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Abstract
Nonmonotonic Description Logic (DL) programs
support rule-based reasoning on top of Description
Logic ontologies, using a well-defined query inter-
face. However, the interaction of the rules and the
ontology may cause inconsistency such that no an-
swer set (i.e. model) exists. We thus consider repair-
ing DL-programs, i.e., changing formulas to obtain
consistency. Viewing the data part of the ontology
as the source of inconsistency, we define program
repairs and repair answer sets based on changes to
it. We analyze the complexity of the notion, and we
extend an algorithm for evaluating DL-programs to
compute repair answer sets, under optional selection
of preferred repairs. The extension involves a gen-
eralized ontology repair problem, in which the en-
tailment and non-entailment of sets of queries with
updates to the ontology must be achieved. While
this is intractable in general, we identify for the De-
scription Logic DL-LiteA some tractable classes of
preferred repairs that are useful in practice.

1 Introduction
Nonmonotonic Description Logic (DL-)programs [Eiter et
al., 2008b] are a prominent approach to combine Description
Logic knowledge bases (alias, ontologies) with nonmonotonic
logic programming. Different from other approaches, see
[Motik and Rosati, 2010] and references therein, they offer
a loose coupling between the rules and the ontology through
special DL-atoms which serve as query interfaces to the on-
tology. The possibility to add information from the rules part
prior to query evaluation allows for adaptive combinations
and to solve advanced reasoning problems on top of ontolo-
gies. Noticeably, the abstract design of DL-programs has been
fruitfully generalized to model view-based access of external
information sources from rules beyond ontologies.
Example 1. Consider the DL-program Π in Figure 1, which
captures information about children of a primary school and
their parents in simplistic form. It consists of an ontology O
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Figure 1: DL-program Π over a family ontology

O =

8<: (1) Child v ∃.hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)

9=;

P =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(7) ischildof (john, alex ); (8) boy(john);

(9) hasfather(X,Y )← DL[Male ] boy ; Male](Y )
DL[; hasParent ](X,Y );

(10) ⊥ ← not DL[; Adopted ](X), Y1 6= Y2,
hasfather(X,Y1), ischildof (X,Y2),
not DL[Child ] boy ;¬Male](Y2);

(11) contact(X,Y )← DL[; hasParent ](X,Y ),
not omit(X,Y );

(12) omit(X,Y )← DL[; Adopted ](X), Z 6= Y,
hasfather(X,Y ), contact(X,Z)

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
which contains a taxonomy T of concepts (i.e., classes) in (1)-
(3) and factual data (i.e., assertions) A about some individuals
in (4)-(6). The rules P contain some further facts (7), (8) and
proper rules: (9) determines fathers from the ontology, upon
feeding information to it; (10) checks, informally, against
them for local parent information (ischildof ) the constraint
that a child has for sure at most one father, unless it is adopted;
finally (11)-(12) single out contact persons for children, which
by default are the parents; for adopted children, fathers from
the ontology are omitted if some other contact exists.

However, the information flow between the rules and the
ontology can have unforseen effects and cause inconsistency
such that no answer set, (i.e., model), of a DL-program exists.
In the above example, this happens as john , who is not prov-
ably adopted, has pat as father by the ontology, and by the
local information possibly also alex .

An inconsistent program yields no information and is un-
usable. To deal with this, [Pührer et al., 2010; Fink, 2012]
effected inconsistency tolerance by suppressing or weaking
information leading to inconsistency in model building. How-
ever, the problem to repair the program, i.e., change formulas
in it to obtain consistency (which is a natural and ubiquitous
approach in data and knowledge representation), has to the
best of our knowledge not been considered.

In this paper, we consider this issue, which due the inter-
action between the rules and the ontology is nontrivial and at
least as challenging as for these parts. Ontology repair has



been studied in many works, e.g., in [Lembo et al., 2010;
Bienvenu, 2012] for consistent query answering; repairing
nonmonotonic logic programs instead is less developed (cf.
[Sakama and Inoue, 2003]). In the light of this and as the rules
are on top of the ontology (such that their plausibility can be
separately assessed), we take the view that the latter, and here
in particular its data part might not be fully correct.

In the above example, suitable changes of the ontology
facts make the DL-program consistent. For example, delet-
ing hasParent(john, pat) from A leads to the answer set
I1 = {ischildof (john, alex ), boy(john)}, while the addi-
tion of Adopted(john) leads to I2 = {ischildof (john, alex ),
boy(john), hasfather(john, pat), contact(john, pat)}; yet
other possibilities exist. However, not all repairs might be
acceptable; the question is how to find suitable repairs which,
as an additional constraint, should not increase the complexity
of DL-programs.

We tackle this challenge with the following contributions.

(1) We formalize repairing DL-programs and introduce the
notions of repair and repair answer set (Section 3). They are
based on changes of the assertions in the ontology that en-
able answer sets. As it turns out, repair answer sets do not
have higher complexity than ordinary answer sets (more pre-
cisely, weak and FLP answer sets) if queries in DL-atoms are
evaluable in polynomial time; to ensure this, we concentrate
on the Description Logic DL-LiteA [Calvanese et al., 2007].
We model repair preference by functions σ that select pre-
ferred ones from a set of candidates. As preference is a known
source of complexity, we focus on selections σ with a benign
independence property (which some practicable σ enjoy).
(2) We show how an algorithm that is used for evaluating DL-
programs can be gracefully extended to compute repairs resp.
repair answer sets, with an optional selection σ featuring inde-
pendence (Section 4). The extension involves a generalized
ontology repair problem (ORP), which arises from a candidate
answer set and the DL-atoms of the program. It consists of two
sets D1,D2 of entailment and non-entailment queries to the
ontology, with possible temporary assertions, and asks for an
ABox satisfying these sets. Importantly, under independence
the σ-selected ABoxes also yield, modulo a conditional check
on the rules part, the σ-selected repairs of the program.
(3) Furthermore, we analyze the complexity of the ORP
problem (Section 5). Unsurprisingly, it is intractable (NP-
complete) for DL-LiteA in general, but we show that NP-
hardness holds also in plain ontology settings, due to the tem-
porary assertions. However, we also identify several tractable
cases of σ-selections that are useful in practice.

While we focus here on DL-LiteA, our approach and basic
results can be extended to DL-programs with ontologies in
other Description Logics as well.

2 Preliminaries
Informally, a DL-program consists of a description logic
knowledge base (or ontology) O and a set P of logic pro-
gramming rules that may queryO via special atoms in the rule
bodies; the queries are evaluated subject to temporal updates
of O with assertions given by predicate values in P .

2.1 Description Logic Knowledge Bases
We consider Description Logic (DL) knowledge bases (KBs)
over a signature Σo = 〈I,C,R〉 with a set I of individuals
(constants), a set C of concept names C (unary predicates),
and a set R of role names R (binary predicates) as usual.

A DL knowledge base (or ontology) is a pair O = 〈T ,A〉
of a TBox T and an ABox A, which are finite sets of formulas
capturing taxonomic resp. factual knowledge, whose form
depends on the underlying DL.

In DL-LiteA, concepts C, denoting sets of objects, and
roles R, denoting binary relations between objects, are formed
according to the following syntax, where A ∈ C is an atomic
concept and P ∈ R an atomic role:

C → A | ∃R R→ P |P−.
B → C | ¬C R→ P |P−.

DL-LiteA TBox axioms are then of the form:
C1 v C2, C1 v ¬C2,
R1 v R2, R1 v ¬R2, (func R).

Axioms in the first column are positive inclusions (among
concepts and roles, respectively), and those in the second
column disjointness axioms; (func R) is a functionality axiom.
An assertion is a formula A(c) or P (c, d) where A ∈ C,
P ∈ R, and c, d ∈ I (called positive) or its negation, i.e.,
¬A(c) resp. ¬P (c, d) (negative).1 An example of a DL-LiteA
ontology is O in Figure 1. The semantics of DL ontologies O
is based on first-order interpretations I = 〈∆I , ·I〉 of Σo with
a domain ∆I and an interpretation function·I [Calvanese et al.,
2007] and is captured by a modular translation τ(O) of O to
first-order logic [Baader et al., 2007]; O is consistent, if τ(O)
is satisfiable. Throughout the paper, we assume that ontologies
are in DL-LiteA, under the unique names assumption as usual.

2.2 Description Logic Programs
DL-rules extend rules in non-monotonic logic programs with
special DL-atoms. They are formed over a signature Σ =
〈C, I,P,C,R〉 where Σo = 〈I,C,R〉 is a DL signature, C ⊇
I is a set of constant symbols and P is a finite set of predicate
symbols (called lp predicates) of arities ≥ 0 disjoint with
C,R; for simplicity, we assume here C = I.
Syntax. A (disjunctive) DL-program Π = 〈O, P 〉 consists of
a DL ontology O and a finite set P of DL-rules r of the form
a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where each ai, 0 ≤ i ≤ n is a first-order atom p(~t) with
predicate p ∈ P (called ordinary or lp-atom) and each bi,
1 ≤ i ≤ m, is either an lp-atom or a DL-atom; if n = 0, the
rule is a constraint, and if n ≤ 1, it is normal.

A DL-atom a(t) is of form DL[λ;Q](~t), where (a) the list
λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2)

for each i, 1 ≤ i ≤ m, Si ∈ C ∪R, opi ∈ {], −∪, −∩} is an
update operator, and pi ∈ P is an input predicate of the same
arity as Si; intuitively, opi =] (resp., opi = −∪) increases Si
(resp., ¬Si) by the extension of pi, while opi = −∩ constrains
Si to pi; (b) Q(~t) is a DL-query, which has one of the forms
(i) C(t), where C is a concept and t is a term; (ii) R(t1, t2),

1Negative assertions ¬F (~t) are easily compiled to positive ones
using a fresh concept resp. role name F¬ and F¬(~t), F¬ v ¬F .



where R is a role and t1, t2 are terms; (iii) Q is an inclusion
axiom and ~t = ε; (iv) Q is a disjointness axiom and ~t = ε; or
(v) ¬Q′(~t) where Q′(~t) is from (i)-(iv). We skip (~t) for ~t= ε.

Example 2. In the Example 1 the rule (9) contains a DL-atom
DL[Male ] boy ; Male](Y ), where we first enrich the concept
Male in O by the extension of the predicate boy in P via
the operator ]. We then query the concept Male over the
modified version of the ontology.

Semantics. The semantics of a DL-program Π = 〈O, P 〉 is
in terms of its grounding grd(Π) = 〈O, grd(P )〉 over C, i.e.,
grd(P ) contains all ground instances of rules r in P over C.
In the remainder, by default we assume Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of
ground atoms, where HBΠ is the Herbrand base w.r.t. C and
P (i.e. all ground atoms over C and P); I satisfies an lp- or
DL-atom a, if (i) a ∈ I , if a is an lp-atom, and (ii) τ(〈T ,A ∪
λI(a)〉) |= Q(c) where O = 〈T ,A〉, if a is a DL-atom of
form (2), where λI(a) =

⋃m
i=1Ai(I),

• Ai(I) = {Si(~t) | pi(~t) ∈ I}, for opi = ];
• Ai(I) = {¬Si(~t) | pi(~t) ∈ I}, for opi = −∪;
• Ai(I) = {¬Si(~t) | pi(~t) ∈ HBΠ \ I}, for opi = −∩.

Satisfaction of a DL-rule r resp. set P of rules by I is then
as usual, where I satisfies not bj if I does not satisfy bj ; I
satisfies Π, if it satisfies each r ∈ P . We denote that I satisfies
(is a model of) an object o (atom, rule, etc.) with I |=Oo.

Example 3. Going back to the Example 1, the interpretation
I = {ischildof(john, alex), boy(john)} satisfies the DL-
atom o = DL[Child ] boy;¬Male](john), asO∪λI(o) |=
¬Male(john). Furthermore, I 6|=ODL[;Adopted](john),
since the input list of the respective DL-atom is empty and
O 6|= Adopted(john).

Finally, answer sets of Π are defined using a reduct ρx
that maps any set P of rules and I ⊆ HBΠ to a set ρxP

I of
rules: I is an x-answer set of Π, if I is a ⊆-minimal model
of ρx ΠI = 〈O, ρxP

I〉 (called the x-reduct of Π); ASx(Π)
is the set of all x-answer sets of Π. In particular, for weak
(x = weak ) and FLP (x = flp) answer sets [Eiter et al., 2005]:

• The weak -reduct is ρweakP
I = {wrI | r ∈ P} where wrI

is void if either I |= bj , for some k < j ≤ m or I 6|=O bi,
for some DL-atom bi, 1 ≤ i ≤ k; otherwise, wrI removes all
DL-atoms bi and all not bj from the rule body.
• The flp-reduct is ρflpP

I = {f rI | r ∈ P} where f rI = r
if the body of r is satisfied, i.e., I |=O bi, for all bi, 1 ≤ i ≤ k
and I 6|=O bj , for all k < j ≤ m; otherwise, f rI is void.

For further reduct-based answer sets, see e.g. [Eiter et al.,
2008b; Lukasiewicz, 2010; Wang et al., 2010; Shen, 2011].

A DL-program is inconsistent, if it has no answer set.

Example 4 (cont’d). As mentioned, Π is inconsistent; if we
drop (4) fromA, then I = {ischildof (john, alex ), boy(john),
contact(john, pat)} is both a weak and an FLP answer set.
Along with the facts (7) and (8) the flp-reduct ρflpP

I contains
the ground rule (11), where X and Y are substituted by john
and pat respectively.

3 Repair Answer Sets
We now turn to repairing an inconsistent DL-program 〈O, P 〉.
In our setting, we assume that the rule part P , which is on top
of the ontology O = 〈T ,A〉, is reliable and that the cause for
inconsistency is in the latter. Thus when searching for a repair,
modifications should only be applied to O. In principle, the
TBox T and the ABox A of the ontology could be subject to
change; however, as usually the TBox is well-developed and
suitable TBox change is less clear in general (the more by an
external user), we confine to change only the ABox.

Hence given a possibly inconsistent DL-program, our goal
is to find an ABox such that replacing the ABox A by it
makes the DL-program consistent. The answer sets of such a
“repaired” DL-program are then referred to as repair answer
sets of the program. Formally, they are defined as follows.
Definition 5. Given a DL-program Π = 〈O, P 〉, O= 〈T ,A〉,
• an ABox A′ is an x-repair of Π, if (i) O′= 〈T ,A′〉 is

consistent, and (ii) Π′ = 〈O′, P 〉 has some x-answer set; the
set of all x-repairs of Π is denoted repx(Π).
• I is an x-repair answer set of Π, if I ∈ ASx(Π′), where
Π′ = 〈O′, P 〉, O′= 〈T ,A′〉, and A′ ∈ repx(Π); the set of
all x-repair answer sets of Π is denoted by RASx(Π).

Furthermore, we denote by repIx(Π) = {A′ ∈ repx(Π) | I ∈
ASx(Π′),Π′ = 〈O′, P 〉,O′ = 〈T ,A′〉} the set of all ABoxes
A′ under which I becomes an x-answer set of Π.
Example 6. Reconsider Π in Example 1. The interpretation
I1 = {ischildof (john, alex ), boy(john)} is an flp-repair an-
swer set with flp-repair A′1 = {Male(pat),Male(john)}.

We first briefly address the complexity of repair answer sets,
but refrain from an extensive complexity study here.
Theorem 7. Given a ground DL-program Π, deciding
whether RASx(Π) 6= ∅ is (a) ΣP2 -complete for arbitrary
Π and x ∈ {flp,weak}; (b) ΣP2 -complete for normal Π and
x = flp; (c) NP-complete for normal Π and x = weak . De-
ciding ASx(Π) 6= ∅ has in all cases the same complexity as
deciding RASx(Π) 6= ∅.

Nonsurprisingly, repair answer sets and ordinary answer
sets have the same complexity in general. Indeed, a repair
A′ can be jointly guessed with an answer set I , and the test
whether I is a minimal model of ρx Π′I can be done as usual;
the upper bounds are then immediate from the following:
Proposition 8. Given any I ⊆ HBΠ, O in DL-LiteA, and
DL-atom a, deciding I |=O a is feasible in polynomial time.

This proposition is straightforward from the definition of
the DL-atom and a well-known result presented in [Calvanese
et al., 2007]. The hardness is inherited from ordinary answer
set programs, except for normal FLP answer sets, for which
a common Σp2-hardness proof of ordinary disjunctive logic
programs can be adapted.

3.1 Selection Preference
Clearly, not all repairs are equally useful or interesting for a
certain scenario. For instance, repairs that have no common
assertions with the original ABox might be unwanted; repairs
that introduce assertions that are not in the initial ABox; re-
pairs that would cause non-minimal change etc.



Formally, we model preferred repairs using a selection func-
tion σ : 2AB×AB → 2AB, whereAB is the set of all ABoxes,
that given a set S of ABoxes and an ABox A, returns a set
σ(S,A) ⊆ S of preferred (or selected) ABoxes.

This notion captures a variety of selection principles, in-
cluding minimal repairs according to some preference relation,
or some global selection property. We then define

Definition 9. Given Π = 〈O, P 〉,O= 〈T ,A〉, and a selection
σ, we call rep(σ,x)(Π) = σ(repx(Π),A) the (σ, x)-repairs of
Π. An interpretation I ⊆ HBΠ is a (σ, x)-repair answer set
of Π, if repI(σ,x)(Π) 6= ∅, where repI(σ,x)(Π) = rep(σ,x)(Π)∩
repIx(Π); RAS(σ,x)(Π) is the set of all such answer sets.

In general, even polynomially computable selections σ may
incur intractability, like e.g. selecting ABoxes A′ with set-
minimal change to A, or with smallest Dalal (Hamming) dis-
tance. We aim at selections that are useful in practice and
have benign computational properties. Useful in this regard
are selections of the following kind.

Definition 10. A selection σ : 2AB×AB → 2AB is indepen-
dent, if σ(S,A) = σ(S′,A)∪σ(S \S′,A) whenever S′ ⊆ S.

Independence allows us to decide whether a given repair
A′ ∈ S is selected by σ without looking at other repairs, and
composition works easily. This makes the introduced property
valuable, since independent selection functions of different
kind can be conveniently combined without a major increase
in the complexity. Clearly, set-minimal change and smallest
Dalal distance are not independent. On the other hand, select-
ing all ABoxes such that A′ ⊆ A, is obviously independent.
The latter, and several other independent selections that are
useful in practice, will be considered in Section 5.

Independence leads to the following beneficial property.

Proposition 11. For every Π and selection σ, if σ is indepen-
dent, then repI(σ,x)(Π) ⊆ rep(σ,x)(Π), for every I ⊆ HBΠ.

Proof (Sketch). By definition rep(σ,x)(Π) = σ(repx(Π),A)
and repI(σ,x)(Π) = σ(repIx(Π),A). Now since repIx(Π) ⊆
repx(Π) and σ is independent, we obtain σ(repx(Π),A) =
σ(repIx(Π),A) ∪ σ(repx(Π)\repIx(Π),A), from which the
result follows.

Proposition 11 implies that if we can turn an interpretation I
into an answer set of Π by a σ-selected repair from the repairs
which achieve this for I , then I is a σ-repair answer set of Π;
that is, local selection is enough for a global σ-repair answer
set. This will be exploited in the next section.

4 Computation
In this section we first recall the essentials of the evaluation
algorithm for DL-programs in [Eiter et al., 2012] (given there
for the more general class of so-called HEX-programs). We
then present the core procedure of an extension for computing
(σ, x)-repair answer sets.

Algorithm 1: AnsSet : Compute ASx(Π)
Input: A DL-program Π, x ∈ {weak ,flp}
Output: ASx(Π)

for Î ∈ AS(Π̂) do
(a) if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

4.1 Evaluation of DL-programs
DL-program evaluation builds on a rewriting Π̂ of Π, where
DL-atoms a are replaced by ordinary atoms (replacement
atoms) ea, together with a guess on their truth by additional
‘choice’ rules. Given an interpretation Î over this extended
language, we use Î|Π to denote its restriction to the original
language of Π. A crucial notion is that of compatibily:
Definition 12. [Eiter et al., 2012] A compatible set of a DL-
program Π = 〈O, P 〉 is an interpretation Î , such that

(i) Î is an answer set of Π̂, and
(ii) ea ∈ Î iff Î|Π |=O a, for all a = DL[λ;Q](c) of Π.
Conversely, given an interpretation I of Π, we denote by

Ic the interpretation of Π̂, such that Ic coincides with I on
nonreplacement atoms, and each replacement atom ea is in Ic
(i.e., true) iff I |=O a for the respective DL-atoms a.

With these concepts in place, we are ready to describe the
basic algorithm AnsSet (cf. Algorithm 1) for evaluating a
DL-program Π = 〈O, P 〉 adapted from [Eiter et al., 2012].

First, Π̂ is evaluated by an ordinary ASP solver. For every
answer set Î , in (a), the function CMP checks for compatibil-
ity, while xFND tests for foundedness, i.e., whether Î|Π is a
⊆-minimal model of the reduct ρx ΠÎ|Π . In case of x = weak
it just returns true, otherwise (x = flp) it checks for disjoint-
ness with unfounded sets as defined in [Eiter et al., 2012]). If
both tests succed, then Î|Π is output as an answer set.

An important link between the answer sets of Π and Π̂ is:

Proposition 13. If I ∈ ASx(Π) then Ic ∈ ASx(Π̂).
While AnsSet is clearly sound, from this result its com-

pleteness follows, i.e. restricting the search to ASx(Π̂) does
not yield any loss of answer sets.

4.2 Repair Computation
In this subsection, we first aim at a procedure for computing
(σ, x)-repairs given an independent selection function σ. Then,
we briefly describe how its main subroutine can be used for an
extension of AnsSet that computes answer sets if they exist,
and (σ, x)-repair answer sets otherwise.

A first key observation is that Proposition 13 can be gener-
alized to repair answer sets, more precisely:

Proposition 14. If I ∈ RASx(Π) then Ic ∈ AS(Π̂).

Proof (Sketch). By definition of RASx(Π), we get that I ∈
AS(Π′), where Π′ = 〈O′, P 〉, O′ = 〈T ,A′〉 and A′ ∈
repx(Π). Since by Proposition 13 Ic ∈ AS(Π̂′) and Π̂ = Π̂′,
the result immediately follows.



Algorithm 2: RepAns: Compute repÎ|Π(σ,x)(Π)

Input: Π=〈O, P 〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak ,flp}
Output: repÎ|Π(σ,x)(Π)

for A′ ∈ ORP(Î ,Π, σ) do
if CMP(Î , 〈T ,A′, P 〉) ∧ xFND(Î , 〈T ,A′, P 〉) then

output A′
end

end

Thus, our approach is to traverseAS(Π̂) and check for each
answer set Î whether it is a (σ, x)-repair answer set of Π. The
latter proceeds in two steps, where the first step is to search for
potential σ-repairs of the ontology such that Definition 12(ii)
holds for Î . More formally (and slightly generalized), we
define an ontology repair problem as follows.
Definition 15. An ontology repair problem (ORP) is a triple
P = 〈O, D1, D2〉 where O = 〈T ,A〉 is an ontology and
Di = {〈U ij , Qij〉 | 1≤ j≤mi}, i = 1, 2, are sets of pairs
where each U ij is an ABox and each Qij is a DL-query. A
repair (solution) for P is any ABox A′ such that

(i) the ontology O′ = 〈T ,A′〉 is consistent;
(ii) τ(〈T ,A′ ∪ U1

j 〉) |= Q1
j holds for 1 ≤ j ≤ m1;

(iii) τ(〈T ,A′ ∪ U2
j 〉) 6|= Q2

j holds for 1 ≤ j ≤ m2.

For a selection σ, the σ-repairs of P are σ-rep(P) =
σ(rep(P),A), where rep(P) is the set of all repairs of P .

Intuitively every pair 〈U ij , Qij〉 corresponds to some DL-
atom aij = DL[λij ;Q

i
j ](~t) under an interpretation I , i.e., such

that U ij = λI(aij). Moreover, a1
j (resp., a2

j ) should evaluate to
true (resp. false) such that I is a (potential) answer set of Π.
We illustrate these ideas by an example, which also shows how
an answer set Î of Π̂ induces a corresponding ORP instance.
Example 16. Let Π = 〈O, P 〉 be a DL-program, where

P =
{
p(c); r(c); q(c)← DL[C−∪r;D](c);
⊥ ← DL[D ] p,E−∪r;¬C](c)

}
.

Let a1 = DL[C−∪r;D](c) and a2 = DL[D ] p,E−∪r;¬C](c),
and consider the interpretation Î = {p(c), r(c), q(c), ea1},
i.e., a1 is guessed true and a2 false. The corresponding ORP is
given by P = 〈O, D1, D2〉, where D1 = {〈{¬C(c)};D(c)〉}
and D2 = {〈{D(c),¬E(c)};¬C(c)〉}.

The procedure RepAns (cf. Algorithm 2) calls the subrou-
tine ORP(Î ,Π, σ) to compute σ-repairs of the corresponding
ORP. Further on, RepAns re-uses functions CMP and xFND
to check whether Î is an answer set of Π̂′ and that it is founded
w.r.t. Π′ = 〈O′, P 〉, O′= 〈T ,A′〉. It thus computes the set of
all ABoxes under which Î becomes a (σ, x)-repair answer set.

Let then RepAnsSet be the algorithm that iteratively calls
RepAns for every Î ∈ AS(Π̂), and that outputs any Î where
the result is nonempty. We then can show:
Theorem 17. RepAns and RepAnsSet are sound and com-
plete for rep(σ,x)(Π) and RAS (σ,x)(Π), respectively, for in-
dependent selection σ.

Proof (Sketch). Soundess. Let A′ be an output of RepAns.
Towards contradiction, suppose A′ 6∈ rep

Î|Π
(σ,x)(Π). Then

Î|Π 6∈ AS(Π′), where Π′ = 〈T ,A′, P 〉 and A′ is σ-selected.
Clearly A′ is σ-selected, since otherwise A′ 6∈ ORP(Î ,Π, σ)
and A′ is not in the output. As it is given that Î ∈ AS(Π̂), it
must hold that either Î is not a compatible set of Π′ or it is not
x-founded. If either of these is true then the corresponding
procedure CMP or xFND returns false and A′ is not in the
output, which leads to contradition.

Completeness. Let repÎ|Π(σ,x)(Π) be the set of all σ-selected

repairs for Π that turn Î|Π into an x-repair answer set. Towards

contradiction assume that there exists someA′ ∈ repÎ|Π(σ,x)(Π),
which is not an output of the algorithm RepAns. Then either
(1) A′ 6∈ ORP(Î ,Π, σ); (2) CMP(Î , 〈T ,A′, P 〉) = false

or (3) xFND(Î , 〈T ,A′, P 〉) = false. If (1) holds, then A′
is not a solution of the ORP problem. Thus either 〈T ,A′〉
is unsatisfiable (contradiction to A′ ∈ rep

Î|Π
(σ,x)(Π) by the

definition of the repair) or the actual values of the DL-atoms
do not coincide with the replacement atoms in Π̂ (contradiction
due to the failure of the compatibility check). Finally, if either
(2) or (3) holds then we obtain contradiction, since A′ ∈
rep

Î|Π
(σ,x)(Π) implies Î|Π should be compatible and x-founded.

Using argument above and Proposition 14 soundness and
completeness of RepAnsSet is easily established.

Similarly, RepAns could be intertwined with AnsSet for
an extension that computes answer sets if they exist, and repair
answer sets otherwise: while iterating over Î ∈ AS(Π̂) and
checking for compatibility and foundedness, also RepAns is
called for every Î , as long as no answer set is found. The
results of these calls are stored and can, in case, eventually be
used to output all (σ, x)-repair answer sets.

Note also that, for illustration, we kept the algorithms sim-
ple and several optimizations apply. For instance, to com-
pute some (σ, x)-repair answer set, we can replace RepAns
by a version that just computes a first witnessing ABox A′.
Moreover, caching ABoxes A′ and/or all answer sets of the
respective Π′ (which can be straight output as (σ, x)-repair
answer sets of Π) further reduces the search space.

A natural question is whether computing repair answer sets
via compatible sets Î of Π makes repair answer set checking
for Î|Π easier than for abritrary interpretations I . Unfortu-
nately, this is not the case.
Theorem 18. For ground Π = 〈O, P 〉 and I ⊆HBΠ, deciding
whether I∈RASx(Π) is NP-complete for x=weak and Σp2-
complete for x=flp; hardness holds even if I = Î|Π for a
compatible set Î of Π.

Proof (Sketch). For space issues the exposition is necessarily
superficial and covers only the Σp2-hardness result. The latter
holds by a reduction from the problem of validity of a QBF
formula

φ = ∃x1 . . . xn∀y1 . . . ymE, n,m ≥ 1, (3)
where E = χ1 ∨ . . . ∨ χr is a DNF formula, and each

χk = lk1 ∧ lk2 ∧ lk3 is a conjunction of literals over atoms



x1, . . . , xn, y1, . . . , ym. Given φ, we construct Π = 〈∅,A, P 〉
with A = {X1(a), . . . , Xn(a)} and P as follows:

P =



(1) ⊥ ← not DL[;Xi](a), not DL[;¬Xi](a).
(2) ⊥ ← DL[;Yj ](a).
(3) ⊥ ← DL[;¬Yj ](a).
(4) w(a) ← not w(a).
(5) yj(a) ← w(a).
(6) w(a) ← f(lk1), f(lk2), f(lk3).


,

where f(xi) = DL[Xi ] w;Xi](a),
f(¬xi) = DL[Xi −∪ w;¬Xi](a),
f(yj) = DL[Yj ] yj , Yj ] w;Yj ](a),

f(¬yj) = DL[Yj −∩ yj , Yj −∪ w;¬Yj ](a).

Set I = {w(a), y1(a), . . . , ym(a)}, and note that I = Î|Π for
some compatible set Î of Π and f ΠI = {(5), (6)}. Intuitively,
due to (1)-(3) a repair A′ must be a maximal consistent subset
of {Xi(a), ¬Xi(a) | 1≤ i≤n}. Now I ∈RASflp(Π) im-
plies the existence of someA′ s.t. by minimality of I , for each
I ′⊆ I\{w(a)} exists some k, where all f(lk1), f(lk2), f(lk3)
are true, hence χk is true; thus φ is true. Conversely, every
assignment to the xi witnessing that φ is true induces some
A′ ∈ repIflp(Π).

This also yields a lower bound for (σ, x)-repair answer sets.
Informally, the reason is that ORPs are a source of complexity
that is orthogonal to minimality checking of models.

An interesting and practically relevant quest is for tractable
cases, and a natural choice is to consider restricted programs
and ORPs (see next section), such that compatibility checking
is polynomial. While this yields tractability for weak-repair
answer sets, checking foundedness for flp-repair answer sets
remains intractable (although the complexity drops to NP).

5 Ontology Repair
The Ontology Repair Problem from above is an important
subtask in the algorithm for computing repair answer sets.
Nonsurprisingly, this problem is intractable in general; how-
ever, this holds already in simple settings.

Theorem 19. Deciding if an ORP P=〈O, D1, D2〉 has some
repair is NP-complete, and NP-hard even if T =A=∅.

Proof (Sketch). A guess for a repair A′ is verifiable in poly-
nomial time, as deciding each 〈T ,A′ ∪ U ij〉 |= Qij is poly-
nomial. NP-hardness holds by a reduction from SAT. Given
φ=χ1∧ · · · ∧χm on atoms x1, . . . , xn, we construct P =
〈〈∅, ∅〉, D1, D2〉, with concepts Xj , X̄j for the xj and A, s.t.

• D1 = {〈Ui, A(d)〉, 〈Vj , A(d)〉 | 1 ≤ i ≤ m}, where Ui =
{X̄j(d), Xj′(d) | xj∈χi,¬xj′∈χi}, Vj = {Xj(d), X̄j(d)},
• D2 = {〈∅, A(d)〉}.
Intuitively, by D2 a repair A′ must not contain A(d), and by
D1 adding either (i) Ui or (ii) Vj to A′ causes inconsistency.
By (i) A′ must contain some Xj(d) (resp. X̄j(d)) such that
xj ∈ χi (¬xj ∈ χi), and by (ii) {Xj(d), X̄j(d)} 6⊆ A′; thus
A′ encodes a consistent choice of literals that satisfies φ.

We note that ORP has two sources of NP-hardness, viz. the
data part (as in the proof above), and the taxonomy, which
under σ-repairs may derive further assertions. Furthermore,
each ORP can be encountered in the algorithm above, for some
answer set Î of a program Π̂; we show this on an example.
Example 20. Let P = 〈O, D1, D2〉 where D1 = {δ1}, D2 =
{δ2} with δ1 = 〈{C(c),¬D(c)},¬E(c)〉, and δ2 = 〈{D(d),
¬S(d)}, C(d)〉. We introduce predicates pδ1C , p

δ1
D for δ1 and

pδ2D , p
δ2
S for δ2 and construct Π = 〈O, PI ∪ PDL〉, where

PI = {pδ1C (c); pδ1D (c); pδ2D (d); pδ2S (d)},

PDL =
{
⊥ ← not DL[C ] pδ1C , D−∪p

δ1
D ;¬E](c); (1)

⊥ ← DL[D ] pδ2D , S−∪p
δ2
S ;C](d)} (2)

}
.

Then, Π̂ has a single answer set Î , and it gives rise to P ; (1)
effects the pair δ1 in D1 and (2) the pair δ2 in D2.

5.1 Tractable Cases
To gain tractability for ORP, we consider restrictions on repairs
and the ontology, as the pairs D1 and D2 are hard to control
in practice. We present four tractable cases of σ-repairs with
independent selection function σ, which are arguably useful in
practice. In what follows, let P = 〈O, D1, D2〉, O= 〈T ,A〉.

1. Bounded δ±-change. A natural restriction is to bound
the distance from the original ABox, i.e., use σδ±,k(S,A) =
{A′ | |A′4A| ≤ k}, for some constant k. As the number m
of possible ABox assertions is polynomial in the size of T and
A, traversing all O(

(
m
k

)
) possible A′ and checking the repair

condition is possible in polynomial time.
2. Deletion repair. Another important restriction is to allow
only to delete assertions from the original ABox, i.e., use
σdel(S,A) = {A′ | A′ ⊆ A}.
Example 21. In Example 1, eachA′⊂A except {Male(pat),
hasParent(john, pat)} is a deletion repair.

To achieve tractability, we exclude non-containment (6v)
DL-queries, i.e., of the form ¬Q where Q is an inclusion or
disjointness axiom, from P; let us call such ORPs 6v-free.
Theorem 22. Deciding if a 6v-free ORP P = 〈O, D1, D2〉
with consistent O has a σdel-repair is polynomial.

For inconsistentO, or if non-containment DL-queries occur
in P , the problem is NP-hard. The proof of Proposition 22
exploits the following property of the remaining DL-queries.
Lemma 23. If 〈T ,A〉 is consistent, then τ(〈T ,A ∪ U ij〉) |=
Qij iff τ(〈T ,A0 ∪ U ij〉) |= Qij for some A0⊆A with |A0|≤1.

That is, at most one assertion α from A is sufficient to
derive the query. This follows from a respective result for
empty U ij and instance queries Qij in [Calvanese et al., 2007].

Now if τ(〈T , U ij〉) |=Qij , we can drop 〈U ij , Qij〉 from P if
i=1, and stop if i=2 as no repair exists. Otherwise we let
the support set Suppij of Qij contain all assertions α such
that τ(〈T , {α}∪U ij〉) |=Qij . Then, any repair A′ must fulfill
A′∩Supp1

j 6= ∅ for each j (i.e., be a hitting set), and must be
disjoint with each Supp2

j′ . Let then Sj := (Supp1
j ∩ A) \⋃

j′ Supp2
j′ . A σdel-repair A′ exists iff each Sj is nonempty;



the hitting sets of the Sj are all the σdel-repairs. The con-
struction of the Sj and the check can be done in polynomial
time, thus the overall problem is tractable. Furthermore, the
(possibly exponentially many) σdel-repairs can be output in
total polynomial time. This method can be extended to allow
in addition also a constant number of new assertions in repairs.
3. Deletion δ+. This selection combines deletion and small
change in a prioritized way. First one deletes assertions from
A (assumed to be consistent) according to some polynomial
method µ (using domain knowledge etc.) until some A0 =
µ(O) ⊆ A results that satisfies Definition 15 (iii). If A0 is a
repair, it is the result; otherwise, one looks for a close repair
with bounded δ± change. That is σdel,δ+(S,A) = {µ(O)} if
µ(O) ∈ S and σdel,δ+(S,A) = σδ+(S, µ(O)) otherwise.
Example 24 (cont’d). If µ(O) drops unreliable information
about the sex of certain persons (e.g. pat), A0={Male(john),
hasParent(john, pat)} is a deletion repair. If the constraint

⊥ ← DL[;hasParent](X,Y ),
not DL[;Male](Y ),not DL[;Female](Y )

(the sex of parents must be known) were in P , one would have
to add Female(pat) to A0 to obtain a deletion-δ+ repair.

4. Addition under bounded opposite polarity. Repairs by
unbounded additions become tractable, if few of them are posi-
tive resp. negative, i.e., the number of assertions with opposite
polarity is bounded (which by Proposition 19 is necessary).
That is, if A+ (resp., A−) is the positive (negative) part of
an ABox A, then σbop(S,A) = {A′ ⊇ µ(O) | |A′+\A|≤k
or |A′−\O|≤ k} where µ(O) is a starting ABox as above

and k is a constant. The following result is instrumental.
Theorem 25. For a 6v-free ORP P = 〈O, D1, D2〉, O =
〈T ,A〉, where T has no disjointness axioms2 and µ(O) = A,
deciding whether some σbop-repair exists is polynomial.

This can be shown by an extension of the method for dele-
tion repairs; like for the latter, the problem is NP-hard in
presence of 6v DL-queries. Assuming that 〈T ,A〉 is consis-
tent (otherwise no σbop-repair exists), we proceed as follows:

1. Like for deletion repairs, we compute the support sets
Suppij and simplifyP resp. quit if no repair can exist, checking
also whether Suppij ∩ A 6= ∅ (as then Qij is entailed).

2. We then let Sj = Supp1
j \ (A ∪

⋃
j′ Supp2

j′). Similar
as above, the σbop repairs are then of the form A′ = A ∪ H
where H is a hitting set of the Sj , but we must ensure that
〈T ,A′〉 is consistent asH consists of new assertions.

3. We choose a set H− ⊆
⋃
j Sj of at most k negative

assertions, which is a partial hitting set, and check that 〈T ,A∪
H−〉 is consistent. If yes, we remove Sj if it intersects with
H− and remove otherwise from Sj each positive assertion α
s.t. ¬α is entailed by 〈T ,A∪H−〉, and all negative assertions.

4. Then, for every hitting setH+ of the remaining updated
Sj , the ABox A′ = A ∪ H− ∪ H+ is a σbop-repair. On
the other hand, some σbop-repair with few negative additions
exists only if some choice forH− succeeds.

The crucial point for the correctness of this method is that,
if T has no disjointness axioms, by adding toA∪H− positive

2Disregarding axioms F¬ v ¬F to compile negative assertions.

assertionsH+ we can not infer new negative assertions, unless
inconsistency emerges; this is exploited in Step 3, which limits
the candidate space for positive hitting sets a priori. The case
of few positive additions is completely symmetric.
5. Applicability of results. Like for relational databases,
our tractable cases fit real applications, e.g. in case of dele-
tion repairs (observing that non-subsumption queries are in-
significant for practical DL-programs) and scenarios akin to
key-constraint violations in databases.

Composability of independent selections adds to their ap-
plicability. Moreover, they may be combined with DB-style
factorization and localization techniques (see [Bertossi, 2011]
and references therein) and with local search (see Conclusions)
to compute closest repairs.

Bounding the number of changes, especially additions, is
also compliant with practice, where too many potential repairs
suggest human intervention (cf. database repair).

Finally, one may increase the bound in iterative deepening
(assuming that not many changes are needed).

6 Related Work and Conclusions
Managing inconsistent DL-programs has focused so far on
inconsistency tolerance, rather than on repair as we considered.
Pührer et al. [2010] avoid unintuitive answer sets caused by
inconsistency in DL-atoms, and dynamically deactivate rules
to discard spoiled information; they pointed ontology repair
out as an issue, but left it open. Fink [2012] presented a
paraconsistent semantics, based on the logic of here-and-there.

Repairing ontologies was considered in many works, often
to deal with inconsistency. In particular, [Lembo et al., 2010;
Bienvenu, 2012] studied consistent query answering over DL-
Lite ontologies based on the repair technique (see [Bertossi,
2011]), using minimal deletion repairs (which amount to non-
independent σ-selections). Calvanese et al. [2012] studied
query answers to DL-LiteA ontologies that miss expected
tuples, and defined abductive explanations corresponding to
repairs. They analyzed the complexity of explanation exis-
tence for various preferences that amount to non-independent
σ-selections. While their problem can be viewed as a special
ORP for atomic queries, we deal–also in comparison to the
aforementioned works–with a more general problem, where
mixed entailment and non-entailment of queries must be satis-
fied, and moreover under ABox updates. Repairing inconsis-
tent nonmonotonic logic programs is less developed; [Sakama
and Inoue, 2003] used extended abduction to delete minimal
sets of rules (but also adding rules can remove inconsistency).
Future Work. There are several issues for ongoing and
future work. One is extending this work to other classes of
Description Logics, like the tractable DLs EL++ and RL, but
also to more expressive DLs like Horn-SHIQ, SHIQ, or
SROIQ. Related to this is also to consider DL-programs
with richer queries, e.g., with (unions of) conjunctive queries
(cf. [Eiter et al., 2008a]), or more generally to consider logic
programs that access multiple and perhaps also heterogenous
ontologies. Orthogonal to this are further σ-selections for
repairs, both independent and non-independent ones. The
latter may cause intractability in very simple settings, as they
open an exponential search space (e.g., subset-minimal or



Dalal distance). However, neighborhood search on top of
σ allows to compute locally optimal σ-repairs without loss
of tractability (by using a slight adaption of our algorithm).
Finally, optimization and implementation remain to be done.
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