
The INFOMIX System for Advanced Integration of
Incomplete and Inconsistent Data∗

Nicola Leone
Dipartimento di Matematica

Università della Calabria
Rende, Italy

leone@mat.unical.it

Georg Gottlob
Inst. für Informationssysteme
Technische Universität Wien

Vienna, Austria

gottlob@dbai.tuwien.ac.at

Riccardo Rosati
Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Roma, Italy

rosati@dis.uniroma1.it

1. INTRODUCTION
The task of an information integration system is to com-

bine data residing at different sources, providing the user
with a unified view of them, called global schema. Users
formulate queries over the global schema, and the system
suitably queries the sources, providing an answer to the
user, who is not obliged to have any information about the
sources. Recent developments in IT such as the expansion
of the Internet and the World Wide Web, have made avail-
able to users a huge number of information sources, gen-
erally autonomous, heterogeneous and widely distributed:
as a consequence, information integration has emerged as a
crucial issue in many application domains, e.g., distributed
databases, cooperative information systems, data warehous-
ing, or on-demand computing. Recent estimates view infor-
mation integration to be a $10 Billion market by 2006 [14].

However, information integration is in general an ex-
tremely complex task: Indeed, “there is still a tremen-
dous amount of research, engineering and development work
needed to make the full information integration vision a re-
ality” [14]. Both state-of-the-art commercial software solu-
tions (e.g., [11]) and academic systems (see e.g. [10] for a
survey) fulfill only partially the ambitious goal of integrat-
ing information in complex application scenarios. Moreover,
comprehensive, formal methodologies and coherent tools for
designing information integration systems are still missing.

INFOMIX is a novel system which supports powerful in-
formation integration, utilizing advanced reasoning capabil-
ities. It implements recent results in database theory, which
have been extended and specialized within the INFOMIX
project [3, 4, 7, 5, 6, 8]. While INFOMIX is based on
solid foundations, it is a user-friendly system, endowed with
graphical user interfaces for the average database user and
administrator, respectively. INFOMIX is built in coopera-
tion with RODAN systems, a commercial DBMS developer.

The main features of the INFOMIX system are:

• A comprehensive information model, through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’05 Baltimore, Maryland USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

which the knowledge about the integration domain can be
declaratively specified. The possibility of defining expres-
sive integrity constraints (ICs) over the global schema, the
precise characterization of the relationship between global
schema and the local data sources, the formal definition of
the underlying semantics, as well as the use of a powerful
query language, allow for the specification of complex inte-
gration applications. Then, logic-based methods for answer-
ing user queries, which are sound and complete with respect
to the semantic of query answering, guarantee meaningful
data integration.

• Capability of dealing with data that may result
incomplete and/or inconsistent with respect to global
ICs. We point out that declarative solutions to the prob-
lem of query answering for incomplete and inconsistent data
(e.g., [2, 9]) have been recently proposed. Nonetheless, all
approaches did not produce so far effective and scalable sys-
tem implementations, mainly due to the high computational
complexity of the problem. In this respect, the INFOMIX
system is the first one that is capable of dealing with incom-
plete and inconsistent information in realistic applications.

• Advanced information integration algorithms [4],
reducing query answering to cautious reasoning on (head
cycle free) disjunctive datalog programs, allow to effectively
compute the query results precisely, by using the state-of-
the-art disjunctive datalog system DLV [13]. The formal
query semantics is captured also in presence of incomplete
and/or inconsistent data.

• Sophisticated optimization techniques [7, 5, 6]
guarantee the effectiveness of query evaluation in INFOMIX.
The novel optimization techniques, developed in INFOMIX,
“localize” the computation and limit the inefficient (coNP)
computation to a very small fragment of the input, ob-
taining fast query-answering, even in such a powerful data-
integration framework (see Section 4).

• A rich data acquisition and transformation
framework for accessing heterogeneous data in many for-
mats (including relational, XML and HTML data), support-
ing different wrapper types. By LiXto wrappers and tools [1,
8], powerful data extraction and preprocessing is possible.

Further information, system documentation, and publi-
cations are available on the INFOMIX website: www.mat.

unical.it/infomix.

2. DATA INTEGRATION FRAMEWORK
From an abstract point of view, the data integration sys-

tem I in INFOMIX is a triple 〈G,S,M〉, where G is the
global schema, S is the source schema, which comprises the
schemas of all the sources to be integrated, and M is the
mapping establishing a relationship between G and S. We
assume that both G and S are specified in the relational
model: actually, S stems from a subset of XML which can
be transformed back and forth into relational data.
G may contain integrity constraints (ICs) of three kinds:

Classical Key Dependencies (KDs), Inclusion Dependencies

(IDs), expressing that (a projection of) a relation is included
in (a projection of) another relation, and Exclusion Depen-

dencies (EDs), expressing that two relations (or projections
on them) are disjoint.
M is a Global-As-View (GAV) mapping [12], i.e., M is a

set of logical implications

∀x1 · · · ∀xn.ΦS(x1, . . . , xn) ⊃ gn(x1, . . . , xn), (1)

where gn is a relation from G, n is the arity of gn, ΦS is
a conjunction of atoms on S and x1, . . . , xn are the free
variables of ΦS . Each global relation is thus associated with
a union of conjunctive queries (UCQs).

Given a source database instance D, the semantics of I
w.r.t. D, denoted sem(I,D), is the set of those database
instances B for the global schema G that satisfy the ICs of
G and maximize the satisfaction of the mapping M: more
formally, each such B contains as many tuples as possible
that satisfy the instantiation of the variables x1, . . . , xn in
the mapping assertions (1) of M, provided that they satisfy
the ICs of G. This generalizes the classical sound semantics
for data integration [12] and allows us to deal with data that
are inconsistent w.r.t. to ICs on the global schema. For a
more detailed description of the semantics, see [4].

User queries are specified over G (see Section 3.1 for the
query language). The set of certain answers to a user query
q, denoted ans(q, I,D), is the set of the tuples in its evalu-
ation on each global database instance in sem(I,D).

Within the INFOMIX project we made a detailed decid-
ability and complexity analysis on query answering [3, 4].
We considered different combinations of ICs for the global
schema and user query languages, and singled out condi-
tions which guarantee decidability of query answering, and
at the same time allow for a rich and flexible specification.
More precisely, in absence of IDs in the global schema, we
allow the user to pose recursive datalog queries with aggre-
gates and stratified negation. If IDs are present, in order
to avoid undecidability, we have to restrict the query lan-
guage to UCQs, and force IDs to be non-key-conflicting IDs
(NKCIDs), a class of IDs which generalizes Foreign-Key con-
straints (and thus very useful in practice). The complexity
for query answering in this setting was shown to be coNP-
complete [3, 4], which calls for advanced reasoning tools for
query answering.

3. INFOMIX ARCHITECTURE
The INFOMIX system supports two modes: a design and

a query mode. In the first, the global schema, the source
schema, and the mapping between them are specified. Fur-
thermore, wrappers for the data sources are created or im-
ported. In the query mode, the system provides query an-
swering facilities at run time, including data acquisition, in-

Figure 1: Conceptual INFOMIX Architecture

tegration, answer computation, and presentation to the user.
In both the design and query mode, INFOMIX is concep-

tually divided into three levels, as shown in Figure 1:

• Information Service Level. This level serves as a
direct interface to the user (at run time) and the designer
(at design time). It deals with global data, and provides the
necessary interfaces (e.g., for global schema definition and
for query formulation).

• Internal Integration Level. In this level, the actual
integration of data is performed. It receives data from the
sources, and exploits the mapping and the information of the
global schema to effectively compute answers to the queries
posed by the user at run time, relying on a computational
logic system at its core.

• Data Acquisition and Transformation Level.
Typically, information sources do not provide homogeneous
data, which therefore can not be uniformly accessed. This
level controls the way in which these data are acquired by
the system, performs data transformations, alignment and
cleaning, allowing upper levels to deal with source data in a
uniform way.

3.1 Information Service Level
This level provides functionalities for specifying and ma-

nipulating the INFOMIX information model (design mode),
and for query formulation (query mode). It comprises two
modules: the Information Model Manager and the Query
Formulation module. The Information Model Manager

handles the definition of the global schema and the local
schemas, as well as the mapping. It provides user-friendly
interfaces for these tasks, including schema browsers. Fur-
thermore, it gives automatic support for the verification
of coherency, redundancy and adequacy of the application
specification. In particular, if IDs are specified on the global
schema, the module must check (and eventually alerting the
user) wether the schema is non-key-conflicting, i.e., that all
IDs are NKCIDs, thus avoiding cases in which query answer-
ing is undecidable [3]. Finally, this module presents query
results in suitable form to the user. The Query Formula-

tion module provides a graphical, user-friendly interface for

query formulation over the global schema and query vali-
dation facilities; these check the interactions between user
query and global ICs to guarantee that query answering is
always decidable. For instance, if IDs are specified, the mod-
ule must check whether the query is an UCQ; in absence of
IDs, the module allows the user to exploit a richer query
language than UCQs, with recursion, negation, aggregation
functions and combinations thereof.

3.2 Internal Integration Level
The Internal Integration Level is based on computational

logic and deductive database technology. It is composed
by three modules, namely the Query Rewriter, the Query
Optimizer and the Query Evaluator.

The Query Rewriter reformulates the user query accord-
ing to global ICs. It makes use of a sub-module to verify
data consistency: exploiting the mapping, the sub-module
unfolds the user query over the source relations and activates
the corresponding wrappers to retrieve relevant data; then
it checks wether there are ICs violations. If no violations
occur, the reformulation produced by the rewriter is a sim-
ple (disjunction free) Datalog program; otherwise, a suitable
disjunctive Datalog program is generated that performs au-
tomatic “repair” of data, in a way such that cautious answers
to this a program evaluated over the data sources correspond
to the certain answers to the query. The Query Optimizer

provides several optimizations strategies, which turned out
to be crucial for the efficiency of the system; in particu-
lar, the module exploits some focusing techniques which are
able to isolate the portion of the source database that is
relevant to answer user query, by pushing constants in the
query towards the sources. To this aim, an optimized (pos-
sibly disjunctive) Datalog program is generated by applying
advanced binding propagation techniques à la Magic-Set [7,
5]. Finally, the optimized program is passed to the Query

Evaluator. It first loads data from the Internal Data Store
and then invokes DLV [13] in order to compute the consis-
tent answers. The results are then sent to the Information

Model Manager for suitable presentation to the user.

3.3 Data Acquisition & Transformation Level
This level provides uniform access to data sources. IN-

FOMIX has an open architecture in this respect, which
allows for the integration of heterogenous types of data
sources, ranging from poorely structured data to standard
data formats. The primary types are relational, XML,
HTML, and object-oriented data sources (currently unsup-
ported), but arbitrary other types of data sources can be
incorporated easily. All data sources are conceptually trans-
formed into a uniform source data format, which is a frag-
ment of XML Schema, and can be browsed in this format.

The acquisition (and at the same time, transformation)
of data is done by wrappers. A query plan for executing
suitable wrappers is generated, which load data into the In-
ternal Data Store. Constants are pushed to the wrappers (if
possible) to reduce the amount of data retrieved. Currently,
INFOMIX offers three classes of wrappers, which provide
different levels of support for query formulation and wrap-
per code generation (see Table 1):
Code wrappers are basically a definition of an API and
some code implementing it. The internals and character-
istics of code wrappers are therefore inaccessible to IN-
FOMIX. They serve mainly as a fallback, since one can pro-
vide a code wrapper for any type of source.

Wrapper Type Query Formulation Code Generation
Support Support

Code Wrapper none none
Query Wrapper none automatic
Visual Wrapper semi-automated automatic

Table 1: Support in Wrapper Specification

Query wrappers ship queries to external data sources and
treat the result as a logical data source. Prototypical query
wrappers use the ODBC or JDBC interfaces to relational
databases, but also wrappers using an XML query language
are of this class. For this wrapper type, the system can give
support for creation at design time, and could exploit its
transparency for optimization by query modification.
Visual wrappers support full interactive development of
wrappers at design time. Currently, there is support for de-
veloping LiXto wrappers [1] and pipes as well as for Rodan’s
Data Extractor. Thanks to LiXto Transformation Sever
[8], powerful data extraction from web pages and further
processing, including data cleaning and low-level data inte-
gration, is enabled. For example, web query forms can be
wrapped easily which proves useful in practice.

4. APPLICATION AND EXPERIMENTS
4.1 Demo Scenario

We will demonstrate the INFOMIX prototype system by
means of a real-life application scenario, in which data from
various legacy databases and web sources must be inte-
grated for a university information system. In particular, we
built our information integration system on top of the data
sources available at the University of Rome “La Sapienza”.

The data sources comprise information on students, pro-
fessors, curricula and exams in various faculties of the
university. Currently, this data is dispersed over several
databases in various (autonomous) administration offices
and many webpages at different servers. Given this setting,
we have devised a global schema of 14 relations,

student(S ID,FirstName,SecondName,CityOfResidence,
Address,Telephone,HighSchoolSpecialization)

enrollment(S ID,FacultyName,Year)
course(C Code, Description)

. . .
and 29 integrity constraints, comprising KDs, IDs, and EDs.

The demo scenario includes 3 legacy databases in rela-
tional format, comprising about 25 relations in total. The
relation sizes range from a few hundred to tens of thousands
of tuples (e.g., exam data). Besides these legacy databases,
there are numerous web pages, which either provide infor-
mation explicitly or through simple query interfaces (e.g.,
members of a department, phone numbers etc). We have
developed a number of wrappers using LiXto tools, which
extract information from these web sources. In total, there
are about 35 data sources in the application scenario, which
are mapped to the global relations with about 20 UCQs.
Each UCQ joins up to three different logical data sources.

Finally, we have formulated 9 typical queries with peculiar
characteristics, which model different use cases.

The demo scenario is non-trivial but, given its size, still
comprehensible. It allows to present the features and us-
age of the INFOMIX system, both in the design mode and
the query mode, in a nice way. Furthermore, it is open to
modifications and experimentation by users.

Figure 2: Left: Execution time for Queries Q1,...,Q9. Right: Impact of Optimizations

4.2 Experiments
In the demo we will show a number of experiments in

the scenario described in Section 4.1. Here we report per-
formance results obtained on Pentium III machines running
GNU/Linux with 256MB of memory. These demonstrate
the feasibility of our approach, and the impact of optimiza-
tion techniques.

The left part of Figure 2 shows the execution time for the
9 typical queries Q1, . . . ,Q9 without any optimization. For
each query, both the import time, i.e., the time for importing
all the data needed for producing the consistent answers into
the main memory, and the reasoning time, i.e., the time for
actually computing the answers in the computational logic
environment, are shown. Moreover, for each query, also the
total number of global relations involved, the total number
of source relations accessed after query unfolding, and the
total size of the data that must be retrieved from the sources
for answering the query are shown. The import time for all
queries is below 5 seconds, and for most queries also the
reasoning time is in the same order of magnitude (we disre-
gard wrapper execution times because of large variance in
network performance). Query Q9, however, takes about 100
seconds of reasoning time. Inspection of the data revealed
that for the global relations involved in Q9, there are about
50 conflicts (yielding about 250 possible repairs), but only a
small fraction of them is relevant to the query itself.

The right part of Figure 2 shows the total execution time
for the optimized INFOMIX system, where in particular a
magic-set technique is included. For many queries, we note
a significant speed-up, especially for query Q9. We have ver-
ified that for Q9, the magic-set technique effectively prunes
the unrelated conflicts, thus avoiding their repair. Note that
for Q3 none of our optimizations applies; the overhead of the
optimization methods (1%) is very lightweight, however.

5. ADDITIONAL AUTHORS
Thomas Eiter1, Wolfgang Faber1, Michael Fink1, Gianluigi
Greco2, Giovambattista Ianni2, Edyta Kalka3, Domenico
Lembo4 Maurizio Lenzerini4, Vincenzino Lio2, Bartosz
Nowicki3, Marco Ruzzi4, Witold Staniszkis3, and Giorgio
Terracina2.

1Technische Universität Wien, Vienna, Austria
2Universitá della Calabria, Rende, Italy
3Rodan Systems S.A., Warsaw, Poland
4Università di Roma “La Sapienza”, Roma, Italy

6. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual

web information extraction with LiXto. In Proc.

VLDB 2001, pp. 119–128, 2001.

[2] L. Bravo and L. Bertossi. Logic programming for
consistently querying data integration systems. In
Proc. IJCAI 2003, pp. 10–15, 2003.

[3] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In Proc. PODS 2003.

[4] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting
and answering under constraints in data integration
systems. In Proc. IJCAI 2003, pp. 16–21, 2003.

[5] C. Cumbo, W. Faber, G. Greco, and N. Leone.
Enhancing the magic-set method for disjunctive
datalog programs. In Proc. ICLP 2004, pp. 371–385.

[6] T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient
evaluation of logic programs for querying data int
egration systems. In Proc. ICLP 2003, pp. 163–177.

[7] W. Faber, G. Greco, and N. Leone. Magic sets and
their application to data integration. In Proc.

ICDT 2005, 2005. LNCS 3363, in press.

[8] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog,
and S. Flesca. The LiXto data extraction project -
back and forth between theory and practice. In Proc.

PODS 2004, pp. 1–12, 2004.

[9] G. Greco, S. Greco, and E. Zumpano. A logical
framework for querying and repairing inconsistent
databases. IEEE TKDE, 15(6):1389–1408, 2003.

[10] A. Y. Halevy. Data integration: A status report. In
Proc. BTW 2003, pp. 24–29, 2003.

[11] H. Hayes and N. Mattos. Information on demand.
DB2 Magazine, 8(3), 2003.

[12] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. PODS 2002, pp. 233–246, 2002.

[13] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. ACM

Trans. Comput. Log., 2004. To appear.

[14] N. M. Mattos. Integrating information for on demand
computing. In Proc. VLDB 2003, pp. 8–14, 2003.

