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Abstract
We consider the computation of all respectively a polynomial
subset of the explanations of an abductive query from a Horn
theory, and pay particular attention to whether the query is
a positive or negative letter, the explanation is based on lit-
erals from an assumption set, and the Horn theory is rep-
resented in terms of formulas or characteristic models. We
derive tractability results, one of which refutes a conjecture
by Selman and Levesque, as well as intractability results, and
furthermore also semi-tractability results in terms of solvabil-
ity in quasi-polynomial time. Our results complement previ-
ous results in the literature, and elucidate the computational
complexity of generating the set of explanations.

Introduction
Abduction is a fundamental mode of reasoning, which has
been recognized as an important principle of common-sense
reasoning (see e.g. (Brewka, Dix, & Konolige 1997)). It has
applications in many areas of AI including diagnosis, plan-
ning, learning, natural language understanding and many
others (see e.g. references in (Eiter & Gottlob 1995)). In
a logic-based setting, abduction can be defined as the task,
given a set of formulasΣ (the background theory) and a for-
mulaχ (thequery), to find a smallest set of formulasE (an
explanation) from a set of hypotheses such thatΣ plusE is
satisfiable and logically entailsχ. For use in practice, the
computation of abductive explanations is an important prob-
lem, for which well-known early systems such as Theorist
(Poole 1989) or ATMS solvers have been devised. Since
then, there has been a vastly growing literature on this sub-
ject, indicating the need for efficient abductive procedures.

Main problems considered. In this paper, we consider
computing a set of explanations for queries from Horn theo-
ries. More precisely, we address the following problems:
• Computingall explanations of a queryχ given by a letter
q, with and without a set of assumption literalsA from which
explanationsE must be formed, similar as in (Poole 1989;
Selman & Levesque 1996). Note that the logical disjunc-
tion of all explanations is a weakest disjunctive form over
the hypotheses explainingχ. It is easy to see that in general,
there might be exponentially many explanations, and com-
puting all explanations is inevitably exponential. However,
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it is in this case of interest whether the computation is pos-
sible in polynomial total time(or output-polynomial time),
i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is pro-
hibitive, it is of interest to know whether a few explanations
(e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque (1996).
• We contrast formula-based (syntactic) with model-based
(semantic) representation of Horn theories. The latter form
of representation, where a Horn theory is represented by the
characteristic models, was advocated by Kautzet al. (1993).
As they showed, important inference problems are tractable
in the model-based setting. Namely, whether a Horn theory
Σ implies a CNFϕ, and whether a queryq has an explana-
tion w.r.t. an assumption setA; the latter is intractable under
formula-based representation. Similar results were shown
for other theories by Khardon and Roth (1996).
•We investigate the role of syntax for computing abductive
queries. In the framework of (Selman & Levesque 1996;
Kautz, Kearns, & Selman 1993), the query is a positive let-
ter q. However, it is of equal interest to considernegative
queriesas well, i.e., to explain the complementq of an atom
q. Since the Horn property imposes semantic restrictions on
theories, it is not straightforward to express such negative
queries in terms of positive queries.
• Finally, we consider as a meaningful generalization the
computation ofjoint explanations. That is, given a back-
ground theoryΣ and observationso1, o2,. . . , ol, where
l ≥ 2, compute asingleexplanationE which is good for
eachoi. Joint explanations are relevant, e.g., in diagnostic
reasoning. We may want to know whether different observa-
tions allow to come up with the same diagnosis, given by an
abductive explanation, about a system malfunctioning. Such
a diagnosis is particularly strong, as it is backed up by sev-
eral cases.

Main results. Our main results are summarized as follows.

•We refute Selman and Leveque’s belief (1996, p. 266), that
given a Horn theoryΣ and a query letterq, it is hard to list
all explanations ofq from Σ even if we areguaranteedthat
there are only few explanations. More precisely, we disprove
their conjecture that generatingO(n) many explanations of
q is NP-hard, wheren is the number of propositional letters
in the language. This is a consequence of our result that



generatingall nontrivial explanations ofq is possible intotal
polynomial time(Theorem 1).
• We give a detailed characterization of computing all ex-
planations of a query from Horn theory in the formula- vs
model-based setting, for both general explanations and ex-
planations w.r.t. a set of assumption literals. In a nutshell,
we obtain three kinds of results:

(1) A procedure which enumerates all nontrivial explana-
tions of a query letterq from a Horn theoryΣ with incremen-
tal polynomial delay. This is a positive result and trivially
implies that all explanations can be found in polynomial to-
tal time. Moreover, it means that any polynomial number of
explanations can be generated in polynomial time in the size
of the input (Corollary 1).

(2) Intractability results for generating all explanations for
a negative queryq from a Horn theoryΣ contained in a set of
assumption literalsA; this complements a similar result for
positive queries in (Selman & Levesque 1996). Both results
emerge from the fact that the associated problems of recog-
nizing the correct output are co-NP-complete. Since some
hard instances have only small (polynomial-size) output,
they also imply that computing few (polynomially many)
explanations is intractable.

(3) Under model-based representation, generating all ex-
planations is polynomial-time equivalent to the well-known
problem of dualizing a positive CNF (DUALIZATION ), i.e.,
given a CNFϕ in which no negative literal occurs, com-
pute the (unique) prime DNF ofϕ. DUALIZATION is a
well-known open problem in NP-completeness, cf. (Bioch
& Ibaraki 1995; Fredman & Khachiyan 1996); it is known
to be solvable inquasi-polynomialtotal time, i.e., in time
No(logN) whereN denotes the combined size of the in-
put and output (Fredman & Khachiyan 1996); furthermore,
polynomial total time algorithms are known for many spe-
cial cases, and as recently shown, the decisional variant of
recognizing the prime DNF ofϕ is solvable with limited
nondeterminism, i.e., in polynomial time withO(log2N)
many guesses (Eiter, Gottlob, & Makino 2002). Since DU-
ALIZATION is strongly believed not to be co-NP-hard, our
result thus provides strong evidence that under model-based
representation, computing all explanations is not co-NP-
hard. Interestingly, the equivalence result holds for both
positive and negative queries, and whether arbitrary or ex-
planations over a set of assumption literalsA are admitted.
This means that, in a sense, model-based representation, in
contrast to formula-based representation, is not sensitive to
these aspects. Furthermore, by resorting to respective algo-
rithms for dualization, the result provides us with algorithms
for enumerating all or polynomially many explanations with
quasi-polynomial time delay between outputs.
•We show that deciding the existence of a joint explanation
is intractable, for both formula- and model-based represen-
tation. Thus, the positive results for ordinary explanations
do not extend to joint explanations.

Proofs of all results are given in (Eiter & Makino 2002).

Preliminaries
We assume a standard propositional language with letters
x1, x2, . . . , xn from a setP , where eachxi takes either value

1 (true) or0 (false). Negated atoms are denoted byxi, and
the opposite of a literal̀ by `. Furthermore, we useA =
{` | ` ∈ A} for any set of literalsA and setLit = P ∪ P .

A clause is a disjunctionc =
∨
p∈P (c) p ∨

∨
p∈N(c) p of

literals, whereP (c) andN(c) are the sets of atoms occurring
positive and negated inc andP (c) ∩ N(c) = ∅. Dually, a
term is conjunctiont =

∧
p∈P (t) p ∧

∧
p∈N(t) p of literals,

whereP (t) andN(t) are similarly defined. We also view
clauses and terms as sets of literalsP (c)∪N(c) andP (t)∪
N(t), respectively. A clausec is Horn, if |P (c)| ≤ 1, and a
CNF isHorn, if it contains only Horn clauses. AtheoryΣ is
any set of formulas; it isHorn, if it is a set of Horn clauses.
As usual, we identifyΣ with ϕ =

∧
c∈Σ c, and writec ∈ ϕ

etc.

Definition 1 Given a (Horn) theoryΣ, called the back-
ground theory, a letterq (called query), and a set of literals
A ⊆ Lit, an explanation ofq w.r.t. A is a minimal set of
literalsE overA such that

(i) Σ ∪ E |= q, and
(ii) Σ ∪ E is satisfiable.

If A = Lit, then we callE simply anexplanation ofq.

Observe that the above definition is slightly more gen-
eral than theassumption-based explanationsof (Selman &
Levesque 1996), which emerge asA = P ′ ∪ P ′ where
P ′ ⊆ P (i.e.,A contains all literals over a subsetP ′ of the
letters). Furthermore, in some texts explanations must be
sets of positive literals. As for Horn theories, the following
is known, cf. (Khardon & Roth 1996):

Proposition 1 LetE be any explanation ofq w.r.t.A ⊆ Lit.
ThenE ⊆ P , i.e.,E contains only positive literals.

Example 1 Consider a theoryΣ = {x1 ∨ x4, x4 ∨ x3,
x1 ∨ x2, x4 ∨ x5 ∨ x1}. Suppose we want to explainq = x2

fromA = {x1, x4}. Then, we find thatE = {x1} is an ex-
planation. Indeed,Σ ∪ {x1} |= x2, andΣ ∪ {x1} is satisfi-
able; moreover,E is minimal. On the other hand,E′ = {x1,
x4} satisfies (i) and (ii) forq = x2, but is not minimal. 2

Horn theories have a well-known semantic characteriza-
tion. A modelis a vectorv∈{0, 1}n, whosei-th component
is denoted byvi. For B ⊆ {1, . . . , n}, we let xB be the
modelv such thatvi = 1, if i ∈ B andvi = 0, if i /∈ B, for
i∈{1, . . . , n}. The set of models of formulaϕ (resp. theory
Σ), denoted bymod(ϕ) (resp.mod(Σ)), is defined as usual.

For modelsv, w, we denote byv ≤ w the usual com-
ponentwise ordering, i.e.,vi ≤ wi for all i = 1, 2, . . . , n,
where0 ≤ 1; v < w meansv 6= w andv ≤ w. For any set
of modelsM, we denote bymax(M), (resp.,min(M)) the
set of all maximal (resp., minimal) models inM . Denote by
v ∧ w componentwise AND of vectorsv, w ∈ {0, 1}n, and
byCl∧(S) the closure ofS ⊆ {0, 1}n under∧. Then, a the-
ory Σ is Horn representable, iffmod(Σ) = Cl∧(mod(Σ)).
Example 2 ConsiderM1 = {(0101), (1001), (1000)} and
M2 = {(0101), (1001), (1000), (0001), (0000)}. Then,
for v = (0101), w = (1000), we havew, v ∈ M1, while
v∧w = (0000) /∈ M1; henceM1 is not the set of models
of a Horn theory. On the other hand,Cl∧(M2) =M2, thus
M2 = mod(Σ) for some Horn theoryΣ.



As discussed by Kautzet al. (1993), a Horn theoryΣ is
semantically represented by its characteristic models, where
v ∈ mod(Σ) is calledcharacteristic(or extreme(Dechter &
Pearl 1992)), ifv 6∈ Cl∧(mod(Σ)\{v}). The set of all such
models, thecharacteristic set ofΣ, is denoted bychar(Σ).
Note thatchar(Σ) is unique. E.g.,(0101) ∈ char(Σ2),
while (0000) /∈ char(Σ2); we havechar(Σ2) =M1.

Generating Explanations
In this section, we consider the generation of all explana-
tions for an atomq. We exclude in our considerations the
trivial explanationE = {q}, which always exists ifq be-
longs to the assumption literalsA, Σ∪ {q} is satisfiable and
Σ 6|= q. These conditions can be efficiently checked under
both formula- and model-based representations.

Recall that a prime implicate (res., prime implicant) of a
theoryΣ is a smallest (w.r.t. inclusion) clausec (resp., term
t) such thatΣ |= c (resp.,t |= Σ). As well-known, explana-
tions can be characterized by prime implicates as follows.

Proposition 2 For a theoryΣ,E is a nontrivial explanation
of q w.r.t.A ⊆ Lit if and only if the clausec =

∨
p∈E p ∨ q

is a prime implicate ofΣ such thatE ⊆ A.

We start with the generation of all nontrivial explanations
under formula-based representation. For this problem, we
present the following algorithm.

Algorithm EXPLANATIONS

Input : A Horn CNFϕ and a positive letterq.
Output : All nontrivial explanations ofq fromϕ.

Step 1. ϕ? := ∅, S := ∅, andO := ∅;
Step 2. for eachc ∈ ϕ do

add any prime implicatec′ ⊆ c of ϕ toϕ?;
for each c′ ∈ ϕ? with P (c′) = {q} andN(c′) /∈ S do
begin outputN(c′); S := S ∪ {N(c′)};
O := O ∪ {(c, c′) | c ∈ ϕ?}

end;
Step 3. whilesome(c1, c2) ∈ O existsdo

begin O := O \ {(c1, c2)};
if (1) q /∈ N(c1), (2)P (c1) = {r} ⊆ N(c2) and

(3)ϕ? ∪N(c1) ∪N(c2) \ P (c1) is satisfiable
then begin c := resolvent ofc1 andc2;

compute any prime implicatec′ ⊆ c of ϕ;
if N(c′) /∈ S then
begin outputN(c′); S := S ∪ {N(c′)};
O := O ∪ {(c, c′) | c ∈ ϕ?}

end
end

end. 2

Example 3 We consider algorithm EXPLANATION on input
ofϕ = (x1∨x4)(x4∨x3)(x1∨x2)(x3∨x5∨x1), andq = x2.
As easily seen, each clause inϕ is a prime implicate, and
thus after Step 2,ϕ? = ϕ andS = {{x1}}. Furthermore,
the explanationE1 = {x1} was output.

In Step 3,(c1, c2), wherec1 = x3 ∨ x5 ∨ x1 andc2 =
x1∨x2, is the only pair inO satisfying (2)P (c2) = {x1} ⊆
N(c2)(= {x1}); moreover, (1)q /∈ N(c1)(= {x3, x5})
holds and (3)ϕ? ∪ {x3, x5} is satisfiable. Thus, in the body
of the while-loop, its resolventc = x3∨x5∨x2 is computed.

Clausec is a prime implicate ofϕ, and thusE2 = {x3, x5}
is output and added toS. Furthermore,O is updated.

In the next iterations, no pair(c1, c2) ∈ O is found which
satisfies condition (2), and thus the algorithm halts. Note
thatE1 andE2 are the nontrivial explanations ofq=x2. 2

The following result states that our algorithm works as
desired. For any formulaϕ, denote by‖ϕ‖ its length, i.e.,
the number of literal occurrences in it.

Theorem 1 Algorithm EXPLANATIONS incrementally out-
puts, without duplicates, all nontrivial explanations ofq
fromϕ. Moreover, the next output resp. termination occurs
within O(e ·m · n · ‖ϕ‖) time, wherem is the number of
clauses inϕ, n the number of atoms, ande the number of
explanations output so far.

Proof. (Sketch) Only pairs(c, c′) are added toO such that
c′ is a prime implicate ofϕ. Furthermore, by condition (3)
in Step 3, each suchc′ must haveP (c′) = {q}. Thus, by
Props. 1 and 2, algorithm EXPLANATIONS outputs only non-
trivial (clearly different) explanationsE1, E2, . . . , Ek for q.

To show that it outputs all nontrivial explanationsE for
q, assume that such anE is not output, i.e.,E 6= Ei, i =
1, . . . , k. Let ϕN be the CNF of all negative prime impli-
cates ofϕ, and letϕ′ = ϕN∪{

∨
p∈Ei p∨q | i∈{1, . . . , k}}.

Sincec =
∨
p∈E p ∨ q is a prime implicate ofϕ andc /∈ ϕ′,

there exists a modelv ∈ mod(ϕ′) such thatc(v) = 0. Letw
be a maximal such model, i.e., no modelu (> w) exists such
thatu ∈ mod(ϕ′) andc(u) = 0. Sincec(w) = 0 implies
w 6∈ mod(ϕ), there exists a prime implicatec1 in ϕ? (when
Step 2 is finished) such thatc1(w) = 0. Clearly c1 6∈ ϕ′,
i.e., c1 is of form c1 =

∨
p∈N(c1) p ∨ xi such thatxi 6= q.

Moreover, we haveq 6∈ N(c1) by c(w) = c1(w) = 0. Con-
sider now the modelw′ defined byw′i = 1 andw′j = wj ,
for all j 6= i. Note thatc(w′) = 0, and by the maximality of
w, there is a prime implicatec2 ∈ ϕ′ such thatc2(w′) = 0.
Sincec2(w) = 1 andc2(w′) = 0, we havexi ∈ N(c2).
Sinceq 6∈ N(c1), a resolventc? of c1 andc2 thus exists. It
can be shown (Eiter & Makino 2002) thatc? creates a new
prime implicatec′ =

∨
p∈N(c′) p∨q ⊆ c? of ϕ in Step 3, i.e.,

N(c′) 6= Ei, i = 1, . . . , k. This contradicts our assumption.
Thus, EXPLANATION is correct, and it remains to verify

the time bound. Computing a prime implicatec′ ⊆ c of ϕ
in Steps 2 and 3 is feasible in timeO(n · ‖ϕ‖), and thus
the outputs in Step 2 occur withO(m · n · ‖ϕ‖) delay. As
for Step 3, note theO contains only pairs(c1, c2) where
c1 ∈ ϕ? andc2 = N(c2)∪ {q} such thatN(c2) was output,
and each such pairs is added toO only once. Thus, the next
output or termination follows withine ·m runs of the while-
loop, wheree is the number of solutions output so far. The
body of the loop can be done, using proper data structures,
in O(n · ‖ϕ‖) time (for checkingN(c1) /∈ S efficiently, we
may storeS in a prefix tree). Thus, the time until the next
output resp. termination is bounded byO(e ·m ·n · ‖ϕ‖). 2

From this result, we obtain the following corollary.

Corollary 1 Given a Horn CNFϕ and a queryq, comput-
ingO(nk) many explanations ofq, wherek is a constant, is
possible in polynomial time.



This corollary implies that Selman and Leveque’s con-
jecture (1996, p. 266) that generatingO(n) many expla-
nations ofq is NP-hard, wheren is the number of propo-
sitional letters in the language, is not true (unless P=NP).
Note, however, that by the results of (Selman & Levesque
1996), computingO(n) many or all assumption-based ex-
planations from a HornΣ is not possible in total polynomial
time unlessP = NP.

Let us now consider computing all explanations in the
model-based setting.

Theorem 2 Given the characteristic setM = char(Σ) ⊆
{0, 1}n of a Horn theoryΣ, a queryq, andA ⊆ Lit, com-
puting the set of all explanations forq from Σ w.r.t. A is
polynomial-time equivalent to dualizing a positive CNF.

Here, polynomial-time equivalence means mutual poly-
nomial-time transformability between deterministic func-
tions, i.e.,A reduces toB, if there a polynomial functions
f, g s.t. for any inputI of A, f(I) is an input ofB, and if
O is the output forf(I), theng(O) is the output ofI, cf.
(Papadimitriou 1994); we also request thatO has size poly-
nomial in the size of the output forI (if not, trivial reduc-
tions may exist). In our reduction, explanations correspond
to clauses of the dual prime CNF and vice versa.

Proof. (Sketch) By Props. 1 and 2, we need only compute
all nontrivial explanationsE ⊆ A corresponding to prime
implicatesc of Σ s.t.P (c) = {q} andN(c) = E ⊆ A ∩ P .

We describe how the problem can be transformed to dual-
ization of polynomially many positive CNFsϕ1,. . . ,ϕk, such
that the clauses of the dual prime CNFsψi for ϕi correspond
to the explanations ofq w.r.t.A ∩ P (equivalently, w.r.t.A).
Thus, the problem is polynomially reducible to dualizing (in
parallel) several positive CNFsϕi. By simple methods, we
can combineϕ1,. . . ,ϕk into a single CNFϕ (using further
variables) such that the clauses of the dual prime CNF forϕ
correspond to the explanations ofq w.r.t.A. (This step is of
less interest in practice, since dualization of the individual
ϕi is at the core of the computation.)

To construct theϕi, we proceed as follows. Letq = xj .

(1) DefineMi = {v ∈M | vj = i}, i ∈ {0, 1}.
(2) For every modelv ∈ max(M1), let

Fv = max({v ∧ xA ∧ w | w ∈ max(M0)}).
We associate withFv a monotone Boolean functionfv on
the variablesPv = A ∩ {xi | vi = 1} such thatfv(w) =
0 ⇔ w ≤ s for some vectors in the projection ofFv on
Pv. That is,Fv describes the maximal false points offv.

(3) Finally, define for everyv ∈ max(M1)
ϕv = {c | N(c) = ∅, P (c) = Pv \ S, xS ∈ Fv}.

Note thatϕv is a prime CNF forfv.

It can be shown (Eiter & Makino 2002) that the nontrivial
explanations ofq w.r.t.A are given by the clauses in all dual
prime CNFsψv for ϕv wherev ∈ max(M1) (equivalently,
by all prime implicantst, i.e., a prime DNF representation of
fv, v ∈ max(M1)). This proves one direction of the result.

For the converse, we show that, given a positive CNFϕ on
atomsP , computing an equivalent prime DNFψ is reducible

to computing all explanations as follows. Letq be a fresh
letter (for componentn+ 1), and defineM = {(v, 0) | v ∈
max({w | ϕ(w) = 0})} ∪ {(11 · · · 1)} andA = P ; note
thatmax({w | ϕ(w) = 0}) is easily computed fromϕ. 2

Example 4 LetM={(11011), (11010), (10101), (01010),
(00001)}, and suppose we want all explanations ofq = x1

w.r.t.A = {x3, x4, x5}. According to above, we obtain:

(1) M0 = {(01010), (00001)} and M1 = {(11011),
(11010), (10101)}, thusmax(M1) = {(11011), (10101)}.
(2) We have two vectorsv(1) =(11011) andv(2) =(10101):

Fv(1) = max
({

(11011)∧(00111)∧(01010),
(11011)∧(00111)∧(00001)

})
= {(00010), (00001)},

Fv(2) = max
({

(10101)∧(00111)∧(01010),
(10101)∧(00111)∧(00001)

})
= {(00001)}.

Thus, Pv(1) = {x4, x5} and fv(1)(w) = 0 iff w ∈ {(10),
(01), (00)}, and Pv(2) = {x3, x5} and fv(2)(w) = 0 iff
w∈{(01), (00)}.
(3) We obtainϕ(1) = x4∧x5 andϕ(2) = x3. The respective
prime dual CNFs areψ(1) = x4 ∨ x5 andψ(2) = x3.

Thus, the explanations ofq w.r.t. A areE1 = {x4, x5}
andE2 = {x3}. It can be seen that this is the correct result.

Negative Queries
So far, we considered Horn theoriesΣ and queries given
by a letterq. In a general setting, we might allow that the
formulas inΣ and the query are any propositional formulas.
As for computation, we can introduce for a query, given by
any formulaχ, a fresh letterq, add implicationsq → χ,
χ → q in Σ, and then ask for a nontrivial explanation ofq.
Thus, positive letter queries do not constrain the expressivity
of the framework. However, this technique does not work
for Horn theories, if one of the implicationsq → χ, χ → q
is not Horn. In the simplest case,χ is a negative literalq.

The next result tells us that already in this case, abduction
from a Horn CNF is intractable. Recall that a Horn CNFϕ
is acyclic, if the graph onP with arcs fromxi ∈ N(c) to
xi ∈ P (c), c ∈ ϕ, has no directed cycle.

Theorem 3 Given a Horn CNFϕ, a general queryχ in
CNF, andA ⊆ Lit, deciding ifχ has a nontrivial explana-
tion w.r.t.A is NP-complete. Hardness holds even ifχ = q,
ϕ is acyclic, and either (i)A = P or (ii) A = P ′ ∪ P ′ for
someP ′ ⊆ P .

Proof. (Sketch) The problem is in NP, since clearly an ex-
planationE exists if some setE ⊆ A exists such thatΣ∪E
is satisfiable andΣ∪E |= χ; such anE can be guessed and
the conditions can be checked in polynomial time.

Hardness is shown by a reduction from 3SAT. Letγ =
c1 ∧ · · · ∧ cm be a 3CNF over atomsx1, . . . , xn, whereci =
`i,1 ∨ `i,2 ∨ `i,3. We introduce for each clauseci a new atom
yi, for eachxj a new atomx′j , and a special atomz. The
Horn CNFϕ contains the following clauses:



• xi ∨ x′i, for all i = 1, . . . , n;

• z ∨ y1

• yi∨ `i,j ∨yi+1 if `i,j is positive andyi∨ `′i,j ∨yi+1 if `i,j
is negative, for alli = 1, . . . ,m− 1 andj = 1, 2, 3;

• ym ∨ `m,j if `m,j is positive andym ∨ `′m,j if `i,j is neg-
ative, forj = 1, 2, 3.

As easily seen,ϕ is acyclic Horn. It can be shown (Eiter
& Makino 2002) that the queryq = ¬z has a nontrivial ex-
planationE consisting of positive literals iffγ is satisfiable,
which proves NP-hardness under restriction (i). For (ii), we
use a similar construction. 2

Note that this result contrasts the tractability result that a
nontrivial explanationE ⊆ P for a positive queryq can be
computed in polynomial time (Selman & Levesque 1996).
Thus, the framework of Horn abduction is sensitive with re-
spect to query representation. We also remark that we can
find an arbitrary explanationE for a queryq (which may
contain negative literals), in polynomial time.

In the model-based setting, we obtain for computing all
explanations for a negative query a similar result as for a
positive query.

Theorem 4 Given the characteristic setM = char(Σ) ⊆
{0, 1}n of a Horn theoryΣ, a negative queryq, andA ⊆
Lit, computing all explanations forq from Σ w.r.t. A is
polynomial-time equivalent to dualizing a positive CNF.

Proof. (Sketch) Observe that since the query is not positive,
explanations ofq may involve negative literals.

Proposition 2 implies that the nontrivial explanations for
q w.r.t. A correspond to the prime implicatesc of Σ such
thatq ∈ N(c) andP (c)∪N(c) ⊆ A∪{q}. Let q = xj , and
define setsM0 andM1 forM as in the proof of Theorem 2.
Denote byA+ (resp.,A−) the set of positive (resp., negative)
literals inA. We consider the following two cases:
(1) Positive explanations forq. I.e., all prime implicatesc of
Σ s.t.{q} ⊆ N(c) ⊆ A+ ∪ {q} andP (c) = ∅.

Similarly as in the proof of Theorem 2, we construct du-
alization problems for functionsfv, but forv ∈ max(M0):

(1.1) For everyv ∈ max(M0), let

Fv = max({v ∧ xA+ ∧ w | w ∈ max(M1)}).
The associated monotone Boolean functionfv on Pv =
A∩{xi | vi = 1} is defined byfv(w) = 0⇔ w ≤ s holds
for some vectors in the projection ofFv onPv.

(1.2) We define, forv ∈ max(M0),
ϕv = {c | N(c) = ∅, P (c) = Pv \ S, xS ∈ Fv}.

Similarly as in Theorem 2, we can show that the clauses in
the dual prime CNFs for allϕv, v ∈ max(M0), correspond
to the positive explanations ofq (Eiter & Makino 2002).

(2) Non-positive explanations forq. These are all prime
implicatesc of Σ s.t. {q} ⊆ N(c) ⊆ A+ ∪ {q} and
P (c) = {r}, wherer ∈ A−.

For eachr = xj′ (wherej′ 6= j), we proceed as follows.

(2.1) For everyv ∈ max(M0) andi ∈ {0, 1}, define

Mr
i = {v ∈Mi | vr = i}.

(2.2) For eachv(0)∈max(Mr
0) andv(1)∈max(Mr

1), let

Fv(0),v(1) = max({v(0)∧v(1)∧xA+∧w |
w ∈ max({u ∈M1 | uj′ = 0)}).

We associate with it a monotone Boolean functionfv(0),v(1)

on Pv(0),v(1) = A ∩ {xi | v(0)
i = v

(1)
i = 1} such that

fv(0),v(1)(w) = 0⇔ w ≤ s for somes in the projection of
Fv(0),v(1) onPv(0),v(1) .

(2.3) We define the CNFs

ϕv(0),v(1) = {c | N(c) = ∅, P (c) = Pv \ S, xS ∈ Fv(0),v(1)}.

Then, it can be shown (Eiter & Makino 2002) that the
clauses in the dual prime CNFsψv(0),v(1) for all ϕv(0),v(1) ,
wherev(0) ∈ max(Mr

0) andv(1) ∈ max(Mr
1) andr ∈ A−,

correspond to the non-positive explanations ofq.

In total, computing all explanations ofq is polynomial-
time reducible to dualizing (in parallel) polynomially many
positive CNFs. As mentioned in the proof of Theorem 2,
this is polynomially reducible to dualizing a single CNF.

The converse is shown by a reduction similar to the one in
the proof of Theorem 2; we just invert the polarity ofq. 2

Joint Explanations
We call any set ofE ⊆ A of literals a joint explanation
of observationso1, o2, . . . , ol from a background theoryΣ
w.r.t. a set of assumptionsA ⊆ Lit, if E is an explanation of
eachoi from Σ w.r.t.A. The observationsoi may be letters,
or in a generalized setting propositional formulas.

Note that any suchE is also an explanation for the con-
junctionα = o1 ∧ o2 ∧ · · · ∧ ol of all observations, while
the converse is not true in general: an explanationE of α
may not satisfy minimality foro1, say, i.e., someE′ ⊂ E
may explaino1. Thus, joint explanations are stronger than
ordinary explanations. In case of multiple explanations, this
may be used to single out those which match with each of
the (possibly independently made) observations.

For example, the malfunctioning of a car may be ex-
plained by two car mechanics, based on observationso1 and
o2, respectively. A match of their (individual) diagnosesE1

andE2 (i.e., E1 = E2) may be taken in favor of believ-
ing in their correctness. In fact, the diagnoses are robust in
the sense that adding the other observation does not require
a change; from another perspective, the same diagnosis is
good for explaning different observations. IfE1 andE2 are
different, then we might want to know whether alternative
diagnosesE′1 andE′2 do exist which coincide, i.e., whether
a joint explanation is possible.

As it turns out, recognizing joint explanations for CNFs,
i.e., deciding whetherE is a joint explanation for observa-
tions o1, . . . , ol described by CNFs, fromΣ w.r.t. assump-
tionsA is tractable, for both formula- and model based rep-
resentation. However, deciding existence is harder.

Theorem 5 Given a Horn CNFϕ, query CNFsχ1, χ2, . . . ,
χl, wherel ≥ 2, andA ⊆ Lit, deciding if a joint explanation
exists fromΣ w.r.t.A is NP-complete. Hardness holds even
if l = 2, eachχi is a letter,ϕ is acyclic, andA = Lit.



Theorem 6 Given the characteristic setM = char(Σ) of
a Horn theoryΣ, query CNFsχ1, χ2, . . . , χl, l ≥ 2, and
A ⊆ Lit, deciding if a joint explanation exists fromΣ w.r.t.
A is NP-complete. Hardness holds even ifl = 2, eachχi is
a letter, andA = Lit.

Thus, the tractability results in (Selman & Levesque 1996;
Kautz, Kearns, & Selman 1993) do not generalize to joint
explanations for positive queries. Similar intractability re-
sults hold for negative queries and combined positive and
negative queries.

Related Works
Selman and Levesque (1990; 1996) were among the first to
study the complexity of computing general and assumption-
based explanations; Corollary 1 closes an open problem of
them. The underlying algorithm EXPLANATIONS is a rela-
tive of a similar procedure by Boroset al.(1990) for comput-
ing all prime implicates of a Horn CNF in output-polynomial
time. In fact, Theorem 1 can be seen as a strengthening of
their result. For negative queries, a similar algorithm is not
evident. del Val (2000) presented generation of implicates
and prime implicates of certain clausal theories in a target
language, which is formed on a subset of the atoms, using
a procedure based on kernel resolution and derived expo-
nential bounds on its running time. Furthermore, del Val
described the use of this procedure for generating jointly all
explanations of all literals not on a set of atomsV . However,
neither is this method incremental in nature, nor is it clear
whether it is total polynomial time. Moreover, it considers a
letterq and its negationq at once.

Inoue (1992) considered, in the propositional and the first-
order context, generating explanations and prime implicates
using SOL-resolution. He proposed a strategy which pro-
cesses, starting from the empty set, clauses from a theory
incrementally. However, due to possible large intermediate
results, this method is not total polynomial time in general.
Khardonet al. (1999) show how computing all keys of a re-
lational database schema, which is constrained by a Boolean
formulaϕ, can be polynomially transformed into computing
all explanations of a queryq from ϕ ∧ ψ, whereψ is Horn.
Thus, our algorithm EXPLANATIONS can be used for effi-
ciently generating all keys of a database scheme whereϕ is
a Horn CNF. This generalizes the result forϕ consisting of
non-negative Horn clauses, i.e., a set of functional depen-
dencies (Lucchesi & Osborn 1978).1 Note that Khardonet
al. also show how to compute a single explanation of a query
q from a theoryϕ polynomially, using repeatedly an oracle
for computing a key of a database schema constrained by
ϕ ∧ ψ, whereψ is Horn; however, this method is not us-
able for generating explanations from general Horn theories
(cf. Footnote 1). Less related to our work is (Eiter & Gottlob
1995), which considered abduction from Horn and general
propositional theories, but focused on existence of explana-
tions and reasoning tasks about explanations.

Conclusion
We have presented a number of positive and negative results
about generating all and some abductive explanations, re-

1In fact, Khardonet al.’s transformation works only ifϕ has no
negative prime implicate; otherwise, keys introduce inconsistency.

spectively, which complement previous work in the litera-
ture. In particular, we analyzed the role of positive vs nega-
tive abductive queries, under both formula- and model-based
representation, and we considered the novel notion of joint
explanation. Our positive results may be readily applied for
efficiently computing (a subset of) all explanations. The re-
sults draw a complete picture for the model-based setting,
and almost so for the formula-based setting; the complexity
of generating all explanations for a negative query in it is
currently open.
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