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Abstract

The Fréchet distance between two curves in a metric space is a measure of the
similarity between the curves. We present a discrete variation of this measure.
It provides good approximations of the continuous measure and can be efficiently
computed using a simple algorithm. We also consider variants of discrete Fréchet
distance, and find an interesting connection to measuring distance between theories.
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1 Introduction

Given two curves in a metric space, the Fréchet distance δF between them can be
defined intuitively as follows. A man is walking a dog on a leash: the man can move
on one curve, the dog on the other; both may vary their speed, but backtracking is not
allowed. What is the length of the shortest leash that is sufficient for traversing both
curves? The Fréchet distance is a measure of similarity between curves that takes into
account the location and ordering of the points along the curves. Therefore it is often
better than the well-known Hausdorff distance. This distance function was introduced
by Fréchet in 1906 [6].

A fundamental study on the computational properties of the Fréchet distance was
done by Alt and Godau [1]. They give an algorithm that computes the exact Fréchet
distance between two polygonal curves in time O(pq log2 pq), where p and q are the
number of segments on the polygonal curves. The algorithm is fairly involved, as it
uses the parametric search technique.

In this paper we describe a discrete variation of the Fréchet distance for polygonal
curves. The variation is called the coupling distance δdF . It is based on the idea of
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looking at all possible couplings between the end points of the line segments of the
polygonal curves.

We show that δdF provides good approximations to δF . Specifically, we show that
δdF is an upper bound for δF , and that the difference between these measures is bounded
by the length of the longest edge of the polygonal curves. We also show that δdF can
be computed in O(pq) time using a very simple algorithm.

On the basis of these results, the following way of approximately computing the
Fréchet distance between two arbitrary curves suggests itself: First compute proper
polygonal approximations to the curves and then compute their coupling distance,
rather than computing their exact Fréchet distance.

We also briefly address variants of the discrete Fréchet distance, and find an inter-
esting relation to a measure of distance between logical theories.

2 Discrete Fréchet distance

Following [1], we define a curve as a continuous mapping f : [a, b] → V , where a, b ∈ <
and a ≤ b and (V, d) is a metric space.

Given two curves f : [a, b] → V and g : [a′, b′] → V , their Fréchet distance is defined
as

δF (f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))),

where α (resp. β) is an arbitrary continuous nondecreasing function from [0, 1] onto
[a, b] (resp. [a′, b′]).

In computing the Fréchet distance between arbitrary curves one typically approx-
imates the curves by polygonal curves. A polygonal curve is a curve P : [0, n] → V ,
where n is a positive integer, such that for each i ∈ {0, 1, . . . , n− 1}, the restriction of
P to the interval [i, i + 1] is affine, that is P (i + λ) = (1− λ)P (i) + λP (i + 1).

Let P : [0, n] → V be a polygonal curve. We denote the sequence (P (0), P (1), . . . ,
P (n)) of endpoints of the line segments of P by σ(P ). Let P and Q be polygonal
curves and σ(P ) = (u1, . . . , up) and σ(Q) = (v1, . . . , vq) the corresponding sequences.
A coupling L between P and Q is a sequence

(ua1 , vb1), (ua2 , vb2), . . . , (uam , vbm)

of distinct pairs from σ(P ) × σ(Q) such that a1 = 1, b1 = 1, am = p, bm = q, and for
all i = 1, . . . , q we have ai+1 = ai or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi. Thus,
a coupling has to respect the order of the points in P and Q. The length ||L|| of the
coupling L is the length of the longest link in L, that is,

||L|| = max
i=1,...,m

d(uai , vbi
).

Given polygonal curves P and Q, their discrete Fréchet distance is defined to be

δdF (P,Q) = min{||L|| | L is a coupling between P and Q}.
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It is immediate that δdF (P, P ) = 0, δdF (P,Q) = δdF (Q,P ); furthermore, one can
check that δdF (P,Q) = 0 implies P = Q and that δdF (P,Q) ≤ δdF (P,R) + δdF (R,Q).
We thus have the following.

Proposition 1 δdF defines a metric on the set of polygonal curves.

The relationship of δdF to δF is captured by the following two lemmata, from which we
immediately obtain the quality of approximation.

Lemma 2 For all polygonal curves P and Q we have

δF (P,Q) ≤ δdF (P,Q).

Proof. A coupling with maximal edge r gives a way of walking around P and Q with
leash at most r. 2

Let for any polygonal curve P = (u1, . . . , up) denote D(P ) = maxi=2,...,p d(ui−1, ui).

Lemma 3 Let P : [0, n] → V and Q : [0,m] → V be polygonal curves. Then,

δdF (P,Q) ≤ δF (P,Q) + max{D(P ), D(Q)}.

Proof. Let α(t) (resp. β(t)) be a continuous nondecreasing function from [0, 1] to
[0, n] (resp. [0,m]). Let σ(P ) = (u1, . . . , up) and σ(Q) = (v1, . . . , vq). For each point
u ∈ σ(P ) let t(u) ∈ [0, 1] be the smallest value such that α(t(u)) = u, and for each
point v ∈ σ(Q) let s(v) ∈ [0, 1] be the smallest value such that β(s(v)) = v.

We construct a coupling R between P and Q iteratively. First add edge (u1, v1) to
R.

Assume then that R is already a coupling between the sequences (u1, . . . , ui) and
(v1, . . . , vj). We extend R by one edge as follows. If j = q or t(ui+1) < s(vj+1), then
add the link (ui+1, vj). The endpoint vj of this link is the left endpoint of the line
segment in which the point β(t(ui+1)) lies. Thus for the length of this link we have the
inequality

d(ui+1, vj) ≤ d(α(t(ui+1)), β(t(ui+1))) + D(Q). (1)

If i = p or t(ui+1) > s(vj+1), then add the link (ui, vj+1). Again, the endpoint ui is the
left endpoint of the line segment in which the point α(s(vj+1)) lies, and we have the
inequality

d(ui, vj+1) ≤ d(α(s(vj+1)), β(s(vj+1))) + D(Q). (2)

Otherwise, we have t(ui+1) = s(vj+1), and we add the link (ui+1, vj+1), whose length
is bounded by

d(α(t(ui+1), β(t(ui+1))).

It is easy to see that the constructed sequence R is a coupling. The above inequalities 1
and 2 give us that

||R|| ≤ max
t∈[0,1]

d(α(t), β(t)) + max{D(P ), D(Q)}.
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Since α and β were arbitrary, we obtain

||R|| ≤ δF (P,Q) + max{D(P ), D(Q)}. 2

Theorem 4 For any polygonal curves P and Q

δF (P,Q) ≤ δdF (P,Q) ≤ δF (P,Q) + max{D(P ), D(Q)}.

From this, we can regard the coupling measure δdF as a discrete version of the Fréchet-
distance. More precisely, say that a polygonal curve Q is a refinement of the polyg-
onal curve P , if σ(P ) = (u1, . . . , un) and for some i = 1, . . . , n we have σ(Q) =
(u1, . . . , ui, v, ui+1, . . . , un), and the point v is on the line segment between ui and
ui+1. Then,

Proposition 5 Let P0, P1, . . . and Q0, Q1, . . . be sequences of polygonal curves such that
Pi+1 (resp. Qi+1) is a refinement of Pi (resp. Qi) for all i ≥ 0 and limi→∞D(Pi) =
limi→∞D(Qi) = 0. Then,

lim
i→∞

δdF (Pi, Qi) = δF (P0, Q0).

Proof. By Theorem 4. 2

In fact, from the results in [1] it can be seen that for any polygonal curves P =
(u1, . . . , up) and Q = (v1, . . . , vq), there always exist sequences of refinements of P and
Q leading to curves P ′ and Q′, respectively, that both contain at most p+ q points and
satisfy δdF (P ′, Q′) = δF (P,Q).

3 Computation

An advantage of the coupling measure is its efficient computability by dynamic pro-
gramming, without need of complicated data structures. The algorithm dF in Table 1
can be coded easily; the following lemma on its output is straightforward.

Lemma 6 dF(P,Q) = δdF (P,Q) for any polygonal curves P and Q.

Thus, we obtain the following result.

Theorem 7 Let P : [0, n] → V and Q : [0,m] → V be polygonal curves. Denote
σ(P ) = (u1, . . . , up) and σ(Q) = (v1, . . . , vq). The measure δdF (P,Q) can be computed
in O(pq) time.

Proof. By Lemma 6, dF(P,Q) computes δdF (P,Q). It is easy to see that the runtime
of dF(P,Q) is O(pq); hence the result. 2

We remark that an algorithm of Godau for deciding δF (P,Q) ≤ ε? [7, 1] may be used to
approximate δF (P,Q) on a particular machine by doing a binary search over the range
r of reals that the computer normally handles. This amounts to an O(pq log r) time
algorithm for fixed range of reals, which works fine for practical purposes. However,
the algorithm is much more involved than the simple algorithm dF from above.
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Function dF(P,Q): real;

input: polygonal curves P = (u1, . . . , up) and Q = (v1, . . . , vq).
return: δdF (P,Q)

ca : array [1..p, 1..q] of real;

function c(i, j): real;

begin
if ca(i, j) > −1 then return ca(i, j)
elsif i = 1 and j = 1 then ca(i, j) := d(u1, v1)
elsif i > 1 and j = 1 then ca(i, j) := max{ c(i− 1, 1), d(ui, v1) }
elsif i = 1 and j > 1 then ca(i, j) := max{ c(1, j − 1), d(u1, vj) }
elsif i > 1 and j > 1 then ca(i, j) :=

max{min(c(i− 1, j), c(i− 1, j − 1), c(i, j − 1)), d(ui, vj) }
else ca(i, j) = ∞

return ca(i, j);
end; /* function c */

begin
for i = 1 to p do for j = 1 to q do ca(i, j) := −1.0;
return c(p, q);

end.

Table 1: Algorithm computing the coupling measure

4 Variants of discrete Fréchet distance

A variant of discrete Fréchet distance is obtained if the length of a coupling L between
P and Q is measured by the sum of the links in L (denote this by ||L||s), i.e.,

||L||s =
∑

i=1,...,m

d(uai , vbi
).

The implied measure δsdF (P,Q) gives the minimum of the total distance of an order-
preserving correspondence between points of P and Q, such that each point of P

corresponds to at least one point of Q and vice versa. A dog-and-leash interpretation
of this measure would be the minimum total length of leashes needed for men walking
their dogs, such that all points on the routes P and Q are occupied and leashes do not
cross over.

Clearly, δsdF (P, P ) = 0, δsdF (P,Q) = δsdF (Q,P ), and that δsdF (P,Q) = 0 implies
P = Q; the triangle inequality, however, fails in general. It is easy to see that δsdF

is computed by the variant of algorithm dF in Table 1 obtained by replacing “max”
operations with additions; hence, δsdF can be computed in time O(pq).

It is interesting to note a connection between measuring the distance of curves and
the distance of logical theories. If one gives up on order-preservation of couplings,
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then the measures defined as δdF and δsdF resemble two measures for distance between
logical theories. The motivation for studying such measures comes from the notion of
truthlikeness in philosophy of science [11] and from artificial intelligence, where the task
of quantifying the distance of theories is important for example for machine learning
and theory approximation [10, 13, 12, 8, 3, 4]. Theories viewed as sets of models
naturally correspond to curves viewed as sets of points. Given a metric on the models,
the distance between the sets of models may be interpreted as a measure of similarity
between theories [11].

Let an unordered coupling between P and Q be any sequence U = (ua1 , vb1), (ua2 , vb2),
. . . , (uam , vbm) of distinct pairs from σ(P )× σ(Q) such that every point in P (resp. Q)
occurs among the uai (resp. vbi

), and let ||U ||, ||U ||s be defined analogous as in the case
of ordered couplings. Define

δu
dF (P,Q) = min{||U || | U is an unordered coupling between P and Q},

δu
sdF (P,Q) = min{||U ||s | U is an unordered coupling between P and Q}.

Both measures have been proposed for measuring theory distance. Notice that δu
dF

collapses with the Hausdorff distance. The measure δu
sdF describes the minimum cost

of a correspondence between the points of P and Q; it can be seen in the spirit of the
unordered similarity measures in [2]. This measure, called link measure in the context
of [5], does not define a metric, since the triangle does not hold in general.

Intuitively, the computation of δu
sdF seems to be involved, and one might suspect NP-

hardness of this problem. Somewhat surprising, however, is that δu
sdF can be computed

in polynomial time by using graph matching techniques (cf. [9] for a background).
Given P , σ(P ) = (u1, . . . , up) and Q, σ(Q) = (v1, . . . , vq), define a complete bipar-

tite graph G0 = (A ∪ B,E), where A = {a1, . . . , ap} and B = {b1, . . . , bq}, in which
each edge e = {ai, bj} has weight w(e) = d(ui, vj). Let G1 be a zero-weight copy of G0,
and let G be the graph obtained from G0 ∪G1 by connecting each node from G to its
copy by weight equal to its nearest neighbor in G. Then, the following property of G

holds.

Theorem 8 Let P and Q be polygonal curves. The cost of a minimum perfect matching
in the graph G for P and Q is identical to δu

sdF (P,Q).

(A proof can be found in [5].) Consequently, δu
sdF can be efficiently computed by

applying a minimum cost perfect matching algorithm, which is feasible in polynomial
time (cf. [9]).

5 Conclusion

We have presented a discrete variant of the Fréchet distance between curves in a metric
space, and we described a simple and efficient algorithm for computing this measure.
Besides its own interest, discrete Fréchet distance may be used for approximately com-
puting the Fréchet distance between two arbitrary curves, as an alternative to using
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the exact Fréchet distance between a polygonal approximation of the curves or an
approximation of this value.

Moreover, we found an interesting connection between distance of curves and logical
theories. This connection suggests that distance measures for curves (sets of points)
may be fruitfully applied to logical theories (sets of models).

Acknowledgements We thank Michael Godau and Hannu Toivonen for useful com-
ments on this paper.
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