7
adopted), 20 female and 32 male adults; and twenty times that many for A1000. Every
child has at most two parents of different sex and the number of children per parent varies
from 1 to 3. Rules (11) and (12), not involved in conflicts, have been dropped from P .
Instances are varied in terms of facts over I included in P by increasing the probability
p/100 (p ranges from 5 to 35): for every child c, one additional fact isChildOf (c, p)
is added with probability p/100 for a random male adult non-parent; as well boy(c) is
included with probability p/100.

Network Benchmark. In a second scenario a network is described by a fixed ontology
O using a relation edge. Some nodes might be broken or blocked. There are overall 70

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex

nodes, (among them 23 broken and rest available). There are 68 edges (among them 5
forbidden). The TBox encodes that if an edge is forbidden, then its endpoint must be
blocked, and if a node is known to be broken, then it is automatically blocked, moreover
blocked nodes are not available:

O = {∃.forbid v Block , Broken v Block , Block v ¬Avail}.
We consider two DL-programs, Pguess and Pconn , over O that are randomly gener-

ated as follows. Pguess contains for any node n the fact node(n) with probability p/100,
and the following rules:

(1) go(X,Y)← open(X), open(Y),DL[; edge](X,Y).
(2) route(X,Z)← route(X,Y), route(Y, Z).
(3) route(X,Y)← go(X,Y),not DL[Block] block ; forbid](X,Y).
(4) open(X) ∨ block(Y)← node(X), not DL[; ¬Avail](X).
(5) negIs(X)← node(X), route(X,Y), X 6= Y.
(6) ⊥ ← node(X), notnegIs(X).

Intuitively, (1), (2) and (3) recursively determine routes over non-blocked (open) nodes;
where (3) expresses that by default a route is recommended unless it is known to be
forbidden. Rule (4) amounts to guessing for each node not known to be unavailable,
whether it is blocked or not, i.e. it contains nondeterminism, which makes rule processing
challenging. Rules (5) and (6) encode the requirement that no input node is isolated w.r.t.
the resulting routes.

The program Pconn contains the same random node facts as Pguess and facts in(n)
and out(n), either for each node n with equal probability (i.e., in with p = 1/2, out ,
otherwise). It contains the rules (1) and (2) above, and variants of (3), (4) and (6):

(3′) route(X,Y)← go(X,Y), notDL[; forbid](X,Y).
(4′) open(X)← node(X), notDL[; ¬Avail](X).
(6′) ⊥ ← in(X), out(Y), not route(X,Y).

Intuitively, rather than guessing, (4′) expresses that each node is open by default unless
known to be unavailable, and by (6′) the program checks whether each in-node is
connected to all out-nodes (thus ensuring they are available, i.e. not blocked).

Results. The results that we obtained for these settings are given in Table 1. Instances
are grouped by the probability (the value p) used for generating them. For each p, 25
instances were generated and their average running time (in seconds) to compute a first
answer set and deletion repair answer set is reported. The naive approach [7] has not been
implemented (but expectedly would time out for even the smallest problem instances).

Despite a small overhead for computation of deletion repair answer sets compared to
ordinary ones the results for the family problem with A50 scale well. For A1000 the first
repair answer set is found quicker then the inconsistency is identified during ordinary
answer set computation. Liberal safety [5] exploited in the experiments improves greatly
the running time both for repair and ordinary answer set computation modes.

In the Network domain, as expected, running times grow exponentially with the
instance size for Pguess due to the guessing rule (4). Employing a default in Pconn rather
than guessing scales linearly, however. For Pconn we also considered different splits
(rather than p = 1/2) between in and out , although without significant change.

p
A50 A1000

AS rep AS rep
5 (25) 0.12 (0) 0.19 (0) 63.93 (0) 36.70 (0)
10 (25) 0.12 (0) 0.19 (0) 63.77 (0) 37.59 (0)
15 (25) 0.12 (0) 0.20 (0) 63.98 (0) 38.29 (0)
20 (25) 0.12 (0) 0.20 (0) 63.90 (0) 39.17 (0)
25 (25) 0.12 (0) 0.20 (0) 63.82 (0) 39.97 (0)
30 (25) 0.12 (0) 0.21 (0) 63.97 (0) 40.77 (0)
35 (25) 0.12 (0) 0.21 (0) 63.18 (0) 41.41 (0)

time in seconds for first ordinary and
deletion repair answer set

p
Pconn Pguess

AS rep AS rep
10 (25) 0.19 (0) 0.13 (0) 0.48 (0) 0.16 (0)
20 (25) 0.19 (0) 0.44 (0) 0.48 (0) 0.37 (0)
30 (25) 0.19 (0) 1.28 (0) 0.51 (0) 0.86 (0)
40 (25) 0.19 (0) 2.36 (0) 0.53 (0) 1.31 (0)
50 (25) 0.19 (0) 5.60 (0) 0.57 (0) 3.00 (0)
60 (25) 0.19 (0) 8.83 (0) 0.60 (0) 5.03 (0)
70 (25) 0.19 (0) 15.92 (0) 0.64 (0) 7.27 (0)
80 (25) 0.20 (0) 25.89 (0) 0.69 (0) 11.45 (0)
90 (25) 0.20 (0) 37.33 (0) 0.75 (0) 16.95 (0)

100 (25) 0.20 (0) 55.43 (0) 0.87 (0) 16.38 (0)

Table 1. Family and Network benchmark results

Additionally, our approach has been evaluated on inconsistent programs over the
LUBM3 ontology; more precisely, over a DL-LiteA version together with a fixed,
generated4 ABox (1 university with over 500 students, 50 courses and 29 teaching
assistants). Rules encode default reasoning under constraints: teaching assistants (TAs)
are normally students, and TAs must not take the exam of a course they teach. Facts
takesExam(c1, c2) have been randomly added to the program with a probability be-
tween 0.05 to 0.2. A first repair answer set is found for all instances within 4 seconds,
while detecting inconsistency with ordinary answer set computation takes about 1 minute.

These results indicate the effectiveness of our approach for practical settings.

6 Conclusion

Support sets reduce the evaluation of DL-atoms over DL-LiteA ontologies to constraint
matching, providing a base for effective deletion repair answer set computation under flp-
semantics. Our results, and in particular algorithm SupRAnsSet , easily extend to other
semantics, e.g., weak repair answer sets [7], and to other notions of repairs. Furthermore,
support sets are used in a companion work to compute answer sets of HEX-programs
[6]. As external atoms lack an explicit data part (ABox), support sets ought to be more
abstract, which makes direct efficient usage less clear; repair is an open issue.

Note that algorithm SupRAnsSet constructs in its search all maximal deletion re-
pairs, i.e., ⊆-maximal repairs A′ ⊆ A that admit an answer set (however, it also may
construct non-maximal repairs). In this regard it is similar to work on ABox cleaning [11;
13]. There, an inconsistent ontology (with consistent TBox) is repaired by identifying
and eliminating minimal conflict sets causing, i.e., explaining, the inconsistency, thus
resulting in maximal deletion repairs. However, our setting and work differ fundamen-
tally: (i) the ontology is consistent and inconsistency arises only through the interface
of DL-atoms, and (ii) several DL-atom queries have to be considered (entailment or
non-entailment) under different potential ABox updates.

3 http://swat.cse.lehigh.edu/projects/lubm/
4 http://code.google.com/p/combo-obda/

More remotely related to our work are approaches for explaining positive and
negative answers to conjunctive queries in DL-Lite [4; 2], as they apply the perfect
reformulation algorithm [3] and then extract explanations in a nontrivial way.

In ongoing work, we consider restricted repairs [7] and an extension of our approach
to other DLs like EL. While no small complete support families exist for EL in general,
this might still apply for practically relevant fragments. Furthermore incomplete support
families can be used for optimization (caching) to reduce access to an EL reasoner.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
New York, NY, 2nd edn. (2007)

2. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in DL-Lite. In: Baader, F.,
Lutz, C., Motik, B. (eds.) Description Logics. CEUR Workshop Proc., vol. 353. CEUR-
WS.org (2008)

3. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning
39(3), 385–429 (2007)

4. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: The complexity of explaining negative
query answers in DL-Lite. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of
Knowledge Representation and Reasoning: Proc. of 13th International Conference, KR 2012,
Rome, Italy, June 10-14, 2012. pp. 583–587. AAAI Press (2012)

5. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set programs with
external sources. In: desJardins, M., Littman, M.L. (eds.) Proc. of 27th Conf. on Artificial
Intelligence (AAAI ’13), pp. 267–275. AAAI Press (2013)

6. Eiter, T., Fink, M., Redl, C., Stepanova, D.: Exploiting support sets for answer set programs
with external evaluations. In: Brodley, C., Stone, P. (eds.) Proc. 28th Conf. on Artificial
Intelligence (AAAI ’14), AAAI Press (2014), To appear.

7. Eiter, T., Fink, M., Stepanova, D.: Data repair of inconsistent dl-programs. In: Rossi, F. (ed.)
Proc. 23rd International Joint Conf. on Artificial Intelligence (IJCAI-13), pp. 869–876. AAAI
Press/IJCAI (2013)

8. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artificial Intelligence 172(12-13),
1495–1539 (2008)

9. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial procedures
to efficient reasoning with EL ontologies. J. Autom. Reasoning 53(1), 1–61 (2014)

10. Lembo, D., Santarelli, V., Savo, D.F.: A graph-based approach for classifying OWL 2 QL
ontologies. In: Eiter, T., Glimm, B., Kazakov, Y., Krötzsch, M. (eds.) Description Logics.
CEUR Workshop Proc., vol. 1014, pp. 747–759. CEUR-WS.org (2013)

11. Masotti, G., Rosati, R., Ruzzi, M.: Practical abox cleaning in DL-Lite (progress report).
In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Description Logics. CEUR Workshop
Proce., vol. 745. CEUR-WS.org (2011)

12. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. Journal of the ACM 57(5),
1–62 (June 2010)

13. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for inconsistency
handling in OWL 2 QL ontologies. In: Cudré-Mauroux, et al. (eds.) International Semantic
Web Conference (2). Lecture Notes in Computer Science, vol. 7650, pp. 337–349. Springer
(2012)

