
Semantic Independence in DL-Programs?

Thomas Eiter, Michael Fink, and Daria Stepanova

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{dasha,eiter,fink}@kr.tuwien.ac.at

Abstract. Description Logic programs (DL-programs) are a prominent approach
for a loose coupling of rules and ontologies, which has become a topic of increased
interest. When computing answer sets of a DL-program, special DL-atoms, which
provide query interface to an ontology, are evaluated under a possibly changing
input that gives a context for the evaluation. Many different such contexts may
exist and evaluating a DL-atom may be costly even for one context. Thus a
natural question to ask is when the evaluation is independent of the context. Such
information has immediate applications in optimization of DL-programs, but is
also beneficial for other reasoning tasks, like inconsistency diagnosis and program
repair. We provide an answer to this question based on a semantic notion of
independence and provide a complete characterization of independent DL-atoms.
We then extend the characterization to independence under additional information
about inclusions among rule predicates. Moreover, we develop an axiomatization
which allows one to derive all tautological DL-atoms in the general case and
under predicate inclusions. A complexity analysis reveals that checking whether a
DL-atom is independent, can be done efficiently.

1 Introduction

DL-programs are a prominent approach for the loose coupling of rules and ontologies, in
which the rules and the ontology part exchange information via a well-defined interface.1

In general, a DL-atom specifies an update of an ontology prior to querying it; e.g.
DL[C] p; C](t); means that assertions C(t) are made for each individual t such that p
is true for t in the rules part. Several semantics of such programs have been defined, cf. [4;
9; 13; 19; 17; 3], and the concept of DL-atom has been adopted and generalized by other
formalisms e.g. [18; 10; 6].

Irrespective of a particular semantics, for the evaluation of DL-programs in practice
(i.e., when computing models or answer sets) individual DL-atoms have to be evaluated
under varying input in general. Thus, the possible ontology updates specified by a DL-
atom define respective contexts for their evaluation, and many different such contexts may
need to be considered. Moreover, even for one context evaluating the query specified
by the DL-atom in this context may be costly. Therefore, developing optimization

? This work is partially supported by the Austrian Science Fund (FWF) project P20840, and by
the EC FP7 project OntoRule (IST-2009-231875).

1 For further discussion of loose and strong couplings and their strengths, cf. [15; 4; 8]

techniques, e.g. caching techniques [7], partial evaluation and atom merging [6], is
necessary for the development of effective solvers.

Caching techniques, for instance, aim at memorizing the value of a DL-atom for
some inputs, and to conclude about its value on a new input. However, the very question
whether its value is on all inputs the same has not been considered so far; we call
DL-atoms with this property independent. The identification of independent DL-atoms
has immediate applications in optimization, as such atoms respectively rules involving
them can be removed from the DL-program.

However, information about independence has also other uses. The loose coupling by
DL-programs may result in inconsistency, that is, that no answer set (i.e., suitable model)
of a DL-program exists. To remedy the situation, an inconsistency-tolerating approach
was developed in [16; 8]. In this approach, one distills a set of DL-atoms (a “diagnosis”)
which has the “wrong value” in establishing an answer set, meaning that if these atoms
and rules involving them are ignored, then an answer set exists. Based on such diagnoses,
one can think of repairing the ontology part of the DL-program, by changing the axioms
such that consistency is gained. However, the value of a DL-atom can be independent of
the underlying ontology (or the initial one modulo a set of changes); thus some of the
diagnoses are false positives, i.e., the opposite value can never be established.

This problem can be avoided by identifying independent DL-atoms, for instance
tautologic ones. However, it is not always obvious that a certain DL-atom is tautologic.
Let us illustrate this by an example.

Example 1. Consider the following DL-program representing information in the fruit
domain: P = (Φ,Π) with underlying ontology Φ and the rules part

Π =

 (1) so(pineapple, chile). (2) vi(X)← ex(X).
(3) sw(X)← ex(X), not bi(X). (4) ex(X)← so(X,Y).
(5) no(X)← DL[H] vi,H −∪ sw,A −∩ ex; ¬A](X).

 ,

where predicate so stands for Southern fruit with its country of origin, vi for vitamin,
ex for exotic, bi for bitter, sw for sweet, and no for non-African fruit, respectively.
Moreover, H stands for the concept of healthiness and A for the concept of African fruit.
Here (1) is the fact that pineapple is a Southern fruit possibly from Chile, rule (2) states
that exotic fruits are rich of vitamin and rule (3) that exotic fruits are sweet, unless they
are known to be bitter. Rule (4) says that Southern fruits are exotic. Finally, rule (5)
contains a DL-atom in its body. Informally, it selects all objects o into no such that
¬A(o), i.e., that it is a not an African fruit is provable from the ontology Φ, upon the
(temporary) assertions that vitamin objects are healthy, sweet ones are unhealthy, and
the restriction that only fruit known to be exotic may be African.

It is not straightforward for this DL-atom, nor for any of its instances, that it is
tautologic; this however will be shown in Section 4.

If we adopt the reasonable assumption that the underlying ontology is satisfiable,
another kind of independence is possible: DL-atoms which are contradictory, i.e., always
evaluate to false.

Our contributions on identifying independent DL-atoms briefly are as follows:

2

• Based on a semantic notion of independence, we provide a syntactic characterization
of independent DL-atoms. While tautologic DL-atoms have a rich structure, contradictory
DL-atoms are simple and only possible without ontology update prior to query evaluation.
• We also consider relaxed forms of tautologies, relative to additional information

on rule predicates (acting as constraints on the possible updates to the ontology). In
particular, we study inclusion among rule predicates.
• We develop a complete axiomatization for deriving all tautologies by means of

simple rules of inference, in the general case as well as under separable inclusion
constraints, i.e., without projective input inclusions.
• We determine the complexity of the calculus. It turns out that tautology checking is

feasible in polynomial time (more precisely, in NLogSpace in general, and in LogSpace,
in fact it is first-order expressible, for non-negative queries), also relative to separable
inclusion constraints (in this case, it is NLogSpace-complete). Thus, we establish that
checking whether a given DL-atom is independent can be done efficiently.

Our results provide further insight into the nature of DL-programs. In particular,
they might be useful for DL-programs that are automatically constructed (like the
ones encoding a fragment of Baader and Hollunder’s terminological default logic over
ontologies [2]). They can be applied to simplify DL-programs, as well as in inconsistency
analysis, e.g., to refine inconsistency-tolerating semantics of DL-programs [16].

2 Preliminaries

2.1 Description Logics

We assume that the reader is familiar with the basics of Description Logics (DLs)
and their syntax and semantics [1]. We will consider DL knowledge bases defined
over signatures Σo = 〈F ,Po〉 with a set F of individuals (constants) c and a set
Po = Pc ∪ Pr of (atomic) concept names Pc and role names Pr ; concept expressions,
role expressions are defined as usual, as well as concept inclusion axioms C v D, role
axioms (if any are available), and assertion axioms. A DL knowledge base (or ontology)
in a DL L is then a (finite) set Φ of axioms in L.

We do not commit to a particular DL L here, but as for DL-programs assume that

– assertions C(a), ¬C(a), R(a, b), ¬R(a, b) with C ∈ Pc , R ∈ Pr and a, b ∈ F are
admissible in L (or can be simulated), and

– Φ |= φ denotes, under the usual model-based semantics of L, logical entailment of a
formula φ from Φ, i.e., each model Φ satisfies φ.

For instance, the DLs SHIF , SHOIN , and SROIQ, which provide the logical
underpinnings of OWL-Lite, OWL DL and OWL 2, respectively (see, e.g., [11; 12;
14]), and the lightweight DL DL-LiteR fulfill this. 2

In particular, we consider DL-queries, i.e., formulas φ = Q(t) such that Q is either

(a) a concept inclusion C v D or its negation ¬(C v D), with t = ε (void),

2 If negative role assertions can not be simulated, as e.g. basic DLs of the DL-Lite family or in
EL++, the syntax of DL-atoms can be accordingly restricted.

3

(b) a concept instance C(t1) or its negation ¬C(t1), with t = t1 a term (i.e., a constant
from F or a variable), or

(c) a role instance R(t1, t2) or its negation ¬R(t1, t2), with t = t1, t2 two terms,

where C,D ∈ Pc , respectively C,D ∈ Pc ∪{>,⊥} in case of a), and R ∈ Pr .
Satisfaction of a ground, i.e., variable free, Q(t) in a model I of Φ, is defined by
(a) CI ⊆ DI resp. CI 6⊆ DI , (b) tI1 ∈ CI resp. tI1 /∈ CI , and (c) (tI1 , t

I
2) ∈ RI resp.

(tI1 , t
I
2) /∈ RI . A general Q(t) is satisfied by I, if each of its ground instances Q(t′)

(obtained by replacing variables with constants from F) is satisfied.
Note that entailment Φ |= Q(t) is monotonic, (in particular, ¬(C v D) is C 6v D).

2.2 DL-Programs

Informally, a DL-program consists of a DL ontology Φ over Σo and a normal logic
program Π over Σp , which may contain DL-queries to Φ in rule bodies. The latter
are evaluated subject to hypothetical updates of Φ with assertions determined from the
predicate extensions under an interpretation of Π .
Syntax. A signature Σ = 〈F ,Po ,Pp〉 for DL-programs consists of a set F of constant
symbols and sets Po , Pp of predicate symbols such thatΣo = 〈F ,Po〉 is a DL-signature
andΣp = 〈F ,Pp〉 = 〈F ,P〉 is an LP-signature, i.e., a function-free first-order signature
over a nonempty finite setF of constant symbols and a nonempty finite setP of predicate
symbols of arities ≥ 0. Terms over F and a set V of variables, and ordinary atoms
p(t1, . . . , tn) are defined as usual, where p ∈ P; a classical literal is either an ordinary
atom a or its negation ¬a.

A DL-atom a(t) has the form

DL[S1 op1 p1, . . . , Sm opm pm; Q](t) , m ≥ 0, (1)

where 1. either Si ∈ Pc and pi ∈ Pp is unary, or Si ∈ Pr and pi ∈ Pp is binary,
2. opi ∈ {], −∪, −∩}, and 3.Q(t) is a DL-query. We call λ = S1 op1 p1, . . . , Sm opm pm,
the input signature and p1, . . . , pm the input predicates of a(t). We regard λ as unordered
list—thus for any permutation π of {1, . . . , n}, the DL-atom DL[λπ; Q](t) where
λπ = Sπ(1) opπ(1) pπ(1), . . . , Sπ(m) opπ(m) pπ(m) is a syntactic variant of (1)—and
assume that its elements Si opi pi are pairwise different. We also write Si opi pi ∈ λ.
Intuitively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi,
while opi = −∩ constrains Si to pi.

A DL-rule r has the form

a0 ← a1, . . . , ak,not ak+1, . . . ,not am , m ≥ k ≥ 0 , (2)

where a0 is a classical literal, and every ai is a classical literal or a DL-atom, 1 ≤ i ≤ m,
where a0 may be absent (written as ⊥). A DL-program P = (Φ,Π) consists of a DL
ontology Φ and a finite set Π of DL-rules.

Example 2. Consider a DL-program P = (Φ,Π), s.t. Φ = {C v D} and Π is given
by:
{p(a).; q(a).; r(b).; v(X)← DL[C] p,D −∩ q; D](X), not DL[C −∪ r; ¬C](X).}

4

In the first DL-atom intuitively the concept C is extended by the predicate p and the
concept ¬D is restricted by predicate q. Then, all instances of D are retrieved from the
resulting ontology. The second DL-atom extends ¬C by the extension of r and queries
all instances of ¬C from the respectively extended Φ.

Semantics. In what follows, let P = (Φ,Π) be a DL-program over Σ = 〈F ,Po ,Pp〉.
By gr(Π) we denote the grounding of Π wrt. F , i.e., the set of ground rules origi-
nating from DL-rules in Π by replacing, per DL-rule, each variable by each possible
combination of constants in F .

An interpretation I (over Σp) is a consistent set of ground literals over Σp ; I
satisfies (i) a classical ground literal l under Φ, denoted I |=Φ l, iff l ∈ I , and (ii) a
ground DL-atom a of the form (1), denoted I |=Φ a, iff Φ ∪ τ I(a) |= Q(c), where
τ I(a) =

⋃m
i=1Ai(I), the DL-update of Φ under I by a, is defined as

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi =];
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩. 3

We say that I satisfies a ground DL-rule r of form (2), denoted I |=Φr, if either
I |= a0, I |= aj for some k < j ≤ m, or I 6|= ai for some 1 ≤ i ≤ k. I satisfies (is a
model of) P = (Φ,Π), denoted I |= P , iff I |=Φ r for all r ∈ gr(Π).

Finally, an interpretation I is an answer set of P , iff I is a minimal (wrt. ⊆) model
of the FLP-reduct P IFLP = 〈Φ,ΠI

FLP 〉 of P wrt. I , where ΠI
FLP contains all ground

DL-rules r of form (2) from gr(Π) such that I |= ai for all 1 ≤ i ≤ k, and I 6|= aj ,
for all k < j ≤ m. This is the FLP-semantics of DL-programs; several other semantics
have been proposed, cf. [4; 13; 19; 17; 3], but the evaluation of DL-atoms is the same.

Example 3. Reconsider P from Example 2. It has one answer set I = {p(a), q(a),
r(b), v(a)}. The DL-update of Φ under I by the DL-atom DL[C] p,D −∩ q; D](a) re-
sults in A1(I)∪A2(I), where A1(I) = {C(a)} and A2(I) = {¬D(b)}. Due to C v D
in Φ, it holds that Φ∪A1(I)∪A2(I) |= D(a). Thus DL[C] p,D −∩ q; D](a) eval-
uates to true. On the other hand, the DL-update of Φ under I by DL[C −∪ r; ¬C](a)
is A3(I) = {¬C(b)}, and Φ∪A3(I) 6|= ¬C(a). Therefore, DL[C −∪ r; ¬C](a) eval-
uates to false, and the FLP-reduct of P wrt. I contains the ground rule v(a) ←
DL[C] p,D −∩ q; D](a), not DL[C −∪ r; ¬C](a). Finally, one can verify that I is the
only answer set of P . Adding the “guessing“ rules v(c)← not v(b) and v(b)← not v(c)
to Π , however, results in two answer sets, namely I1 = I ∪{v(b)} and I2 = I ∪{v(c)}.

3 Independent DL-atoms

We call a DL-atom a independent, if it always has the same truth value, regardless of the
underlying ontology and the context in which it is evaluated, i.e, the interpretation I of
the rules. This means that a amounts to one of the logical constants ⊥ (false, i.e., is a
contradiction) or > (true, i.e., is a tautology).

In formalizing this notion, we take into account that independence trivializes for
unsatisfiable underlying ontologies, and thus restrict to satisfiable ones.

3 If ¬Si(e) can not be expressed, the use of −∪ and −∩ is excluded, cf. Footnote 2.

5

Definition 1 (independent DL-atom). A ground DL-atom a is independent, if for all
satisfiable ontologies Φ,Φ′ and all interpretations I, I ′ it holds that I |=Φ a iff I ′ |=Φ′ a.

Furthermore, we call a tautologic (resp., contradictory), if for all satisfiable ontolo-
gies Φ and all interpretations I , it holds that I |=Φ a (resp., I 6|=Φ a).

Example 4. A DL-atom of the form a = DL[; ¬(C v C)]() is contradictory. Indeed,
the query ¬(C v C) is unsatisfiable, hence there does not exist any satisfiable ontology
Φ, s.t. φ |= ¬(C v C). Hence regardless of I , always I 6|=Φ ¬(C v C).

On the other hand consider a DL-atom b = DL[C −∩ p, C −∪ p; ¬C](c). It is tauto-
logic, because under any interpretation I of p, it holds that ¬C(c) ∈ τ I(b). Hence, it is
true that I |=Φ ¬C(c) for any ontology Φ (and any interpretation I).

In the following, we aim at a characterization of independent DL-atoms.

3.1 Contradictory DL-atoms

We defined above contradictory DL-atoms relative to satisfiable ontologies (otherwise,
trivially no contradictory DL-atoms exist).

An obvious example of a contradictory DL-atoms is DL[; > v ⊥](), where ⊥ and
> are the customary empty and full concept, respectively. Indeed, the DL-query ⊥ v >
is false in every interpretation, i.e., a logical contradiction. As it turns out, contradictory
DL-atoms are characterized by such contradictions, and have a simple input signature.

We call a DL-query Q(t) satisfiable, if there exists some satisfiable ontology L such
that L |= Q(t), and unsatisfiable otherwise. Then we have the following result.

Proposition 1. A ground DL-atom a = DL[λ; Q](t) is contradictory if and only if
λ = ε and Q(t) is unsatisfiable.

Proof. (if) If λ = ε, then for every I , I |=Φ a iff Φ |= Q(t); as Q(t) is unsatisfiable, we
have for every satisfiable L that L 6|= Q(t). Thus a is contradictory.

(Only If). Suppose a is contradictory, i.e., I 6|=Φ a for every satisfiable ontology Φ
and every interpretation I , i.e., L ∪ τ I(a) 6|= Q(t). It follows that Q(t) is unsatisfiable.
To show λ = ε, assume towards a contradiction that λ 6= ε. Then there exists some
interpretation I0 such that τ I0(a) 6= ∅, i.e., contains some assertion B. Consider an
arbitrary satisfiable ontology L. As L∪ τ I0(a) 6|= Q(t), it follows that L 6|= ¬.B, where
¬.B is the opposite of B. However, it is not difficult to see that satisfiable ontologies L0

exist such that L0 |= ¬.B.4 This, however, raises a contradiction. Thus τ = ε. ut

By this result, contradictory DL-atoms have a simple form. As concept and role
instance queries are always satisfiable, Q must be a (possibly negated) concept inclusion
query and of the form ¬(C v C), ¬(C v >), ¬(⊥ v C), ¬(⊥ v >), or > v ⊥.

4 If B is a negative (resp., positive) assertion, then ¬B is a positive (resp. negative) assertion
and we can take L0 = {¬B}. If ¬B is not an admissible assertion, we can effect ¬B by a
set of possible more restrictive axioms (e.g. we can enforce a negative role assertion ¬R(a, b)
in basic DL-Lite e.g. by L0 = {∃R v C,∃R v ¬C} and in EL++ by L0 = {∃R v ⊥}).
Note that if negative assertions were not explicitly available in the DL and the operators −∪, −∩
disallowed in DL-atoms, still the above construction may be used as e.g. in case of DL-Lite
and EL++, and thus the same characterization of contradictions holds.

6

3.2 Tautologic DL-atoms

For tautologic DL-atoms, the situation is more complex. First of all, clearly a DL-atom
is tautologic if it has a tautologic query (i.e., it is satisfied by the empty ontology). This
is, however, only possible for concept inclusion queries; instance queries (¬)C(t), resp.
(¬)R(t1, t2), are clearly not tautologic.

DL-atoms with tautologic queries are of the form DL[λ; C v >](), DL[λ; ⊥ v C](),
DL[λ; C v C](), or DL[λ; > 6v ⊥](), where λ is an arbitrary input signature.

However, there are also tautologic DL-atoms whose query is not tautologic.

Example 5. Consider in the fruit scenario the DL-atom

a = DL[EF −∩ fr, S −∪ fr, S] fr; ¬EF](c),

where EF stands for exotic fruit, S for sweet, fr for fruit.
Intuitively, we restrict here the concept ¬EF and extend the concepts S and ¬S

by the predicate fr. Then we ask whether c is not an exotic fruit. No matter which
interpretation I of the DL-program we consider and irrespective of Φ, we will always get
that Φ ∪ τ I(a) |= ¬EF (c). Indeed, if fr(c) ∈ I , then τ I(a) is unsatisfiable; otherwise
¬EF (c) is explicitly present in τ I(a). Hence in both cases, τ I(a) |= ¬EF (c). This
means that a is tautologic.

In the rest of this section, we identify for each query type those forms of the input
signature for which the DL-atom is tautologic, or prove nonexistence of such forms.
We first consider concept queries, i.e., queries (¬)C(t) and (¬)(C v D), and then role
queries, for which similar results hold.

Concept queries

Concept instance. To start with, let us consider the query C(t). No matter what input
signature is considered for this type of the DL-atom, it can never be tautologic.

Proposition 2. For no input signature λ, a ground DL-atom a of the form DL[λ; C](t)
is tautologic.

Proof. Consider a ground DL-atom a = DL[λ; C](t). Towards a contradiction, suppose
that λ is a signature such that a is tautologic. Thus by definition, for all ontologies Φ and
for all interpretations I it holds that Φ ∪ τ I(a) |= C(t). Thus in particular, for L = ∅ it
holds that τ I(a) |= C(t). We consider two cases, according to the satisfiability of τ I(a).
(1) Suppose τ I(a) is unsatisfiable. Then there must exist some S, such that S(t) ∈ τ I(a)
and ¬S(t) ∈ τ I(a). The presence of S(t) in τ I(a) can only be ensured if some S]p
occurs in the input signature λ of a for some p. Now consider the interpretation I = ∅.
As p(t) 6∈ I , we can not get S(t) ∈ τ I(a), which leads to contradiction.

(2) Now suppose τ I(a) is satisfiable. Then C(t) must be in τ I(a). Similar to the
previous case, this requires that C]p occurs in λ for some p. Again I = ∅ does not allow
us to obtain C(t)∈ τ I(a), hence τ I(a) 6|= C(t). This contradicts our assumption. ut

7

Concept inclusion. For DL-atoms with concept queries of the form C v D and C 6v D,
where C 6=D and neither concept is > or ⊥, we get the same result as for positive
instance queries.

Proposition 3. For no input signature λ, a ground DL-atom of the form DL[λ; C v D]()
or DL[λ; C 6v D](), where C 6= D are different concept names, is tautologic.

Proof. Consider a ground DL-atom a = DL[λ; C v D](), and suppose a is tautologic.
Then for every ontology Φ and interpretation I , it holds that Φ ∪ τ I(a) |= C v D.
Let Φ = ∅ and I = ∅. Observe that τ I(a) is satisfiable, as it contains only negative
assertions. Let c be a fresh constant; then Φ′ = Φ∪ τ I(a)∪{C(c),¬D(c)} is satisfiable,
and Φ′ 6|= C v D. By monotonicity of |=, it follows Φ ∪ τ I(a) 6|= C v D. Thus a is
not tautologic, which is a contradiction.

The proof for a = DL[λ; C 6v D]() is similar. ut

Out of the remaining concept queries, only the following (straightforwardly) give
rise to tautologic DL-atoms.

Proposition 4. A ground DL-atom of the form DL[λ; Q]() is a tautology iffQ=C v C,
Q=C v >, or Q=> 6v ⊥, for any C ∈ Pc ∪ {⊥,>}.

Negative concept instance. Finally, we investigate the forms of tautologic DL-atoms
with a query ¬C(t).

Proposition 5. A ground DL-atom a with the query ¬C(t) is tautologic if and only if it
has one of the following forms:

c1. DL[λ, C −∩ p, C −∪ p; ¬C](t),

c2. DL[λ, C −∩ p,D] p,D −∪ p; ¬C](t),

c3. DL[λ,C−∩p0,C
0] p0, C

0−∩p′0,
C1] p1, C

1−∩p′1, . . . , Cn] pn, Cn−∩p′n, C−∪pn+1; ¬C](t),

c4. DL[λ,C−∩p0,C
0] p0, C

0−∩p′0,
C1] p1, C

1−∩p′1, . . . , Cn] pn, Cn−∩p′n, D] pn+1D−∪p′n+1; ¬C](t),

where for every i = 0, . . . , n+ 1, pi = p′j for some j < i or pi = p0, and p′n+1 = p′ij
for some j ≤ n or p′n+1 = p0.

Informally, the lists of (c3) and (c4) include a “chain” p = p0 ⊆ pj1 ⊆ pj2 ⊆ pjk =
pn+1 resp. p = p0 ⊆ pj′1 ⊆ pj′2 ⊆ pj′

k′
= p′n+1. The proof of this proposition is given

in the extended paper [5]; likewise for subsequent results stated without proof.

Example 6 (cont’d). The DL-atom a = DL[EF −∩ fr, S −∪fr, S] fr; ¬EF](c) is an
example of the tautologic form (c2). However, the DL-atom in the program of Example 1
is not of any form (c1)–(c4), and thus in general not tautologic.

8

Role queries A careful analysis reveals that the result for tautologic DL-atoms with
concept instance queries carries over to the case when the query Q(t) is a role instance
query. The same holds for negative concept and role instance queries, when the concept
names C,D are replaced with names R1, R2 (and the predicates p, q are binary). For
the latter consider a = DL[τ ; ¬R](t) that is tautologic. Following the analysis in
Proposition 5, which is generic in the arity of the tuple t, necessarily the existence of
roles R1 and R2 instead of C resp. D, and binary instead of unary input predicates p
and q can be concluded, For example, the form (c3) above for the role query ¬R1 results
in DL[γ, R1 −∩ p,R2 −∩ q,R2] p,R2 −∪ q; ¬R1](t), where R1, R2 are roles and p, q are
binary predicates. More formally, the following is obtained.

Proposition 6. Propositions 2 and 5 hold if C and D are replaced by role names R1

and R2, respectively (and p and q are binary instead of unary).

Thus, as an interesting consequence, there is no interference of concept and role
names in tautologic DL-atoms.

Axiomatization Based on the results above, we obtain a calculus for the derivation of
all tautologic DL-atoms as follows. The axioms are:

a0. DL[; Q](),
a1. DL[S −∩ p, S −∪ p; ¬S](t),
a2. DL[S −∩ p, S′] p, S′ −∪ p; ¬S](t),

where Q=S v S, Q=S v >, or Q=> 6v ⊥, S, S′ are either distinct concepts or
distinct roles, and p is a unary resp. binary predicate.

The first rule of inference is reflecting the monotonicity of DL-atoms wrt. increasing
input signatures:

Expansion DL[λ; Q](t)
DL[λ, λ′; Q](t)

(e).

The following rules state that an update predicate p may be replaced by q, if the latter
has in case of consistent update τ I(a) a larger value than p:

Increase

DL[λ, S] q, S′] p, S′−∩q; Q](t)
DL[λ, S] p; Q](t)

(in1),
DL[λ, S−∪q, S′] p, S′−∩q; Q](t)

DL[λ, S−∪p; Q](t)
(in1).

Let Ktaut denote the respective calculus.

Lemma 1. Every ground DL-atom a of form (c1) – (c4) is derivable from axioms a1
and a2 using the rules (e), (in]), and (in−∪).

Since also correctness of the rules is easily establish we have:

Theorem 1. The calculus Ktaut is sound and complete for the theory of tautologic
ground DL-atoms.

9

Proof. Soundness. It is easily seen that the rules (e), (in−∪), and (in]) are sound. Indeed
if a′ results from a by rule (e), then τ I(a′) ⊇ τ I(a); if a′ results from a by rule (in])
resp. (in−∪), then either τ I(a′) is unsatisfiable or again τ I(a′) ⊇ τ I(a) (and in case of
satisfiability pI ⊆ qI must hold).

Completeness. The completeness of the theory follows, as regards concept queries,
from Propositions 2–5, and Lemma 1, and as regards roles from Proposition 6. ut
Notice that in fact Ktaut is minimal, i.e., no axiom scheme or inference rule is redundant.

4 Independence under Inclusion

In the previous section, we considered the existence of contradictory and tautologic DL-
atoms in DL-programs in the general case, assuming that the rules of the DL-program
are arbitrary. However, by simple analysis or by assertions, we might have information
about the relationship between rule predicates that must hold in any model or answer set.

For example, suppose that a DL-program contains the rule

q(X)← p(X). (3)

It imposes an inclusion constraint on the predicates p and q, i.e., for every model I of
the program, pI ⊆ qI must hold. If p and q are input predicates for DL-atoms, then the
rule (3) might affect the independence behavior of a DL-atom in the program: relative
to the inclusion constraint, it might be tautologic. Similar rules might state inclusions
between binary input predicates, e.g.

q(X,Y)← p(X,Y), (4)

q(Y,X)← p(X,Y); (5)
also projections, e.g.

r(X)← p(X,Y), or r(Y)← p(X,Y), (6)

(of p on r) might occur. An interesting question is how the presence of such predicate
constraints influences the independence behavior, which we address in this section.

We call any rule
q(Y1, . . . , Yn)← p(X1, . . . , Xm) (7)

where n ≤ m and the Yi are pairwise distinct variables from X1, . . . , Xm an inclusion
constraint (IC); if n=m, we also write p ⊆ q if Yi =Xi and p ⊆ q− if Yi =Xn−i+1,
for all i= 1, . . . , n. Moreover, for the calculus for tautologic DL-atoms under inclusion
constraints as developed in this section, we consider an extended language including
p− as a name, representing for every p ∈ Po its inverse as defined above. By Cl(C) we
denote the closure of C, i.e., the set of all ICs which are satisfied by every interpretation
I such that I |= C. In particular note that p ⊆ q− |= p− ⊆ q.

Let us now consider the impact of a set C on independence. To this end, we consider
independence relative to C, i.e., the interpretations I, I ′ in Definition 1 must satisfy C.

Example 7 (cont’d). Reconsider P in Example 1. We can include rule (2) (also written
ex ⊆ vi) as an inclusion constraint to the set C, and also rule (4). Moreover, as none of
the fruits is known to be bitter in our context, we additionally include ex ⊆ sw in C. The
closure Cl(C) moreover contains the ICs vi(X)← so(X,Y) and sw ← so(X,Y).

10

4.1 Contradictory DL-atoms

In what follows, we show that the presence of inclusion constraints C does not change
the result regarding contradictory DL-atoms as obtained for the general case.

Proposition 7. Let a = DL[λ; Q](t) be a ground DL-atom. Then a is contradictory
relative to a set C of inclusion constraints iff λ = ε and Q(t) is unsatisfiable.

Proof. (If) Identical to the if-part of the proof of the Proposition 1.
(Only If) We use the same reasoning as in Proposition 1. If λ 6= ε then we can always

find an interpretation I0 such that λI0(a) 6= ∅; indeed, we can use I0 = ∅, if −∩ occurs in
λ, and use I0 = HBΠ , i.e., the set of all ground atoms, otherwise. ut

4.2 Tautologic DL-atoms

Next we investigate how the list of tautologies is modified when inclusion constraints
are put on the predicates involved in them.

As we have noted above, the minimal forms of tautologic DL-atoms with concept
(resp., role) queries involve only concepts and unary input predicates (resp., roles and
binary input predicates).

An inclusion constraint of the form (6) in C (or the DL-program) will not al-
low us to get any further tautologic forms. E.g., consider the tautologic DL-atom
DL[R −∩ p,R −∪ p; ¬R](t) we intuitively should get that DL[R −∩ r,R −∪ p; ¬R](t) is also
tautologic. However, this is not a legal DL-atom, as the role R is extended by the unary
predicate r.

Dependencies of the form (5) do not allow us to obtain new tautologic DL-atoms
either. For example, consider a ground DL-atom DL[R −∪ p,R −∩ p; ¬R](a, b), which
has the form of axiom a1. If we replace the first occurrence of p by q, the resulting
DL-atom DL[R −∪ q,R −∩ p; ¬R](a, b) is not tautologic. However, for a constraint (4), it
is tautologic; it also would be in the former case if the query argument is (a, a).

The following can be shown. For any DL-atom a = DL[λ; Q](t) and set C of ICs,
let inpa(C) denote the set of all q(Y) ← p(X) in C such that p and q occur in λ. We
call C separable for a, if every ic ∈ inpa(Cl(C)) involves predicates of the same arity.

Proposition 8. Let a = DL[λ; Q](t) be a ground DL-atom and C a separable set of
ICs for a. Then a is tautologic relative to C iff it is tautologic relative to C′ which
contains, depending on the type of Q(t), the following constraints: (1) C′ = ∅, in case
of a (negated) concept inclusion; (2) every p ⊆ q in inpa(Cl(C)) where p, q are unary,
in case of a (negated) concept instance; (3) every p ⊆ q and p ⊆ q− in inpa(Cl(C))
where p, q are binary, in case of a (negated) role instance.

Proof (Sketch). Every model I of C is a model of C′. On the other hand, by the form of
the ICs, every model I ′ of C′ can be extended to an interpretation I such that I |= C. In
general, the intersection I of all models I ′′ ⊇ I ′, which is given by the answer set of
C ∪ I ′, fulfills the claim. Indeed, a fact a = q(c) can be in I iff it is provable from I ′

using a sequence r1, r2, . . . , rk of rules from C. As all rules are unary, a can be proved
from some fact a′ = p(c′) in C; unfolding the rules, we obtain a rule r of the form

11

q(Y)← p(X), where Y = Y1, . . . , Ym are distinct variables from X = X1, . . . , Xn.
As C |= r and C is separable for a, it follows that m = n and thus r ∈ C′, which implies
a′ ∈ I ′. Consequently, I is an extension of I ′ as claimed. ut

That is, for negative role queries we must in general take inverse predicate inclusions
into account. To this end, we consider a language including for every p ∈ Pp a name p−

for its inverse (as defined in the paper). Such an inverse can be also effected by means
of inclusions q(Y,X) ← p(X,Y) and p(Y,X) ← q(X,Y) in the set C of inclusion
constraints (where q is then p− and p is q−).

Each rule q(Y1, Y2) ← p(X1, X2) in C is then either an inclusion p ⊆ q or an
inclusion p ⊆ q−. Note that p ⊆ q iff p− ⊆ q− and that for unary predicates, p− = p
and is thus immaterial; furthermore, viewing ·− as an operator, (p−)− = p. We let
P(−)

p = Pp ∪ {p− | p ∈ Pp}. To see some examples, consider the tautologic form (c1)
in Proposition 5. Taking the inclusion constraint p ⊆ q into account, we obtain the
following new tautologic form:

- DL[λ, S −∩ p, S′ −∪ q; ¬S](t).

The form (c2) yields

- DL[λ, S −∩ p, S′ −∪ q, S′] p; ¬S](t), where p 6= q, S′ 6= S;
- DL[λ, S −∩ p, S′ −∪ p, S′] q; ¬S](t), where p 6= q, S′ 6= S;
- DL[λ, S −∩ p, S′ −∪ q, S′] q; ¬S](t), where p 6= q, S′ 6= S.

From the tautological DL-atom we get

- DL[λ, S −∩ p, S′] q, S′ −∩ r, S′ −∪ r; ¬S](t), where S′ 6= S, p 6= r, q 6= r, p 6= q.

Tautologic forms emanating from (c4) are redundant here, because its modification for
the considered case is already included above. For the cases when the DL-query has any
of the forms S(c), C v D or C 6v D, where S is either a concept or a role and C,D are
concepts, there are no new tautologies.

4.3 Axiomatization for Tautologies

The results presented above allow us to define rules of inference for deriving tautologies
when inclusion constraints are put on the input predicates of a DL-atom.

Inclusion DL[λ, S −∪ p; Q](t) p ⊆ q
DL[λ, S −∪ q; Q](t)

(i1), (8)

DL[λ, S] p; Q](t) p ⊆ q
DL[λ, S] q; Q](t)

(i2). (9)

The “increase” rules are slightly adapted, in comparison to the general case by taking
into account that p ⊆ q iff p− ⊆ q−:

Increase

DL[λ, S]p; Q](t)
DL[λ, S]q, S′]p, S′−∩q; Q](t)

(in]),
DL[λ, S−∪p; Q](t)

DL[λ, S−∪q, S′]p, S′−∩q; Q](t)
(in−∪),

12

DL[λ, S]p; Q](t)
DL[λ, S]q, S′]p−, S′−∩q−; Q](t)

(in−]),
DL[λ, S−∪p; Q](t)

DL[λ, S−∪q, S′]p−, S′−∩q−; Q](t)
(in−−∪),

where p, q ∈ P(−)
p are of the same arity.

We consider the following extended set of axioms compared to the case without
inclusion constraints:

a0. DL[; Q](),
a1. DL[S −∩ p, S −∪ p; ¬S](t),
a2. DL[S −∩ p, S′] q, S′ −∪ q; ¬S](t), where q ∈ {p, p−},

and Q=S v S, Q=S v >, or Q=> 6v ⊥, S, S′ are either distinct concepts or
distinct roles; moreover, p is a unary or binary predicate.

The described axioms and rules together with the expansion rule defined above, form
a calculus for the derivation of tautologic DL-atoms, which we denote by K⊆taut . The
main result of this section, following next, is its soundness and completeness.

Theorem 2. The calculus K⊆taut is sound and complete for tautologic ground DL-atoms
a relative to any closed set of inclusion constraints C (i.e., such that C = Cl(C)) that is
separable for a.

We use our running example to illustrate the application of K⊆taut .

Example 8 (cont’d). Reconsider the DL-program in Example 1, and recall that no ground
instance of its DL-atom, in particular

a = DL[H] vi,H −∪ sw,A −∩ ex; ¬A](pineapple)
is tautologic. Now let us take the predicate constraints in P into account. Recall that
essentially by the rules (2) and (3), we have that {ex ⊆ vi, ex ⊆ sw}⊆Cl(C) (which is
also separable for a). We thus can derive a in K⊆taut given C as follows:
DL[H] ex, H −∪ ex, A −∩ ex; ¬A](pineapple)

DL[H] ex, H −∪ ex, A −∩ ex; ¬A](pineapple) ex ⊆ vi

DL[H] vi, H −∪ ex, A −∩ ex; ¬A](pineapple)
(i2)

ex ⊆ sw

DL[H] vi, H −∪ sw, A −∩ ex; ¬A](pineapple)
(i1)

The leaf of the proof tree is a DL-atom DL[H] ex,H −∪ ex,A −∩ ex; ¬A](pineapple).
It has the form of axiom a2. Hence the initial DL-atom a is, by virtue of Theorem 2,
tautologic relative to C.

The results of this section can be readily used for optimization or reasoning tasks on
DL-programs that involve ground DL-atoms, e.g. in diagnosis and repair [16; 8]. They
can moreover be exploited for dealing with non-ground DL-atoms. We may call a such
a DL-atom a = DL[λ; Q](t) independent (resp. contradictory, tautologic), if each of
its ground instances has this property. From the results above, we obtain that there are
no contradictory nonground DL-atoms, and that to prove a tautologic, it is sufficient
to consider a single instance a (particular constants do not matter, and for role queries
(¬)R(t1, t2), consider different constants if possible).

Example 9. In our running example, e.g., the instance of a for X = pineapple is tauto-
logic relative to the constraints; hence a is tautologic and can be removed from rule (5).

13

5 Complexity

Let us now consider the complexity of determining whether a DL-atom a is independent.
To determine whether a is contradictory is trivial, given the simple forms of unsatisfiable
DL-queries. For determining whether a is tautologic, we can use the calculus K⊆taut
established above, and aim at a derivation of a. In the search, we need an oracle for
deciding whether ic ∈ Cl(C), for a given IC ic and C, to see whether a rule is applicable.

The complexity of this oracle is in fact the dominating factor for the search. Indeed,
the inclusion rules of K⊆taut work strictly local, in the sense that they only replace one
occurrence of an input predicate by another one, and few independent rule applications
are needed to arrive at an axiom (see below).

The complexity of deciding, given an IC ic and a set C of ICs, whether ic ∈ Cl(C),
depends on the form of the ICs. In general, the problem is decidable in polynomial
space, and it is NLogSpace-complete if the arities of the predicates in C are bounded by
a constant k. In particular, for k = 2 deciding ic ∈ Cl(C) if all predicates in ic have the
same arity, is possible using the following inference rules:

X ⊆ Y Y ⊆ Z
X ⊆ Z

X ⊆ Y
X− ⊆ Y −

X− ⊆ Y −
X ⊆ Y (10)

where X,Y, Z are meta variables which denote unary (binary) predicates. On the other
hand, the problem is NLogSpace-hard for every k ≥ 1 as it subsumes graph reachability.

We have the following result.

Theorem 3. Given a DL-atom a and a separable set C of ICs for a, deciding whether
a is tautologic relative to C is (i) NLogSpace-complete and NLogSpace-hard even if
C = ∅, and is (ii) in LogSpace, and in fact expressible by a fixed first-order formula
(hence in AC0), if the DL query Q of a is not a negative concept resp. role query.

Proof (Sketch). By the above results on K⊆taut , we need an oracle for ic ∈ Cl(C), where
ic involves only unary resp. binary predicates. Due to the special form of ICs, ic ∈ Cl(C)
iff ic ∈ Cl([C]2), where [C]2 is the set of all ICs in C that involve only unary and/or
binary predicates. Thus, by the observation above, an NLogSpace oracle is sufficient.

To prove that a = DL[λ; Q](t) is tautologic, we can guess an instance of an axiom
ai from which we want to arrive at a by application of rules in K⊆taut . Checking that
Q(t) matches the query of ai is easy, and we can check in case of a1, a2 that S−∩p
occurs in λ; we then can check whether S−∪p resp. S′] p(−), S′−∪p(−) occur in λ, and if
not, in case of a1 build nondeterministically a “chain” q0(= p) ⊆ q1 ⊆ · · · ⊆ qk such
that S′−∪qk ∈ λ and in case of a2 also a “chain” r0(= p) ⊆ r1 ⊆ · · · ⊆ rk′ such that
S′] qk′ ∈ λ, where for every qi, we have that either qi−1 ⊆ qi (which can be checked
with the oracle), or some pair S′′] q(−)

i−1, S
′′−∩q(−)

i occurs in λ and similarly, for every

rj we have that either rj−1 ⊆ rj (an oracle check), or some pair S′′] r(−)
j−1, S

′′−∩r(−)
j

occurs in λ; building a chain stops as soon as S′−∪qi ∈ λ resp. S′] ri ∈ λ is found (it
may else stop after a certain number of steps, but this is irrelevant here).

A simple analysis reveals that this overall algorithm is feasible, relative to the oracle,
in logarithmic space (one can cycle through the few guesses with constantly many

14

variables, and building chains as above is feasible in nondeterministic logarithmic space,
as we just need to memorize qi, p0, pn+1 resp. p′n+1, and S′). It follows that in general,
the problem is in NLogSpace.

The problem is shown to be NLogSpace-hard via a reduction from the canonical
graph reachability problem. Let G = (V,E) be a directed graph and let s, t ∈ V
be nodes. We view each node v ∈ V as a unary predicate, and define the DL-atom
a = DL[C−∩s, λ, C−∪t; ¬C](a) where λ contains for each edge (v, w) ∈ E the elements
C(v,w)] v, C(v,w)−∩w, where C(v,w) does not occur elsewhere. Then it holds that a is
tautologic (wrt. C = ∅) iff t is reachable from s in G. Indeed, note that by its form, a
must be derived from an instance DL[C−∩s, C−∪t; ¬C](a) of a1, and that for this a chain
q0 = s ⊆ q1 ⊆ · · · ⊆ qk = t must be built to obtain C−∪t, and only the rule (in−∪)
is applicable. This chain corresponds to a path in G from s to t. Conversely from any
path s = v0, v1, . . . vk = t in G, we can build a corresponding chain with elements
C(v,w)] v, C(v,w)−∩w in λ using the rule (in−∪).

Finally, if Q is not a negative concept resp. role query, then for a to be tautologic it
must be an instance of a0, which is checkable in logarithmic space and also expressible
by a FOL formula φ over a relational structure (roughly, a plain SQL query over a
database) that stores in suitable relations: all triples Si opi pi in λ, using Si, opi, and pi
as constants; the query Q(t); and all inclusions p ⊆ q(−) from Cl(C). In fact, φ can be
fixed, and the relations are easily assembled from a and C. As evaluating a fixed FOL
formula over relational structures is in AC0, we obtain the result. ut

6 Conclusion and Future Work

To the best of our knowledge, the notion of independent DL-atom has not been considered
before, which is of use in optimization and for reasoning tasks on DL-programs. We
investigated the forms of tautologic and contradictory ground DL-atoms in the general
case, as well as in the case when inclusion constraints on the input predicates are known.
We showed that contradictory DL-atoms have a simple form, and we presented a sound
and complete calculus for determining tautologic DL-atoms. Based on it, we determined
the complexity of deciding this problem, and showed that the problem is very efficiently
solvable in general, as well as relative to the predicate constraints. Furthermore, the
results for ground DL-atoms can be easily lifted to deal with nonground DL-atoms, and
an implementation of the calculus using logic programming is rather straightforward.
Outlook. Several issues remain for further investigation. A possible extension is to
consider DL queries which allow for non-atomic concepts, respectively roles. Some of
our results can be readily extended to such queries (e.g., to conjunctive concept/role
queries), but to get a clear picture further work is needed.

As an alternative, or in addition to ICs, further information about the DL-program
might be available relative to which independence of a DL-atom can be established.

Regarding predicate constraints, one issue is non-separable sets of inclusion con-
straints., i.e., to permit projections among input predicates of DL-atoms, for which
the presented calculus is sound but not complete. One can also imagine more general
inclusion constraints, by relaxing the conditions to allow e.g. repetition of arguments, or
inclusion of intersections. Other possibilities are to consider exclusion constraints, or

15

(non-)emptiness constraints on predicates. Adopting a technical view, we could consider
arbitrary sets of constraints that describe an envelope of the set of answer sets of the
underlying DL-program. The study of different forms of constraints remains to be done.

Orthogonal to rules, one may exploit information about the ontology. So far, informa-
tion in the ontology Φ about the concepts (roles) that occur in the DL-atoms considered
has been ignored. However, such information may lead to further independent DL-atoms.
For example, knowing that Φ |= C v D and that DL[λ,C −∪ p; Q](t) is tautologic, we
can infer that DL[λ,D −∪ p; Q](t) is also tautologic. Incorporating such information and
other information into the calculus remains for future work.

References
1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The

Description Logic Handbook: Theory, Implementation and Applications. CUP (2003)
2. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing default logic over description logic

knowledge bases. In: Proc. ECSQARU’09. LNCS 5590, pp. 602–613. Springer (2009)
3. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description

logic programs in the Semantic Web. ACM Trans. Comput. Log. 12(2), 11 (2011)
4. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set

programming with description logics for the Semantic Web. AIJ 172, 1495-1539 (2008)
5. Eiter, T., Fink, M., Stepanova, D.: Semantic independence in DL-programs. Tech. Rep.

INFSYS RR-1843-12-07 (2012)
6. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in

description logic programs. Ann. Math. Artif. Intell. 53(1-4), 115–152 (2008)
7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs:

Implementation and experiments. In: Proc. LPAR’04. LNCS 3452, pp. 511–527. (2004)
8. Fink, M., El Ghali, A., Chniti, A., Korf, R., Schwichtenberg, A., Lévy, F., Pührer, J., Eiter,

T.: D2.6 Consistency maintenance. Tech. Rep. 2.6, ONTORULE ICT-2009-231875 Project
(2011), http://ontorule-project.eu/outcomes?func=fileinfo&id=92

9. Fink, M., Pearce, D.: A logical semantics for description logic programs. In: JELIA’10. LNCS
6341, pp. 156–168. Springer (2010)

10. Heymans, S., Korf, R., Erdmann, M., Pührer, J., Eiter, T.: Loosely coupling F-logic rules and
ontologies. In: Int’l Conf. on Web Intelligence (WI 2010), pp. 248-255. IEEE CS (2010)

11. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability.
Journal of Web Semantics 1(4), 345–357 (2004)

12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a Web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

13. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the semantic web. IEEE Trans. Knowl. Data Eng. 22(11), 1577–1592 (2010)

14. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax (2008), w3C Working Draft April 2009

15. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. JACM 57(5), 1–62 (2010)
16. Pührer, J., Heymans, S., Eiter, T.: Dealing with inconsistency when combining ontologies and

rules using dl-programs. In: Proc. ESWC’10 (1). LNCS 6088, pp. 183–197. Springer (2010)
17. Shen, Y.D.: Well-supported semantics for description logic programs. In: Proc. IJCAI’11. pp.

1081–1086. AAAI Press (2011)
18. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defeasible

logic for the semantic web. In: RuleML’04. LNCS 3323, pp. 170–181. Springer (2004)
19. Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D.: Loop formulas for description logic programs.

Theory and Practice of Logic Progamming 10(4-6), 531–545 (2010)

16

