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Abstrat. We investigate the omplexity of autoepistemi reasoningwith parsimonious and moderately grounded expansions. A stable ex-pansion of an autoepistemi set of premises is parsimonious if its obje-tive (i.e. nonmodal) part does not ontain the objetive part of any otherstable expansion. We prove that deiding whether a formula ' belongsto at least one parsimonious stable expansion of a �nite base set A isomplete for �P3 , while deiding ontainment in all parsimonious stableexpansions is omplete for �P3 . Similar results are derived for autoepis-temi reasoning with moderately grounded expansions. In partiular,we show that deiding whether a formula ' belongs to some moderatelygrounded expansion of a �nite base set A is �P3 -omplete, and thatdeiding whether ' belongs to all moderately grounded expansions is�P3 -omplete. These results suggest that reasoning with parsimoniousstable expansions and moderately grounded expansions is stritly harderthan reasoning in Moore's standard version of autoepistemi logi. Wealso address the omplexity of reasoning if the set A is in a normalizedform, and derive ompleteness results for this ase.1 IntrodutionIn this paper we study the omplexity of deision problems for variants of Moore'sAutoepistemi Logi (AEL) [20℄. AEL is known as a suessful tool for formalizingpriniples of nonmonotoni reasoning. This logi is based on the language of propo-sitional logi extended by a modal belief operator L. Informally, if ' is a formula(possibly ontaining ourrenes of L), L' means ' is believed or also, ' is in theknowledge base, where the knowledge base is supposed to ontain the set of all beliefsof an ideally rational introspetive agent.In AEL, eah given set A of initial beliefs is mapped to a set of expansions,where eah expansion is an alternative possible set of total beliefs based on A. Themain inferene tasks of AEL are to deide whether a given formula ' ours in atleast one stable expansion of A (brave reasoning), and to determine whether a givenformula ' ours in all stable expansions of A (autious reasoning). The omplexityof these problems for a �nite set A was investigated in [9℄, where it was shown that�Internet e-mail: feiter,gottlobg�vexpert.dbai.tuwien.a.at31



these problems are omplete for respetively �P2 and �P2 , thus harder than NP ando-NP.In the present paper, we onsider stronger versions of AEL, in partiular parsi-monious stable expansions and moderately grounded expansions of a �nite base setA. A natural strengthening of the onept of stable expansion is to require thatthe objetive (i.e. nonmodal) part of a stable expansion must be minimal omparedto all other stable expansions with respet to set inlusion. We refer to suh stableexpansions as parsimonious. Expansions of this type desribe the minimal dedutivelylosed objetive theories that a rational agent may adopt if every aepted belief L'must be grounded in the agent's knowledge base, i.e. ' must be derivable from theknowledge base and the beliefs.Our investigation into the omplexity of reasoning with parsimonious stable ex-pansions overs the main deision problems in autoepistemi reasoning. In partiular,we show that deiding whether a formula ' belongs to at least one parsimonious sta-ble expansion of a �nite base set A is omplete for �P3 , while deiding for ontainmentin all parsimonious stable expansions is omplete for �P3 . However, deiding whetherA has any parsimonious stable expansion is �P2 -omplete, and hene of the sameomplexity as deiding whether A has any stable expansion.Similar results are shown for reasoning with moderately grounded expansions,whih were introdued in [11℄ (see [31℄ for another development of the same onept).Informally, a moderately grounded expansion of A is a stable expansion of A whoseobjetive part is minimal over the objetive parts of stable belief sets that inlude A.Moderately grounded expansions orrespond to a more onservative onept of be-lieving whih, in partiular ontexts, is more appropriate than the one orrespondingto standard AEL [11℄. Notie that moderate groundedness strengthens the oneptof parsimony, sine moderately grounded expansions are parsimonious, but the on-verse does not neessarily hold. We show that brave reasoning with the moderatelygrounded expansions of a �nite base set A is �P3 -omplete, while autious reasoningis �P3 -omplete. Furthermore, we show that even deiding whether there exists anymoderately grounded expansion for A is �P3 -omplete.Thus, unless the polynomial time hierarhy ollapses at some low level, brave aswell as autious reasoning with parsimonious stable expansions or with moderatelygrounded expansions is stritly harder than with standard AEL expansions. Theintuitive explanation for this is that minimality-heking introdues an additionalsoure of omplexity. As a onsequene of our results, unless the polynomial hierarhyollapses, there annot be any polynomial transformation from parsimonious AEL ormoderately grounded AEL to standard AEL.Our analysis also devotes attention to the omplexity of autoepistemi reason-ing from base sets where the knowledge is represented in some speial format. Inpartiular, we onsider base sets where all formulae are of the formL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !where all 'i;  j and ! are objetive formulae and only ! must be present. Formulaeof this type have been onsidered in the ontext of moderate groundedness in [11℄.Notie that this format, whih is more restritive than the Moore normal form [20, 16℄,only allows for formulae without nestings of L operators, and hene generates merelya small fragment of the autoepistemi language.32



We show that for the ase that the set A is normalized, brave reasoning with themoderately grounded expansions of suh �nite premise sets is �P2 -omplete, and thatautious reasoning is �P2 -omplete.These results are interesting sine the omplexity of standard AEL as well asparsimonious AEL remains una�eted by normalized premise sets, whih means thatin this ase moderately grounded expansions are as easy as standard AEL expan-sions, while parsimonious stable expansions are stritly harder unless the polynomialhierarhy ollapses.The rest of the paper is organized as follows. Setion 2 introdues the oneptsof omplexity theory neessary for our analysis and gives a brief summary of AELand previously derived related omplexity results. Setion 3 ontains results on parsi-monious stable expansions, while Setion 4 ontains results on moderately groundedexpansions. In Setion 5, we investigate into the impat of normalized premise setson the omplexity of autoepistemi reasoning. Setion 6, whih onludes the paper,gives a disussion of the results and reviews related omplexity results for other formsof nonmonotoni reasoning.2 Preliminaries2.1 Computational ComplexityWe start with a brief review of the relevant onepts of omplexity theory. The readeris assumed to be familiar with the basi onepts of NP-ompleteness; an exellentintrodution to that �eld is [8℄. Most of the problems we onsider are NP-hard, butare not known to be in NP or a similar lass suh as o-NP. All of them reside inthe polynomial hierarhy (PH), however, whih has been introdued in [19℄ as a om-putational analog to the Kleene arithmeti hierarhy of reursion theory [8, 10℄. Thelasses of PH are de�ned by orale Turing mahines and ontain, unless the hierarhyollapses, problems of inreasing omplexity. They provide thus a way for harater-izing the omplexity of some problems harder thanNP-omplete problems, espeiallyif ompleteness of a problem for some lass an be shown. Problems omplete for alass su�er from, depending on the lass, several soures of omplexity eah of whihleads to intratability. We sueed to establish ompleteness results for all onsideredproblems.Orale Turing mahines are ordinary Turing mahines equipped with an oraletape. Roughly speaking, the orale tape enables the mahine to hek in unit timewhether a string belongs to the orale set, whih is a formal language attahed to themahine. Conerning deision problems, one an think of an orale set as a \subrou-tine for solving a ertain deision problem in unit time". PC (NPC) are the deisionproblems solvable in polynomial time by some deterministi (nondeterministi) oraleTuring mahine with an orale set for any problem in C. The lasses �Pk ;�Pk ; and�Pk of PH are de�ned as follows:�P0 = �P0 = �P0 = Pand for all k � 0, �Pk+1 = P�Pk ; �Pk+1 = NP�Pk ; �Pk+1 = o-�Pk+1:33



In partiular, NP = �P1 , o-NP = �P1 , �P2 = NPNP, and �P3 = NPNPNP. Notethat �P2 = PNP is the lass of problems deidable in deterministi polynomial timewith an NP orale set. PH is equal to S1k=0�Pk . We say that a problem is at the k-thlevel of PH i� it is omplete for �Pk+1 under Turing redutions (i.e., it is in �Pk+1 and�Pk -hard or �Pk -hard).A well-known problem at the k-th level of PH, k � 1, is deiding the validity ofa quanti�ed Boolean formula (QBF) with k \quanti�er alternations". A QBF is asentene of the form Q1x1 � � �QnxnF , where F is a propositional formula on pairwisedistint variables x1; : : : ; xn and Qi 2 f8; 9g is a quanti�er ranging over ffalse; trueg.1Suh a formula has k quanti�er alternations if the quanti�er pre�x Q1 � � �Qn is of type9 � � � 98 � � � 89 � � � 9 � � � or 8 � � � 89 � � � 98 � � � 8 � � � with k alternating quanti�er groups,i.e. k is the maximum number suh that there exist 1 � i1 < i2 < � � � < ik�1 < nwith Qij 6= Qij+1, for all 1 � j � k � 1. Deiding if a QBF � satis�es � 2 QBFk;9(� 2 QBFk;8), where QBFk;9 (QBFk;8) denotes the set of valid QBFs with k quanti�eralternations and Q1 = 9 (Q1 = 8) is well-known to be �Pk -omplete (�Pk -omplete).Reall that a problem � is omplete for a lass C of deision problems i� � belongsto C and is C-hard, i.e., eah problem �0 in C is polynomial time transformable into�.2.2 Autoepistemi Logi (AEL)L is assumed to be an ordinary language of well-formed propositional formulae over aountable set of propositional variables, built with syntati operators :;^;_,!;$,>, and ?, where > and ? are onstants for truth and falsity, respetively. Theautoepistemi language LL is the expansion of L obtained by adding a unary modaloperator L, whih is an \introspetive" operator referring to the knowledge of arational agent. Intuitively, a formula L' means that the formula ' is believed, i.e.,is assumed to be valid. Note that nested ourrenes of L are possible; LL' meansthat the agent believes in his belief in '.For our omplexity study, we assume that the knowledge base of the agent is givenby a �nite set of formulae from LL.De�nition 2.1 A set of (autoepistemi) premises is a �nite subset of LL.The letter A will be reserved to denote a set of premises throughout the rest ofthis paper. Autoepistemi logi in its general setting also respets in�nite knowledgebases, whih is beyond the sope of our analysis.Within LL, formulae from L are alled objetive formulae. For eah set S � LL,we denote by P (S) the objetive part S \ L of S, i.e., the objetive formulae in S.Interpretations of LL are de�ned as ordinary propositional interpretations whereformulae of the form L' are onsidered as atoms. More preisely, the atoms of aformula are all propositional atoms plus all \modal" atoms, whih are all subformulaeL whih do not our in the sope of an L operator. For example, p _ LL(p ^ q)has the atoms p and LL(p ^ q). An interpretation assigns eah formula from LL atruth value by the lassial rules of truth reursion, based upon truth values for theatoms; ' 2 LL (S � LL) is satis�ed in this interpretation i� ' is true (all formulae1In fat, Quanti�ed Propositional Formula (QPF) rather than QBF would be orret. Note thatQPFs are losed seond-order formulae. In abuse of terminology, we do not distinguish between theisomorphi onepts of QPF and QBF. 34



in S are true). The onsequene relation j= is de�ned as follows. If S � LL and' 2 LL, then S j= ' i� ' is satis�ed in all interpretations whih satisfy S. Theonsequene operator ons is de�ned as ons(S) = f' 2 LL : S j= 'g. Note thatlassial propositional logi is naturally extended from L to LL.The main objetive of autoepistemi logi (AEL) is, as mentioned above, to modelintrospetive knowledge. The alternative belief sets that an ideal agent may adoptfrom a set of premises are alled the stable expansions of the premises; they anformally be de�ned by a �xed point equation as follows.De�nition 2.2 [20℄ E � LL is a stable expansion of a set of premises A i�E = ons(A [ fL' : ' 2 Eg [ f:L' : ' =2 Eg):Thus, a belief set of an ideal agent ontains the premises A and the belief ineverything whih is in the belief set (L' for ' 2 E) and no belief in anything whih isnot in the belief set (:L' for ' =2 E). The onept of a stable expansion is strongerthan the onept of a stable set, whih is a type of a belief set de�ned as follows.De�nition 2.3 A set S � LL is alled stable if S satis�es the following three ondi-tions:(i) S = ons(S),(ii) ' 2 S ) L' 2 S,(iii) ' =2 S ) :L' 2 S.Every stable expansion of a premise set A is a stable set ontaining A, but theonverse does not hold in general. For example, onsider the set A = fLpg where pis a propositional letter. A has no stable expansion sine the belief Lp an not begrounded in the premises. LL is a stable set, however, whih ontains Lp.It is well-known that every stable set S is uniquely haraterized by its objetivepart P (S), and that for eah set of objetive formulae T � L there exists a uniquestable set S � T suh that P (S) = P (ons(T )) [20, 12℄. This stable set is denoted byE(T ). If a premise set A is objetive, then E(A) is the only stable expansion of A.De�nition 2.4 The partial order � on the stable sets of LL is de�ned by S1 � S2 i�P (S1) � P (S2).As usual, we write S1 � S2 for S1 � S2 ^ S1 6= S2. For example, onsiderA = fLp ! pg. A has two stable expansions: E(fpg) and E(;). Notie thatE(;) � E(fpg).Several �nitary haraterizations of the stable expansions of a set of premisesappear in the literature [29, 16, 24℄. We use here the riterion by Niemel�a in [24℄. Forany formula ' 2 LL denote by 'L the set of all subformulae L of '. Furthermore,for S � LL, let SL = S'2S 'L, and let S�L = fL ;:L : L 2 SLg.De�nition 2.5 For a set A of premises, � � A�L is A-full i� both onditions (i) and(ii) hold for eah L' 2 AL: (i) A [ � j= ' i� L' 2 � (ii) A [ � 6j= ' i� :L' 2 �.Note that if � is A-full, then for eah L' 2 AL, either L' 2 � or :L' 2 �.35



Proposition 2.1 [24℄ Given a premise set A and K � A�L, deiding whether K isA-full is in �P2 .The one-to-one orrespondene between stable expansions and A-full sets is well-known.Proposition 2.2 [24℄ For eah stable expansion E of a set of premises A, there existsa uniquely determined A-full set �, given by � = A�L \ (fL' : L' 2 Eg [ f:L' :' =2 Eg). Conversely, eah A-full set � indues a unique stable expansion of A.The stable expansion orresponding to the A-full set � is denoted by SEA(�),and the A-full set orresponding to the stable expansion E, whih is alled the kernelof E, by �A(E). It is immediate from Proposition 2.2 that �A(LL) = AL for everypremise set A.Logial onsequene of a formula from a stable expansion of a set of premises anbe desribed as follows. (Note: sine stable expansions are dedutively losed, logialonsequene is equivalent to membership in the expansion).Let QS(') denote the set of all quasi-subformulae of ' 2 LL. Quasi-subformulaeare de�ned as subformulae in the usual way exept that every formula L does nothave genuine subformulae. For example, ' = L(p _ Lq) ^ (Lp _ LLr) has QS(') =f'; L(p _ Lq); Lp _ LLr; Lp; LLrg.Proposition 2.3 [24℄ Let E be a stable expansion of a set A of premises and ' 2 LL.Let B = fL 2 QS(') :  2 Eg, C = f:L : L 2 QS(');  =2 Eg. Then, ' 2 Ei� A [ �A(E) [ B [ C j= '.In the ase ' 2 L we have B = C = ;, and hene ' 2 E i� A [ �A(E) j= '. Inpartiular, ? 2 E, i.e. E = LL, i� A [ �A(E) is not onsistent. Sine �A(LL) = ALand AL is A-full if A [AL is not onsistent, it holds that LL is a stable expansion ofA i� A [ AL is not onsistent.Proposition 2.3 leads to the following upper bound for deiding whether a formulabelongs to a partiular stable expansion E of a premise set A.Corollary 2.4 [24℄ Given a set of premises A and the kernel � of a stable expansionE of A, deiding if ' 2 LL belongs to E is in �P2 .The three main deision problems in autoepistemi reasoning are(i) deiding whether A has a stable expansion,(ii) deiding whether a formula ' belongs to some stable expansion of A (bravereasoning),(iii) deiding whether a formula ' belongs to all stable expansions of A (autiousreasoning).Reently, Gottlob presented a preise omplexity haraterization of those problems.Proposition 2.5 [9℄ Given a set of premises A, (i) deiding whether A has a stableexpansion is �P2 -omplete; (ii) deiding whether a formula ' belongs to some stableexpansion of A is �P2 -omplete; and (iii) deiding whether a formula ' belongs to allstable expansions of A is �P2 -omplete. 36



Not all omputational issues are answered by these results, however. Severalresearhers have argued that stable expansions are too permissive for modeling thebelief sets of an ideal agent, sine the derivation of fats from \ungrounded" beliefsmay our [11, 21, 14, 15, 23℄. For example, the expansion E(fpg) of fLp ! pgseems defeasible, sine p an only be derived on behalf of the belief Lp in p. Strongeronepts of groundedness for expansions have been proposed in [11, 21, 15, 23℄.The notion of strongly grounded expansions [11℄ and the equivalent onepts ofstrongly iterative and robust expansions [14℄ are syntax dependent and only de�nedfor premise sets in normal form.A promising approah are iterative expansions of Marek and Truszzy�nski [14℄,whih strengthen the onept of stable expansions. (See also [23℄ for an elegant enu-meration-based haraterization.) It appears that the omplexity of the three maindeision problems is not a�eted.Proposition 2.6 [9℄ Given a set of premises A, (i) deiding whether A has an iter-ative expansion is �P2 -omplete; (ii) deiding whether a formula ' belongs to someiterative expansion of A is �P2 -omplete; and (iii) deiding whether a formula ' be-longs to all iterative expansions of A is �P2 -omplete.In the rest of this setion, we derive a simple, but useful riterion for membershipof an objetive formula in a stable expansion, based on the kernel haraterization.We �rst introdue additional notation.De�nition 2.6 Let ' 2 LL, and let � be a truth assignment to (not neessarily all)atoms a1; : : : ; an of '. Then, '� denotes the formula that results if eah ourreneof ai in ' is replaed by > if �(ai) = true and by ? if �(ai) = false, for all 1 � i � n.For example, if ' = p ^ (Lp ! LLq _ Lq) and �(p) = true, �(Lq) = false, then'� = > ^ (Lp! LLq _ ?).Deiding whether an objetive formula ' 2 L belongs to E an be redued to animpliation problem on objetive formulae as follows. For every stable expansion E ofa set A of premises, let �E be the truth assignment to AL de�ned by �E(L ) = true ifL 2 �A(E) and �E(L ) = false if L =2 �A(E). Then, let FA(E) = f'�E : ' 2 Ag.Note that FA(E) ontains only objetive formulae.We an thus formulate the following easy lemma from Proposition 2.3.Lemma 2.7 Let E be a stable expansion of a set A of premises, and let ' 2 L.Then, ' 2 E i� FA(E) j= '.Proof. Sine ' 2 L, by Proposition 2.3 ' 2 E holds i� A [ �A(E) j= '. Sine(A [ �A(E))L = AL, and for eah L' 2 AL, either L' 2 �A(E) or :L' 2 �A(E), itis lear that A[�A(E) j= ' i� FA(E)[�A(E) j= '. Sine no atom in �A(E) oursin FA(E) or in ', we have by trivial interpolation properties that FA(E)[�A(E) j= 'i� FA(E) j= '. 2Thus a stable expansion E of A is inonsistent, i.e. E = LL, if and only if FA(E)is inonsistent.The previous lemma allows to redue deiding whether E 0 � E for stable expan-sions E;E 0 of premise sets A;A0 to a propositional impliation test.37



Theorem 2.8 Let E;E 0 be stable expansions of respetive premise sets A and A0.Then, E 0 � E if and only if FA(E) j= FA0(E 0).Proof. From Lemma 2.7, we get E 0 � E i� P (ons(FA0(E 0))) � P (ons(FA(E))),whih is equivalent to FA(E) j= FA0(E 0). 23 Parsimonious stable expansionsIn this setion, we derive omplexity results for reasoning with parsimonious stableexpansions, whih are a natural onept of restrited stable expansions. Aording toOam's entia non sunt multiplianda praeter neessitatem, we restrit the stable ex-pansions of a premise set to those whose objetive part does not ontain the objetivepart of any other stable expansion as a subset.De�nition 3.1 A stable expansion E of a set A is parsimonious i� there exists nostable expansion E 0 of A suh that E 0 � E.Note that in the example A = fLp ! pg, only the stable expansion E(;) isparsimonious, whih eliminates the undesired stable expansion E(fpg).The omplexity of reasoning with parsimonious stable expansions has, to our bestknowledge, not been onsidered yet. We give in this setion a preise haraterizationof these problems in terms of ompleteness results for lasses at the seond and thethird level of PH.We start with haraterizing the omplexity of deiding whether E 0 � E for stableexpansions E;E 0 of respetive premise sets A and A0. By Theorem 2.8, this probleman eÆiently be redued to a propositional impliation test, whih is a well-knownintratable problem. A omputationally more advantageous, that is polynomial timehekable, riterion for heking whether E 0 � E is unlikely to exist, however, sinethis would entail NP = P.Theorem 3.1 Given sets A;A0 of premises and the kernels �, �0 of stable expansionsE, E 0 of A and A0, respetively, deiding whether E 0 � E is o-NP-omplete.Proof. By Theorem 2.8, this problem is polynomially transformable into deidingwhether ' j=  for ';  2 L, whih is in o-NP. o-NP-hardness is shown by apolynomial transformation from deiding whether ' 2 L is a tautology. Without lossof generality we may assume that ' is satis�able. Let p be a propositional variablenot ourring in ', and de�ne A = A0 = fLp! p;:Lp! 'g. Then, � = fLpg and�0 = f:Lpg are A-full sets. Let E = SEA(�), E 0 = SEA(�0) be the orrespondingexpansions. By Theorem 2.8, E 0 � E holds i� FA(E) j= FA(E 0); sine FA(E) � p,FA(E 0) � ', this holds i� ' is a tautology. 2Note that deiding whether a premise set has a parsimonious stable expansion isnot harder than deiding whether a stable expansion exists.Proposition 3.2 Deiding if a premise set A has a parsimonious stable expansion is�P2 -omplete.
38



Proof. Sine A is �nite, only �nitely many A-full sets and hene only �nitelymany stable expansions of A exist. Hene it is lear that A has a parsimonious stableexpansion i� A has any stable expansion. Sine the latter problem is �P2 -omplete[9, Theorem 4.1℄, the result follows. 2We onsider now the problem of reognizing parsimonious stable expansions.Theorem 3.3 Given a set of premises A and the kernel � of a stable expansion Eof A, deiding whether E is parsimonious is �P2 -omplete. �P2 -hardness holds evenif E is onsistent.Proof. Membership of this problem in �P2 is shown as follows. E is not parsi-monious if and only if there exists a stable expansion E 0 of A suh that E 0 � E.A guess �0 � A�L for �A(E 0) an be veri�ed in polynomial time with an NP ora-le, beause heking whether �0 is the kernel of some stable expansion E 0 is in �P2(Proposition 2.1) as well as deiding whether E 0 � E, given the respetive kernels(follows from Theorem 3.1).Hardness of this problem for �P2 is shown by a redution from validity hekingof a QBF � = 8y1 � � � 8ym9z1 � � � 9zlF . We de�ne a set of premises A as follows. Lety01; : : : ; y0m and s be additional variables. LetA = fLyi ! yi; L:y0i ! :y0i : 1 � i � mg [fyi ^ :y0i ! s : 1 � i � mg [ fs! (y1 ^ :y01 ^ � � � ^ ym ^ :y0m)g [fL( m̂i=1(yi $ y0i)! :F )gNote that A is onsistent and has no inonsistent expansion sine A [ AL isonsistent. Let �0 = AL. It is easily veri�ed by De�nition 2.5 that �0 is A-full; theorresponding stable expansion E0 = SEA(�0) is E0 = E(fy1;:y01; : : : ; ym;:y0m; sg).For eah stable expansion E of A it holds that s 2 E i� E = E0. s 2 E meansfyi;:y0i : 1 � i � mg � E, and sine ' 2 E entails L' 2 E, �0 � E holds. Sine Eis onsistent, �A(E) = �0 and hene E = E0 follows.We further note that eah stable expansion E of A must satisfy E � E0. Indeed,it is not hard to see that FA(E0) is logially equivalent to s^y1^:y01^� � �^ym^:y0m,and sine FA(E) is always satis�ed if true is assigned to y1; : : : ; ym; s and false toy01; : : : ; y0m, we have FA(E0) j= FA(E). Thus by Theorem 2.8, E � E0.We laim that E0 is the only stable expansion of A (and hene learly parsimo-nious) if and only if � is valid.Assume � is not valid, that is, there exists a truth assignment � to y1; : : : ; ymsuh that 9z1 � � � 9zl F� is ontraditory, i.e. :F� is a tautology. De�ne the set K� asfollows: K� = fLyi;:L:y0i : �(yi) = true; 1 � i � mg [f:Lyi; L:y0i : �(yi) = false; 1 � i � mg [fL( m̂i=1(yi $ y0i)! :F )gThen, K� is A-full. To show this, we observe that A [K� is onsistent with the setS = fyi; y0i : �(yi) = true; 1 � i � mg [ f:yi;:y0i : �(yi) = false; 1 � i � mg [ f:sg:39



Sine for eah Lyi we have Lyi ! yi, we thus learly obtain A[K� j= yi i� Lyi 2 K�and A [ K� 6j= yi i� :Lyi 2 K�, for 1 � i � m. The argumentation for L:y0i isanalogous.It remains to verify that A[K� j= Vmi=1(yi $ y0i)! :F holds. Clearly, this holdsi� A[K� [fVmi=1(yi $ y0i)g j= :F holds. Sine A[K� [fVmi=1(yi $ y0i)g is onsistentand logially implies yi � �(yi), for 1 � i � m, this holds i� A [ K� [ fVmi=1(yi $y0i)g j= :F�, whih is ful�lled as :F� is a tautology; thus K� is A-full. Sine K� 6= �0,it follows that SEA(K�) 6= E0 (and hene SEA(K�) � E0) holds.Conversely, assume there exists a stable expansion E 6= E0 (and hene E � E0).Then, Vmi=1(yi $ y0i) ! :F 2 E holds, beause L(Vmi=1(yi $ y0i) ! :F ) 2 A,A � E, and for all  2 LL, L 2 E entails  2 E (this follows immediately fromthe de�nition of a stable expansion). Sine Vmi=1(yi $ y0i)! :F 2 L, by Lemma 2.7it follows that FA(E) j= Vmi=1(yi $ y0i) ! :F . Clearly, this holds i� G j= :F holds,where G = FA(E) [ fVmi=1(yi $ y0i)g. G is satis�ed by the truth assignment � tos; y1; y01; : : : ; ym; y0m de�ned as follows:�(s) = false; �(yi) = �(y0i) = ( true if :L:y0i 2 Efalse if L:y0i 2 E ; for 1 � i � m:Sine G j= :F , we have that for the restrition � of � to y1; : : : ; ym, G� j= :F� . Thusby trivial interpolation properties, j= :F� follows, i.e. 8z1 � � � 8zl:F� is valid. Hene,9y1 � � � 9ym8z1 � � � 8zl:F is valid, whih means that � = 8y1 � � � 8ym9z1 � � � 9zl F is notvalid. Thus the laim is proved.It is lear that A and �0 an be onstruted in polynomial time. Thus we havethe theorem. 2The omplexity of heking if a stable expansion is parsimonious has a detrimentale�et on the omplexity of brave reasoning with the parsimonious stable expansionsof a set of premises.Theorem 3.4 Deiding whether a formula ' 2 LL belongs to some parsimoniousstable expansion of a set A of premises is �P3 -omplete. �P3 -hardness holds even if' 2 L and every parsimonious stable expansion of A is onsistent.Proof. Membership of this problem in �P3 an be shown as follows. Guess � � A�Lsuh that � = �A(E) and ' 2 E for some parsimonious stable expansion E of A.Sine heking if � is the kernel of some stable expansion is in �P2 (Proposition 2.1),heking whether SEA(�) is parsimonious is in �P2 (Theorem 3.3), and hekingwhether ' 2 E holds is in �P2 (Corollary 2.4), the guess an be veri�ed in polynomialtime with a �P2 orale. Hene the problem is in �P3 .We show �P3 -hardness by a polynomial transformation of validity heking of aQBF � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F into this problem. Let y01; : : : ; y0m and sbe additional variables, and de�neA = fxi $ Lxi : 1 � i � ng [ fLyi ! yi; L:y0i ! :y0i : 1 � i � mg [fyi ^ :y0i ! s : 1 � i � mg [ fs! (y1 ^ :y01 ^ � � � ^ ym ^ :y0m)g [[fL( m̂i=1(yi $ y0i)! :F )g:Note that A has no inonsistent stable expansion sine A[AL is onsistent, and thatthis set of premises is lose to A in the proof of Theorem 3.3. The only di�erene are40



the additional premises Lxi $ xi, 1 � i � n, and that F an be built on x1; : : : ; xn;y1; : : : ; ym; z1; : : : ; zl instead of y1; : : : ; ym; z1; : : : ; zl.For every truth assignment � to x1; : : : ; xn, the set�� = fLxi : �(xi) = true; 1 � i � ng [ f:Lxi : �(xi) = false; 1 � i � ng [fLy1; L:y01; : : : ; Lym; L:y0mg [ fL( m̂i=1(yi $ y0i)! :F )gis A-full. Let E� = SEA(��) denote the orresponding expansion. Note that xi 2 E�i� �(xi) = true and :xi 2 E� i� �(xi) = false, for all 1 � i � n. Thus learlyE� 6� E�0 , E�0 6� E� holds i� � 6= � 0 holds.It is not diÆult to show that every stable expansion E ful�lls either xi 2 E or:xi 2 E, for all 1 � i � n; let �(E) be the truth assignment to x1; : : : ; xn given by E.As a onsequene, E � E 0 entails that �(E) = �(E 0), for all stable expansions E;E 0of A. Furthermore, s 2 E i� E = E�(E) must always hold as well as E � E�(E); thisan be shown analogous to s 2 E i� E = E0, and E � E0 in the proof of Theorem 3.3.Sine s 2 E implies E = E�(E), it follows that s belongs to a parsimoniousstable expansion of A if and only if there exists a � suh that E� is parsimonious.Along the line of argumentation taken in the proof of Theorem 3.3 to prove thatE0 is parsimonious i� � is valid, it is straightforward to show that for eah truthassignment � to x1; : : : ; xn, E� is parsimonious if and only if 8y1 � � � 8ym9z1 � � � 9zl F�is valid. Consequently, s belongs to a parsimonious stable expansion of A if and onlyif � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F is valid.Clearly, A and ' = s an be onstruted in polynomial time, whene our theorem.2 An analogous result for autious reasoning with parsimonious stable expansionsan be easily derived from this result.Theorem 3.5 Deiding whether a formula ' 2 LL is in all parsimonious stableexpansions of a set A of premises is �P3 -omplete. �P3 -hardness even holds if everyparsimonious stable expansion of A is onsistent.Proof. Membership of the omplementary problem, deiding whether ' does notour in some parsimonious stable expansion of A, in �P3 an be shown similar tomembership of brave reasoning with parsimonious stable expansions in �P3 . A guess� � A�L on the kernel of a parsimonious stable expansion E of A an be veri�edin polynomial time with a �P2 orale (see proof of Theorem 3.4 for details). GivenA and �, deiding whether ' =2 E is in �P2 (f. Corollary 2.4), hene possible withone all to a �P2 orale. Consequently, deiding whether ' does not our in someparsimonious stable expansion of A is in �P3 . Thus it follows that deiding whether' ours in all parsimonious stable expansions of A is in �P3 .Hardness for �P3 is shown from Theorem 3.4. Given ' 2 LL and A, onsider thethree problems of deiding whether(i) :L' ours in all parsimonious stable expansions of A,(ii) :L' does not our in all parsimonious stable expansions of A,(iii) ' ours in some parsimonious stable expansion of A.41



If every parsimonious stable expansion of A is onsistent, (ii) and (iii) are equiv-alent problems, and hene by Theorem 3.4 (ii) is �P3 -hard. It is also lear that (ii) isthe omplementary problem for (i); hene, (i) is �P3 -hard, even if every parsimoniousstable expansion of A is onsistent. Thus the theorem follows. 2While fousing on parsimonious stable expansions gets autious reasoning fromthe seond to the third level of the polynomial hierarhy in the general ase, it isinteresting to note that for purely propositional formulae, parsimony does not a�etomputational omplexity. In partiular, the following holds.Theorem 3.6 Let ' 2 L and let A be a set of premises. Deiding whether ' belongsto all parsimonious stable expansions of A is �P2 -omplete.Proof. Indeed, sine A has only a �nite number of stable expansions, it is easilyveri�ed that ' belongs to all parsimonious stable expansions of A if and only if 'belongs to all stable expansions of A, and this problem is in �P2 [24℄. �P2 -hardnessholds sine autious reasoning with all stable expansions is already�P2 -hard for purelypropositional formulae [9, proof of Theorem 4.5℄. 24 Moderately Grounded ExpansionsAnother promising onept for strengthening standard AEL is the suggestion byKonolige [11℄ to restrit the stable expansions to moderately grounded expansions,whih are the stable expansions whose objetive parts do not stritly ontain theobjetive part of any stable set that inludes the premises.De�nition 4.1 A stable expansion E of a set A is moderately grounded i� thereexists no stable set S suh that A � S and S � E.Every moderately grounded expansion is parsimonious, but the onverse does nothold in general. For example, if A = fLp! p; p! q; Lqg, then E(fp; qg) is the only,and hene learly parsimonious, stable expansion of A. E(fp; qg) is not moderatelygrounded, however, sine E(fqg) is a stable set ontaining A and E(fqg) � E(fp; qg).Moderately grounded expansions an also be haraterized by a �xed point equa-tion and use of modal logi.Proposition 4.1 [11, 31℄E is a moderately grounded expansion of a set of premises A i�E = onsK45(A [ f:L' : ' 2 L � Eg)where onsK45 is the onsequene operator of the modal logi K45.We remark that Niemel�a's L-hierarhi expansions [23℄ strengthen the onept ofmoderated groundedness.The following result provides a haraterization of moderately grounded expan-sions whih is useful for a reognition algorithm.Lemma 4.2 Let A be a set of premises and S � A be a onsistent stable set. Then,� = S \ A�L is full for A0 = A [ f' : L' 2 �g and SEA0(�) � S.42



Proof. Note that S is onsistent, and hene either L' 2 � or :L' 2 � holds, forall L' 2 AL.Reall that � is A0-full i� for all L' 2 A0L, (i) A0 [ � j= ' i� L' 2 �, and (ii)A0 [ � 6j= ' i� :L' 2 �. Notie that A0 [ � � S and that A0L = AL.(i): If A0 [ � j= ', then S j= ', hene L' 2 S and thus L' 2 �. Conversely, ifL' 2 �, then ' 2 f' : L' 2 �g, hene learly A0 [ � j= '.(ii): Assume A0 [ � 6j= ', but :L' =2 �. Consequently, L' 2 �, and thus ' 2 f' :L' 2 �g. It follows A0 [ � j= ', whih is a ontradition. Hene, A0 [ � 6j= ' implies:L' 2 �. Conversely, assume :L' 2 �. This entails ' =2 S, hene S 6j= '. SineA0 [ � � S, it follows A0 [ � 6j= ', and (ii) holds.Now we observe that E 0 = SEA0(�) � S holds: P (E 0) = P (ons(A0 [ �)) byProposition 2.3, and sine A0 [ � � S, P (E 0) � P (S). 2Theorem 4.3 A stable expansion E of a premise set A is moderately grounded i�there exists no set � � A�L suh that � is full for A0 = A [ f' : L' 2 �g andSEA0(�) � E.Proof. Reall that E is moderately grounded i� there exists no stable set S suhthat S � E and A � S.Sine every stable expansion is a stable set, the only if diretion learly holds.If E is not moderately grounded, then there exists a stable set S � A suh thatS � E. Sine S is onsistent, by Lemma 4.2 � = S \A�L is full for A[f' : L' 2 �gand SEA0(�) � S, hene SEA0(�) � E. Thus the if diretion holds, and the resultfollows. 2With this result, we are able to show that reognizing moderately grounded ex-pansions is in �P2 . We also show that the problem is hard for this lass, and heneno substantially better riterion for a reognition algorithm an be expeted.Theorem 4.4 Given a set of premises A and the kernel � of a stable expansion Eof A, deiding whether E is moderately grounded is �P2 -omplete.Proof. A guess � � A�L on the kernel of a stable expansion E 0 of A0 = A [ f' :L' 2 �g suh that E 0 � E an be veri�ed in polynomial time with an NP orale(Proposition 2.1, Theorem 3.1). Sine by Theorem 4.3 suh a � exists i� E is notmoderately grounded, the problem is learly in �P2 .We show hardness for this lass by a redution from deiding whether � 2 QBF2;8for a QBF �. Let � = 8y1 � � � 8ym9z1 � � � 9zlF . We de�ne a set of premises A asfollows. Let p be an additional variable, and de�neA = fLy1 ! y1; : : : ; Lym ! ym; Lp! (y1 ^ � � � ^ ym); Lp! p; Lp _ :Ggwhere G = F (Ly1; : : : ; Lym; z1; : : : ; zl) is the formula obtained from F if all our-renes of the atom yi are replaed by Lyi, for all 1 � i � m.We notie that A[AL is onsistent, hene A has only onsistent stable expansions.It is easy to verify that the set �0 = AL is A-full, and that the orresponding stableexpansion E0 of A satis�es E0 = E(fp; y1; : : : ; ymg), hene FA(E0) � fp; y1; : : : ; ymg.Furthermore, it is not hard to see that E0 is the only stable expansion E of Asuh that p 2 E, sine the latter implies �A(E) = �0, hene E = E0.We laim that E0 is not moderately grounded i� � is not valid.43



Assume that � is not valid. Hene, there exists a truth assignment � to y1; : : : ; ymsuh that 9z1 � � � 9zlF� is ontraditory, i.e. :F� is a tautology.De�ne S = E(fyi : �(yi) = true ; 1 � i � ng). Note that :Lp 2 S, and thatLyi 2 S if �(yi) = true and that :Lyi 2 S if �(yi) = false, for 1 � i � m, whihentails that :G 2 S. It is thus easy to see that A � S holds. Sine S � E0, it followsthat E0 is not moderately grounded, and the if diretion is shown.Now assume E0 is not moderately grounded. By Theorem 4.3, we know that thereexists � � A�L suh that � is full for A0 = A[f' : L' 2 �g and E 0 = SEA0(�) � E0.This entails p =2 E 0, and hene :Lp 2 E 0. Let the truth assignment � to y1; : : : ; ymbe de�ned by �(yi) = ( true if Lyi 2 �false if :Lyi 2 � ; for 1 � i � m:Consequently, ?_:F� 2 FA0(E 0) holds. Sine by Theorem 2.8 we have FA(E0) j=FA0(E 0), it follows fp; y1; : : : ; ymg j= :F�. Sine in F� only zi variables our, bytrivial interpolation properties this holds i� j= :F� holds, i.e. :F� is a tautology.Consequently, 9z1 � � � 9zlF� is ontraditory, whih implies that � is not valid. Henethe only if diretion holds, and the laim is proved.Sine A and �0 are learly onstrutible in polynomial time, the theorem follows.2 With this result, we an haraterize the omplexity of the reasoning tasks formoderately grounded expansions as follows.Theorem 4.5 Let A be a set of premises and let ' 2 LL. Deiding whether ' oursin some moderately grounded expansions of A is �P3 -omplete. �P3 -hardness holdseven if ' 2 L and every moderately grounded expansion of A is onsistent.Proof. A guess � � A�L on the kernel of a moderately grounded expansion Eof A an be veri�ed in polynomial time with a �P2 orale. Indeed, deiding whether� is the kernel of a stable expansion of A is possible with one all to a �P2 orale(f. Proposition 2.1), and by Theorem 4.4, deiding whether the orresponding stableexpansion E is moderately grounded is possible with one all to a �P2 orale. On asuessful guess, deiding whether ' 2 E holds is possible with another all to a �P2orale (f. Corollary 2.4). It follows from this that brave reasoning with moderatelygrounded expansions is in �P3 .The proof of �P3 -hardness is an extension of the onstrution in the proof ofTheorem 4.4, whih is analogously obtained as the one in the proof of Theorem 3.4.Given a QBF � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F , we onstrut a premise set Aas follows.A = fx1 $ Lx1; : : : ; xn $ Lxng [ fLy1 ! y1; : : : ; Lym ! ymg [fLp! (y1 ^ � � � ^ ym); Lp! p; Lp _ :Ggwhere G = F (x1; : : : ; xn; Ly1; : : : ; Lym; z1; : : : ; zl) is the formula obtained from F ifall ourrenes of the atom yi are replaed by Lyi, for all 1 � i � m.Notie that A has only onsistent stable expansions, as A [ AL is onsistent.For every truth assignment � to x1; : : : ; xn, the set44



�� = fLxi : �(xi) = true; 1 � i � ng [ f:Lxi : �(xi) = false; 1 � i � ng [fLp; Ly1; : : : ; Lymgis A-full, and if E� = SEA(��), then xi 2 E� i� �(xi) = true and :xi 2 E� i��(xi) = false. Therefore, E� 6� E�0 , E�0 6� E� i� � 6= � 0.It holds that if p 2 E for some stable expansion E of A, then E = E� for some�. Hene p belongs to some moderately grounded expansion of A i� some E� ismoderately grounded; sine E� is moderately grounded i� 8y1 � � � 8ym9z1 � � � zlF� isvalid, p belongs to some moderately grounded expansion of A i� � is valid. Sine A,' = p are onstrutible in polynomial time, the result follows. 2Using this result, we an easily derive that even heking for the existene ofmoderately grounded expansions is at the third level of the polynomial hierarhy.Theorem 4.6 Deiding whether a premise set A has a moderately grounded expan-sion is �P3 -omplete. �P3 -hardness holds even if every moderately grounded expansionof A is onsistent.Proof. Membership of this problem in �P3 holds sine a guess � � A�L on thekernel of a moderately grounded expansion of A an be veri�ed in polynomial timewith a �P2 orale (see proof of Theorem 4.5 for details).Hardness for �P3 is shown by a slight extension of the onstrution in the proofof Theorem 4.5. Reall that we onstruted there a premise set A suh that ev-ery moderately grounded expansion of A is onsistent, and a formula ', whih isthe propositional atom p, suh that deiding whether ' ours in any moderatelygrounded expansion of A is �P3 -hard.Let q be a propositional letter not ourring inA and de�ne A0 = A[fLp! q; Lqg.It an be easily seen that A0[A0L is onsistent, hene A0 has only onsistent stableexpansions. Every stable expansion E of A0 must ontain Lq, hene q and thus alsoLp, sine Lp! q is the only formula in A0 that allows to derive q.Hene, we obtain that the only A0-full sets are the sets �0� = �� [ fLqg for eahtruth assignment � to the xi variables, with orresponding stable expansionsE 0� = E(fxi : �(xi) = true; 1 � i � ng [ f:xi : �(xi) = false; 1 � i � ng [fy1; : : : ; ym; p; qg)of A0, whih orrespond one-to-one to the stable expansionsE� = E(fxi : �(xi) = true; 1 � i � ng [ f:xi : �(xi) = false; 1 � i � ng [fy1; : : : ; ym; pg)of A.By use of the interpolation theorem, it follows that there exists a stable set S � E�suh that S � A i� there exists a stable set S 0 � E 0� suh that S 0 � A0, for all�. Hene, E� is moderately grounded for A i� E 0� is moderately grounded for A0.Sine deiding whether some E� is moderately grounded for A is �P3 -hard (whih is45



the ase i� p ours in some moderately grounded expansion of A), it follows thatdeiding whether A0 has any moderately grounded expansion is �P3 -hard. Sine everymoderately grounded expansion of A0 is onsistent, this holds under the assertedrestrition; the theorem follows. 2Theorem 4.7 Let A be a set of premises and let ' 2 LL. Deiding whether ' oursin all moderately grounded expansions of A is �P3 -omplete. This holds even if ' 2 Land every moderately grounded expansion of A is onsistent.Proof. A guess � � A�L on the kernel of a moderately grounded expansion E ofA an be veri�ed in polynomial time with a �P2 orale. On a suessful guess, it anbe veri�ed in polynomial time with a NP orale whether ' =2 E. Hene, autiousreasoning with moderately grounded expansions is learly in �P3 .For the hardness part, note that? ours in all moderately grounded expansions ofA i� A has no onsistent moderately grounded expansion. By Theorem 4.6, deidingwhether A has a onsistent moderately grounded expansion is �P3 -hard, even if everymoderately grounded expansion of the premise set is onsistent. Thus �P3 -hardnessof the problem under the asserted restrition follows. 25 Normal formAn interesting issue is the omplexity of autoepistemi reasoning in the ase wherepremise sets are in some normalized form. It is pointed out in [11, Proposition 3.9℄that eah set T � LL has a K45 equivalent set in whih eah sentene is of the formL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !where all 'i;  j and ! are objetive formulae, and all disjunts exept ! may beabsent; there exists suh a �nite set if T is �nite. Atually, formulae where n � 1suÆe for this purpose. We refer in the sequel to premise sets in the more generalform as normalized premise sets and to those in the more strit format (n � 1) asK-normal premise sets. All lower omplexity bounds derived for normal form in thissetion arry over to K-normal form.The onsidered normal form is more restrited than Moore's normal form [20, 16℄,aording to whih eah ' 2 LL an be represented by an equivalent formula �1 ^� � � ^ �k, where�i = L'i;1 _ � � � _ L'i;mi _ :L i;1 _ � � � _ :L i;ni _ !i;and !i 2 L for all 1 � i � k.In partiular, the onsidered normal form does not allow nestings of L operators,whih entails that the orresponding language onstitutes a rather small fragmentof the language LL. However, in the ontext of onsistent stable sets and stableexpansions, studies of autoepistemi logi an be simpli�ed (without loss of generality)by restrition to premise sets from this fragment; replaing an arbitrary premise set Awith a normalized premise set A0 equivalent to A with respet to stable sets and stableexpansions may result in a large (exponential) inrease in the size of the premise set(f. [16, Proposition 3.5,4.4℄ and pp. 601,602 ibid).46



It turns out that under the onsidered format, reasoning with moderately groundedexpansions is most probably easier than in the general ase and not harder than instandard AEL. This is in ontrast to standard AEL expansions and parsimoniousstable expansions, for whih reasoning from normalized premise sets has the sameomplexity as in the general ase.Let us �rst onsider standard AEL expansions. The following theorem strengthensProposition 2.5.Theorem 5.1 Let A be a premise set in normalized form. Then, (i) deiding whetherA has any stable expansion is �P2 -omplete; (ii) deiding whether ' 2 LL ours insome stable expansion of A is �P2 -omplete; and (iii) deiding whether ' 2 LL oursin all stable expansions of A is �P2 -omplete. �P2 -hardness of (i) and (ii) and �P2 -hardness of (iii) hold even if A is in K-normal form and every stable expansion of Ais onsistent.Proof. The membership parts are obvious by Proposition 2.5.The hardness parts are shown by suitable transformations of deiding whetherfor a QBF � = 9y1 � � � 9ym8z1 � � � 8zlF it holds that � 2 QBF2;9 resp. � =2 QBF2;9.Construt the following normalized set of premises:A = f:Ly1 _ y1; Ly1 _ :y1; : : : ;:Lym _ ym; Lym _ :ym; LF _ ?gNote that A [ AL is onsistent, hene A has only onsistent stable expansions. Nowonsider the three problems of deiding whether(a) A has a stable expansion,(b) > ours in a stable expansion of A,() ? ours in all stable expansions of A.Clearly, (a) and (b) are equivalent problems, and sine A has only onsistent stableexpansions, () is a omplementary problem to (a). It is easy to see that the premiseset A0 = fLy1 $ y1; : : : ; Lym $ ym; LFgis logially equivalent to A. In [9, Proof of Theorem 4.1℄ it is shown that A0 has astable expansion i� � is valid. It follows that (a) and (b) are �P2 -hard and that () is�P2 -hard. Sine A is in K-normal form, the result follows. 2Next we onsider parsimonious stable expansions, for whih normal form of prem-ise sets also does not a�et the omplexity of reasoning.Theorem 5.2 Let A be a premise set in normal form. Then, (i) deiding whether Ahas any parsimonious stable expansion is �P2 -omplete; (ii) deiding whether ' 2 LLours in some parsimonious stable expansion of A is �P3 -omplete; and (iii) deidingwhether ' 2 LL ours in all parsimonious stable expansions of A is �P3 -omplete.�P2 -hardness of (i), �P3 -hardness and (ii), and �P3 -hardness of (iii) hold even if A isin K-normal form and every parsimonious stable expansion of A is onsistent.
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Proof. �P2 -ompleteness of (i) follows immediately from arguments in the proofof Proposition 3.2 and Theorem 5.1. For (ii) and (iii), we observe that eah formulain the premise set A onstruted in the proof of Theorem 3.4 is equivalent to asmall set of formulae in K-normal form. Eah formula Lxi $ xi is equivalent tof:Lxi _ xi; Lxi _ :xig, Lyi ! yi to f:Lyi _ yig, L:y0i ! :y0i to f:L:y0i _ :y0ig, andthe formula L(Vmi=1(yi $ y0i) ! :F ) to fL(Vmi=1(yi $ y0i) ! :F ) _ ?g. All otherformulae in A are objetive and thus already in K-normal form. Consequently, A anbe replaed by an equivalent premise set in K-normal form in polynomial time. Thusby proofs analogous to those of Theorems 3.4,3.5, the theorems follows. 2Now let us turn to moderately grounded expansions. Normalized premise setslower the omplexity of reasoning by one level of the polynomial hierarhy, and loatethe problems at the seond level. More preisely, the problems are omplete for thesame omplexity lasses as the respetive problems under standard AEL expansions.We start with the following lemma.Lemma 5.3 Given a set of premises A, deiding whether there exists a onsistentstable set S suh that S � A is in NP.Proof. From Lemma 4.2 it is immediate that we may require without loss ofgenerality that S is a onsistent stable expansion of A0 = A [ f' : L' 2 �g, where� = S \ A�L is the kernel of S. Now proeed as follows. Guess � � A�L and truthassignments �0; �1; : : : ; �m to the atoms in A, where m = jALj. The guess is valid ifA0 [ � is satis�ed by �0 and A0 [ � [ f:'ig is satis�ed by �i for 1 � i � n, wheref'1; : : : ; 'ng = f' : :L' 2 �g. This holds beause in this ase � is A0-full and theorresponding stable expansion is onsistent. The spae needed to represent the guess� and �0; : : : ; �m is learly polynomial in the input size, and the guess an be veri�edin polynomial time. Thus the existene of a suitable S an be deided with an NPalgorithm, and the lemma follows. 2Lemma 5.4 Let A be a premise set in normal form, and let � be the kernel of astable expansion E of A. Deiding whether E is moderately grounded is in �P2 .Proof. Sine A is normalized, eah formula in A is of typeL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !:Denote by 
 the set of the propositional parts ! of the formulae in A. It is not hardto see that FA(E) is logially equivalent to 
 \ E.We onstrut a premise set A00 from A and � as follows:A00 = A [ f:L' : :L' 2 �g [ f:L! : ! 2 
� Eg [ f:L!1 _ � � � _ :L!k _ ?g;where fL!1; : : : ; L!kg = fL! : ! 2 
 \ Eg. For every ! 2 
, deiding whether! 2 
 � E or ! 2 
 \ E is by Proposition 2.3 possible in polynomial time with anNP orale. Consequently, A00 an be onstruted in polynomial time with an NPorale.We laim that there exists a onsistent stable set S suh that S � A00 i� E is notmoderately grounded.Assume E is not moderately grounded. That is, there exists a stable set S � Asuh that S � E. We notie that S is onsistent. Consider :L 2 f:L' : :L' 248



�g [ f:L! : ! 2 
�Eg. Suh a :L exists only if E is onsistent, and in this aseit follows  =2 E. Sine S � E and  2 L, it follows that  =2 S and hene :L 2 S.Finally, onsider the formula � = :L!1_� � �_:L!k_?. We show that � 2 S holds.Assume � =2 S. Sine � is a disjuntion of negated modal atoms :L!i and ?, itfollows that L!i 2 S, for all 1 � i � k. This implies f!1; : : : ; !kg = 
\E � S. Sine
\E is logially equivalent to FA(E), it follows from Lemma 2.7 that P (E) � P (S),i.e. E � S. However, this is in ontradition to E 6� S, whih is implied by theassertion that S � E. Consequently, � 2 S must hold. It follows S � A00. Thus theif diretion is proved.Conversely, assume there exists a onsistent stable set S � A00. We may byLemma 4.2 assume that S is a stable expansion E 0 of A0 = A00 [ f' : L' 2 �g where� = E 0\A00�L is the kernel of E 0. We observe that A00L = AL[fL! : ! 2 
g and thatthe set f' : L' 2 �g ontains only objetive formulae. Furthermore, for eah ! 2 
,if ! 2 E 0, then L! 2 E 0 and hene L! 2 � holds. It is thus not hard to see from thestruture of A0 that FA0(E 0) is equivalent to the set G = f' : L' 2 �g. Now onsiderL' 2 �. If L' 2 AL, then L' 2 � and hene L' 2 E, for otherwise L';:L' 2 E 0would hold, ontraditing the onsisteny of E 0; if L' 2 fL! : ! 2 
g, we inferL' 2 E by an analogous argument. Consequently, for eah L' 2 �, it holds thatL' 2 E, and thus ' 2 E. It follows that G � E. Thus from Lemma 2.7, it followsthat P (E 0) � P (E), i.e. E 0 � E. On the other hand, E � E 0 does not hold. Indeed,sine :L!1 _ � � � _ :L!k _ ? 2 E 0 and E 0 is onsistent, it follows that :L!i 2 E 0for some i. This implies that !i =2 E 0. However, !i 2 E holds from the onstrutionof A00. Sine !i is an objetive formula, it follows P (E) 6� P (E 0), i.e. E 6� E 0. Thuswe have that E 0 � E, E 6� E 0, i.e. E 0 � E. Sine E 0 � A, it follows that E is notmoderately grounded. Thus the only if diretion holds, and the laim is proved.By Lemma 5.3, deiding whether there exists for A00 a onsistent stable set S suhthat S � A00 is possible with one all to an NP orale. Thus given A and �, deidingwhether E is moderately grounded is possible in polynomial time with an NP orale,and the lemma follows. 2We thus obtain the following.Theorem 5.5 Let A be a premise set in normal form. Then, (i) deiding whether Ahas a moderately grounded expansion is �P2 -omplete; (ii) deiding whether ' 2 LLours in some stable expansion of A is �P2 -omplete; and (iii) deiding whether ' 2LL ours in all stable expansions of A is �P2 -omplete. �P2 -hardness of (i); (ii) and�P2 -hardness of (iii) hold even if A is in K-normal form and every stable expansionof A is onsistent.Proof. The key for all membership proofs is that a guess � � A�L on the kernel ofa moderately grounded expansion E of A an be veri�ed in polynomial time with anNP orale. This holds sine deiding whether � is A-full is in �P2 (Proposition 2.1)and deiding whether the stable expansion orresponding to � is moderately groundedis in �P2 (Lemma 5.4). Consequently, (i) is learly in �P2 .On a suessful guess �, deiding whether ' 2 E is in �P2 (Corollary 2.4). Conse-quently, (ii) is in �P2 . Likewise deiding whether ' =2 E is in �P2 . This implies thatdeiding whether ' does not our in some moderately grounded expansion of A isin �P2 . It follows from this that the omplementary problem, i.e. (iii), is in �P2 .The hardness parts are shown by proving a property of the premise set49



A = f:Ly1 _ y1; Ly1 _ :y1; : : : ;:Lym _ ym; Lym _ :ym; LF _ ?gin the proof of Theorem 5.1. We show that eah stable expansion E of A is moderatelygrounded. Hene, we may replae "stable expansion" in (a)-() in the proof of The-orem 5.1 equivalently with "moderately grounded expansion", and we immediatelyobtain the asserted hardness results.Assume that E is not moderately grounded. Then, by Theorem 4.3, there exists� � A�L suh that � is full for A0 = A [ f' : L' 2 �g and E 0 � E where �is the kernel of the stable expansion E 0 of A0. Let � = �A(E). Clearly, LF 2 �and LF 2 �. Sine A has only onsistent stable expansions, E;E 0 are onsistent.Consequently, Lyi 2 E i� yi 2 E and :Lyi 2 E i� :yi 2 E holds, for all 1 � i � m.Similarly, Lyi 2 E 0 i� yi 2 E 0 and :Lyi 2 E 0 i� :yi 2 E 0 holds, for all 1 � i � m.Sine E 0 � E implies P (E 0) � P (E), it follows � = �. Consequently, A[� j= A0 [�and A0[� j= A[�, and hene FA(E) � FA0(E 0). Thus by Lemma 2.7 P (E) = P (E 0),whih means E 0 6� E, ontradition. Consequently, E is moderately grounded. 26 Disussion and ConlusionThe omplexity results in the previous setions show that reasoning with parsimoniousstable expansions is most likely muh harder than reasoning with all stable expansions,whih is at the seond level of the polynomial hierarhy PH. The same holds forreasoning with moderately grounded expansions. As a onsequene, brave reasoningin these strengthened versions of standard AEL annot be polynomially transformedinto brave or autious reasoning in standard AEL, unless �P3 = �P2 or �P3 = �P2 ,whih is onsidered very unlikely. For autious reasoning, we have an analogous result.In pratial terms, this means that even if we have arbitrarily many orale allsfor brave or autious reasoning in standard AEL for free, it is unlikely that we anompute the answer for brave reasoning in the strengthened versions in polynomialtime. The same holds for autious reasoning. Notie, however, that if ' is an objetiveformula, autious reasoning with parsimonious stable expansions is no harder thanautious reasoning in standard AEL, and in fat is of the same diÆulty.The reason for the extreme intratability of parsimonious stable expansions andmoderately grounded expansions are the following three soures of omplexity:1. logial onsequene in lassial propositional logi (j=)2. the large (exponential) number of andidates E for stable expansions of A3. for eah stable expansion E of A, the (potentially exponential) number of an-didates for a stable expansion E 0 of A (stable set S � A) suh that E 0 � E(S � E),where \exponential" refers to the number of distint modal atoms in the premise setA. Soures 1 and 2 are already present in Moore's formulation of AEL, while soure 3is introdued by parsimony and moderate groundedness.To gain tratability, all three soures have to be eliminated. A straightforwardbut unsatisfatory way to ahieve this is to bound the length of the enoding of A bya onstant. More pratial restritions are yet to be found.50



Our results on reasoning from premise sets where the knowledge is representedin a normalized format show an interesting e�et of strengthening AEL on the om-plexity of autoepistemi reasoning. Under this format, brave and autious reasoningare at the seond level of the polynomial hierarhy if standard AEL expansions areonsidered. The problems are lifted to the third level if standard AEL expansionsare restrited to parsimonious stable expansions. However, the further restritionfrom parsimonious stable expansions to moderately grounded expansions loates thereasoning tasks at the seond level of the polynomial hierarhy again. Thus the om-plexity of autoepistemi reasoning from normalized premise sets is nonmonotoni inthese suessive strengthenings of AEL.Reasoning with parsimonious or moderately grounded autoepistemi expansionsis, to our best knowledge, the �rst problem in AI known to be �P3 -omplete. Atually,few pratial problems of this omplexity are known to date (see [7℄ for others).We note that more reently, higher-level omplexity results within PH have beenderived for other forms of non-lassial reasoning. (See also [1℄ for a omprehensivesurvey of the �eld.)Nonmonotoni Logis. Gottlob [9℄ has shown that several reasoning tasks in anumber of nonmonotoni propositional logis are omplete for some lasses of theseond level of PH. In partiular, he showed that besides autoepistemi logi, inReiter's default logi [26℄, in MDermott and Doyle's nonmonotoni logi [17, 18℄, andin Marek and Truszzy�nski's nonmonotoni logi N [15℄, whih all have a �xed pointsemantis, deiding whether a �xed point exists is �P2 -omplete, deiding whether aformula belongs to some �xed point is �P2 -omplete, and deiding whether a formulabelongs to all �xed points is �P2 -omplete. For default logi, similar results have beenindependently obtained by Stillman [30℄ and Papadimitriou and Sideri [25℄.Revision and Update of Propositional Theories. Several operators Æ for revisingor updating a knowledge base (theory) T with a sentene F have been proposedwhih handle arising inonsistenies appropriately. Nebel [22℄ and Eiter and Gottlob[6℄ have shown that for almost all update operators Æ, deiding whether the revisedknowledge base T Æ F implies a formula G is at the seond level of PH and for manyof them �P2 -omplete.Closed World Reasoning and Cirumsription. Eiter and Gottlob [5℄ have shownthat inferene with a propositional theory under various forms of the losed worldassumption and under irumsription is at the seond level of PH. In partiular,deiding whether the irumsription CIRC (F ) logially implies a formula G, i.e. Gis satis�ed in every minimal model of F , is shown to be �P2 -omplete.TMS. Rutenburg [27℄ has shown that for a ertain variant of truth maintenanesystem (TMS) [4℄ deiding whether there exists a \nogood" of ertain size is �P2 -omplete.Abdution. Eiter and Gottlob [7℄ analyzed the omplexity of logial abdution [3℄in the full propositional ontext. It appears that deiding whether an abdution prob-lem has a solution is �P2 -omplete. The same holds for heking a ertain propertyof hypotheses, i.e. abduible propositions. Moreover, we show that speial variantsof abdution are even �P3 -omplete.All these results suggest that nonmonotoni reasoning is more omplex than las-sial reasoning in the propositional ontext; for logi programs and the �rst-orderase, this is de�nitively known for many approahes, f. [26, 28, 2, 13℄.51
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