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Hybrid Knowledge Bases

• MKNF KBs
[Motik and Rosati, 2010]

• FO-Autoepistemic Logic
[de Bruijn et al., 2011]

• Quantified Equilibrium Logic
[de Bruijn et al., 2007]

• Carin [Levy and Rousset, 1998]

• DL-safe rules
[Motik et al., 2005]

• R-hybrid KBs [Rosati, 2005]

• DL+LOG [Rosati, 2006]

• DL-programs [Eiter et al., 2008]

• Defeasible Logic+DL
[Wang et al., 2004]
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• Applications:
• Semantically enriched route planning
• Assignment problems involving preferences
• Medical systems
• Reasoning on the web . . .

• Problem: inconsistencies often arise as a result of combination
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Inconsistency in DL-programs
Problem: inconsistency in a DL-program
Question: how to deal with it?

Many possibilities..
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Description Logic Ontologies
• 1950’s-1960’s: First Order Logic (FOL) for KR

(undecidable)

(e.g. [McCarthy, 1959])

∀X (Female(X ) ∧ ∃Y (hasChild(X ,Y ))→ Mother(X ))

• 1970’s: Network-shaped structures for KR (no formal semantics)
(e.g. semantic networks [Quillan, 1967], frames [Minsky, 1985])

• 1979: Encoding of frames into FOL [Hayes, 1979]

• 1980’s: Description Logics (DL) for KR
• Decidable fragments of FOL
• Theories encoded in DLs are called ontologies O
• Many DLs with different expressiveness and computational features

• In this work: lightweight DLs (DL-LiteA, EL)
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Description Logic DL-LiteA
• Concepts model sets of objects and roles model binary relations

• Child , hasParent

• More complex concepts and roles can be constructed:

Construct Syntax Example

negated concept ¬C ¬Male

exist. on roles ∃R ∃hasChild

negated roles ¬R ¬hasSibling

role inverses R− hasParent−

• A DL-LiteA ontology O = 〈T ,A〉 consists of:

• TBox T specifying constraints at the conceptual level.
C v B R v S (funct R)

• ABox A specifying facts that hold in the domain.
A(b) P(a, b)

Ontology O = 〈T ,A〉 in DL-LiteA
T =

{
Child v ∃hasParent Female v ¬Male

}
A =

{
hasParent(john, pat) Male(john)

}
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Description Logic EL
Ontology O = 〈T ,A〉 in EL

T = {Aunt ≡ Female u ∃hasSibling(∃hasChild .Human)}

A =

{
Female(ann) hasSibling(ann, pat)
Human(john) hasChild(pat , john)

}
• EL-concepts:

Construct Syntax Example

Conjunction A u B Female u Child

Exist. restr. ∃R.A ∃hasSibling.Male

• TBox axioms1:
C v D C ≡ D

1C and D are arbitrarily complex concepts constructed using ∃ and u
8 / 44
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DL-LiteA and EL: FOL Formalization
Child v ∃hasParent is equiv. to ∀x(Child(x)→ ∃y(hasParent(x , y)))

Syntax FOL formalization

A1 v A2 ∀x(A1(x)→ A2(x))

R1 v R2 ∀x , y(R1(x , y)→ R2(x , y))

A1 v ¬A2 ∀x(A1(x)→ ¬A2(X ))

R1 v ¬R2 ∀x , y(R1(x , y)→ ¬R2(x , y))

∃R v A ∀x(∃y(R(x , y))→ A(x))

∃R− v A ∀x(∃y(R(y , x))→ A(x))

A v ∃R ∀x(A(x)→ ∃y(R(x , y)))

funct(R) ∀x , y , y ′(R(x , y) ∧ R(x , y ′)→ y = y ′)
A1 u A2 v A3 ∀xA1(x) ∧ A2(x)→ A3(x)

∃R.A1 v A2 ∀x(∃y(R(x) ∧ A1(x))→ A2(x)

A1 v ∃R.A2 ∀x(A(x)→ ∃y(R(x , y) ∧ A2(y)))

. . . . . .
9 / 44



Hybrid Knowledge Bases Problem Statement Repair Semantics Computation Implementation and Evaluation Conclusion

Nonmonotonic Logic Programs
• DLs are powerful for KR but not well-suited for modelling

human-like reasoning (e.g. exceptions) due to monotonicity

• 1980’s: Nonmonotonic logics for KR
(e.g. circumscription, default logic,
auto-epistemic logic)

• 1970’s: Logic programming
(e.g. Prolog)

• Nonmonotonic logic programming under answer set semantics (ASP)
[Gelfond and Lifschitz, 1988]

Example
female(Y ) ∨ female(Z )← not adopted(X ), hasparent(X ,Y )

hasparent(X ,Z ),Y 6= Z
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Nonmonotonic Logic Programs

Definition
A nonmonotonic logic program P is a set of rules of the form:

a1 ∨ . . . ∨ ak︸ ︷︷ ︸
Head (H)

← b1, . . . , bm, not bm+1, . . . , not bn.︸ ︷︷ ︸
Body (B)

• ai ’s and bj ’s are first-order atoms and

• not is a negation as failure (default negation, weak negation)

Example

female(Y ) ∨ female(Z )← not adopted(X ), hasparent(X ,Y )
hasparent(X ,Z ),Y 6= Z
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Answer Set Semantics

P =


hasparent(john, pat); hasparent(john, alex);
female(pat) ∨ female(alex)← not adopted(john),

hasparent(john, pat),
hasparent(john, alex)


• Semantics: given for ground programs (programs without variables)

• Interpretation: consistent set I of ground atoms over Herbrand Base of P
I1 = {hasparent(john, pat), hasparent(john, alex), female(alex)}

• Satisfaction relation: I |= a iff a ∈ I
I1 |= hasparent(john, pat); I1 6|= adopted(john)

• Model: I is a model of P if, for every r in P , I |= H(r), whenever I |= B(r)
I1 is a model of P

• Answer set (stable model): I is an answer set of P (I ∈ AS(P)) if it is a
⊆-minimal model that allows founded model reconstruction using rules
I1 ∈ AS(P)
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Answer Set Semantics

P =


hasparent(john, pat); hasparent(john, alex); adopted(john);
female(pat) ∨ female(alex)← not adopted(john),

hasparent(john, pat),
hasparent(john, alex)



• I3 = {hasparent(john, pat), hasparent(john, alex), adopted(john)}
I3 ∈ AS(P)

• adopted(john) is added, female(alex)/female(pat) are no longer derived
Nonmonotonicity!
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DL Ontologies vs Logic Programs
• ¬ in DLs is different from not in LP

• ¬: classical negation, monotonicity, open world assumption
• not : default negation, nonmonotonicity, closed world assumption

DL ontology O Logic Program P
Child v Person person(X )← child(X )

¬Child v Adult adult(X )← not child(X )

Person(john) person(john)

O 6|= Adult(john) P infers adult(john)

• DLs are strong in subsumption checking, LPs in expressing relations
• DLs allow complex expressions in heads (rhs of v), while

in LPs use of variables in rule bodies is more flexible
• . . .

12 / 44
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DL-programs: syntax
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Problem Statement
Goal of the thesis

Develop approaches for dealing with inconsistencies in DL-programs.

• DL-programs:

• Powerful formalism for solving advanced
reasoning tasks on top of ontologies

• Possibility to add information from the rule
part to ontology prior to querying it allows for
bidirectional information flow

• Issues:

• Information exchange between rules and ontology can have
unforeseen effects and cause inconsistency of the DL-program
(absence of answer sets).

19 / 45

DL-program is a pair Π = 〈O,P〉, where

• O is a DL ontology

• P is a set of DL-rules of the form

a1 ∨ . . . ∨ ak ← b1, . . . bm, not bm+1, . . . , not bn,

• ai ’s are first-order atoms and
• bj ’s are either first-order atoms or DL-atoms
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DL-program: syntax

Example
Π = 〈O,P〉 is a DL-program.

O =

{
(1) hasChild− v hasParent (3) Male(pat)
(2) Female v ¬Male (4) hasChild(pat , john)

}

P =

 (5) boy(john);

(6) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat)


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DL-atoms

DL[Male ] boy ; Male](john)

Intuition: extend concept Male by boy , then query O for Male(john)

A DL-atom is of the form

DL[S1 op1 p1, . . . ,Sm opm pm; Q](t)

• Si : ontology concept or role

• opi ∈ {], −∪}: intuitively ] (resp. −∪) increases Si (resp. ¬Si ) by pi

• pi : unary or binary logic program predicate (input predicate)
• Q(t) is a DL-query:

• C(t), ¬C(t), t = t , where C is an ontology concept
• R(t1, t2), ¬R(t1, t2), t = t1, t2, where R is an ontology role

15 / 44
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DL-programs: semantics
Π = 〈O,P〉 is a DL-program.

O =

{
(1) hasChild− v hasParent (3) Male(pat)
(2) Female v ¬Male (4) hasChild(pat , john)

}

P =


(5) boy(john);

(6) hasfather(john, pat)← DL[; hasParent](john, pat)︸ ︷︷ ︸
d1

,

DL[Male ] boy ; Male](pat)︸ ︷︷ ︸
d2


• Interpretation: I = {boy(john), hasfather(john, pat)}
• Satisfaction relation: I |=O boy(john) as boy(john) ∈ I

I |=O d1 as O |= hasParent(john, pat)

I |=O d2 as O ∪Male(john) |= Male(pat)

• Answer sets: founded models (weak , flp semantics)
I is a weak and FLP answer set

• Inconsistent DL-program: no answer sets
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Example: Inconsistent DL-program

Π = 〈O,P〉

is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex)



No answer sets
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Π = 〈O,P〉 is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex).


No answer sets
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Related Work
• Repairing ontologies

• consistent query answering over DL-Lite ontologies based on repair
technique [Bienvenu et al., 2014], [Lembo et al., 2010]

• QA over DL-LiteA ontologies that miss expected tuples (abductive
explanations corresponding to repairs) [Calvanese et al., 2012]

• Repairing nonmonotonic logic programs
• extended abduction for deleting minimal sets of rules

(in reality addition is also possible) [Sakama and Inoue, 2003]
• debugging in ASP [Pührer, 2014], [Syrjänen, 2006]

• Handling inconsistencies in combination of rules and ontologies
• paraconsistent semantics for MKNF KBs [Huang et al., 2013]
• paraconsistent semantics, based on the HT logic [Fink, 2012]
• stepwise debugging of inconsistent DL-programs [Oetsch et al., 2012]
• inconsistency tolerance in DL-programs [Pührer et al., 2010]
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Research Goal
Our goal: develop techniques for handling inconsistencies in DL-programs
Our approach: repair ontology ABox to regain consistency
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Research Questions

On the theoretical level:

? Repair problem formalization, complexity?

? Under which DLs the repair computation is feasible?

? Preferred repairs without complexity increase?

? Can existing evaluation algorithms be extended to compute repairs?

On the practical level:

? Practical algorithms and optimizations?

? Can we reuse existing tools?

◦ Benchmarks?
◦ How to evaluate?
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Contributions

On the theoretical level:

! Repair semantics for DL-programs and its complexity

! Algorithms for repair computation

! Preference selection functions with benign properties

On the practical level:

! Optimizations for DL-LiteA and EL
! Implementation as the dlliteplugin for the dlvhex2 system

implementation of repair semantics within drew3 was not effective

◦ Set of novel benchmarks including real-world data
◦ Evaluation w.r.t. performance and quality of repairs

2
https://github.com/hexhex/core

3
https://github.com/ghxiao/drew
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Repair Answer Sets

Definition
Let Π = 〈O,P〉 be a DL-program, where O = 〈T ,A〉
• an ABox A′ is a repair of Π if

• O′ = 〈T ,A′〉 is consistent and
• Π′ = 〈O′,P〉 has some answer set.

repx (Π) is the set of all repairs of Π (x ∈ {weak , flp}).

• I is a repair answer set of Π, if I ∈ ASx (Π′), where
Π′ = 〈O′,P〉,O′ = 〈T ,A′〉, and A′ ∈ repx (Π).

RASx (Π) is the set of all repair AS of Π.

repI
x (Π) is the set of all A′ under which I is a repair answer set of Π.
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Example: repair

Π = 〈O,P〉 is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex).


No answer sets
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Example: repair

Π = 〈O,P〉 is consistent!

O =

 (1) Child v ∃hasParent (4) Female(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex).


A′ = {Female(pat),Male(john), hasParent(john, pat)} is a repair
I′ = {ischildof (john, alex), boy(john)} is a repair answer set
A′ ∈ repI′

flp(Π), I′ ∈ RASflp(Π)
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Example: repair

Π = 〈O,P〉 is consistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male

(6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
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
A′′ = {Male(pat),Male(john)} is a repair
I′ = {ischildof (john, alex), boy(john)} is a repair answer set
A′′ ∈ repI′
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Complexity of Repair Answer Sets

INSTANCE: A ground DL-program Π = 〈O,P〉.
QUESTION: Does there exist a repair answer set for Π under semantics x?

(i.e. RASx (Π) 6= ∅?)

Theorem
Deciding RASx (Π) 6= ∅ and ASx (Π) 6= ∅ have in all cases the same
complexity for a ground Π = 〈O,P〉, where O is in DL-LiteA or EL.

Π RASflp(Π) 6= ∅ RASweak (Π) 6= ∅
normal ΣP

2 -complete NP-complete

disjunctive ΣP
2 -complete ΣP

2 -complete
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DL-program Evaluation

Algorithm AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
for Î ∈ AS(Π̂) do

if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

Algorithm RepAns: Compute rep
Î|Π
(σ,x)(Π)

Input: Π=〈O,P〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak ,flp}
Output: rep

Î|Π
(σ,x)

(Π)

for A′ ∈ ORP(Î ,Π, σ) do

if CMP(Î , 〈T ,A′, P 〉) ∧ xFND(Î , 〈T ,A′, P 〉) then
output A′

end

end

1
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(1)

(2a,b)

• Π̂ is Π with all DL-atoms a substituted by ordinary atoms ea plus
additional guess rules ea ∨ nea for values of a

• CMP (̂I,Π) is a compatibility check, i.e. check whether the values of
DL-atoms coincide with the values of their replacement atoms in Î

• xFND(̂I,Π) is x-foundedness check

• Î|Π is a restriction of Î to original language of Π



Hybrid Knowledge Bases Problem Statement Repair Semantics Computation Implementation and Evaluation Conclusion

DL-program Evaluation

Algorithm AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
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(1)

(2a,b)

Reasons for inconsistencies:

1. Π̂ does not have any answer sets;

2. for all Î ∈ AS(Π):
a. compatibility check failed or
b. x-foundedness check failed.
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Ontology Repair Problem

To address compatibility issue we introduce:

Definition
An ontology repair problem (ORP) is a triple P = 〈O,D1,D2〉, where

• O = 〈T ,A〉 is an ontology and

• Di = {〈U i
j ,Q

i
j 〉|1 ≤ j ≤ mi}, i = 1, 2 are sets of pairs where

• U i
j is any ABox (update) and

• Q i
j is a DL-query.

A repair (solution) for P is any ABox A′ s.t.

• O′ = 〈T ,A′〉 is consistent;

• O′ ∪ U1
j1 |= Q1

j holds for 1 ≤ j1 ≤ m1;

• O′ ∪ U2
j2 6|= Q2

k holds for 1 ≤ j2 ≤ m2.

ORP is NP-complete in general, even if O = ∅.
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Tractable Cases of ORP for DL-LiteA

C1. bounded δ±-change: S = {A′ | |A′∆A| ≤ k}, for some k

C2. deletion repair: S = {A′ | A′ ⊆ A}
C3. deletion δ+: first delete assertions, s.t. queries in D2 are not satisfied, then

add a bounded number of assertions to satisfy queries in D1

C4. addition under bounded opposite polarity:
S = {A′ | |A′+\A| ≤ k or |A′−\A| ≤ k}, for some k

Function σ : 2ABxAB → 2AB is a selection function, where AB is a set of all A′.
σ(S,A) ⊆ S is a set of preferred ABoxes.

A selection σ : 2ABxAB → 2AB is independent if
σ(S,A) = σ(S′,A) ∪ σ(S\S′,A), whenever S′ ⊆ S.

Example
C1-C4 are independent, but ⊆-minimal repairs are not.
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Naive Repair Algorithm

Algorithm AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
for Î ∈ AS(Π̂) do

if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

Algorithm RepAns: Compute rep
Î|Π
(σ,x)(Π)

Input: Π=〈O,P〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak ,flp}
Output: rep

Î|Π
(σ,x)

(Π)

for A′ ∈ ORP(Î ,Π, σ) do

if xFND(Î , 〈T ,A′,P〉) then
output A′

end

end

1

• ORP (̂I,Π, σ) computes σ repairs for Î,Π
• xFND(̂I, 〈T ,A′,P〉) checks whether Î is x-founded w.r.t. Π′

RepAnsSet outputs Î|Π if the result of RepAns is nonempty.

RepAns and RepAnsSet are sound and complete for independent σ.
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end

end

Algorithm RepAns: Compute rep
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Ground Support Sets

For optimization purposes we introduce support sets:
Support set for d = DL[λ; Q](t) is a minimal set S, s.t. S ∪ T |= Q(t)

d = DL[Male ] boy ; Male](pat); T = {Female v ¬Male}

When is d true under interpretation I?

• Male(pat) ∈ A
• boy(pat) ∈ I

• boy(alex) ∈ I; Female(alex) ∈ A

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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Ground Support Sets (DL-LiteA)
Definition
S ⊆ A∪Ad is a support set for d = DL[λ; Q](t) w.r.t. O = 〈T ,A〉 in DL-LiteA if
either

(i) S = {P(c)} and Td ∪ S |= Q(t) or

(ii) S = {P(c),P′(d)}, s.t. Td ∪ S is inconsistent.

SuppO(d) is a set of all support sets for d .

d = DL[Male ] boy ; Male](pat); Td = {Female v ¬Male; Maleboy v Male}

When is d true under interpretation I?

• S1 = {Male(pat)}, coherent with any I

• S2 = {Maleboy (pat)}, coherent with I ⊇ boy(pat)

• S3 = {Maleboy (alex); Female(alex)}, coherent with I ⊇ boy(alex)

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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Nonground Support Sets (DL-LiteA)
d = DL[Male ] boy ; Male](X ), Td = {Female v ¬Male; Maleboy v Male}

Nonground support sets:

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ); Female(Y )}

Definition
S = {P(Y),P′(Y′)} (S = {P(Y)}) is a DL-LiteA nonground support set for a
DL-atom d(X) w.r.t. T if for every θ : V → C it holds that Sθ is a support set for
d(Xθ) w.r.t. OC = 〈T ,AC〉, where AC is a set of all possible assertions over C.

Nonground support sets are compact representations of ground ones.

Completeness: family of nonground support sets S for d(X) is complete w.r.t. O
if for every θ : X→ C and S ∈ SuppO(d(Xθ)) some S′ ∈ S exists, s.t. S = S′θ′.

Complete support families allow to avoid access to O during DL-atom
evaluation.
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Nonground Support Set Computation (DL-LiteA)

d = DL[Male ] boy ; Male](X ); T = {Female v ¬Male}

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Maleboy v Male}

• Compute classification Cl(Td ) (e.g. using ASP techniques):
cl(Td ) = Td ∪{Male v ¬Female; Maleboy v ¬Female}∪{P v P | P ∈ P}

• Extract support sets from Cl(Td ):

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ),¬Male(Y )}
• S4 = {Maleboy (Y ),Female(Y )}

 {S1,S2,S3,S4} is complete!

• S5 = {Male(Y ),¬Male(Y )}
• S6 = {Male(Y ),Female(Y )}

}
O is consistent!
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Nonground Support Set Computation (DL-LiteA)

d = DL[Male ] boy ; Male](X ); T = {Female v ¬Male}

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Maleboy v Male}

• Compute classification Cl(Td ) (e.g. using ASP techniques):
cl(Td ) = Td ∪{Male v ¬Female; Maleboy v ¬Female}∪{P v P | P ∈ P}

• Extract support sets from Cl(Td ):

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ),¬Male(Y )}
• S4 = {Maleboy (Y ),Female(Y )}

 {S1,S2,S3,S4} is complete!
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Optimized Deletion-RAS Computation (DL-LiteA)

X Compute complete support families S for all DL-atoms of Π

• Construct Π̂ from Π = 〈O,P〉:
• Replace all DL-atoms a with normal atoms ea
• Add guessing rules on values of a: ea ∨ nea

• For all Î ∈ AS(Π̂) : Dp = {a | ea ∈ Î}; Dn = {a | nea ∈ Î}

X Ground support sets in S wrt. Î and A: S Î
gr ← Gr(S, Î,A)

X Find A′, such that
X For all a ∈ Dp: there is S ∈ S Î

gr (a), s.t.
S ∩ A′ 6= ∅ or S ⊆ Aa

X For all a′ ∈ Dn: for all S ∈ S Î
gr (a′):

S ∩ A′ = ∅ and S 6⊆ Aa′

X Minimality check of Î|Π wrt. Π′ = 〈O′,P〉, O′ = 〈T ,A′〉
32 / 44

Sound and complete
wrt. deletion repair answer sets!
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Extending Approach to EL

T = {StaffRequest ≡ ∃hasSubj.Staff u ∃hasTarg.Proj}
d = DL[Proj ] projfile; StaffRequest](X )

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Projprojfile v Proj}

• Rewrite DL-query over normalized Td into a datalog program:

Tdnorm =


(1) StaffRequest v ∃hasSubj.Staff (2) Projprojfile v Proj
(3) StaffRequest v hasTarg.Proj (4) ∃hasSubj.Staff v C1

(5) ∃hasTarg.Proj v C2 (6) C1 u C2 v StaffRequest



• Unfold the DL-query and extract support sets:

StaffRequest(X )← hasSubj(X ,Y ),Staff (Y ), hasTarg(X ,Z ),Proj(Z )
StaffRequest(X )← hasSubj(X ,Y ),Staff (Y ), hasTarg(X ,Z ),Projprojfile(Z )
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(4*) Proj(X )← Projprojfile(X )


• Unfold the DL-query and extract support sets:

S1 = {hasSubj(X ,Y ),Staff (X ), hasTarg(X ,Z ),Proj(Z )}
S2 = {hasSubj(X ,Y ),Staff (X ), hasTarg(X ,Z ),Projprojfile(Z )}
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(2*) C1(X )← hasSubj(X ,Y ),Staff (Y )

(3*) C2(X )← hasTarg(X ,Y ),Proj(Y )

(4*) Proj(X )← Projprojfile(X )


• Unfold the DL-query and extract support sets:

− infinitely many support sets (axioms ∃R.A v A)
− exponentially many for acyclic T

• Completeness is costly!
• Compute partial support families: bound size/number
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Optimized Deletion RAS Computation (EL)

X Compute partial support families S for all DL-atoms of Π

• Construct Π̂ from Π = 〈O,P〉:
• Replace all DL-atoms a with normal atoms ea
• Add guessing rules on values of a: ea ∨ nea

• For all Î ∈ AS(Π̂) : Dp = {a | ea ∈ Î}; Dn = {a | nea ∈ Î}
X Ground support sets in S wrt. Î and A: S Î

gr ← Gr(S, Î,A)

X For all HS H ⊆ A of support families for all a ∈ Dn:

X If all a ∈ Dp have at least one S ∈ S Î
gr , s.t.

S ∩ H = ∅, then do eval. postcheck on Dn

(evaluate atoms from Dn over I and A\H)

X Else do eval. postcheck on Dn and Dp

X Check minimality of Î|Π wrt. Π′ = 〈T ,A\H,P〉

Sound wrt. deletion repair answer sets,
complete if all support families are complete!
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System Architecture

OP

Π

Π̂

Figure 7.1: System architecture of the dlliteplugin for Repair Answer Set Computation

155
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Experiments
Assessment of our algorithms concerns the following aspects:
• Scalability

• size of the DL-program data part
• size of the ontology TBox
• number of rules in the DL-program

• Repair quality
• bounding number/type of assertions for deletion

• Expressive features
• defaults
• guesses
• recursiveness

• Real world data
• Taxi-driver assignment problem
• Open Street Map

• Effects of support family completeness
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Taxi-Driver Benchmark (DL-LiteA)

O =

(1) Driver v ¬Cust (4) adjoint v ¬disjoint
(2) ∃worksIn v Driver (5) EDriver v Driver
(3) worksIn v ¬notworksIn



P=



(5) cust(X )← isIn(X ,Y ), not DL[;¬Cust](X );

(6) driver(X )← not cust(X ), isIn(X ,Y );

(7) drives(X ,Y )← driver(X ), cust(Y ), needsTo(Y ,Z1), goTo(X ,Z2),
DL[; adjoint](Z1,Z2), not omit(X ,Y );

(8) omit(X ,Y )← DL[; EDriver ](X ), needsTo(Y ,Z ),
DL[; notworksIn](X ,Z );

(9) ok(Y )← customer(Y ), drives(X ,Y );

(10) fail ← customer(Y ), not ok(Y );

(11) ⊥ ← fail


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Taxi-Driver Benchmark (DL-LiteA)
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• A: 500 customers, 200 drivers (190 edrivers), 23 regions (Vienna districts), every
driver works in 2-4 regions

• P : randomly generated positions and intentions of customers and drivers
• Instance size reflects the size of the relevant data part
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Open Street Map Benchmark (EL)

O =

{
(1) BuildingFeature u ∃isLocatedInside.Private v NoPublicAccess
(2) BusStop u Roofed v CoveredBusStop

}

P =


(9) publicstation(X )← DL[BusStop ] busstop; CoveredBusStop](X );

not DL[; Private](X );
(10) ⊥ ← DL[BuildingFeature ] publicstation; NoPublicAccess](X ),

publicstation(X ).


• Rules on top of the MyITS ontology:4

• personalized route planning with semantic information
• TBox with 406 axioms

• O (part): building features located inside private areas are not publicly
accessible, covered bus stops are those with roof.

• P checks that public stations don’t lack public access, using CWA on
private areas.

4
http://www.kr.tuwien.ac.at/research/projects/myits/
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Open Street Map Benchmark (EL)
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• A: bus stops (285) and leisure areas (682) of Cork, plus role
isLocatedInside on them (9)

• Randomly made 80% bus stops roofed, 60% leisure areas private

• For isLocatedInside(bs, la) make bs a bus stop with p chance (x-axis)

• DL-atoms have few support sets
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Family Benchmark (DL-LiteA)

20 40 60 80 100

0

20

40

60

80

instance (p)

se
co
n
d
s

A50,AS

A50,RAS

A50,RAS-lim=10

A1000,AS

A1000,RAS

A1000,RAS-lim=10

1. Data part variations:
• A50 contains 50 children (7 adopted), 20 female, 32 male adults

(20 times that many for A1000), T is fixed
• Instance size p: facts boy(c), isChildOf (c, d) are in P with prob. p/100.
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Family Benchmark (DL-LiteA)
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2. TBox part variations:
• Tn additionally contains P v Person for all concepts P of O, for each concept

P and 1 ≤ i ≤ n the axiom PMemberOfSocGroupi v P is in P with prob.
p/100, A50 is fixed
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Family Benchmark (DL-LiteA)
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3. Rule part variations:
• Rn additionally contains rules which identify contacts for children within a

social group, contact information is propagated, A50 and T are fixed
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Benchmark Statistics

Benchmark Ontology expressivity TBox size Concepts Roles ABox Size Individuals

Family DL-LiteA 3 5 1
A50 312 102

A1000 6183 2021

Network DL-LiteA
3 4 2 A67 204 67

3 5 2 A161 672 161

Taxi

Basic

DL-LiteA

3 4 2
A50 259 75

A500 4370 714

Time 4 6 2 274 75

Districts 389 339 41
A50 418 93

A500 6744 723

LUBM

Basic

DL-LiteA
95 44 31 7293 1555

Diamond

Extended 101 48 31 7412 1605

Policy EL 5 8 3

A40 199 64

A100 475 148

A1000 4615 1408

OSM EL 405 356 36 4195 1537

LUBM-basic EL 94 47 28 2285 832
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Conclusions

• Hybrid Knowledge Bases: rules + DL ontology

• DL-programs: loose coupling combination

• Inconsistency is a challenging issue
• already for rules and ontology considered separately

• Many possibilities for repair

• We focus on changing ontology data part to restore consistency
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Summary of Contributions

• Repair semantics for inconsistent DL-programs

• Complexity is the same as for ordinary AS computation
if DL is in DL-LiteA or EL

• Practical algorithms for deletion repair answer set computation
based on support sets

• Implementation as the dlliteplugin within the dlvhex system

• Evaluation on a set of novel benchmarks (promising results)

• Further optimizations: pruning out DL-atoms
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Future Work

• Extend work to other DLs

• Practical algorithms for other independent selections

• Further optimizations

• Repairing rules and DL-atoms

• Paraconsistent reasoning . . .
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Additional Material Background Further Selected Experiments Optimization

DL-program
Consider grounding grd(Π)= 〈O, grd(P)〉 of Π = 〈O,P〉 over C and P .

Interpretation I is a consistent set of ground literals over C and P .

• for ground literal `: I |=O ` iff ` ∈ I;

• for ground DL-atom a = DL[S1op1p1, . . . ,Smopmpm; Q](c):

I |=O a

iff T ∪ A ∪ λI(a) |= Q(c), where λI(a) =
⋃m

i=1 Ai (I) is a DL-update of O
under I by a:
• Ai (I) = {Si (t) | pi (t) ∈ I}, for opi = ];
• Ai (I) = {¬Si (t) | pi (t) ∈ I}, for opi = −∪;
• Ai (I) = {¬Si (t) | pi (t) 6∈ I}, for −∩.

FLP-reduct P I,O
flp of P is a set of ground DL-rules r s.t. I |= b+(r), I 6|= b−(r).

Weak-reduct P I,O
weak of P : removes all DL-atoms bi , 1 ≤ i ≤ k and all not bj ,

k < j ≤ m from the rules of P I,O
flp .

I is an x-answer set of P iff I is a minimal model of its x-reduct.
5 / 22



Additional Material Background Further Selected Experiments Optimization

Family: data

p
A50 A1000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 10

10 (20) 0.14 (0)[0] 0.22 (0)[20] 1.73 (0)[20] 63.12 (0)[0] 37.03 (0)[20] 60.21 (0)[20]
20 (20) 0.14 (0)[0] 0.23 (0)[20] 2.10 (0)[19] 62.56 (0)[0] 38.56 (0)[20] 62.19 (0)[20]
30 (20) 0.14 (0)[0] 0.24 (0)[20] 2.33 (0)[18] 62.83 (0)[0] 40.03 (0)[20] 64.27 (0)[20]
40 (20) 0.14 (0)[0] 0.25 (0)[20] 2.88 (0)[11] 63.23 (0)[0] 41.81 (0)[20] 66.81 (0)[20]
50 (20) 0.14 (0)[0] 0.25 (0)[20] 3.93 (0) [1] 63.42 (0)[0] 43.86 (0)[20] 68.87 (0)[20]
60 (20) 0.15 (0)[0] 0.26 (0)[20] 3.93 (0) [2] 63.42 (0)[0] 45.87 (0)[20] 71.63 (0)[20]
70 (20) 0.14 (0)[0] 0.27 (0)[20] 4.00 (0) [0] 63.18 (0)[0] 47.83 (0)[20] 74.14 (0)[20]
80 (20) 0.15 (0)[0] 0.28 (0)[20] 4.08 (0) [0] 63.38 (0)[0] 49.71 (0)[20] 76.35 (0)[20]
90 (20) 0.15 (0)[0] 0.29 (0)[20] 4.48 (0) [0] 63.59 (0)[0] 52.18 (0)[20] 79.14 (0)[20]

100 (20) 0.14 (0)[0] 0.30 (0)[20] 4.42 (0) [0] 63.08 (0)[0] 54.14 (0)[20] 81.81 (0)[20]

Table : Family benchmark: data size variations, fixed P and T
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Family: TBox (DL-LiteA)

p
Tmax = 500 Tmax = 5000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 10

10 (20) 0.15 (0)[0] 0.32 (0)[20] 1.95 (0)[20] 0.28 (0)[0] 3.58 (0)[20] 6.03 (0)[20]
20 (20) 0.16 (0)[0] 0.47 (0)[20] 2.17 (0)[20] 0.48 (0)[0] 12.89 (0)[20] 15.96 (0)[20]
30 (20) 0.17 (0)[0] 0.68 (0)[20] 2.47 (0)[20] 0.75 (0)[0] 27.76 (0)[20] 31.42 (0)[20]
40 (20) 0.19 (0)[0] 0.93 (0)[20] 2.78 (0)[20] 1.10 (0)[0] 48.46 (0)[20] 53.24 (0)[20]
50 (20) 0.20 (0)[0] 1.25 (0)[20] 3.19 (0)[20] 1.51 (0)[0] 76.39 (0)[20] 81.54 (0)[20]
60 (20) 0.21 (0)[0] 1.58 (0)[20] 3.56 (0)[20] 1.99 (0)[0] 108.33 (0)[20] 114.71 (0)[20]
70 (20) 0.23 (0)[0] 2.09 (0)[20] 4.18 (0)[20] 2.56 (0)[0] 146.62 (0)[20] 152.91 (0)[20]
80 (20) 0.24 (0)[0] 2.54 (0)[20] 4.68 (0)[20] 3.17 (0)[0] 191.37 (0)[20] 198.72 (0)[20]
90 (20) 0.26 (0)[0] 3.06 (0)[20] 5.28 (0)[20] 3.91 (0)[0] 241.51 (0)[20] 248.19 (0)[20]

Table : Family benchmark: TBox size variations, fixed P and A50
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Family: Rules (DL-LiteA)

p
Rulesmax = 50 Rulesmax = 500 Rulesmax = 5000

RAS RASlim=10 RAS RASlim=10 RAS RASlim=20

10 (20) 0.55 (0)[20] 2.09 (0)[20] 2.56 (0)[20] 23.23 (0)[0] 64.65 (0)[20] 110.92 (0)[20]
20 (20) 0.69 (0)[20] 2.35 (0)[20] 5.22 (0)[20] 77.30 (0)[0] 257.35 (11)[9] 300.00 (20)[0]
30 (20) 0.90 (0)[20] 2.67 (0)[20] 8.50 (0)[20] 158.23 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 0.97 (0)[20] 2.86 (0)[20] 11.86 (0)[20] 128.87 (1)[0] 300.00 (20)[0] 300.00 (20)[0]
50 (20) 1.18 (0)[20] 3.11 (0)[20] 14.91 (0)[20] 144.71 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
60 (20) 1.29 (0)[20] 3.28 (0)[20] 17.68 (0)[20] 164.70 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
70 (20) 1.42 (0)[20] 3.19 (0)[20] 20.11 (0)[20] 186.38 (3)[0] 300.00 (20)[0] 300.00 (20)[0]

Table : Family benchmark: rule size variations, fixed T and A50
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Taxi-Driver

p AS
RAS

no restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

2 (20) 2.11 (0) [0] 9.22 (0) [7] 25.05 (0) [6] 24.91 (0) [7] 12.32 (0) [7] 10.24 (0) [6] 7.56 (0) [0]
10 (20) 2.23 (0) [0] 14.17 (0)[20] 46.37 (0)[20] 46.52 (0)[20] 20.54 (0)[20] 15.75 (0)[15] 12.16 (0) [4]
18 (20) 5.58 (0) [5] 15.96 (0)[20] 51.89 (0)[20] 52.44 (0)[20] 23.11 (0)[20] 17.93 (0)[20] 28.00 (0)[20]
26 (20) 17.95 (0)[12] 18.28 (0)[20] 55.30 (0)[20] 55.84 (0)[20] 25.57 (0)[20] 20.27 (0)[20] 31.76 (0)[20]
34 (20) 37.87 (0)[17] 20.81 (0)[20] 58.71 (0)[20] 58.51 (0)[20] 28.35 (0)[20] 22.93 (0)[20] 36.00 (0)[20]

Table : Taxi-driver benchmark results: A500
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LUBM

p AS
RAS

RAS lim = 20 limp = 2 limc = 20 IS

2 (20) 3.97 (0)[0] 13.98 (0)[20] 38.90 (0)[20] 16.01 (0)[20] 15.24 (0)[20] 15.20 (0)[6]
6 (20) 4.25 (0)[0] 16.16 (0)[20] 115.62 (0)[19] 18.08 (0)[20] 18.63 (0)[19] 11.16 (0)[2]

10 (20) 4.64 (0)[0] 18.95 (0)[20] 245.40 (0)[7] 20.85 (0)[20] 20.79 (0)[4] 9.12 (0)[0]
14 (20) 4.86 (0)[0] 21.50 (0)[20] 236.40 (1)[3] 23.73 (0)[20] 23.50 (0)[1] 9.53 (0)[0]
18 (20) 5.33 (0)[0] 24.86 (0)[20] 230.21 (0)[1] 27.11 (0)[20] 26.86 (0)[0] 10.15 (0)[0]
22 (20) 5.54 (0)[0] 28.21 (0)[20] 228.12 (0)[0] 30.19 (0)[20] 29.93 (0)[0] 10.36 (0)[0]
26 (20) 5.71 (0)[0] 31.50 (0)[20] 222.78 (0)[0] 33.84 (0)[20] 33.26 (0)[0] 10.75 (0)[0]
30 (20) 6.07 (0)[0] 36.88 (0)[20] 225.18 (0)[0] 38.82 (0)[20] 38.47 (0)[0] 11.45 (0)[0]
34 (20) 6.36 (0)[0] 42.18 (0)[20] 241.30 (0)[0] 44.29 (0)[20] 44.01 (0)[0] 12.22 (0)[0]
38 (20) 6.55 (0)[0] 46.07 (0)[20] 245.77 (0)[0] 47.87 (0)[20] 47.64 (0)[0] 12.41 (0)[0]
42 (20) 6.93 (0)[0] 52.50 (0)[20] 255.74 (0)[0] 54.17 (0)[20] 56.91 (0)[0] 12.94 (0)[0]
46 (20) 7.15 (0)[0] 56.98 (0)[20] 276.52 (5)[0] 58.96 (0)[20] 58.47 (0)[0] 13.35 (0)[0]
50 (20) 7.53 (0)[0] 63.96 (0)[20] 276.07 (5)[0] 65.79 (0)[20] 65.50 (0)[0] 14.18 (0)[0]

Table : LUBM benchmark results
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Network Guessing

p
RAS

no restr lim = 10 limc = 100 Broken

2 (20) 178.52 (3)[15] 187.65 (2)[16] 175.64 (2)[16] 179.57 (3)[15]
4 (20) 201.89 (6)[10] 211.10 (7) [9] 213.66 (9) [7] 178.55 (3)[13]
8 (20) 212.18 (10) [2] 215.44 (10) [2] 205.77 (9) [3] 191.97 (7) [5]

10 (20) 190.58 (9) [0] 184.80 (8) [1] 191.54 (9) [0] 191.06 (9) [0]

Table : Network-guessing benchmark results: A161
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Network Connectivity

p
RAS

no restr lim = 3 lim = 20 lim = 100 Broken, forbid

2 (20) 179.49 (1)[19] 280.73 (16)[0] 288.64 (17)[3] 176.06 (1)[19] 125.47 (0)[0]
4 (20) 218.80 (8)[12] 291.80 (18)[0] 295.48 (19)[1] 226.25 (8)[12] 127.68 (0)[0]
8 (20) 230.79 (9)[11] 298.39 (19)[0] 300.00 (20)[0] 232.65 (9)[11] 126.97 (0)[0]

10 (20) 258.08 (14)[5] 300.00 (20)[0] 300.00 (17)[0] 259.69 (14)[6] 125.63 (0)[0]

Table : Network-connectivity benchmark results: A161
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Additional Material Background Further Selected Experiments Optimization

Optimizations: Independent DL-atoms
In our repair approach number of DL-atoms impacts performance..
Optimizations: identify DL-atoms that always have the same value!

Definition
A ground DL-atom a is independent if for all satisfiable ontologies O,O′
and all interpretations I, I′ it holds that I |=O a iff I′ |=O′ a.

A ground DL-atom a is a contradiction (resp. tautology), if for all
satisfiable ontologies O and all interpretations I, it holds that I 6|=O a
(resp. I |=O a).

Contradiction:
DL[; C 6v C]();
. . . ?

Tautology:
DL[; C v C]();
. . . ?
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Contradictions

When is a DL-atom contradictory in general?

Proposition
A ground DL-atom a = DL[λ; Q](t) is contradictory iff λ = ε and Q(t) is
unsatisfiable, i.e. has one of the forms:

• C 6v C;

• C 6v >;

• ⊥ 6v C;

• ⊥ 6v >;

• > v ⊥.
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Tautologies
When is a DL-atom a = DL[λ; Q](t) tautologic in general?

• Q is tautologic: Q ∈ {C v >,⊥ v C,C v C};
• λ is s.t. a is tautologic.

Concept query case distinction:

DL[λ; Q](t)

DL[λ;¬C](t) DL[λ; C](t)
no tautologies

DL[λ; C v D]()

no tautologies

DL[λ; C 6v D]()

no tautologies

C 6= D.

Example
a = DL[ C −∩ p, C′ ] p, C′ −∩ q, C −∪ q;¬C](c)
I is s.t. p(c) 6∈ I, q(c) 6∈ I

τ I(a) = {¬C(c)}

I is s.t. p(c) ∈ I, q(c) 6∈ I

τ I(a) = {C′(c),¬C′(c)}

I is s.t. p(c) 6∈ I, q(c) ∈ I

τ I(a) = {¬C(c)}

I is s.t. p(c) ∈ I, q(c) ∈ I

τ I(a) = {¬C(c)}
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Tautologies with Concept Query

DL[λ;¬C](t)

Proposition
A ground DL-atom a with the query ¬C(t) is tautologic iff it has one of
the following forms

c1. DL[λ,C −∩ p,C −∪ p;¬C](t),

p

c2. DL[λ,C −∩ p,D ] p,D −∪ p;¬C](t),

c3. DL[λ,C −∩ p0,C0 ] p0,C0 −∩ p′0,C
1 ] p1,C1 −∩ p′1, . . . ,

Cn ] pn,Cn −∩ p′n,C −∪ pn+1;¬C](t),

c4. DL[λ,C −∩ p0,C0 ] p0,C0 −∩ p′0,C
1 ] p1,C1 −∩ p′1, . . . ,

Cn ] pn,Cn ] p′n,D ] pn+1,D −∪ p′n+1;¬C](t),

where for every i = 0, . . . , n + 1, pi = p′j for some j < i or pi = p0, and
p′n+1 = p′ij for some j ≤ n or p′n+1 = p0.
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where for every i = 0, . . . , n + 1, pi = p′j for some j < i or pi = p0, and
p′n+1 = p′ij for some j ≤ n or p′n+1 = p0.
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Cn ] pn,Cn −∩ p′n,C −∪ pn+1;¬C](t),

Example
a = DL[C −∩ p,C′ ] p, C′ −∩ q,C −∪ q;¬C](c) is the special case of c3.

I is s.t.
p(c) 6∈ I, q(c) 6∈ I τ I(a) = {¬C(c)}
I is s.t. p(c) ∈ I, q(c) 6∈ I τ I(a) = {C′(c),¬C′(c)}
I is s.t. p(c) 6∈ I, q(c) ∈ I τ I(a) = {¬C(c)}
I is s.t. p(c) ∈ I, q(c) ∈ I τ I(a) = {C′(c),¬C′(c)}
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Tautologies with Role Query

What if the query is a role R(t1, t2) or negated role ¬R(t1, t2)?

Role query case distinction:

DL[λ; Q](t1, t2)

DL[λ; R](t1, t2)
no tautologies

DL[λ;¬R](t1, t2)
c1-c4, where C,C i ,D-roles, pi , p′i -binary

Example
(c2) for roles is of the form DL[λ,R1 −∩ p,R2 −∪ p;¬R1](t1, t2).
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Axiomatization for Tautologies (Ktaut)

Axioms:

a0. DL[; Q](),

a1. DL[S −∩ p,S −∪ p;¬S](t),

a2. DL[S −∩ p,S′ ] p,S′ −∪ p;¬S](t),

where Q ∈ {S v S,S v >,> 6v ⊥}, S,S′ are distinct.

Rules of Inference:
Expansion Increase

DL[λ; Q](t)

DL[λ, λ′; Q](t)
(e)

DL[λ,S ] p; Q](t)

DL[λ,S ] q,S′ ] p,S′ −∩ q; Q](t)
(in])

DL[λ,S −∪ p; Q](t)

DL[λ,S −∪ q,S′ ] p,S′−∩ q; Q](t)
(in−∪)
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Inclusion Constraints
Inclusion constraint (IC): q(Y1, . . . ,Yn)← p(X1, . . . ,Xm),
where n ≤ m, Yi are pairwise distinct from Xi ;

• p ⊆ q, if n = m and Yi = Xi ;

• p ⊆ q−, if n = m and Yi = Xn−i+1.

C is a set of inclusion constraints of Π; CL(C) is the logical closure of C;
inpa(C) is a set of all q(Y )← p(X ) in C s.t. p, q are in λ, a = DL[λ; Q](t);

C is separable for a if every IC ∈ inpa(CL(C)) involves predicates of same arity.

Example
Π = {(1) p2(Y ,X )← p1(X ,Y ).

(2) p3(Z )← p1(X ,Y ).
(3) r1(X ,Y )← DL[S1 ] p1,S2 −∪ p2; S3](X ,Y )︸ ︷︷ ︸

a

.}

C = {p1 ⊆ p−2 , p1 ⊆ p3}; CL(C) = C;
inpa(CL(C)) = {p1 ⊆ p−2 }; C is separable for a.
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Axiomatization for Tautologies under Inclusion K⊆taut

Axioms:

a0. DL[; Q](),

a1. DL[S −∩ p,S −∪ p;¬S](t),

a2. DL[S −∩ p,S′ ] q,S′ −∪ q;¬S](t),

where q ∈ {p, p−}, Q ∈ {S v S,S v >,> 6v ⊥}, S,S′ are distinct.

Rules of Inference: rules of Ktaut plus additional:

Inclusion Increase

DL[λ,S −∪ p; Q](t) p ⊆ q

DL[λ,S −∪ q; Q](t)
(i1)

DL[λ,S ] p; Q](t) p ⊆ q

DL[λ,S ] q; Q](t)
(i2)

DL[λ,S ] p; Q](t)

DL[λ,S ] q,S′ ] p−,S′ −∩ q−; Q](t)
(in−] )

DL[λ,S −∪ p; Q](t)

DL[λ,S −∪ q,S′ ] p−,S′−∩ q−; Q](t)
(in−−∪)
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Example

Π = {(1) so(ch, chile).
(2) vi(X )← ex(X ).
(3) sw(X )← ex(X ), not bi(X ).
(4) ex(X )← so(X ,Y ).
(5) no(X )← DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](X ).

(1) Cherimoya (ch) is a Southern fruit (so) from Chile;

(2) All exotic fruits (ex) are vitaminized (vi);

(3) Any exotic fruit is sweet (sw) unless it is known to be bitter (bi);

(4) All Southern fruits are exotic;

(5) H is healthy, A is African, no is nonafrican.

Is a = DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch) tautologic?
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Example (cont.)

Is a = DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch) tautologic?

Yes, it is!

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch)

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch) ex ⊆ vi

DL[H ] vi,H −∪ ex ,A −∩ ex ;¬A](ch)
(i2)

ex ⊆ sw

DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch)
(i1)

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch) is an axiom a2 of K⊆taut .
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