
International Journal of Computer Mathematics, 76(1/2):59–74, 2000.

Complexity Results for Some Eigenvector Problems

Thomas Eiter and Georg Gottlob

Information Systems Department, TU Vienna
Paniglgasse 16, A-1040 Wien, Austria

eiter@kr.tuwien.ac.at ,
gottlob@dbai.tuwien.ac.at

Fax: ++431-58801-18493

Abstract

We consider the computation of eigenvectorsx = (x1, . . . , xn) over the integers, where each
componentxi satisfies|xi| ≤ b for an integerb. We address various problems in this context,
and analyze their computational complexity. We find that different problems are complete for the
complexity classesNP, PNP

‖ , FNP//OptP[O(log n)], FPNP, PNP, andNPNP. Applying the results,

finding bounded solutions of a Diophantine equationv·xT = 0 is shown to be intractable.
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Computing Reviews Categories: F.2.1. [Analysis of Algorithms and Problem Complexity]: Numer-
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1 Introduction

Eigenvalues and eigenvectors have important applications in many areas, e.g. to problems in structural
analysis, quantum chemistry, power system analysis, stability analysis, VLSI design, and geophysics
[2]. The computation of eigenvalues and eigenvectors is thus an important problem, which has been
investigated intensively in the past; see e.g. [3, 5, 11] and references therein.

In this paper, we address the complexity of computing distinguished elements out of the in general
infinite set of eigenvectors for a given eigenvalueλ of a matrixM over the integersZ. In particular, we
consider the computation of eigenvectors within a box ofZ

n, i.e., the set of vectorsv = (v1, . . . , vn)
such that the absolute value|vi| of each componentvi is at mostb; we call such vectorsb-bounded.
Observe that in programming languages, the range of integers is usuallyb-bounded for some constant
b ≥ 1.

As with the computation of eigenvectors, there is particular interest in computing shortest eigenvectors,
i.e., a non-zero eigenvectorv such that its length‖v‖, which is understood in terms of theL2 (euclidean)
norm, is smallest. For this problem e.g. the algorithm of Håstad et al. [6] for finding integer relationships
between real vectors can be employed, which is closely related to the Lovasz-Lenstra-Lenstra (L3) algo-
rithm [9]. Given linearly independent vectorsv1, . . . ,vs ∈ Zn, andk ≥ 0, the algorithm in [6] finds a
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vectorx ∈ Zn in polynomial time such thatvi·xT = 0 for all i = 1, . . . , s or reports that no such vector
of length≤ 2k exists. The vector computed is not shortest, but usually shorter than a vector obtained by
simple algorithm such as a standard Gaussian elimination. Furthermore, the algorithm does not return a
b-bounded vector in general, and it is not clear whether the algorithm could be modified in this respect.

The main contributions of the present paper can be summarized as follows:

• We give a precise characterization of the computational complexity of different problems in the
context of computingb-bounded eigenvectors overZ. As we show, this problem is intractable in
general. In particular, we show that computing a shortestb-bounded eigenvector is complete for
FPNP and, ifb is a constant, complete for the classFNP//OptP[O(log n)] introduced by Chen and
Toda [1]. Few natural problems which are complete for this class are known so far.

• By means of this complexity characterization, appropriate algorithm schemes for the solution of
these problems emerge.

• We provide several different problems, which can be used to establish similar hardness results for
related problems.

To our knowledge, the complexity of these problems has not been considered before.

2 Preliminaries

Eigenvalues and Eigenvectors LetR be a ring with1. Recall thatλ ∈ R is an eigenvalue of ann× n
matrixM = (mi,j) overR if the equation

M ·xT = λxT

has nontrivial solutions, i.e., solutionsx 6= 0, wherex = (x1, . . . , xn), xT =

x1
...
xn

 is the transpose

of x, and0 = (0, . . . , 0) is the zero vector; all vectorsx that satisfy this equation are eigenvectors (for
the eigenvalueλ). It is well-known that for any eigenvectorsv1, . . . ,vr, all vectors

∑r
i=1 aivi, where

ai ∈ Z, are eigenvectors; ifR is a field, then the set of all eigenvectors forλ form a vector space, whose
dimension is the multiplicity ofλ as root of the characteristic polynomial ofM . In this paper, we restrtc
attention toR = Z.

Recall that theL2 norm of an integer vectorx, ‖x‖, is defined by‖x‖ =
(∑n

i=1 x
2
i

)1/2
. Vectorx ∈ V

is maximalin a set of vectorsV if and only if ‖y‖ ≤ ‖x‖, for everyy ∈ V . We say that vectorx is
boundedby a an integerb ≥ 0 (b-bounded), if |xi| ≤ b, for everyi = 1, . . . , n.

Computational Complexity We assume that the reader has some knowledge about computational
complexity. Excellent sources are [4, 7], which we refer to for background information.

Computational problems are encoded over the alphabetΣ = {0, 1}, for which a standard one-to-one
polynomial-time invertible pairing function〈x, y〉 is available. A language is a subset ofΣ∗, and a
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function is a partial mapf : Σ∗ → Σ∗. A multi-valued functiong is a mapg : Σ∗ → 2Σ∗ , whereg(x) is
considered undefined ifg(x) = ∅.

The complexity classes considered are defined using variants of standard (possibly nondeterministic)
Turing machines (TMs), and are either acceptors or transducers. On a given inputx, a branch of a
nondeterministic TMM may halt in an accepting or rejecting state. The language accepted byM is the
set of all strings which are accepted byM . A transducerT computes a stringy on inputx, if some branch
halts in an accepting state andy is on the output tape ofT . Every deterministic (resp. nondeterministic)
transducerT computes a functionf (resp., multi-valued functiong) such thatf(x) = y (resp.,y ∈ g(x))
iff M computesy on inputx, for everyx ∈ Σ∗.

P (resp.NP) is the class of decision problems (identified with languages) solved by a polynomial-
time deterministic TM (resp. nondeterministic TM), andFP is the functional version ofP. The class
PNP (resp.,NPNP) contains the decision problems solved in polynomial time by a deterministic (resp.,
nondeterministic) TM with an oracle forNP. The classFPNP is the functional version ofPNP. The
classPNP

‖ is the variant ofPNP in which all oracle calls must be run in parallel, i.e., no subseqeunt call
of the oracle is possible.

A NP metric Turing machine[8] is a polynomial-time bounded TMT , such that on inputx every
computation branch halts and outputs a binary number; the result ofT onx is the maximum over all these
numbers. The classOptP contains all (total) integer functionsf which are computable by an NP metric
TM. The classOptP[O(log n)] is the subclass ofOptP in which the outputf(x) hasO(|x|) many bits,
where|x| is the length ofx, i.e.,f(x) is polynomial in|x|. The classFNP//OptP[O(log n)], introduced
in [1], contains all (partial) multi-valued functionsg for which a polynomial-bounded nondeterministic
transducerT and a functionh ∈ OptP[O(log n)] exist such that for everyx, g(x) = T (〈x, h(x)〉).

A function f1 (resp., multi-valued functiong1) is (polynomial-time) reducible to a functionf2 (resp.,
multi-valued functiong2) if there is a pair of polynomial functionsh1, h2 such that, for everyx, h1(x) is
defined, andf1(x) = h2(x,w) wherew = f2(h1(x)) (resp.,h2(x,w) ∈ g1(x) for everyw ∈ g2(h1(x)),
and somew exists if f1(x) is defined.) A (single- or multi-valued) functionf is hard for a class of
(single- or multi-valued) functionsF, if every g ∈ F is reduciblef , and is complete forF, if it is hard
for F and belongs toF.

A computational problemΠ is modeled (or “solved”) by a functionf (resp., multivalued functiong) if
given any instanceI of Π encoded by a stringx, f(x) is defined (resp.,g(x) 6= ∅) iff I has some solution,
andf(x) is the solution (resp., eachw ∈ g(x) is a solution) for instanceI. Furthermore, a problem is
hard (resp. complete) for a class of functionsF, if it is modeled by some function which is hard (resp.
complete) forF. E.g., computing some optimal tour in the Traveling Salesman Problem, as well as the
cost of an optimal tour, is complete forFPNP.

We remark that a classFNP//OptP can be defined analogous toFNP//OptP[O(log n)] by replacing
“h ∈ OptP[O(log n)]” with “ h ∈ OptP” in the definition. It is easy to show that every (multi-valued)
functiong ∈ FNP//OptP has a refinement (single-valued) functionf ∈ FPNP, i.e., for everyx it holds
that g(x) is defined iff f(x) is defined andf(x) ∈ g(x). Thus, a problem (with possibly multiple
solutions for a given instance) is solvable inFNP//OptP iff it is solvable inFPNP. Even if problems in
FPNP that have multiple possible solutions (e.g., computing an optimal tour in the Traveling Salesman
Problem) may be more naturally modeled by functions inFNP//OptP, we use here the classFPNP,
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which is more widely known and reflects more appropriately the nature of deterministic algorithms used
in practice.

3 Problem Statements

We assume tacitly that vectors and matrices are over the integersZ. We consider the following problems:

Problem P1: Given ann × n matrixM , an integer eigenvalueλ of M , a real numberK, and a bound
b ≥ 1, does there exist ab-bounded non-zero eigenvectorx for λ such that‖x‖ ≤ K?1

This problem is the decision problem naturally associated with the problem of computing a shortestb-
bounded eigenvectorx. It is related to integer and quadratic programming problems (see [4]). We show
that P1 isNP-complete, and hardness holds even ifK =

√
nb, i.e., deciding whether anyb-bounded

eigenvector exists is NP-complete. Thus, the algorithm of Håstad et al. [6] can not be modified to find
a b-bounded nonzero integer relationship among vectorsv1, . . . ,vs in polynomial time. As shown in
Section 5, this holds even ifs = 1, i.e., for a single vector.

Problem P2: Given ann × n matrixM , an integer eigenvalueλ of M , and an integerb, compute a
shortest eigenvectorx among theb-bounded eigenvectors forλ.

Intuitively, solving this problem requires computing the length‖x‖ of a shortestb-bounded eigenvector,
and generating an eigenvector of that norm. This problem is complete forFPNP in general, and for
FNP//OptP[O(log n)] if b is fixed to any constantc ≥ 1.

Problem P3: Given ann × n matrixM , an integer eigenvalueλ of M , and integersb andz, decide if
there is any shortest eigenvectorx among theb-bounded eigenvectors forλ with x1 = z, i.e., the
first component ofx is z.

This problem isPNP-complete in general, andPNP
‖ -complete ifb is fixed toc ≥ 1.

Problem P4: Given ann×nmatrixM and an integer eigenvalueλ ofM , compute the lexicographically
first among the shortestb-bounded eigenvectors forλ.

Selection of the first vector under lexicographical ordering or a similar ordering is a natural choice.
This problem isFPNP-complete, reardless of fixingb to a constantc ≥ 1 or not.

Problem P5: Given ann × n matrixM , an integer eigenvalueλ of M , a subsetI of the components,
and integersb, z, does there exist ab-bounded�-minimal nonzero eigenvectorx for λ such that
x1 = z, wherex � y if and only if x andy coincide on the components inI and‖x‖ ≤ ‖y‖.

1Note that P1-P5 are trivial ifλ is irrational, and can be easily reduced to the integer case if it is a rational number.
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This problem subsumes P3 as a special case ifI = ∅. Here, the comparability between different
vectorsx andy is restricted to vectors which coincide on a given partI of the components. As we
will see, however, this restriction on comparability does not decrease the complexity; on the contrary, it
increases the complexity fromPNP to NPNP.

Notice that in all problems P1–P5, correct problem instances can be recognized in polynomial time,
since deciding whetherλ is an eigenvalue ofM can be done in polynomial time (e.g. using linear pro-
gramming or Gaussian elimination).

4 Complexity Results

For determining the complexity of problems P1–P5, we refer to variants of problems involving the clas-
sical satisfiability problem SAT. Letϕ = {C1, . . . , Cm} be a set of propositional clausesCi on variables
X. A truth assignmentτ toX satisfiesϕ, if each clauseC ∈ ϕ contains at least one literal (i.e., variable
of negated variable) with valuetrue. An assignmentτ is not-all-equal satisfying(nae-satisfying) for ϕ, if
each clause inϕ contains two literals that have different value according toτ ; clearly, each nae-satisfying
assignment forϕ satisfiesϕ in the standard sense. Moreover, ifσ is an nae-satisfying assignment, then
also the complementary assignmentσ, in which each variable has opposite truth value, is nae-satisfying.

Letϕ = {C1, . . . , Cm} be an instance of 3SAT, i.e., a set of propositional clausesCi = αi,1∨αi,2∨αi,3,
i = 1, . . . ,m on variablesX = {x1, . . . , xn}. Then denote byϕ′ the set of the following clauses:

• xj ∨ x∗j ∨ zj andxj ∨ x∗j ∨ ¬zj , for eachj = 1 . . . , n,

• α∗i,1 ∨ α∗i,2 ∨ wi andα∗3,i ∨ x0 ∨ ¬wi, for eachi = 1, . . . ,m

wherex0, all zj , all x∗j , and allwi are fresh variables andα∗i,j = x`, if αi,j = x`,andα∗i,j = x∗` if
αi,j = ¬x`.

The following is easily verified. Letτ be an nae-satisfying assignment forϕ′. If τ(x0) = false, then
τ , restricted toX, satisfiesϕ; if τ(x0) = true, then the complementary assignmentτ , restricted to
X, satisfiesϕ. On the other hand, if an assignmentσ satisfiesϕ, thenσ is extendible to at least one
nae-satisfying assignment ofϕ′ in whichx0 = false. Thus, we obtain the following.

Lemma 4.1 Letϕ be any 3SAT instance on variablesX. Then, the nae-satisfying assignmentsτ of ϕ′

such thatτ(x0) = false, correspond on the variablesX 1-1 to the satisfying assignments ofϕ.

As a consequence, deciding whether a SAT instance is satisfiable under nae-satisfaction (NAESAT) is
NP-hard [4], even if all clauses have size 3 (NAE3SAT).

We now turn to Problem P1 from above, and obtain our first result.

Theorem 4.2 Problem P1 isNP-complete. Hardness holds ifb is fixed to an arbitrary constantc ≥ 1.

Proof. Membership in NP is clear, since a guess for a suitable eigenvectorx has polynomially many
bits in the size of the input and can be verified in polynomial time.
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We show hardness by a reduction from NAE3SAT. Letϕ = {C1, . . . , Cm} be a 3CNF on variables
X = {x1, . . . , xn}.

We will describe the matrixM in terms of the equations emerging for each componentxi from the
equationM · xT = λxT; the eigenvalueλ is 1.2 That is, we state for eachxi the equation∑

j

mi,j · xj = xi

Unless stated otherwise, the equation is1 ·xi = xi (i.e., thei-th row of M has 1 at columni and 0
everywhere else).

We constructM as ak × k matrix, k = 3n + m, as follows. The componentsx1, . . . , xn of an
eigenvectorx = (x1, . . . , xk) are supposed to correspond to the variablesx1, . . . , xn of ϕ, and the
component values to (partial) truth assignments. For eachi = 1, . . . , n, we have the equation

c·xn+i = xi; (1)

anyc-bounded solution requires that(xi, xn+i) is one of(0, 0), (c, 1), (−c,−1). Intuitively, this corre-
sponds to a partial truth assignment, where(c, 1) means that variablexi of ϕ is set true,(−c,−1) thatxi
is set false, and(0, 0) thatxi is undefined.

For each clauseCi = x
si,1
i1
∨ xsi,2i2

∨ xsi,3i3
in ϕ, wheresi,j ∈ {0, 1} (as usualx0 is the literalx andx1

the literal¬x), we have the equation

(−1)si,1 ·xi1 + (−1)si,2 ·xi2 + (−1)si,3 ·xi3 = x3n+i (2)

The value ofx3n+i in anyc-bounded eigenvectorx is either 0 or±c. If all literals inCi have assigned a
truth value, i.e.,xij = ±c, thenx3n+i must have value±c; this is only possible if two terms(−1)si,jxij
add up to 0, i.e., the corresponding literalsLj have opposite value under the truth assignment represented
by x.

Now we add further equations, for alli = 1, . . . , n:

xn+1 + xn+i − x2n+i = x2n+i (3)

They have the following effect. Ifxn+1 = 0, i.e.,x1 is not assigned a value, then alsoxn+i = 0 must
hold in anyc-bounded eigenvectorx, which impliesx = 0. On the other hand, ifxn+1 = ±1, then also
xn+i must have a value from−1, 1, otherwise Equation (3) can not hold.

It should be clear from above how the matrixM is completed. Notice thatλ = 1 is an eigenvalue of
M (e.g., setxi = c, for all i = 1, . . . , n, and choose the other components appropriately).

It holds that in any non-zeroc-bounded eigenvectorx for M andλ, everyxi, i = 1, . . . , n must have
value±c. Furthermore, the nae-satisfying assignments ofϕ correspond 1-1 to the non-zero eigenvectors.
Thus, forK =

√
(3n+m)c2 the maximum possible length of ac-bounded vector, it holds thatM , λ,

c, andK is a Yes-instance of P1 if and only ifϕ is nae-satisfiable. This proves the result.

2Here and in the other proofs, we takeλ = 1; it is easy to see that1 is indeed always an eigenvalue ofM .
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Theorem 4.3 Problem P2, i.e., computing a shortest non-zerob-bounded eigenvector, is complete for
FNP//OptP[O(log n)], if b is fixed toc ≥ 1.

Proof. The problem is inFNP//OptP[O(log n)]: The length` of a shortestc-bounded eigenvector is
at most

√
nc, which means that it hasO(log n) bits. Moreover, it can be computed by a NP metric TM,

and thus computing̀ is in OptP[O(log n)]. An eigenvector of length̀ can be guessed and verified in
polynomial time; hence, computing a shortest eigenvector is inFNP//OptP[O(log n)].

For the hardness part, we employ a reduction from the following problem. Given an NAE3SAT instance
ϕ on variablesX, a subsetX ′ ⊆ X and a variablexi ∈ X ′, call a nae-satisfying assignmentσ of ϕ
xi;X ′-minimal, if the set{xj ∈ X ′ | σ(xj) = σ(xi)} is minimal over all nae-satisfying assignmentsσ
with respect to inclusion.

Lemma 4.4 Given an NAE3SAT instanceϕ on variablesX, a subsetX ′, and a variablexi ∈ X ′,
computing axi;X ′-minimal nae-satisfying assignment ofϕ is FNP//OptP[O(log n)]-hard.

Proof. This can be shown by a reduction from the following problem, which was provedFNP//log-
complete in [1] (X-MAXIMAL MODEL): Given a CNF ϕ on variablesX and a subsetX ′ ⊆ X,
compute an assignmentσ to the variables inX ′ such thatCσ is satisfiable and for no assignmentτ to
X ′ such thatσ < τ under usual truth ordering,Cτ is satisfiable.

Without loss of generality,ϕ is only satisfiable if a distinguished variablexi ∈ X ′ is set to true. Using
fresh variables,ϕ can be rewritten by splitting clauses in the standard way (replaceC = C1 ∨ C2 by
C1 ∨ y and¬y ∨ C2) to a 3CNFϕ∗ such that theX ′-maximal models ofϕ andϕ∗ coincide. We then
apply toϕ∗ the transformation from 3SAT to NAE3SAT outlined at the beginning of Section 4, and
obtain a NAE3SAT instanceϕ′. By Lemma 4.1 and the observations preceding it, eachxi;X ′-minimal
nae-satisfying assignmentτ of ϕ∗ corresponds to aX ′-maximal (partial) modelσ of ϕ, given byσ(xj) ≡
τ(xi) 6= τ(xj), for all xj ∈ X ′, and conversely for everyσ at least one suchτ exists. Sinceϕ∗ andσ are
constructible in polynomial time fromϕ,X ′, xi andϕ,X ′, xi, τ , respectively, the result follows.

The proof is an extension to the construction in the proof of Theorem 4.2. Letϕ, X ′ = {x1, . . . , xk},
andxi = x1 be an instance of the problem in Lemma 4.4. Suppose the equations (1)–(3) have already
been established forϕ. We introduce for each variablexj ∈ X \X ′ further componentszj for a vector,
j = k + 1, . . . , n, and set up the following equation:3

xn+1 − xn+j − zj = zj (4)

This equation is similar to Equation (3), which assigns in any non-zeroc-bounded eigenvectorx2n+j the
value±1, if xn+1 = xn+j , and the value 0 otherwise (i.e., ifxn+1 = −xn+j); Equation (4) does just the
opposite.

LetM andλ = 1 (b = c) be the resulting instance of P2. Then, similar as in proof of Theorem 4.2, the
non-zeroc-bounded eigenvectorsx of M correspond 1-1 to the nae-satisfying assignments. Each such

3Here and in the rest of the paper, for better readability we use component nameszi, yi etc which can be easily transformed
to namesx1, . . . , xn as stated in problems P1–P5.
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vectorx satisfies‖x‖2 = (m + n)c2 + n + n − k + 1 + eq(x), whereeq(x) = |{j | x1 = xj and
1 ≤ j ≤ k}| is the number of components amongx1, . . . , xk which coincide withx1.

Thus, a shortestc-bounded eigenvectorx of M corresponds to an nae-satisfying assignmentσ of ϕ
in which |{xj ∈ X | σ(x1) = σ(xj)}| is minimum. Clearly, every suchσ is anx1;X ′-minimal nae-
satisfying assignment forϕ.

The matrixM andλ = 1 can be constructed in polynomial time fromϕ, and from any shortest
c-bounded eigenvector ofM , the correspondingx1;X ′-minimal nae-satisfying assignmentσ is con-
structible in polynomial time; this proves hardness forFNP//OptP[O(log n)].

For an assignmentσ to Boolean variablesX, denote byσ[X ′] the restriction ofσ toX ′ ⊆ X. Recall
that a truth assignmentτ to an ordered set of variablesX ′ = {x1, . . . , xn} is lexicographically smaller
than a truth assignmentσ, denotedτ <lex σ, if τ(xi) = false for the least indexi such thatτ(xi) 6=
σ(xi).

Theorem 4.5 Problem P2, i.e., computing a shortest non-zerob-bounded eigenvector, isFPNP-complete.

Proof. The membership part follows from Theorem 4.11 below.

For the hardness part, we employ a reduction from the following problem. Given an NAE3SAT in-
stanceϕ on variablesX, X ′ ⊆ X, and a variablexi ∈ X, call any nae-satisfying assignmentσ of
X lexicographicxi;X ′-maximal, if the assignmentσ′ to X given byσ′(xi) ≡ σ(x1) = σ(xi), for
all xi ∈ X ′ = {x1, . . . , xk}, is lexicographic maximal over all suchσ′. Similar as in the proof of
Lemma 4.4, and using the result that computing the lexicographic maximal satisfying assignment of a
propositional CNFϕ is FPNP-complete [8], the following can be shown.

Lemma 4.6 Given an NAE3SAT instanceϕ on variablesX, a subsetX ′ ⊆ X, and a variablexi ∈ X ′,
computing a lexicographicxi;X ′-maximal nae-satisfying assignment ofϕ is FPNP-hard.

We reduce the problem in Lemma 4.6 to computing ab-bounded eigenvector by adapting the proof of
Theorem 4.3 as follows.

(a) Equation (4) is set up for allj = 1, . . . , n;

(b) for eachj = 1, . . . , k, whereX ′ = {x1, . . . , xk}, add the equation

2n−j+1xn+1 − 2n−j+1xn+j = wj . (5)

We then setb = 2n. The effect of these changes is the following. In any non-zero2n-bounded eigenvector
x, each componentxi must be set to±2n, andxn+i to ±1. The vectorsx correspond 1-1 to the nae-
satisfying assignments ofϕ. Moreover, the shortest eigenvectorsx correspond 1-1 to the lexicographic
x1;X ′-maximal nae-satisfying assignmentsσ of ϕ, and someσ is easily obtained from any suchx.

SinceM , λ = 1 andb = 2n are polynomial-time constructible fromϕ, X andx1, the results follows.
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Theorem 4.7 Problem P3 isPNP-complete.

Proof. The length̀ of a shortest non-zerob-bounded eigenvectorx can be computed in polynomial
time with a polynomial number of calls to an NP-oracle (query instances of P1), doing a binary search on
for K on [1,

√
nb]. Given`, deciding querying the NP oracle wehther ab-bounded nonzero eigenvector

x exists such thatx1 = z. Hence, the problem is inPNP.

The hardness part is established extending the reduction in the proof of Theorem 4.7: From the result
that deciding a given bit of the lexicographic maximal satisfying assignment of a propositional CNF
is PNP-complete [8], deciding whetherσ(xi) = σ(xj) in the (unique) lexicographicxi;X ′-maximal
nae-satisfying assignment of an NAE3SAT instanceϕ for X ′ = X andxi, xj ∈ X is PNP-hard. The
conditionτ(xi) = τ(xj) is equivalent towj = 0, wherewj is from Equation 5. This proves the result.

Theorem 4.8 Problem P3 isPNP
‖ -complete, ifb is fixed toc ≥ 1.

Proof. The length` of a shortestc-bounded vector is at most
√
nc2, and can be easily determined

from the result of a polynomia number of parallel queries to an NP oracle whether` ≤ K whereK =√
1,
√

2, . . . ,
√
nc2. Further parallel queries to NP oracles can determine if somec-bounded eigenvector

of lengthK exists such thatx = z1. Given all queries results, problem P3 is easily answered. Hence, it
is in PNP

‖ .

For the hardness part, we use the following lemma:

Lemma 4.9 Given an NAE3SAT instanceϕ on variablesX, a subsetX ′ ⊆ X, and variablesxi ∈ X ′,
xj ∈ X \ X ′, deciding whether some nae-satisfying assignment ofϕ exist such that|{xj ∈ X ′ |
σ(xj) = σ(xi)}| is smallest (call such aσ xi;X ′-minimum) andσ(xi) = σ(xk) is PNP

‖ -complete. is
FNP//OptP[O(log n)]-hard.

Proof. This can be shown by a reduction from problem MAX-3SAT-ODD, which asks whether
max
σ
|{xi ∈ X | σ(xi) = true}|, whereσ ranges over the satisfying assignments for a given 3SAT

instanceϕ overX, is odd (see e.g. [10]). Using further variablesyi, whether|{xi ∈ X | σ(xi) = true}|
is odd can be expressed asyn, wherey1 ≡ x1 andyi ≡ ¬(yi−1 ≡ xi), written in clausal form. Then,
apply the reduction as in the proof of Lemma 4.4, and letxi be as there andxj beyn.

Construct for the problem in Lemma 4.9 the instance of P2 as in the proof of Theorem 4.3 for the
problem in Lemma 4.4 (wherexi = x1). Then, add for eachi = 1, . . . , k (recall thatX ′ = {x1, . . . , xk})
the equation

xn+1 + xn+i − wi = wi (6)

similar to Equation 3, wherewj is a new component, and drop forxj from Lemma 4.9 Equation (4).
These changes double the cost of components that have the same value asx1, and add an extra cost for
x1 = xj . It holds thatzj = 0 in some shortestc-bounded nonzero eigenvector iff an nae-satisfying
assignment as in Lemma 4.9 exists. This proves the result.

For the analysis of problems P3 and P4, the following lemma is helpful.
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Lemma 4.10 Given an NAE3SAT instanceϕ, computing the lexicographically first nae-satisfying as-
signment ofϕ, τ∗, is FPNP-hard. This holds even ifϕ is known to be nae-satisfiable.

Proof. Reduce the analogous problem for 3SAT, and using the transformation of a 3SAT instanceϕ to
a NAE3SAT instanceϕ′ described above Lemma 4.1. Then, order the variables arbitrarily but such that
the order starts withx0, x1, . . . , xn. By Lemma 4.1, the lexicographic first nae-satisfying assignment of
ϕ′ corresponds to the lexicographic first assignment ofϕ. As follows from [8], computing the latter, as
well as a given bit thereof, isFPNP-hard.

Theorem 4.11 Problem P4 isFPNP-complete. This holds even ifb is fixed toc ≥ 1.

Proof. As described in the proof of Theorem 4.7, computing the length` of a shortest non-zerob-
bounded eigenvectorx is in FPNP. Computing the lexicographically first eigenvectorx∗ of length` can
be done with a polynomial number of NP oracle calls, computingx∗1, x∗2 etc. in order; for each component
xi onlyO(log b) many values need be considered in a binary search on[−b, b], and deciding if a partial
vectorx1, . . . , xk can be completed to ab-bounded eigenvector having length` is in NP.

To show hardness, reuse the reduction from the proof of Theorem 4.3 and setX ′ = ∅. Then, the
shortest non-zeroc-bounded eigenvectors correspond to nae-satisfying assignments. In particular, the
lexicographic firstc-bounded eigenvector (in whichx0 = −c) corresponds to the lexicographically first
nae-satisfying assignment ofϕ (in whichx0 = false). By Lemma 4.10, this proves the result.

Corollary 4.12 Let c ≥ 1 be fixed. Given ann × n matrix M , an integer eigenvalueλ of M , and
integersi, z, deciding ifxi = z for the lexicographically first maximal eigenvectorx among those that
are c-bounded isPNP-complete.

Proof. Membership inPNP is immediate from Theorem 4.11. As follows from [8], deciding a given
bit of the lexicographically first satisfying truth assignment of a SAT instance isPNP-complete. Thus,
deciding a given bitτ∗(xi) of the truth assignmentτ∗ in Lemma 4.10 isPNP-hard, and the result follows
from the reduction in the proof of Theorem 4.11.

Problem P5 turns out to be the hardest among the problems that we consider here, and is complete
for NPNP. In the proof, we employ that checking the validity of certain quantified boolean formulas
(QBFs), based on the notion of nae-satisfaction, is as hard as for the standard notion of satisfaction.
An NAESAT instanceϕ on variablesX can be seen as a QBFΦ = ∃X.ϕ, whereϕ is viewed as a
conjunction of its clauses and the quantifier∃ ranges over all truth assignments toX. Φ is valid under
nae-satisfaction (briefly, nae-valid) ifϕ is a Yes-instance. Accordingly, a QBF∀Y ∃X.ϕ whereϕ is in
conjunctive normal form (CNF) is nae-valid if for every assignmentσ to Y , there is an assignmentτ to
X such that the combined assignmentσ ∪ τ nae-satisfiesϕ. The following lemma is used in the proof of
the next theorem.

Lemma 4.13 Given a QBFΦ = ∀Y ∃X.ϕ, whereϕ is in CNF, deciding whether it is nae-valid is co-
NPNP-complete, and hard even ifϕ is in 3CNF.
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Proof. Membership in co-NPNP is easy: A guess forτ such that no extension ofτ by σ does nae-
satisfyϕ can be checked with a call to an NP oracle (the check is in co-NP).

Hardness follows from a reduction of checking the validity of a QBF of the given form in the stan-
dard sense, which utilizes the reduction from 3SAT to NAE3SAT given by the transformation from
Lemma 4.1. I.e., construct forϕ the formulaϕ′, and consider the QBF

Ψ = ∀Y ∃X ∪X∗ ∪ {zj , x0, wi}.ϕ′.

This formula is nae-valid if and only ifΦ is valid in the standard sense.

Theorem 4.14 Problem P5 isNPNP-complete, for every fixedc ≥ 1.

Proof. The problem is inNPNP, as a guess for a�-minimal c-bounded nonzero eigenvectorx can be
verified with a call to a NP oracle (deciding whether somey � x with x 6= y exists is in NP).

Hardness is shown by using the following variant of the problem in Lemma 4.13. Suppose for each
assignmentσ to Y , some assignmentτ toX exists in whichτ(x1) = τ(x2) such thatσ ∪ τ nae-satisfies
ϕ; it is asked whether aτ exists such thatσ ∪ τ nae-satisfiesϕ andτ(x1) 6= τ(x2). This variant of the
problem is also co-NPNP-hard; indeed, before applying the reduction from 3SAT to NAE3SAT, replace
each clause inϕ by the clausesC ∨ x1 andC ∨ x2, wherex1 andx2 are fresh variables and split the
clauses using further fresh variables to 3CNF form.

We reduce this problem to the complement of P5. Let the input formula beΦ = ∀X2∃X1.ϕ. For the
formulaϕ, seen as an NAE3SAT instance onX1∪X2 = {x1, . . . , xn}, set up the equations (1)–(3) as in
the reduction described in the proof of Theorem 4.2. Furthermore, introduce for eachj 6= 2, 1 ≤ j ≤ n,
a new componentzj and set up the Equation (4) as forX ′ = X1 \ {x2} ∪X2, i.e.,

xn+1 − xn+j − zj = zj (7)

Then, thec-bounded nonzero eigenvectors correspond 1-1 to the nae-satisfying assignments ofϕ. By the
assertion onϕ, for each assignmentσ toX2, a corresponding eigenvectorv exists such thatv1 = v2 = c.
It holds that‖v‖2 = (m+n)c2+2n, andv2n+2 = 1; v is�-minimal, if and only if there is no assignment
τ ′ toX1 such thatτ(x1) 6= τ(x2) andσ, τ ′ satisfiesϕ. Thus, it follows thatΦ is a not a Yes-instance for
the problem described above, if and only if there exists some�-minimal nonzeroc-bounded eigenvector
v which satisfiesv2n+2 = 1. This proves the result.

5 Discussion and Conclusion

The results that we have derived in the previous section may be profitably used to derive similar complex-
ity results for related problems. As an example, we consider the problem of finding integer relationships
between numbers [6]. Given a real vectorv, find a vector of integersx such thatv·xT = 0. If v is an in-
teger vector, then the resulting Diophantine equation always has nonzero solutions. Finding ab-bounded
nonzerox which satisfies this equation is intractable, however.
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Theorem 5.1 Given an integer vectorv = (v1, . . . , vn) andb ≥ 0, deciding whether there is a nonzero
b-bounded vectorx ∈ Z such thatv·xT = 0 is NP-complete. Hardness holds forb fixed to anyc ≥ 1.

Proof. Obviously, a properx can be guessed an checked in polynomial time. For the hardness part,
we reduce problemP1 to this problem. RewriteM ·xT = λxT asM ′·xT = 0, whereM ′ = M −λ·I (I
is the identity matrix). Letm = max

i,j
|m′i,j | be the largest absolute value inM ′. DefineD = b·n·m+ 1,

and let the vectorv = (v1, . . . , vn) be

vj =
n∑
i=1

Di−1m′i,j

(thusv ·xT =
∑n

i=1D
i−1yixT, whereyi is thei-th row ofM ). Then, for everyb-bounded vectorx it

holds thatv ·xT = 0 iff M ′ ·xT = 0. Observe that eachDi, i ≤ n, hasO(i ·b ·n ·m) bits; thus,v is
constructible in polynomial time fromM ′, and thus fromM andλ. This proves the result.

By the same reduction, similar complexity results as for problems P2-P5 can be established for analo-
gous problems on a single Diophantine equationv·xT = 0.

In this paper, we have considered the computational difficulty of problems that arise in the context of
computing bounded integer eigenvectors for a given integer matrixM and eigenvalueλ.

As we have shown, computing some maximalb-bounded eigenvector is possible in polynomial time
with the help of an NP oracle. Thus, practically speaking, this problem is not much harder than solv-
ing SAT. On the other hand, the proof of Theorem 4.3 suggests that parallelizing the computation of a
maximalc-bounded eigenvector to NP problems is not evident; this follows from a similar property of
computing a satisfying truth assignment (resp., an nae-satisfying truth assignment) of a SAT instance.

Some problems remain for further investigation. Other norms apart fromL2 for maximal vectors might
be considered, as well as other domains such as the rationals, finite fields, or prime ideals ofZ. A further
issue is approximation of shortest eigenvectors. This is left for future research.
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