
Towards Practical Deletion Repair of Inconsistent
DL-programs1

Thomas Eiter and Michael Fink and Daria Stepanova 2

Abstract. Nonmonotonic Description Logic (DL-) programs couple
nonmonotonic logic programs with DL-ontologies through queries
in a loose way which may lead to inconsistency, i.e., lack of an
answer set. Recently defined repair answer sets remedy this but a
straightforward computation method lacks practicality. We present a
novel evaluation algorithm for deletion repair answer sets based on
support sets, which reduces evaluation of DL-LiteA ontology queries
to constraint matching. This leads to significant performance gains
towards inconsistency management in practice.

1 INTRODUCTION

The need for combining rules with ontologies has led to different
approaches (see [12] and references therein). Among them Nonmono-
tonic Description Logic (DL-) programs [8] embody a loose coupling
of rules and a DL-knowledge base (i.e., ontology) which the rules can
query through special DL-atoms. As the ontology may be enriched
before query evaluation, a bidirectional flow of information enables
one to solve advanced reasoning tasks on top of ontologies. On the
other hand, the information flow may lead to inconsistency, that is,
cause a DL-program to lack answer sets (i.e., models).

Example 1. Consider the DL-program Π in Figure 1, which repre-
sents information about children of a primary school and their parents
in simplistic form [7]. It has an ontology O consisting of a concept
taxonomy (TBox) T in (1)-(3) and a set A of assertions (ABox), i.e.
facts, about individuals in (4)-(6). The rules P contain further facts
(7), (8) and proper rules: (9) determines fathers from the ontology,
upon feeding information to it; (10) checks, informally, against them
for local parent information (ischildof) that a child has surely not
two fathers, unless it is adopted; finally (11)-(12) single out contact
persons for children (by default, the parents); for adopted children,
fathers in O are omitted if some other contact exists. Inconsistency
arises as john , who is not provably adopted, has pat as father by the
ontology, and by the local information possibly also alex .

An inconsistent program may be unusable since it yields no answer
set. To cope with this, notions of DL-program repair (under different
semantics) have been formalized recently [7]. They give rise to so-
called repair answer sets under the supposition of suitable changes to
the ABox (data) of the ontology. As for repair computation, however,
a natural realization of corresponding algorithms turns out to be too
naive and does not scale for practical applications since the number
of ABoxes to be checked might be large in general.

1 Supported by the Austrian Science Fund (FWF) project P24090.
2 Institute of Information Systems, Vienna University of Technology, Austria.

email: {eiter,fink,dasha}@kr.tuwien.ac.at

Figure 1. DL-program Π over a family ontology

O =

((1) Child v ∃.hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)

)

P =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(X,Y)← DL[Male] boy ; Male](Y)
DL[; hasParent](X,Y);

(10) ⊥ ← not DL[; Adopted](X), Y1 6= Y2,
hasfather(X,Y1), ischildof (X,Y2),
not DL[Child] boy ;¬Male](Y2);

(11) contact(X,Y)← DL[; hasParent](X,Y),
not omit(X,Y);

(12) omit(X,Y)← DL[; Adopted](X), Z 6= Y,
hasfather(X,Y), contact(X,Z)

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

We thus propose an alternative approach for repair answer set
computation which is based on the notion of support sets. Intuitively,
a support set for a ground DL-atom a = DL[λ;Q](t) is a set of
assertions which together with the original TBox is sufficient for the
given DL-query Q(t) to be derived.

Our basic method is to precompute small support sets for each DL-
atom on a nonground level. Then during the DL-program evaluation,
for each candidate interpretation the ground instantiations of the
support sets are effectively obtained. These support sets help to prune
the answer set search space and they are also used for the ABox repair
construction.

This approach is particularly attractive for DL-LiteA ontologies,
for which it scales much better then the naive approach [7], as the
number of necessary support sets is small and they are easy to com-
pute.

Our contributions on DL-program repair computation are:
(1) We formally establish support sets as sound and complete struc-
tures for DL-atom evaluation avoiding ontology access. Moreover,
this characterization is faithfully lifted to the nonground level, en-
abling scalability of exploitation.

(2) Nonground support sets for DL-atoms over DL-LiteA ontologies
can not only be efficiently computed, but also turn out to be small. We
utilize this fact to devise an algorithm for the effective computation
of deletion repairs of DL-programs under so-called flp semantics and
discuss potential generalizations.

(3) We report experimental results obtained implementing our ap-
proach and evaluating its scalability on a set of benchmark scenarios;
they provide evidence for the effectiveness of the method.

2 PRELIMINARIES
We start with briefly recalling DL-programs and repair answer sets;
see [8, 7] for more details and background.
Syntax. A DL-program is a pair Π = 〈O,P〉 of a finite ontology O
and a finite set of rules P as follows.

• O is a DL-knowledge base (or ontology) over a signature Σo =
〈I,C,R〉 with a set I of individuals, a set C of concept names
and a set R of role names. We assume here throughout that O =
T ∪ A is a consistent DL-LiteA KB [3] with a TBox T and ABox
A, which are sets of axioms capturing taxonomic resp. factual
knowledge. Concepts C and roles R obey the following syntax,
where A ∈ C is an atomic concept and U ∈ R is an atomic role:

C → A; | ∃R R→ U | U−
B → C | ¬C S → R | ¬R

TBox axioms are of the form C v B and R v S (inclusion
axiom), or (func R) (functionality axiom).
An (ABox) assertion is a formula A(c) or U(c, d) where A ∈ C,
U ∈ R, and c, d ∈ I (called positive) or its negation, i.e., ¬A(c)
resp. ¬U(c, d) (negative).
Whenever the distinction between concepts and roles is immaterial,
P denotes a possibly negated predicate from C ∪R. We denote
by P the opposite of P , i.e. P = ¬P and ¬P = P .

• P consists of rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where each ai, 0 ≤ i ≤ n, is an lp-atom and each bi 1 ≤ i ≤ m,
is either an lp-atom or a DL-atom; here

– an lp-atom is a first-order atom p(t) with predicate p from a
set P of predicate names disjoint with C and R, and constants
from the set C = I;

– a DL-atom a(t) is of form DL[λ;Q](t), where (a)

λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2)

is such that, for 1 ≤ i ≤ m, Si ∈ C ∪R, opi ∈ {], −∪} is an
update operator, and pi ∈ P is an input predicate of the same
arity as Si—intuitively, opi =] (resp., opi = −∪) increases Si

(resp., ¬Si) by the extension of pi; (b) Q(t) is a DL-query,
which is either of the form (i) C(t), where C is a concept and t
is a term; (ii)R(t1, t2), whereR is a role and t1, t2 are terms; or
(iii) ¬Q′(t) where Q′(t) is from (i)-(ii). We skip (t) for t = ε3.

If n = 0, the rule is a constraint.

Example 2 (cont’d). In Example 1, the rule (9) contains a DL-atom
DL[Male] boy ; Male](Y), which first enriches the concept Male
inO by the extension of the predicate boy inP via], and then queries
the concept Male over the modified ontology.

Semantics. The semantics of a DL-program Π = 〈O,P〉 is defined
in terms of its grounding grd(Π) = 〈O, grd(P)〉 over C, i.e., grd(P)
contains all ground instances of rules r in P over C. In the remainder,
by default we assume that Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground
atoms, where HBΠ is the usual Herbrand base w.r.t. C and P; I
satisfies an lp-atom a, if a ∈ I and a DL-atom a of the form (2) if

O ∪ λI(a) |= Q(c) (3)

3 We disregard here for simplicity the less used constraints-operator −∩ and
subsumption queries.

where λI(a) =
Sm

i=1 Ai(I), and
• Ai(I) = {Si(t) | pi(t) ∈ I}, for opi =];
• Ai(I) = {¬Si(t) | pi(t) ∈ I}, for opi = −∪.

Satisfaction of a DL-rule r resp. set P of rules by I is then defined
as usual, where I satisfies not bj if I does not satisfy bj ; I satisfies
Π, if it satisfies each r ∈ P . We denote that I satisfies (is a model of)
an object o (atom, rule, etc.) by I |=Oo.

Example 3 (cont’d). In Example 1, I = {ischildof (john, alex),
boy(john)} satisfies a = DL[Child] boy ;¬Male](alex), asO∪
λI(a) |= ¬Male(alex), while I 6|=ODL[; Adopted](john), as the
input list is empty and O 6|= Adopted(john).

An (flp-)answer set of Π = 〈T ∪ O,A〉 is any interpretation I
that is a ⊆-minimal model of the flp-reduct f ΠI , which maps any set
P of rules and I ⊆ HBΠ to the rule set fPI = {f rI | r ∈ grd(P)},
where f rI = r if the body of r is satisfied, i.e., I |=O bi, for all bi,
1 ≤ i ≤ k and I 6|=O bj , for all k < j ≤ m; otherwise, f rI is void.

A DL-program Π is inconsistent, if it has no answer set. An inter-
pretation I is an (flp-)deletion repair answer set of Π = 〈T ∪A,P〉,
if it is an flp-answer set of some Π′ = 〈T ∪A′,P〉 whereA′ ⊆ A;4

any such A′ is called a deletion repair of Π.

Example 4 (cont’d). As mentioned, Π is inconsistent; if we
drop (4) from A, then I = {ischildof (john, alex), boy(john),
contact(john, pat)} is an answer set. Along with the facts (7) and
(8) the flp-reduct fPI contains the ground rule (11), where X and
Y are substituted by john and pat respectively. The interpretation
I1 = {ischildof (john, alex), boy(john)} is a deletion repair an-
swer set with a deletion repair A′1 = {Male(pat),Male(john)}.

In DL-LiteA ontologies, inconsistency arises by few assertions.

Proposition 5 (cf. [3]). In DL-LiteA given a TBox T every ⊆-
minimal ABox A such that T ∪ A is inconsistent fulfills |A| ≤ 2.

From this result it is not hard to establish that ≤3 distinct constants
occur in such an A.

3 SUPPORT SETS
In this section, we introduce support sets for DL-atoms. Intuitively, a
support set for a DL-atom d = DL[λ;Q](t) is a portion of its input
that, together with ABox assertions, is sufficient to conclude that the
query Q(t) will evaluate to true, i.e, that given a subset I ′ ⊆ I of
an interpretation I and a set A′ ⊆ A of ABox assertions from the
ontology, we can conclude that I |=O Q(t). The evaluation of d w.r.t.
I reduces then to test whether some support set S = I ′ ∪ A′ exists;
to this end, a sufficient collection of such sets S can be precomputed
and stored. Fortunately, for DL-LiteA this is efficiently possible.

To simplify matters and avoid dealing with I ′ separately, it is
convenient to introduce input assertions as follows.

Definition 6. Given a DL-atom d = DL[λ;Q](t), we call Pp(c) an
input assertion for d, if P ◦ p ∈ λ, ◦ ∈ {], −∪} and c ∈ C, where Pp

is a fresh ontology predicate; Ad is the set of all such assertions.

For a TBox T and DL-atom d, let then Td = T ∪ {Pp v P |
P] p ∈ λ} ∪ {Pp v ¬P | P −∪p ∈ λ}, and for an interpretation I ,
let OI

d = Td ∪ A ∪ {Pp(t) ∈ Ad | p(t) ∈ I, }. Then we have:

Proposition 7. For every O = T ∪ A, DL-atom d = DL[λ;Q](t)

and interpretation I , I |=O d iff I |=O
I
d DL[ε;Q](t) iff OI

d |= Q(t).

4 Note that additionally considering program facts can be emulated.

Unlike (3), in OI
d there is a clear distinction between native as-

sertions and input assertions of d w.r.t. I (via facts Pp and axioms
Pp v (¬)P), mirroring the lp-input of d.

Now, in view of the property that inDL-LiteA a single assertion is
sufficient to derive a query [3] from a consistent ontology, we obtain
support sets as follows.

Definition 8 (Ground Support Sets). Given a ground DL-atom d =
DL[λ;Q](t), a set S of assertions from A ∪Ad is a support set for
d w.r.t. an ontology O = T ∪ A, if either

(i) S = {P (c)} and Td ∪ S |= Q(t), or
(ii) S = {P (c), P ′(d)} such that Td ∪ S is inconsistent,

by SuppO(d) we denote the set of all such S.

Support sets are linked to interpretations by the following notion.

Definition 9. A support set S of a DL-atom d is coherent with an
interpretation I , if for each Pp(c) ∈ S it holds that p(c) ∈ I .

Example 10 (cont’d). The set {hasParent(john, pat)} is a support
set for the DL-atom DL[; hasParent](john, pat) w.r.t. O, and so is
{Male(pat)} for the DL-atom a = DL[Male] boy ; Male](pat).
Moreover, {Maleboy(pat)} is in SuppO(a) but incoherent with min-
imal models of Π.

The evaluation of d w.r.t. I then reduces to the search for coherent
support sets.

Proposition 11. Let d be a ground DL-atom, let O = T ∪ A be
an ontology, and let I be an interpretation. Then, I |=O d iff some
S ∈ SuppO(d) exists such that S is coherent with I .

Proof (Sketch). (⇒) Suppose d=DL[λ;Q](t) evaluates w.r.t. O
and I to true, i.e., λI(d) ∪ O |= Q(t). Towards a contradiction,
assume no S ∈SuppO(d) is coherent with I . There are two cases:

(1) λI(d) ∪O is consistent. Proposition 5 implies that an assertion
α ∈ λI(d) ∪ A must exist s.t. T ∪ {α} |= Q(t). If α ∈ A then
SuppO(d) contains {α} by (i) of Definition 8, which trivially is
coherent with I and thus contradicts the assumption. If α ∈ λI(d),
then α is an input assertion of d. For αd ∈ Ad, we then obtain
that {αd} ∈ SuppO(d) according to (i) of Definition 8, again a
contradiction due to coherence with I .

(2) λI(d)∪O is inconsistent. From Proposition 5 and consistency of
O, it follows that some δ ∈ λI(d) exists such that either (a) T ∪ {δ}
is inconsistent, or (b) some γ ∈ A ∪ λI(d) exists s.t. T ∪ {δ, γ}
is inconsistent. In case a), we obtain {δd} ∈ SuppO(d), for the
corresonding input assertion δd ∈ Ad. By (i) of Definition 8; this is
a contradiction, as {δd} is coherent with I . In case b), we similarly
conclude that either {δd, γ} ∈ SuppO(d) or {δd, γd} ∈ SuppO(d),
depending on whether γ ∈ λI(d), according to (ii) of Definition 8.
Again this is a support set coherent with I , contradiction.
(⇐) Suppose some S ∈ SuppO(d) is coherent with I . Assume
towards a contradiction that I 6|=O d.

Again we consider two cases:
(1) Td ∪ S is consistent. Then, Td ∪ S |= Q(t) by item (i) of

Definition 8. Since S is coherent with I , we conclude thatOI
d |= Q(t)

which implies I |=O d by Proposition 7. Contradiction.
(2) Td ∪ S is inconsistent. Then, due to coherence with I , so is
OI

d, and trivially OI
d |= Q(t); again we arrive at a contradiction by

concluding that I |=O d from Proposition 7.

As a simple consequence, we get:

Corollary 12. Given a ground DL-atom d and an ontology O, there
exists an interpretation I such that I |=O d iff SuppO(d) 6= ∅.

3.1 Nonground Support Sets

Using support sets, we can completely eliminate the ontology access
for the evaluation of DL-atoms. In a naive approach, one precomputes
all support sets for all ground DL-atoms with respect to relevant
ABoxes, and then uses them during the repair answer set computation.
This does not scale in practice, since support sets may be computed
that are incoherent with all candidate repair answer sets.

An alternative is to fully interleave the support set computation
with the search for repair answer sets. Here we construct coherent
ground support sets for each DL-atom and interpretation on the fly.
As the input to a DL-atom may change in different interpretations, its
support sets must be recomputed, however, since reuse may not be
possible; effective optimizations are not immediate.

A better solution is to precompute support sets on a nonground
level, that is, schematic support sets, prior to repair computation. Fur-
thermore, in that we may leave the concrete ABox open; the support
sets for a DL-atom instance are then easily obtained by syntactic
matching. This leads to the following definition.

Definition 13 (Support Set for Nonground DL-atom). Let d(X) =
DL[λ;Q](X) be a DL-atom and T be a TBox. Let V = {X,Y, Z}
be distinct variables such that X ⊆ V and let C = {a, b, c}.

A nonground support set for d w.r.t. T is a set S = {P (Y)} resp.
S = {P (Y), P ′(Y′)} such that (i) Y,Y′ ⊆ V and (ii) for each
substitution θ : V → C, the instance Sθ = {P (Yθ)} (resp. Sθ =
{P (Yθ), P ′(Y′θ)}) is a support set for d(Xθ) w.r.t.OC = T ∪AC ,
where AC is the set of all possible assertions over C.

Here AC takes care of any possible ABox, by considering the
maximal ABox (as O⊆O′ implies SuppO(d)⊆SuppO′(d)); three
variables suffice as at most three different constants are involved.

Example 14 (cont’d). Certainly {hasParent(X,Y)} is a non-
ground support set for the DL-atom DL[; hasParent](X,Y),
and so are {Male(X)} and {Maleboy(X)} for the DL-
atom a(X) = DL[Male] boy ; Male](X). Moreover,
{Maleboy(X),Female(X)} is a nonground support set for
a(X).

Nonground support sets S are sound, i.e. each instance Sθ that
matches withA∪Ad is a support set of the ground DL-atom dθ w.r.t.
O = T ∪ A; they are also complete, i.e., every support set S of a
ground DL-atom d w.r.t. O = T ∪ A results as such an instance, and
thus can be determined by syntactic matching.

Clearly, support sets as defined above may be subsumed by other
support sets (e.g., {A(X), R(X,Y)} by {A(X)} and removed; for
space reasons, we omit further discussion here. In the next section,
we discuss how to compute a sufficient set of nonground support sets.

3.2 Determining Nonground Support Sets

Our technique for computing the nonground support sets is based
on TBox classification, which is one of the main ontology reasoning
tasks. This reasoning service computes complete information about
the TBox constraints specified at the conceptual level.

More formally, given a TBox T over a signature Σo, the TBox clas-
sification Clf (T) determines all subsumption relations P v (¬)P ′

between concepts and roles P, P ′ in Σo that are entailed by T . This
can be exploited for our goal to compute nonground support sets,
more precisely a complete family S of such sets. Here completeness
of S for a (non-ground) DL-atom d(X) w.r.t. O means that for every

Algorithm 1: SupRAnsSet : all deletion repair answer sets
Input: Π=〈T ∪ A,P〉
Output: flpRAS(Π)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in Π

(b) for Î ∈ AS(Π̂) do
Dp ← {a | ea ∈ Î}; Dn ∈ {a | nea ∈ Î}; SÎ

gr ←Gr(S, Î,A);

(c) if SÎ
gr(a) 6= ∅ for a ∈ Dp and every S ∈ SÎ

gr(a) for a ∈ Dn fulfills
S ∩ A 6= ∅ then

(d) for all a ∈ Dp do
(e) if some S ∈ SÎ

gr(a) exists s.t. S ∩ A = ∅ then pick next a

else remove each S from SÎ
gr(a) s.t.

S ∩ A ∩
S

a′∈Dn
SÎ

gr(a′) 6= ∅

(f) if SÎ
gr(a) = ∅ then pick next Î

end
(g) A′ ← A \

S
a′∈Dn

SÎ
gr(a′);

(h) if flpFND(Î, 〈T ∪ A′,P〉) then output Î|Π
end

end

θ: X → I and S ∈ SuppO(d(Xθ)), some S′ ∈ S exists such that
S = S′θ′, for some extension θ′ of θ to V .

TBox classification is well studied in Description Logics [1]. For
example, [9] discusses it for EL w.r.t. concept hierarchy, and [10]
studies it for the OWL 2 QL profile, which is based on DL-LiteR.

Respective algorithms are thus suitable and also easily adapted for
the computation of (a complete family of) nonground support sets
for a DL-atom d(X) w.r.t. O. In principle, one can exploit Propo-
sition 7 and resort to Td, i.e., compute the classification Clf (Td),
and determine nonground support sets of d(X) proceeding similar as
for computing minimal conflict sets [10]. To determine inconsistent
support sets, perfect rewriting [3] can be done over Pos(T), i.e., the
TBox obtained from T by substituting all negated concepts (roles)¬C
(¬R, ¬∃.R, ¬∃.R−) with positive replacements C (R, ∃.R, ∃.R−).

In practice (and as in our implementation), it nonetheless can be
worthwhile to compute Clf (T) first, as it is reusable for all DL-
atoms. The additional axioms in Td, i.e., those of form Pp v (¬)P
(according to the update operators), are handled when determining
the nonground support sets for a particular DL-atom from Clf (T).

Let us now illustrate the computation of nonground support sets.

Example 15 (cont’d). Consider in our running example the DL-
atom a = DL[Male] boy ; Male](X). For computing a complete
family S of nonground support sets for a w.r.t. O, we may refer to
Ta = T ∪ {Maleboy vMale} and its classification Clf (Ta). Hence,
S1 = {Male(X)} and S2 = {Maleboy(X)} are the only unary
nonground support sets of a. Further nonground support sets are ob-
tained by computing minimal conflict sets, yielding {P (X),¬P (X)}
for each P ∈ C ∪ R, as well as {Maleboy(X),¬Male(X)},
{Male(X), Female(X)}, and {Maleboy(X),Female(X)}. How-
ever, since we are interested in completeness w.r.t. O and O is con-
sistent, pairs not involving input assertions can be dropped (as they
will not have a match inA). The remaining two sets are supersets of
S2, therefore S = {S1, S2} is a complete family of support sets for
a w.r.t. O.

4 REPAIR ANSWER SET COMPUTATION
We are now ready to describe our algorithm for computing deletion
repair answer sets with the use of support sets. DL-programs are eval-
uated usually (as in DLVHEX) by means of a rewriting Π̂ of grd(Π),
where DL-atoms a are replaced by ordinary atoms ea (replacement
atoms), together with a guess on their truth by additional ‘choice’

rules ea ∨ nea, where nea stands for negation of ea. We denote in-
terpretations of Π̂ by Î , and use Î|Π to denote their restriction to the
original language of Π.

A basic algorithm for computing repair answer sets was given
in [7]. It checks whether candidates Î (i.e., answer sets of Π̂) yield
repair answer sets by solving a corresponding ontology repair problem
(ORP). Intuitively, solutions to an ORP correspond to (potentially)
modified ABoxesA′ (not necessarily obtained by deletion, i.e. subsets
ofA) such that all DL-atoms evaluate as guessed in Î (formally Î is a
compatible set of 〈T ∪ A′,P〉, cf. [7]); they are computed through
multiple calls to the external ontology via a query interface to evaluate
DL-atoms under varying ABoxes. A final foundedness check (subset
minimality of Î|Π w.r.t. f Π′Î|Π = 〈T ∪ A′, fP Î|Π〉) establishes
repair answer sets.

Our new algorithm SupRAnsSet (see Algorithm 1), avoids instead
multiple interface calls and merely needs to access the ontology once.

Given a (ground) DL-program Π for input, SupRAnsSet proceeds
as follows. We start (a) by computing a complete family S of non-
ground support sets for each DL-atom. Afterwards the replacement
program Π̂ is created and its answer sets are computed one by one.
Once an answer set Î of Π̂ is found (b), we first determine the sets
of DL-atoms Dp (resp. Dn) that are guessed true (resp. false) in Î .
Next, for all ground DL-atoms in Dp ∪Dn, the function Gr(S, Î,A)
instantiates S to relevant ground support sets, i.e., that are coherent
with Î and match withA∪Aa. We then check in (c) for atoms in Dp

(resp. Dn) without support (resp. input only support). If either is the
case, we skip to (b), the next model candidate, since no repair exists
for the current one. Otherwise, in a loop (d) over atoms inDp—except
for those supported input only (e)—we remove support sets S that are
conflicting w.r.t. Dn. Intuitively, this is the case if S hinges on an as-
sertion α ∈ A that also supports some atom a′ ∈ Dn (hence α needs
to be deleted; note that due to consistency of A, even inconsistent
support of a′ leaves no choice). If this operation leaves the atom from
Dp under consideration without support (check at (f)), then no repair
exists and the next model candidate is considered. Otherwise (exiting
the loop at (g)), a potential deletion repair A′ is obtained from A
by removing assertions that occur in any support set for some atom
a′ ∈ Dn. An eventual check (h) for foundedness (minimality) w.r.t.
A′ determines whether a deletion repair answer set has been found
(output at (i)), or not.

Example 16 (cont’d). Suppose a= DL[; hasParent](john, pat),
b= DL[Male] boy ; Male](pat) and {ea, neb}⊆ Î . Then,
SÎ

gr(a)= {{hasParent(john, pat)}} and we get to the else part of
Step (e) where nothing is removed from SÎ

gr(a), since SÎ
gr(b) =

{{Male(pat)}} and SÎ
gr(a) ∩ SÎ

gr(b) = ∅. Hence, at Step (g) we
must drop Male(pat) from A to make Î a deletion repair answer set.

As can be shown, algorithm SupRAnsSet correctly computes
the deletion repair answer sets of the input DL-program. For the
completeness part, i.e., that all deletion repair answer sets are indeed
produced, the following proposition is crucial.

Proposition 17. Given a DL-program Π, let Î be an answer set of
Π̂ such that I = Î|Π is an answer set of Π = 〈T ∪ A,P〉. If Î is a
compatible set for Π′ = 〈T ∪ A′,P〉 where A′ ⊇ A, then I is an
answer set of Π′ = 〈T ∪ A′,P〉.

Proof (Sketch). Assume that I is an answer set of Π = 〈O,P〉,
where O = T ∪ A and that Î is a compatible set for Π′ = 〈O′,P〉
where O′ = T ∪ A′ and A′ ⊃ A. Towards contradiction, suppose
I is not an answer set of Π. Hence, I = Î|Π is not a minimal model
of f Π′I = 〈T ∪ A′, fPI〉. That is, some I ′ ⊂ I exists such that
I ′ |=O

′
fPI . We then obtain that also I ′ |=O fPI ; this contradicts

that I is an answer set of Π. Indeed, suppose that I ′ 6|=O fPI . Then

some rule r ∈ fPI of form (1) is violated wrt. I ′ and O, i.e., (i)
I ′ |=O bi for each 1 ≤ i ≤ k, (ii) I ′ 6|=O bj for each k < j ≤ m, and
(iii) I ′ 6|=O ah for each 1 ≤ h ≤ n. By monotonicity of I |=O aw.r.t.
I and O, we conclude I ′ |=O

′
bi, I ′ 6|=O

′
bj (as Î is a compatible

set for both Π̂ and Π̂′, and I 6|=O bj , and I ′ 6|=O
′
ah. But then

I ′ 6|=O
′

f P I , which is a contradiction. Hence, I ′ does not exist and I
is an answer set of Π′.

Armed with this result, we establish the correctness result.
Theorem 18. Algorithm SupRAnsSet is sound and complete w.r.t.
deletion repair answer sets.

Proof (Sketch). Soundness. Suppose SupRAnsSet outputs I = Î|Π.
We can get to (i) only if Î is an answer set of Π̂; furthermore, by
setting SÎ

gr to Gr(S, Î,A) in (b) and by the further modifications, it
is ensured at (i) that each DL-atom a ∈ Dp has some coherent support
set that matches with A′ (i.e., Gr(S, Î,A′)(a) 6= ∅), while no DL-
atom a′ ∈ Dn has such a support set. Thus from Proposition 11,
it follows that Î is a compatible set for Π′ = 〈T ∪ A′, P 〉; hence
I |= Π′. Furthermore, as flpFND(Î , T ∪ A′, P) succeeds, I is a
minimal model of f Π′I . Hence I is an answer set of Π′, and thus a
deletion repair answer set of Π.
Completeness. Suppose I is a deletion repair answer set. That is, for
some A′ ⊆ A, we have that I is an answer set of Π′ = 〈T ∪ A′, P 〉.
This implies that Î is an answer set of Π̂ and thus will be considered
in (b), with Dp and Dn reflecting the (correct) guess for I |=O

′
a for

each DL-atom a, whereO′ = T ∪A′. From Proposition 11 and com-
pleteness of S, we obtain that each a ∈ Dp has Gr(S, Î,A′)(a) 6= ∅
and each a ∈ Dn has Gr(S, Î,A′)(a) = ∅. The initial SÎ

gr is
such that Gr(S, Î,A′)(a) ⊆ SÎ

gr = Gr(S, Î,A)(a) holds for
each DL-atom a; in further steps, the algorithm removes all sup-
port sets S ∈ Gr(S, Î,A)(a) for a ∈ Dp from SÎ

gr(a) such that
S ∩ S′ ∩ A 6= ∅ for some support set S′ ∈ Gr(S, Î,A)(a′) and
a′ ∈ Dn, and removes all assertions in S′ ∩ A from A. Importantly
no removed S is inGr(S, Î,A′)(a), since by the assertion that T ∪A
is consistent, |S′ ∩A| = 1 must hold. Thus step (g) will be reached,
and the variableA′ is assigned an ABoxA′′ such thatA′ ⊆ A′′ ⊆ A.
Since Î is a compatible set for Π′′ = 〈T ∪A′′, P 〉 and I is an answer
set of Π′, by Proposition 17 I is also an answer set of Π′′, and thus
I is a minimal model of f Π′′I = 〈T ∪ A′′, f P I〉. Hence, the test
flpFND(Î , T ∪A′, P) in step (h) (whereA′ has valueA′′) succeeds,
and ÎΠ, i.e, I is output.

5 IMPLEMENTATION AND EXPERIMENTS
We implemented the Algorithm SupRAnsSet within the DLVHEX
evaluation framework,5 which allows us to effectively compute dele-
tion repair answer sets for DL-LiteA. In order to profit from ex-
isting DLVHEX data structures (e.g. for parsing) and optimization
methods (such as nogood learning, etc.), we pursued a declarative
ASP approach to realize SupRAnsSet . This applies to (a) computing
complete nonground support families and to (b) searching candidate
deletion repair answer sets and deletion repairs.

As for (a), we use a (stratified) logic program that intuitively mimics
perfect rewriting to compute classifications relevant for support set
computation on top. The logic program reifies concepts (roles, etc.), as
well as positive replacements. Facts express subsumptions in Pos(T),
their contra-positives, and the duality of concepts (roles, etc.) and
positive replacements of their negation. A simple rule transitively
closes the subsumption relation; support sets are naturally expressed
(and thus computed), using unary and binary predicates to represent

5 http://www.kr.tuwien.ac.at/research/systems/dlvhex

respective support for a DL-atom, the query and relevant concepts
(roles) as from the input signature.

Concerning (b), non-ground rules (see below) are added to Π̂ for
the purpose of filtering candidate deletion repair answer sets as done
by SupRAnsSet . Therefore, the language of Π̂ is extended to include
support set information. For any nonground support set S that covers
a ground DL-atom a, the additional rules are of the form:
S̄A ← r(S), nea; supa ← r(S), ea, not S̄A; ← ea,not supa ;
where r(S) is a suitable representation of S, i.e., using predicates
p(X) for input assertions Pp(X), resp. pP (X) (npP (X)) for ABox
assertions P (X) (¬P (X)). Furthermore, pP , npP , and supa are
fresh predicates not in P , and S̄A refers to npP (X) (resp. pP (X)) if
S ∩ A 6= ∅ and the assertion is positive (resp. negative), otherwise it
is void. With further constraints ← pP (X), npP (X), the resulting
program intuitively prunes candidates Î , resp. encodes deletion repair
candidates, according to SupRAnsSet .

Experimental Setup. We have evaluated the approach by com-
paring it with ordinary answer set computation on two scenarios.
They were run on a Linux server with two 12-core AMD 6176 SE
CPUs/128GB RAM using DLVHEX 2.3.0; a timeout of 120 secs was
set for each run.

Family Benchmark. The first benchmark is derived from our run-
ning example. We fixed two ABoxes withA50 andA1000, of different
size, where A50 contains 50 children (7 adopted), 20 female and 32
male adults; and twenty times that many forA1000. Every child has
at most two parents of different sex and the number of children per
parent varies from 1 to 3. Rules (11) and (12), not involved in conflicts,
have been dropped from P . Instances are varied in terms of facts over
I included in P by increasing the probability p/100 (p ranges from 5
to 35): for every child c, one additional fact isChildOf (c, p) is added
with probability p/100 for a random male adult non-parent; as well
boy(c) is included with probability p/100.

Network Benchmark. In the second scenario a network is de-
scribed by a fixed ontology O using a relation edge. Some nodes
might be broken or blocked. There are overall 70 nodes, (among them
23 broken and rest available). There are 68 edges (among them 5
forbidden). The TBox encodes that if an edge is forbidden, then its
endpoint must be blocked, and if a node is known to be broken, then
it is automatically blocked, moreover blocked nodes are not available:

O = {∃.forbid v Block , Broken v Block , Block v ¬Avail}.
We consider two DL-programs, Pguess and Pconn , over O that are

randomly generated as follows. Pguess contains for any node n the
fact node(n) with probability p/100, and the following rules:

(1) go(X,Y)← open(X), open(Y),DL[; edge](X,Y).
(2) route(X,Z)← route(X,Y), route(Y,Z).
(3) route(X,Y)← go(X,Y),

not DL[Block] block ; forbid](X,Y).
(4) open(X) ∨ block(Y)← node(X), not DL[;¬Avail](X).
(5) negIs(X)← node(X), route(X,Y), X 6= Y.
(6) ⊥ ← node(X), notnegIs(X).

Intuitively, (1), (2) and (3) recursively determine routes over non-
blocked (open) nodes; where (3) expresses that by default a route is
recommended unless it is known to be forbidden. Rule (4) amounts
to guessing for each node not known to be unavailable, whether it
is blocked or not, i.e. it contains nondeterminism, which makes rule
processing challenging. Rules (5) and (6) encode the requirement that
no input node is isolated w.r.t. the resulting routes.

The program Pconn contains the same random node facts as Pguess

and additional facts in(n) and out(n), either for each node n with
equal probability (i.e., in with p = 1/2, out , otherwise). It contains
the rules (1) and (2) above, and variants of (3), (4) and (6):

(3′) route(X,Y)← go(X,Y), notDL[; forbid](X,Y).
(4′) open(X)← node(X), notDL[;¬Avail](X).
(6′) ⊥ ← in(X), out(Y), not route(X,Y).

Intuitively, rather than guessing, (4′) expresses that each node is open
by default unless known to be unavailable, and by (6′) the program
checks whether each in-node is connected to all out-nodes (thus
ensuring they are available, i.e. not blocked).

p
A50 A1000

AS rep AS rep
5 (25) 0.12 (0) 0.19 (0) 63.93 (0) 36.70 (0)
10 (25) 0.12 (0) 0.19 (0) 63.77 (0) 37.59 (0)
15 (25) 0.12 (0) 0.20 (0) 63.98 (0) 38.29 (0)
20 (25) 0.12 (0) 0.20 (0) 63.90 (0) 39.17 (0)
25 (25) 0.12 (0) 0.20 (0) 63.82 (0) 39.97 (0)
30 (25) 0.12 (0) 0.21 (0) 63.97 (0) 40.77 (0)
35 (25) 0.12 (0) 0.21 (0) 63.18 (0) 41.41 (0)

Table 1. Family benchmark results

p
Pconn Pguess

AS rep AS rep
10 (25) 0.19 (0) 0.13 (0) 0.48 (0) 0.16 (0)
20 (25) 0.19 (0) 0.44 (0) 0.48 (0) 0.37 (0)
30 (25) 0.19 (0) 1.28 (0) 0.51 (0) 0.86 (0)
40 (25) 0.19 (0) 2.36 (0) 0.53 (0) 1.31 (0)
50 (25) 0.19 (0) 5.60 (0) 0.57 (0) 3.00 (0)
60 (25) 0.19 (0) 8.83 (0) 0.60 (0) 5.03 (0)
70 (25) 0.19 (0) 15.92 (0) 0.64 (0) 7.27 (0)
80 (25) 0.20 (0) 25.89 (0) 0.69 (0) 11.45 (0)
90 (25) 0.20 (0) 37.33 (0) 0.75 (0) 16.95 (0)

100 (25) 0.20 (0) 55.43 (0) 0.87 (0) 16.38 (0)

Table 2. Network benchmark results

Results. The results that we obtained for these settings are given
in Table 1 and Table 2. Instances are grouped by the probability (the
value p) used for generating them. For each p, 25 instances were
generated and their average running time (in seconds) to compute
a first answer set (using DLVHEX) and deletion repair answer set
is reported. The naive approach [7] has not been implemented (but
expectedly would time out for even the smallest problem instances).

Despite a small overhead for computation of deletion repair answer
sets compared to ordinary ones the results for the family problem
with A50 scale well. For A1000 the first repair answer set is found
quicker then the inconsistency is identified during ordinary answer set
computation. Liberal safety [5] exploited in the experiments improves
greatly the running time both for repair and ordinary answer set
computation modes.

In the Network domain, as expected, running times grow exponen-
tially with the instance size for Pguess due to the guessing rule (4).
Employing a default in Pconn rather than guessing scales linearly,
however. For Pconn we also considered different splits (rather than
p = 1/2) between in and out , although without significant change.

These results indicate the effectiveness of our approach for practical
settings.

6 CONCLUSION
Support sets reduce the evaluation of DL-atoms over DL-LiteA on-
tologies to constraint matching, providing a base for effective deletion
repair answer set computation under flp-semantics. Our results, and
in particular algorithm SupRAnsSet , easily extend to other seman-
tics, e.g., weak repair answer sets [7], and to other notions of repairs.
Furthermore, support sets are used in a companion work to compute
answer sets of HEX-programs [6]. As external atoms lack an explicit
data part (ABox), support sets ought to be more abstract, which makes
direct efficient usage less clear; repair is an open issue.

Note that algorithm SupRAnsSet constructs in its search all maxi-
mal deletion repairs, i.e., ⊆-maximal repairs A′ ⊆ A that admit an
answer set (however, it also may construct non-maximal repairs). In

this regard it is similar to work on ABox cleaning [11, 13]. There, an
inconsistent ontology (with consistent TBox) is repaired by identify-
ing and eliminating minimal conflict sets causing, i.e., explaining, the
inconsistency, thus resulting in maximal deletion repairs. However,
our setting and work differ fundamentally: (i) the ontology is consis-
tent and inconsistency arises only through the interface of DL-atoms,
and (ii) several DL-atom queries have to be considered (entailment or
non-entailment) under different potential ABox updates.

More remotely related to our work are approaches for explaining
positive and negative answers to conjunctive queries in DL-Lite [4, 2],
as they apply the perfect reformulation algorithm [3] and then extract
explanations in a nontrivial way.

In ongoing work, we consider restricted repairs [7] and an exten-
sion of our approach to other DLs like EL. While no small complete
support families exist for EL in general, this might still apply for
practically relevant fragments. Furthermore incomplete support fami-
lies can be used for optimization (caching) to reduce access to an EL
reasoner.

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness and̃

Daniele Nardi, and Peter F. Patel-Schneider, The Description Logic
Handbook: Theory, Implementation, and Applications, Cambridge Uni-
versity Press, New York, NY, 2nd edn., 2007.

[2] Alexander Borgida, Diego Calvanese, and Mariano Rodriguez-Muro,
‘Explanation in DL-Lite’, in Description Logics, eds., F. Baader,
C. Lutz, and B. Motik, CEUR Workshop Proc. vol. 353. CEUR-WS.org,
(2008).

[3] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati, ‘Tractable reasoning and efficient
query answering in description logics: The DL-Lite family’, J. Autom.
Reasoning, 39(3), 385–429, (2007).

[4] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Ste-
fanoni, ‘The complexity of explaining negative query answers in DL-
Lite’, in Proc. 13th International Conf. Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), eds., G. Brewka, T. Eiter, and
S. McIlraith, pp. 583–587. AAAI Press, (2012).

[5] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl,
‘Liberal safety for answer set programs with external sources’, in Proc.
27th Conf. Artificial Intelligence (AAAI ’13), eds., M. desJardins and
M. L. Littman, pp. 267–275. AAAI Press, (2013).

[6] Thomas Eiter, Michael Fink, Christoph Redl, and Daria Stepanova, ‘Ex-
ploiting support sets for answer set programs with external evaluations’,
in Proc. 28th Conf. Artificial Intelligence (AAAI ’14), eds., C. Brodley
and P. Stone. AAAI Press, (2014). To appear.

[7] Thomas Eiter, Michael Fink, and Daria Stepanova, ‘Data repair of in-
consistent dl-programs’, in Proc. 23nd International Joint Conference
on Artificial Intelligence (IJCAI-13), ed., F. Rossi, pp. 869–876. AAAI
Press/IJCAI, (2013).

[8] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman
Schindlauer, and Hans Tompits, ‘Combining answer set programming
with description logics for the semantic web’, Artificial Intelligence,
172(12-13), 1495–1539, (2008).

[9] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik, ‘The
incredible ELK - from polynomial procedures to efficient reasoning with
EL ontologies’, J. Autom. Reasoning, 53(1), 1–61, (2014).

[10] Domenico Lembo, Valerio Santarelli, and Domenico Fabio Savo, ‘A
graph-based approach for classifying OWL 2 QL ontologies’, in De-
scription Logics, eds., T. Eiter, B. Glimm, Y. Kazakov, and M. Krötzsch,
CEUR Workshop Proc. vol. 1014, pp. 747–759. CEUR-WS.org, (2013).

[11] Giulia Masotti, Riccardo Rosati, and Marco Ruzzi, ‘Practical abox clean-
ing in DL-Lite (progress report)’, in Description Logics, eds., R. Rosati,
S. Rudolph, and M. Zakharyaschev, CEUR Workshop Proc. vol. 745.
CEUR-WS.org, (2011).

[12] Boris Motik and Riccardo Rosati, ‘Reconciling Description Logics and
Rules’, Journal of the ACM, 57(5), 1–62, (June 2010).

[13] Riccardo Rosati, Marco Ruzzi, Mirko Graziosi, and Giulia Masotti,
‘Evaluation of techniques for inconsistency handling in OWL 2 QL on-
tologies’, in International Semantic Web Conference (2), eds., P. Cudré-
Mauroux et al., Lecture Notes in Computer Science vol. 7650, pp. 337–
349. Springer, (2012).

