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ABSTRACT
This paper considers the problem of dualizing a monotone
CNF (equivalently, computing all minimal transversals of a
hypergraph), whose associated decision problem is a promi-
nent open problem in NP-completeness. We present a num-
ber of new polynomial time resp. output-polynomial time re-
sults for significant cases, which largely advance the tractabil-
ity frontier and improve on previous results. Furthermore,
we show that duality of two monotone CNFs can be dis-
proved with limited nondeterminism (more precisely, in poly-
nomial time with O(log2 n) suitably guessed bits). This re-
sult sheds new light on the complexity of this important
problem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; F.1.3 [Theory of Computa-
tion]: Complexity Measures and Classes; G.2.1 [Discrete
Mathematics]: Combinatorics—Combinatorial algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms, Hypergraphs

General Terms
Algorithms, Theory

Keywords
Dualization, transversal computation, output-polynomial al-
gorithms, combinatorial enumeration, treewidth, hypergraph
acyclicity, limited nondeterminism
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Recall that the prime CNF of a monotone Boolean function
f is the unique formula ϕ =

∧
c∈S c in conjunctive normal

form where S is the set of all prime implicates of f , i.e.,
minimal clauses c which are logical consequences of f . In
this paper, we consider the following problem:

Problem Dualization

Input: The prime CNF ϕ of a monotone Boolean
function f = f(x1, . . . , xm).

Output: The prime CNF ψ of its dual

fd = f(x1, . . . , xm).

It is well known that problem Dualization is equivalent to
the Transversal Computation problem, which requests
to compute the set of all minimal transversals (i.e., minimal
hitting sets) of a given hypergraph H, in other words, the
transversal hypergraph Tr(H) of H. Actually, these prob-
lems can be viewed as the same problem, if the clauses in
a monotone CNF ϕ are identified with the sets of variables
they contain. Dualization is a search problem; the as-
sociated decision problem Dual is to decide whether two
given monotone prime CNFs ϕ and ψ represent a pair (f, g)
of dual Boolean functions. Analogously, the decision prob-
lem Trans-Hyp associated with Transversal Computa-

tion is deciding, given hypergraphs H and G, whether G =
Tr(H).

Dualization and several problems which are like transver-
sal computation known to be computationally equivalent to
Dualization (see [13]) are of interest in various areas such
as database theory (e.g., [34, 43]), machine learning and
data mining (e.g., [4, 5, 10, 18]), game theory (e.g., [22, 38,
39]), artificial intelligence (e.g., [17, 24, 25, 40]), mathemat-
ical programming (e.g., [3]), and distributed systems (e.g.,
[16, 23]) to mention a few.

While the output CNF ψ can be exponential in the size of
ϕ, it is currently not known whether ψ can be computed
in output-polynomial (or polynomial total) time, i.e., in time
polynomial in the combined size of ϕ and ψ. Any such algo-
rithm for Dualization (or Transversal Computation)
would significantly advance the state of the art of many



problems in the application areas. Similarly, the complexity
of Dual and Trans-Hyp is open since more than 20 years
now (cf. [2, 13, 26, 27, 29]).

Note that Dualization is solvable in polynomial total time
on a class C of hypergraphs iff Dual is in PTIME for all pairs
(H,G), where H ∈ C [2]. Dual is known to be in co-NP and

the best currently known upper time-bound is no(logn) [15].
Determining the complexities of Dualization and Dual,
and of equivalent problems such as the transversal problems,
is a prominent open problem. This is witnessed by the fact
that these problems are cited in a rapidly growing body of
literature and have been referenced in various survey papers
and complexity theory retrospectives, e.g. [26, 30, 36].

Given the importance of monotone dualization and equiv-
alent problems for many application areas, and given the
long standing failure to settle the complexity of these prob-
lems, emphasis was put on finding tractable cases of Dual

and corresponding polynomial total-time cases of Dualiza-

tion. In fact, several relevant tractable classes were found
by various authors; see e.g. [6, 7, 8, 10, 12, 13, 31, 32, 35,
37] and references therein. Moreover, classes of formulas
were identified on which Dualization is not just polyno-
mial total-time, but where the conjuncts of the dual formula
can be enumerated with incremental polynomial delay, i.e.,
with delay polynomial in the size of the input plus the size
of all conjuncts so far computed, or even with polynomial
delay, i.e., with delay polynomial in the input size only.

Main Goal. The main goal of this paper is to present im-
portant new polynomial total time cases of Dualization

and, correspondingly, PTIME solvable subclasses of Dual

which significantly improve previously considered classes.
Towards this aim, we first present a new algorithm Dual-

ize and prove its correctness. Dualize can be regarded as a
generalization of a related algorithm proposed by Johnson,
Yannakakis, and Papadimitriou [27]. As other dualization
algorithms, Dualize reduces the original problem by self-
reduction to smaller instances. However, the subdivision
into subproblems proceeds according to a particular order
which is induced by an arbitrary fixed ordering of the vari-
ables. This, in turn, allows us to derive some bounds on
intermediate computation steps which imply that Dualize,
when applied to a variety of input classes, outputs the con-
juncts of ψ with polynomial delay or incremental polynomial
delay. In particular, we show positive results for the follow-
ing input classes:

• Degenerate CNFs. We generalize the notion of k-degen-
erate graphs [44] to hypergraphs and define k-degener-
ate monotone CNFs resp. hypergraphs. We prove that
for any constant k, Dualize works with polynomial
delay on k-degenerate inputs. Moreover, it works in
output-polynomial time on O(logn)-degenerate CNFs.

• Read-k CNFs. A CNF is read-k, if each variable ap-
pears at most k times in it. We show that for read-k
CNFs, problem Dualization is solvable with polyno-
mial delay, if k is constant, and in total polynomial
time, if k = O(log(‖ϕ‖). Our result for constant k
significantly improves upon the previous best known

algorithm [10], which has a higher complexity bound,
is not polynomial delay, and outputs the clauses of ψ
in no specific order. The result for k = O(log ‖ϕ‖) is
a non-trivial generalization of the result in [10], which
was posed as an open problem [9].

• Acyclic CNFs. There are several notions of hyper-
graph resp. monotone CNF acyclicity [14], where the
most general and well-known is α-acyclicity. As shown
in [13], Dualization is polynomial total time for β-
acyclic CNFs; β-acyclicity is the hereditary version of
α-acyclicity and far less general. A similar result for α-
acyclic prime CNFs was left open. We give a positive
answer and show that for α-acyclic prime ϕ, Dualiza-

tion is solvable with polynomial delay.

• Formulas of Bounded Treewidth. The treewidth [41]
of a graph expresses its degree of cyclicity. Treewidth
is an extremely general notion, and bounded treewidth
generalizes almost all other notions of near-acyclicity.
Following [11], we define the treewidth of a hyper-
graph resp. monotone CNF ϕ as the treewidth of its
associated (bipartite) variable-clause incidence graph.
We show that Dualization is solvable with polyno-
mial delay (exponential in k) if the treewidth of ϕ is
bounded by a constant k, and in polynomial total time
if the treewidth is O(log log ‖ϕ‖).

• Recursive Applications of Dualize and k-CNFs.
We show that if Dualize is applied recursively and
the recursion depth is bounded by a constant, then
Dualization is solved in polynomial total time. We
apply this to provide a simpler proof of the known
result [6, 13] that monotone k-CNFs (where each con-
junct contains at most k variables) can be dualized in
output-polynomial time.

After deriving the above results, we turn our attention (in
Section 5) to the fundamental computational nature of prob-
lems Dual and Trans-Hyp in terms of complexity theory.

Complexity: Limited nondeterminism. In a landmark
paper, Fredman and Khachiyan [15] proved that problem
Dual can be solved in quasi-polynomial time. More pre-
cisely, they first gave an algorithm A solving the problem in

nO(log2 n) time, and then a more complicated algorithm B
whose runtime is bounded by n4χ(n) where χ(n) is defined

by χ(n)χ(n) = n. As noted in [15], χ(n) ∼ logn/ log logn =

o(logn); therefore, duality checking is feasible in no(logn)

time. This is the best upper bound for problem Dual so far,
and shows that the problem is most likely not NP-complete.

A natural question is whether Dual lies in some lower com-
plexity class based on other resources than just runtime. In
the present paper, we advance the complexity status of this
problem by showing that its complement is feasible with lim-
ited nondeterminism, i.e, by a nondeterministic polynomial-
time algorithm that makes only a poly-logarithmic number
of guesses. For a survey on complexity classes with limited
nondeterminism, and for several references, see [19]. We
first show by a simple and self-contained proof that testing
non-duality is feasible in polynomial time with O(log3 n)
nondeterministic steps. We then observe that this can be



improved to O(log2 n) nondeterministic steps. This result is
surprising, because most researchers dealing with the com-
plexity of Dual and Trans-Hyp believed so far that these
problems are completely unrelated to limited nondetermin-
ism.

We believe that the results presented in this paper are signif-
icant, and we are confident they will prove useful in various
contexts. First, we hope that the various polynomial/output-
polynomial cases of the problems which we identify will lead
to better and more general methods in various application
areas (as we show, e.g. in learning and data mining [10]), and
that based on the algorithm Dualize or some future modifi-
cations, further relevant tractable classes will be identified.
Second, we hope that our discovery on limited nondeter-
minism provides a new momentum to complexity research
on Dual and Trans-Hyp, and will push it towards settling
these longstanding open problems.

2. PRELIMINARIES AND NOTATION
A Boolean function (in short, function) is a mapping f :
{0, 1}n → {0, 1}, where v ∈ {0, 1}n is called a Boolean vector
(in short, vector). As usual, we write g ≤ f if f and g satisfy
g(v) ≤ f(v) for all v ∈ {0, 1}n, and g < f if g ≤ f and g 6= f .
A function f is monotone (or positive), if v ≤ w (i.e., vi ≤ wi
for all i) implies f(v) ≤ f(w) for all v, w ∈ {0, 1}n. Boolean
variables x1, x2, . . . , xn and their complements x̄1, x̄2, . . . , x̄n
are called literals. A clause (resp., term) is a disjunction
(resp., conjunction) of literals containing at most one of xi
and x̄i for each variable. A clause c (resp., term t) is an
implicate (resp., implicant) of a function f , if f ≤ c (resp.,
t ≤ f); moreover, it is prime, if there is no implicate c′ < c
(resp., no implicant t′ > t) of f , and monotone, if it consists
of positive literals only. We denote by PI(f) the set of all
prime implicants of f .

A conjunctive normal form (CNF) (resp., disjunctive normal
form, DNF) is a conjunction of clauses (resp., disjunction
of terms); it is prime (resp. monotone), if all its members
are prime (resp. monotone). For any CNF (resp., DNF) ρ,
we denote by |ρ| the number of clauses (resp., terms) in it.
Furthermore, for any formula ϕ, we denote by V (ϕ) the set
of variables that occur in ϕ, and by ‖ϕ‖ its length, i.e., the
number of literals in it.

As well-known, a function f is monotone iff it has a mono-
tone CNF. Furthermore, all prime implicants and prime im-
plicates of a monotone f are monotone, and it has a unique
prime CNF, given by the conjunction of all its prime impli-
cates. For example, the monotone f such that f(v) = 1 iff
v ∈ {(1100), (1110), (1101), (0111), (1111)} has the unique
prime CNF ϕ = x2(x1 ∨ x3)(x1 ∨ x4).

Recall that the dual of a function f , denoted fd, is defined
by fd(x) = f(x), where f and x is the complement of f and
x, respectively. By definition, we have (fd)d = f . From De
Morgan’s law, we obtain a formula for fd from any one of f
by exchanging ∨ and ∧ as well as the constants 0 and 1. For
example, if f is given by ϕ = x1x2 ∨ x1(x3 ∨ x4), then fd is
represented by ψ = (x1 ∨ x2)(x1 ∨ x3x4). For a monotone
f , let ψ =

∧
c∈C(

∨
xi∈c xi) be the prime CNF of fd. Then

by De Morgan’s law, f has the (unique) prime DNF ρ =∨
c∈C(

∧
xi∈c xi). Thus, we will regard Dualization also as

the problem of computing the prime DNF of f from the
prime CNF of f .

3. ORDERED GENERATION OF TRANS-
VERSALS

In what follows, let f be a monotone function and ϕ its
prime CNF, where we assume w.l.o.g. that all variables xj
(j = 1, 2, . . . n) appear in ϕ. Let ϕi (i = 0, 1, . . . , n) be the
CNF obtained from ϕ by fixing variables xj = 1 for all j
with j ≥ i + 1. By definition, we have ϕ0 = 1 (truth) and
ϕn = ϕ.

Example 3.1. Consider ϕ = (x1 ∨x2)(x1 ∨x3)(x2 ∨x3 ∨
x4)(x1 ∨ x4). Then we have ϕ0 = ϕ1 = 1, ϕ2 = (x1 ∨ x2),
ϕ3 = (x1 ∨ x2)(x1 ∨ x3), and ϕ4 = ϕ.

Similarly, for the prime DNF

ψ =
∨
t∈PI (f) t (1)

of f , we denote by ψi the DNF obtained from ψ by fixing
variables xj = 1 for all j with j ≥ i + 1. Clearly, we have
ϕi ≡ ψi, i.e., ϕi and ψi represent the same function denoted
by fi.

Proposition 3.1. Let ϕ and ψ be any CNF and DNF for
f , respectively. Then,

(a) ‖ϕi‖ ≤ ‖ϕ‖ and |ϕi| ≤ |ϕ|, and

(b) ‖ψi‖ ≤ ‖ψ‖ and |ψi| ≤ |ψ|, for all i ≥ 0.

Denote by ∆i (i = 1, 2, . . . , n) the CNF consisting of all the
clauses in ϕi but not in ϕi−1.

Example 3.2. For the above example, we have ∆1 = 1,
∆2 = (x1∨x2), ∆3 = (x1∨x3), and ∆4 = (x2∨x3∨x4)(x1∨
x4).

Note that ϕi = ϕi−1 ∧ ∆i; hence, for all i = 1, 2, . . . , n we
have

ψi ≡ ψi−1 ∧∆i ≡
∨

t∈PI (fi−1)

(t ∧∆i). (2)

Let ∆i[t], for i = 1, . . . , n denote the CNF consisting of
all the clauses c such that c contains no literal in ti−1 and
c ∨ xi appears in ∆i. For example, if t = x2x3x4 and ∆4 =
(x2 ∨ x3 ∨ x4)(x1 ∨ x4), then ∆4[t] = x1. It follows from (2)
that for all i = 1, 2, . . . , n

ψi ≡
∨

t∈PI (fi−1)

(
(t ∧∆i[t]) ∨ (t ∧ xi)

)
. (3)

Lemma 3.2. For any term t ∈PI (fi−1), let gi,t be the
function represented by ∆i[t]. Then |PI (gi,t)|≤ |ψi| ≤ |ψ|.

Proof. Let V = {x1, x2, . . . , xn} and let s ∈ PI (gi,t).
Then by (3), t ∧ s is an implicant of ψi. Hence, some ts ∈
PI (fi) exists such that ts ≥ t∧s. Note that V (t)∩V (∆i[t]) =



∅, and hence we have V (s) ⊆ V (ts) (⊆ V (s) ∪ V (t)), since
otherwise there exists a clause c in ∆i[t] such that V (c) ∩
V (ts) = ∅, a contradiction. Thus V (ts) ∩ V (∆i[t]) = V (s).

For any s′ ∈ PI (gi,t) such that s 6= s′, let ts, ts
′
∈ PI (fi)

such that ts ≥ t∧s and ts
′
≥ t∧s′, respectively. By the above

discussion, we have ts 6= ts
′
. This completes the proof.

We now describe our algorithm Dualize for generating the
set PI (f). It is inspired by a similar graph algorithm of
Johnson, Yannakakis, and Papadimitriou [27], and can be
regarded as a generalization. Here, we say that term s is
smaller than term t if∑

xj∈V (s)

2n−j <
∑

xj∈V (t)

2n−j ;

i.e., as vector, s is lexicographically smaller than t.

Algorithm Dualize

Input: The prime CNF ϕ of a monotone function f .
Output: The prime DNF ψ of f , i.e. all prime implicants

of function f .

Step 1:

Compute the smallest prime implicant tmin
of f and set Q := { tmin };

Step 2:

while Q 6= ∅ do
begin

Remove the smallest t from Q and output t;
for each i with xi ∈ V (t) and ∆i[t] 6= 1 do
begin

Compute the prime DNF ρ(t,i) of the
function represented by ∆i[t];
for each term t′ in ρ(t,i) do
begin

if ti−1 ∧ t′ is a prime implicant of fi then
begin

Compute the smallest prime implicant
t∗ of f such that t∗i = ti−1 ∧ t′;
Q := Q ∪ {t∗}

end{if}
end{for}

end{for}
end{while}

Theorem 3.3. Algorithm Dualize correctly outputs all
t ∈ PI (f) in increasing order.

Proof. (Sketch) First note that the term t∗ inserted in
Q when t is output is larger than t. Indeed, t′ (6= 1) and
ti−1 are disjoint and V (t′) ⊆ {x1,. . . , xi−1}. Hence, every
term in Q is larger than all terms already output, and the
output sequence is increasing. We show by induction that,
if t is the smallest prime implicant of f that was not output
yet, then t is already in Q. This clearly proves the result.

Clearly, the above statement is true if t = tmin. Assume now
that t 6= tmin is the smallest among the prime implicants not

output yet. Let i be the largest index such that ti is not a
prime implicant of fi. This i is well-defined, since otherwise
t = tmin must hold, a contradiction. Now we have (1) i <
n and (2) i + 1 6∈ V (t), where (1) holds because tn (= t)
is a prime implicant of fn (= f) and (2) follows from the
maximality of i. Let s ∈ PI (fi) such that V (s) ⊆ V (ti), and
let K = V (ti)− V (s). Then K 6= ∅ holds, and since xi+1 /∈
V (t), the term t′ =

∧
xj∈K xj is a prime implicant of ∆i+1[s].

There exists s′ ∈ PI (f) such that s′i = s and xi+1 ∈ V (s′),
since s∧xi+1 ∈ PI (fi+1). Note that ∆i+1[s] 6= 0. Moreover,
since s′ is smaller than t, by induction s′ has already been
output. Therefore, t′ =

∧
xj∈K xj has been considered in the

inner for-loop of the algorithm. Since s′i ∧ t′ (= ti = ti+1)
is a prime implicant of fi+1, the algorithm has added the
smallest prime implicant t∗ of f such that t∗i+1 = ti+1. We
finally claim that t∗ = t. Otherwise, let k be the first index
in which t∗ and t differ. Then k > i+ 1, xk ∈ V (t) and xk 6∈
V (t∗). However, this implies tk /∈ PI (fk), contradicting the
maximality of i.

Let us consider the time complexity of algorithm Dualize.
We store Q as a binary tree, where each leaf represents a
term t and the left (resp., right) son of a node at depth
j − 1 ≥ 0, where the root has depth 0, encodes xj ∈ V (t)
(resp., xj 6∈ V (t)). In Step 1, we can compute tmin in
O(‖ϕ‖) time and initialize Q in O(n) time. As for Step 2, let
T(t,i) be the time required to compute the prime DNF ρ(t,i)

from ∆i[t]. By analyzing its substeps, we can see that each
iteration of Step 2 requires

∑
xi∈V (t)(T(t,i) + |ρ(t,i)|O(‖ϕ‖))

time; note that t∗ is the smallest prime implicant of the
function obtained from f by fixing xj = 1 if xj ∈ V (ti ∧ t′)
and 0 if xj 6∈ V (ti ∧ t′) for j ≤ i. Thus, we have

Theorem 3.4. The output delay of Algorithm Dualize

is bounded by

max
t∈PI (f)

( ∑
xi∈V (t)

(T(t,i) + |ρ(t,i)|O(‖ϕ‖))
)

(4)

time, and Dualize needs in total time∑
t∈PI (f)

∑
xi∈V (t)

(T(t,i) + |ρ(t,i)|O(‖ϕ‖)). (5)

If the T(t,i) are bounded by a polynomial in the input length,
then Dualize becomes a polynomial delay algorithm, since
|ρ(t,i)| ≤ T(t,i) holds for all t ∈ PI (f) and xi ∈ V (t). On
the other hand, if they are bounded by a polynomial in
the combined input and output length, then Dualize is a
polynomial total time algorithm, where |ρ(t,i)| ≤ |ψ| holds
from Lemma 3.2. Using results from [2], we can construct
from Dualize an incremental polynomial time algorithm
for Dualization, which however might not output PI (f)
in increasing order. Summarizing, we have the following
corollary.

Corollary 3.5. Let T = max{T(t,i) | t ∈ PI (f), xi ∈
V (t) }. Then, if T is bounded by

(i) a polynomial in n and ‖ϕ‖, then algorithm Dualize is
an O(n‖ϕ‖T ) polynomial delay algorithm;



(ii) a polynomial in n, ‖ϕ‖, and ‖ψ‖, then algorithm Du-

alize is an O(n|ψ|(T + |ψ|‖ϕ‖)) polynomial total time
algorithm; moreover, Dualization is solvable in in-
cremental polynomial time.

In the next section, we identify sufficient conditions for the
boundedness of T and fruitfully apply them to solve open
problems and improve previous results.

4. POLYNOMIAL CLASSES
4.1 Degenerate CNFs
We first consider the case of small ∆i[t]. Generalizing a
notion for graphs (i.e., monotone 2-CNFs) [44], we call a
monotone CNF ϕ k-degenerate, if there exists a variable
ordering x1, . . . , xn in which |∆i| ≤ k for all i = 1, 2, . . . , n.
We call a variable ordering x1, . . . , xn smallest last as in [44],
if xi is chosen in the order i = n, n− 1, . . . , 1 such that |∆i|
is smallest for all variables that were not chosen. Clearly,
a smallest last ordering gives the least k such that ϕ is k-
degenerate. Therefore, we can check for every integer k ≥ 1
whether ϕ is k-degenerate in O(‖ϕ‖) time. If this holds,
then we have |ρ(t,i)| ≤ nk and T(t,i) = O(knk+1) for every
t ∈ PI (f) and i ∈ V (t) (for T(t,i), apply the distributive law

to ∆i[t] and remove terms t where some xj ∈ V (t) has no
c ∈ ∆i[t] such that V (t) ∩ V (c) = {xj}). Thus Theorem 3.4
implies the following.

Theorem 4.1. For k-degenerate CNFs ϕ, Dualization

is solvable with O(‖ϕ‖nk+1) polynomial delay if k ≥ 1 is
constant.

Applying the result of [33] that any monotone CNF which
has O(logn) many clauses is dualizable in incremental poly-
nomial time, we obtain a polynomiality result also for non-
constant degeneracy:

Theorem 4.2. For O(log ‖ϕ‖)-degenerate CNFs ϕ, prob-
lem Dualization is polynomial total time.

In the following, we discuss several natural subclasses of
degenerate CNFs.

4.1.1 Read-bounded CNFs
A monotone CNF ϕ is called read-k, if each variable appears
in ϕ at most k times. Clearly, read-k CNFs are k-degenerate,
and in fact ϕ is read-k iff it is k-degenerate under every
variable ordering. By applying Theorems 4.1 and 4.2, we
obtain the following result.

Corollary 4.3. For read-k CNFs ϕ, problem Dualiza-

tion is solvable

(i) with O(‖ϕ‖nk+1) polynomial delay, if k is constant;

(ii) in polynomial total time, if k = O(log(‖ϕ‖)).

Note that Corollary 4.3 (i) trivially implies that Dualiza-

tion is solvable in O(|ψ|nk+2) time for constant k, since

‖ϕ‖ ≤ kn. This improves upon the previous best known al-
gorithm [10], which is only O(|ψ|nk+3) time, not polynomial
delay, and outputs PI (f) in no specific order. Corollary 4.3
(ii) is a non-trivial generalization of the result in [10], which
was posed as an open problem [9].

4.1.2 Acyclic CNFs
Like in graphs, acyclicity is appealing in hypergraphs resp.
monotone CNFs from a theoretical as well as a practical
point of view. However, there are many notions of acyclic-
ity for hypergraphs (cf. [14]), since different generalizations
from graphs are possible. We refer to α-, β-,γ-, and Berge-
acyclicity as stated in [14], for which the following proper
inclusion hierarchy is known:

Berge-acyclic ⊆ γ-acyclic ⊆ β-acyclic ⊆ α-acyclic.

The notion of α-acyclicity came up in relational database
theory. A monotone CNF ϕ is α-acyclic iff ϕ = 1 or re-
ducible by the GYO-reduction [21, 45], i.e., repeated appli-
cation of one of the two rules:

(1) If variable xi occurs in only one clause c, remove xi from
clause c.

(2) If distinct clauses c and c′ satisfy V (c) ⊆ V (c′), remove
clause c from ϕ.

to 0 (i.e., the empty clause). Note that α-acyclicity of a
monotone CNF ϕ can be checked, and a suitable GYO-
reduction output, in O(‖ϕ‖) time [42]. A monotone CNF
ϕ is β-acyclic iff every CNF consisting of clauses in ϕ is α-
acyclic. As shown in [13], the prime implicants of a mono-
tone f represented by a β-acyclic CNF ϕ can be enumerated
(and thus Dualization solved) in p(‖ϕ‖)|ψ| time, where p is
a polynomial in ‖ϕ‖. However, the time complexity of Du-

alization for the more general α-acyclic prime CNFs was
left as an open problem. We now show that it is solvable
with polynomial delay.

Let ϕ 6= 1 be a prime CNF. Let a = a1, a2, . . . , aq be a GYO-
reduction for ϕ, where a` = xi if the `-th operation removes
xi from c, and a` = c if it removes c from ϕ. Consider the
unique variable ordering b1, b2, . . . , bn such bi occurs after bj
in a, for all i < j.

Example 4.1. Let ϕ = c1c2c3c4, where c1 = (x1 ∨ x2 ∨
x3), c2 = (x1 ∨ x3 ∨ x5), c3 = (x1 ∨ x5 ∨ x6) and c4 = (x3 ∨
x4∨x5). Then ϕ is α-acyclic, since it has the GYO-reduction
a1 = x2, a2 = c1, a3 = x4, a4 = x6, a5 = c4, a6 = c3, a7 =
x1, a8 = x3, a9 = x5. From this sequence, we obtain the
variable ordering b1 = x5, b2 = x3, b3 = x1, b4 = x6, b5 =
x4, b6 = x2. As easily checked, this ordering shows that ϕ
is 1-degenerate. Under this ordering, we have ∆1 = ∆2 = 1,
∆3 = (x1∨x3∨x5), ∆4 = (x1∨x5∨x6), ∆5 = (x3∨x4∨x5),
and ∆6 = (x1 ∨ x2 ∨ x3).

That ϕ is 1-degenerate in this example is not accidental.

Lemma 4.4. Every α-acyclic prime CNF is 1-degenerate.



Note that the converse is not true. Lemma 4.4 and Theo-
rem 4.1 imply the following result.

Corollary 4.5. For α-acyclic CNFs ϕ, problem Dual-

ization is solvable with O(‖ϕ‖n2) delay.

Observe that for a prime α-acyclic ϕ, we have |ϕ| ≤ n. Thus,
if we slightly modify algorithm Dualize to check ∆i = 1
in advance (which can be done in linear time in a prepro-
cessing phase) such that such ∆i need not be considered in
step 2, then the resulting algorithm has O(n|ϕ|‖ϕ‖) delay.
Observe that the algorithm in [13] solves, minorly adapted
for enumerative output, Dualization for β-acyclic CNFs
with O(n|ϕ|‖ϕ‖) delay. Thus, the above modification of
Dualize is of the same order.

4.1.3 CNFs with bounded treewidth
A tree decomposition (of type I) of a monotone CNF ϕ is a
tree T =(W,E) where each node w∈W is labeled with a set
X(w)⊆V (ϕ) under the following conditions:

1.
⋃
w∈W X(w) = V (ϕ);

2. for every clause c in ϕ, there exists some w ∈ W such
that V (c) ⊆ X(w); and

3. for any variable xi ∈ V , the nodes {w ∈ W | xi ∈
X(w)} induce a (connected) subtree of T .

The width of T is maxw∈W |X(w)| − 1, and the treewidth of
ϕ, denoted by Tw1(ϕ), is the minimum width over all its
tree decompositions.

Note that the usual definition of treewidth for a graph [41]
results in the case where ϕ is a 2-CNF. Similarly to acyclic-
ity, there are several notions of treewidth for hypergraphs
resp. monotone CNFs. For example, tree decomposition of
type II of CNF ϕ =

∧
c∈C c is defined as type-I tree decom-

position of its incident 2-CNF (i.e., graph) G(ϕ) [11, 20].
That is, for each clause c ∈ ϕ, we introduce a new variable
yc and construct G(ϕ) =

∧
xi∈c∈ϕ(xi ∨ yc). Let Tw2(ϕ)

denote the type-II treewidth of ϕ.

Proposition 4.6. For every monotone CNF ϕ, it holds
that Tw2(ϕ) ≤ Tw1(ϕ) + 2Tw1(ϕ)+1.

Proof. Let T = (W,E), X : W → 2V be any tree de-
composition of ϕ having width Tw1(ϕ). Introduce for all
c ∈ ϕ new variables yc, and add yc to every X(w) such that
V (c) ⊆ X(w). Clearly, the result is a type-I tree decom-
position of G(ϕ), and thus a type-II tree decomposition of

ϕ. Since at most 2|X(w)| many yc are added to X(w) and
|X(w)|−1 ≤ Tw1(ϕ) for every w ∈W , the result follows.

This means that if Tw1(ϕ) is bounded by some constant,
then so is Tw2(ϕ). Moreover, Tw1(ϕ) = k implies that
ϕ is a k-CNF; we discuss k-CNFs in Section 4.2 and only
consider Tw2(ϕ) here. We note that, as shown in the full
paper, there is a family of prime CNFs ϕ which have Tw2(ϕ)

bounded by constant k but are not k-CNF for any k < n
(resp., not read-k for any k < n− 1), and a family of prime
CNFs which are k-CNFs for constant k (resp., α-acyclic)
but Tw2(ϕ) is not bounded by any constant.

As we show now, bounded-treewidth implies bounded de-
generacy.

Lemma 4.7. Let ϕ be any monotone CNF with Tw2(ϕ) =
k. Then ϕ is 2k-degenerate.

Proof. (Sketch) Let T = (W,E) with X : W → 2V show
Tw2(ϕ) = k. From this, we reversely construct a variable
ordering a = a1, . . . , an on V = V (ϕ) such that |∆i| ≤ 2k

for all i.

Set i := n. Choose any leaf w∗ of T , and let p(w∗) be a node
in W adjacent to w∗. If X(w∗) \X(p(w∗)) ⊆ {yc | c ∈ ϕ},
then remove w∗ from T . On the other hand, if (X(w∗) \
X(p(w∗))) ∩ V = {xj1 , . . . , xj`} where ` ≥ 1 (in this case,
only X(w∗) contains xj1 , . . . , xj`), then define ai+1−h = xjh
for h = 1, . . . , ` and update i := n − `, X(w∗) := X(w∗) \
{xj1 , . . . , xj`}, and X(w) := X(w) \ {yc | c ∈ ϕ, V (c) ∩
{xj1 , . . . , xj`} 6= ∅ } for every w ∈ W . We complete a by
repeating this process, and claim it shows that |∆i| ≤ 2k

for all i. Let w∗ be chosen during this process, and assume
that ai ∈ X(w∗) \X(p(w∗)). Then, for each clause c ∈ ∆i

we must have either yc ∈ X(w∗) or V (c) ⊆ X(w∗). Let
q = |X(w∗) \ V |. Since |X(w∗) \ {ai}| ≤ k, we have |∆i| ≤
q + 2k−q ≤ 2k.

Corollary 4.8. For CNFs ϕ with Tw2(ϕ) ≤ k, Dual-

ization is solvable

(i) with O(‖ϕ‖n2k+1) polynomial delay, if k is constant;

(ii) in polynomial total time, if k = O(log log ‖ϕ‖).

4.2 Recursive application of algorithmDual-

ize

Algorithm Dualize computes in step 2 the prime DNF ρ(t,i)

of the function represented by ∆i[t]. Since ∆[t] is the prime
CNF of some monotone function, we can recursively apply
Dualize to ∆i[t] for computing ρ(t,i). Let us call this variant
R-Dualize. Then we have the following result.

Theorem 4.9. If its recursion depth is d, R-Dualize

solves Dualization in O(nd−1|ψ|d−1‖ϕ‖) time.

Proof. If d = 1, then ∆i[tmin] = 1 holds for tmin and ev-
ery i ≥ 1. This means that PI (f)={tmin} and ϕ is a 1-CNF
(i.e., each clause in ϕ contains exactly one variable). Thus
in this case, R-Dualize needs O(n) time. Recall that algo-
rithm Dualize needs, by (5), time

∑
t∈PI (f)

∑
xi∈V (t)(T(t,i)+

|ρ(t,i)|O(‖ϕ‖)). If d = 2, then T(t,i) = O(n) and |ρ(t,i)| ≤ 1.
Therefore, R-Dualize needs time O(n|ψ|‖ϕ‖). For d ≥ 3,
Corollary 3.5.(ii) implies that algorithm R-Dualize needs
time O(nd−1|ψ|d−1‖ϕ‖).

Recall that a CNF ϕ is called k-CNF if each clause in ϕ has
at most k literals. Clearly, if we apply algorithm R-Dualize



to a monotone k-CNF ϕ, the recursion depth of R-Dualize

is at most k. Thus we obtain the following result; it re-
establishes, with different means, the main positive result of
[6, 13].

Corollary 4.10. Algorithm R-Dualize solves Dualiza-

tion in time O(nk−1|ψ|k−1‖ϕ‖), i.e., in polynomial total
time for monotone k-CNFs ϕ where k is constant.

5. LIMITED NONDETERMINISM
In the previous section, we have discussed polynomial cases
of monotone dualization. In this section, we now turn to
the issue of the precise complexity of this problem. For this
purpose, we consider the decision problem Dual instead of
the search problem Dualization. It appears that prob-
lem Dual can be solved with limited nondeterminism, i.e.,
with poly-log many guessed bits by a polynomial-time non-
deterministic Turing machine. This result might bring new
insight towards settling the complexity of the problem.

We adopt Kintala and Fischer’s terminology [28] and write
g(n)-P for the class of sets accepted by a nondeterministic
Turing machine in polynomial time making at most g(n)
nondeterministic steps on every input of length n. For ev-
ery integer k ≥ 1, define βkP =

⋃
c (c logk n)-P. The βP

Hierarchy consists of the classes

P = β1P ⊆ β2P ⊆ · · · ⊆
⋃
k

βkP = βP

and lies between P and NP. The βkP classes appear to
be rather robust; they are closed under polynomial time
and logspace many-one reductions and have complete prob-
lems (cf. [19]). The complement class of βkP is denoted by
co-βkP.

We start by recalling algorithm A of [15], reformulated for
CNFs. In what follows, we view CNFs ϕ also as sets of
clauses, and clauses as sets of literals.

Algorithm A. (reformulated for CNFs)

Input: Monotone CNFs ϕ, ψ representing monotone
f , g s.t. V (c)∩V (c′) 6=∅, for all c∈ϕ, c′∈ψ.

Output: yes if f = gd, otherwise a vector w of form
w = (w1, . . . , wm) such that f(w) 6= gd(w).

Step 1:

Delete all redundant (i.e., non-minimal)
implicates from ϕ and ψ.

Step 2:

Check that V (φ) = V (ψ), maxc∈ϕ |c| ≤ |ψ|,
maxc′∈ψ |c′| ≤ |ϕ|, and Σc∈ϕ2−|c| + Σc′∈ψ2−|c

′| ≥ 1.

If any of these conditions fails, f 6= gd and a
witness w is found in polynomial time (cf. [15]).

Step 3:

If |ϕ||ψ| ≤ 1, test duality in O(1) time.

Step 4:

If |ϕ||ψ| ≥ 2, find a variable xi that occurs in ϕ or ψ
(w.l.o.g. in ϕ) with frequency ≥ 1/ log(|ϕ|+ |ψ|).
Let

ϕ0 = {c− {xi} | xi ∈ c, c ∈ ϕ},
ϕ1 = {c | xi /∈ c, c ∈ ϕ},
ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ},
ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}.

Call algorithm A on the two pairs of forms:

(A.1) (ϕ1, ψ0 ∧ ψ1) and (A.2) (ψ1, ϕ0 ∧ ϕ1)

If both calls return yes, then return yes (as f = gd),
otherwise we obtain w such that f(w) 6= gd(w) in
polynomial time (cf. [15]).

Let ϕi, ψi be the original input for A. For any pair (ϕ,ψ) of
CNFs, define its volume by v = |ϕ||ψ|, and let ε = 1/ logn,
where n = |ϕi|+ |ψi|. As shown in [15], step 4 of algorithm
A divides the current (sub)problem of volume v = |ϕ||ψ| by
self-reduction into subproblems (A.1) and (A.2) of respective
volumes (assuming that xi frequently occurs in ϕ):

|ϕ1||ψ0 ∧ ψ1| ≤ (1− ε)v (6)

|ϕ0 ∧ ϕ1||ψ1| ≤ |ϕ|(|ψ| − 1) ≤ v − 1 (7)

Let T = T (ϕ,ψ) be the recursion tree generated by A on
input (ϕ,ψ), i.e., the root is labeled with (ϕ,ψ). Any node a
labeled with (ϕ,ψ) is a leaf, if A stops on input (ϕ,ψ) during
steps 1-3; otherwise, a has a left child al and a right child
ar corresponding to (A.1) and (A.2), i.e., labeled (ϕ1, ψ0 ∧
ψ1) and (ψ1, ϕ0 ∧ ϕ1) respectively. That is, al is the “high
frequency move” by the splitting variable.

We observe that every node a in T is determined by a unique
path from the root to a in T and thus by a unique sequence
seq(a) of right or left moves starting from the root of T and
ending at a. The following key lemma bounds the number
of moves of each type for certain inputs.

Lemma 5.1. Suppose |ϕi|+ |ψi| ≤ |ϕi||ψi|. Then for any
node a in T , seq(a) contains ≤ v right and ≤ log2 v left
moves, where v = |ϕi||ψi|.

Proof. By (6) and (7), each move decreases the volume v
of a node label. Thus, the length of seq(a), and in particular
the number of right moves, is bounded by v. To obtain the
better bound for the left moves, we will use the following
well-known inequality:

(1− 1/m)m ≤ 1/e, for m ≥ 1. (8)

In fact, the sequence (1−1/xi)
xi , for any 1 < x1 < x2 < . . .

monotonically converges to 1/e from below. By inequality
(6), the volume va of the label of any node a such that seq(a)
contains log2 v left moves is bounded as follows:

va ≤ v · (1− ε)log2 v ≤ v · (1− 1/ logn)log2 v.

Because n = |ϕi|+ |ψi| ≤ |ϕi| · |ψi| = v, and because of (8)
it follows that:

va ≤ v ·
(
(1− 1/ log v)log v)log v

≤ v · (1/e)log v

= v/(elog v)

< v/(2log v) = 1.

Thus, a must be a leaf in T . Hence for every a in T , seq(a)
contains at most log2 v left moves.



Theorem 5.2. Problem Dual is in co-β3P.

Proof. (Sketch) Instances such that either c ∩ c′ = ∅
for some c ∈ ϕi and c′ ∈ ψi, the sequence seq(a) is empty,
or |ϕi| + |ψi| > |ϕi||ψi| are easily solved in deterministic
polynomial time. In the remaining cases, if f 6= gd, then
there exists a leaf a in T labeled by a non-dual pair (ϕ′, ψ′).
If seq(a) is known, we can compute, by simulating A on
the branch described by seq(a), the entire path from the
root to a with all labels (ϕi, ψi),. . . ,(ϕ′, ψ′) and check that
(ϕ′, ψ′) is non-dual in steps 2 and 3 of A in polynomial time.
We observe that, as noted in [15], the binary length of any
standard encoding of the input ϕi, ψi is polynomially re-
lated to |ϕi| + |ψi| if algorithm A reaches step 3. Thus, to
prove the theorem, it is sufficient to show that seq(a) is ob-
tainable in polynomial time from O(log3 v) suitably guessed
bits, where v = |ϕi||ψi|. To see this, let us represent ev-
ery seq(a) as a sequence seq∗(a) = [`0, `1, `2 . . . , `k], where
`0 is the number of leading right moves and `i is the num-
ber of consecutive right moves after the i-th left move in
seq(a), for i = 1, . . . , k. E.g., if seq(a) = [r, r, l, r, r, r, l],
then seq∗(a) = [2, 3, 0]. By Lemma 5.1, seq∗(a) has length
at most log2 v + 1. Thus, seq∗(a) occupies only O(log3 v)
bits in binary; moreover, seq(a) is trivially computed from
seq∗(a) in polynomial time.

Remark 5.1. It also follows that if f 6= gd, a witness
w can be found in polynomial time within O(log3 n) nonde-
terministic steps. In fact, the sequence seq(a) to a “failing
leaf” labeled (ϕ′, ψ′) describes a choice of values for all vari-
ables in V (ϕ∧ψ) \ V (ϕ′ ∧ψ′). By completing it with values
for V (ϕ′ ∧ ψ′) that show non-duality of (ϕ′, ψ′), we obtain
in polynomial time a vector w such that f(w) 6= gd(w).

The aim of the above proof was to show with very simple
means that duality can be polynomially checked with limited
nondeterminism. With a more involved proof, applied to
the algorithm B of [15] (which runs in n4χ(n)+O(1) and thus

no(logn) time), we can prove the following sharper result.

Theorem 5.3. Deciding if monotone CNFs ϕ and ψ are
non-dual is feasible in polynomial time with O(χ(n) logn)
nondeterministic steps. Thus, problem Dual is in co-β2P.

While our independently developed methods are different
from those in [1], the previous result may also be obtained
from Beigel and Fu’s Theorem 11 in [1]. They show how
to convert certain recursive algorithms that use disjunctive
self-reductions and have runtime bounded by f(n) into poly-
nomial algorithms using log f(n) nondeterministic steps (cf.
[1, Chapter 5]). However, this yields a somewhat more com-
plicated nondeterministic algorithm. In the full paper, we
also prove that algorithm B qualifies for this.
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