"krdc poster" — 2014/7/15 — 12:00 — page 1 — #1

Inconsistencies in Hybrid Knowledge Bases

Daria Stepanova

Faculty Mentors: Thomas Eiter and Michael Fink

Vienna University of Technology, Austria

1. Motivation

Hybrid Knowledge Bases: combination of different logical formalisms

2. DL-programs

- DL-program: ontology + rules (loose-coupling approach)
- DL-atoms serve as query interfaces to ontology
- Bidirectional information flow between ontology and rules
- $\Pi = \langle \mathcal{O}, \mathbf{P} \rangle$ is a DL-program

Inconsistencies easily emerge in HKBs

DL-program $\Pi = \langle \mathcal{O}, P \rangle$ is inconsistent

 $\mathcal{O} = \left\{ \begin{array}{ll} (1) \ Child \sqsubseteq \exists hasParent & (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child & (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male & (6) \ hasParent(john, pat) \end{array} \right\}$

(7) *ischildof*(*john*, *alex*); (8) *boy*(*john*); (9) has father (john, pat) $\leftarrow DL[Male \ \ \ boy; Male](pat),$ DL[;hasParent](john, pat); $(10) \perp \leftarrow not DL[;Adopted](john), pat \neq alex,$ $P = \langle$ hasfather(john, pat), ischildof(john, alex), not $DL[Child \ \uplus \ boy; \neg Male](alex)$

 $\mathcal{A}' = \{Male(john), has Parent(john, pat)\}$ is a possible repair of Π yielding repair answer set $I = \{ischild(john, alex), boy(john)\}$

- Aim of this work: methodology for repairing Hybrid KBs (at \mathcal{O} side) Contributions:
 - Framework for repair computation and its complexity
 - Implementation and evaluation of developed framework

 $\mathcal{O} = \{ (1) C \sqsubseteq D (2) A(c) \}$

DL-atom 1

 $P = \begin{cases} DL-atoms \\ (3)r(c); \quad (4)q(c) \leftarrow DL[C \ \uplus \ r;D](c), \ DL[;A](c) \end{cases}$

- Interpretation: $I = \{r(c), q(c)\}$
- ► Satisfaction relation: $I \models^{\mathcal{O}} q(c)$; $I \models^{\mathcal{O}} DL[;A](c)$
- Semantics is given in terms of answer sets
- Inconsistent DL-program is the one without any answer sets

4. Repair Approach

Given:

$$\Pi = \langle \mathcal{O}, P \rangle, \text{ s.t. } P = \begin{cases} p(c); \ r(c); \ q(c) \leftarrow \underbrace{DL[C \sqcup r; D](c)}_{a_1}; \\ \bot \leftarrow \underbrace{DL[D \ \uplus \ p, E \sqcup r; \neg C](c)}_{a_2}; \\ \end{cases} \end{cases}$$

$$\mathcal{O} = \{ E \sqsubset D; A \sqsubseteq D; A(c); \neg C(c); E(c) \}$$

3. DL-program Evaluation

Given:

$$\Pi = \langle \mathcal{O}, P \rangle, P = \left\{ r(c); q(c) \leftarrow \underbrace{DL[C \cup r; D](c)}_{a_1} \right\}, \mathcal{O} = \{ C \sqsubseteq D; A(c) \}$$

Construct:

$$\hat{\Pi} = \{r(c); q(c) \leftarrow e_{a_1}; e_{a_1} \lor ne_{a_1}\} (ne_{a_1}: \text{ negation of } e_{a_1})$$

Compute:

- Answer sets of $\hat{\Pi}$: $AS(\hat{\Pi}) = \{\{r(c), ne_{a_1}\}, \{r(c), e_{a_1}, q(c)\}\}$ Check:
 - Compatibility: $\hat{I}_1(e_{a_1}) = false \Leftrightarrow \hat{I}_1|_{\Pi} \not\models \mathcal{O}_{a_1}? \checkmark$ $\neg C(c) \cup \mathcal{O} \not\models D(c)$ thus \hat{I}_1 is compatible!
- Minimality: Is $\hat{I}_1|_{\Pi} = \{r(c)\}$ minimal model of Π ? $\sqrt{}$ A smaller model does not exist, thus $\hat{I}_1|_{\Pi}$ is minimal! $\hat{I}_1|_{\Pi}$ is an *flp*-answer set of Π . ($\hat{I}_2|_{\Pi}$ is not, compatibility fails)

Reasons for Inconsistency:

 $\blacktriangleright AS(\hat{\Pi}) = \emptyset$

▶ for all $\hat{I} \in AS(\hat{\Pi})$: compatibility or minimality check failed

Compute support sets for $a_1(X)$, $a_2(X)$: $\boldsymbol{S}_{a_1} = \{\{D(X)\}, \{A(X)\}, \{E(X)\}, \{\neg C_r(Y), C(Y)\}\}$ $S_{a_2} = \{\{\neg C(X)\}, \{D_p(Y), \neg D(Y)\}, \{\neg E_r(Y), E(Y)\}\}$

For each $\hat{I} \in AS(\hat{\Pi})$: $I = \{p(c), r(c), q(c), e_{a_1}\}: a_1 \text{ is guessed } true, a_2 \text{ is guessed } false$

Construct Ontology Repair Problem (ORP) $\mathcal{P} = \langle \mathcal{O}, D_1, D_2 \rangle$, where $D_1 = \{ \langle \{\neg C(c)\}; D(c) \rangle \}, D_2 = \{ \langle \{D(c), \neg E(c)\}; \neg C(c) \rangle \}$

Ground support sets S_{a_i} :

- $Grnd(S_{a_1}, \hat{I}, \mathcal{A}) = \{\{A(c)\}, \{E(c)\}\}$
- $Grnd(S_{a_2}, \hat{I}, \mathcal{A}) = \{\{\neg C(c)\}, \{\neg E_r(c), E(c)\}\}$

Compute Repair \mathcal{A}' for \mathcal{P} s.t.

 $\triangleright \mathcal{O}' = \langle \mathcal{T}, \mathcal{A}' \rangle \text{ is consistent, } \mathcal{O}' \cup \{\neg C(c)\} \models D(c),$ $\mathcal{O}' \cup \{D(c), \neg E(c)\} \not\models \neg C(c)$

 $\mathcal{A}' = \{A(c), \neg C(c), E(c)\}$ is a deletion repair!

5. Results

6. Future Work

- Repair semantics for DL-programs and its complexity (IJCAI'13)
 - Independent repair selection functions
 - Sound and complete deletion repair algorithm
- Support sets as optimization means (AAAI'14)
- ► Usage of complete support families for *DL*-*Lite*_A (*ECAI'14*, *DL'14*)
- Usage of incomplete support families for \mathcal{EL} (JELIA'14)
- Implementation within dlvhex framework, evaluation
- Independent DL-atoms, calculus for their derivation (RR'12)
- D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni. The complexity of explaining negative query answers in DL-Lite. In Proc. of KR, 2012.
- D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Automated Reasoning, 2007.

- Further benchmark construction and evaluation
- Size bounded and other preferred repairs (implementation)
- Completeness conditions on support families for *EL*
- Wrapping up...

- T. Eiter, M. Fink, T. Krennwallner, C. Redl, and P. Schüller. Exploiting unfounded sets for HEX-program evaluation. In Proc. of JELIA, 2012.
- C. Sakama, and K. Inoue. An abductive framework for computing knowledge base updates. J. Theory and Practice of LP, 2003.

