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Abstract. Generating minimal transversals of a hypergraph is an im-
portant problem which has many applications in Computer Science. In
the present paper, we address this problem and its decisional variant, i.e.,
the recognition of the transversal hypergraph for another hypergraph.
We survey some results on problems which are known to be related to
computing the transversal hypergraph, where we focus on problems in
propositional Logic and AI. Some of the results have been established
already some time ago, and were announced but their derivation was
not widely disseminated. We then address recent developments on the
computational complexity of computing resp. recognizing the transversal
hypergraph. The precise complexity of these problems is not known to
date, and is in fact open for more than 20 years now.

1 Introduction

A hypergraph H = (V,E) consists of a finite collection E of sets over a finite
set V . The elements of E are called hyperedges, or simply edges. A transversal
(or hitting set) of H is a set T ⊆ V that meets every edge of E. A transversal
is minimal, if it does not contain any other transversal as a subset. The set T
of all minimal transversals of H = (V,E), constitutes together with V also a
hypergraph Tr(H) = (V, T ), which is called the transversal hypergraph of H.

The famous Transversal Hypergraph Problem (TRANS-HYP) is then as follows:

Problem: Hypergraph Transversal (TRANS-HYP)

Instance: Two hypergraphs G = (V,E) and H = (V, F ) on a finite set V .
Question: Does G = Tr(H) hold ?

Rephrased as a computation problem rather, the statement is as follows:

Problem: Transversal Enumeration (TRANS-ENUM)

Instance: A hypergraph H = (V,E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).

From the point of computability in polynomial time, the decisional and the
computational variant of the transversal hypergraph problem are in fact equiva-
lent: It is known that, for any class C of hypergraphs, TRANS-ENUM is solvable
in polynomial total time (or output-polynomial time), i.e., in time polynomial in



the combined size of H and Tr(H), if and only if TRANS-HYP is in the class P
for all pairs (H,G) such that H ∈ C [3].

The problems TRANS-HYP and TRANS-ENUM have a large number of ap-
plications in many areas of Computer Science, including Distributed Systems,
Databases, Boolean Circuits and Artificial Intelligence. There, they have impor-
tant applications in Diagnosis, Machine Learning, Data Mining, and Explanation
Finding, see e.g. [11, 13, 24, 28, 32, 33, 36] and the references therein.

Let us call a decision problem Π TRANS-HYP-hard, if problem TRANS-HYP

can be reduced to it by a standard polynomial time transformation. Further-
more, Π is TRANS-HYP-complete, if Π is TRANS-HYP-hard and, moreover, Π
can be polynomially transformed into TRANS-HYP; that is, Π and TRANS-HYP

are equivalent modulo polynomial time transformations. We use analogous ter-
minology of TRANS-ENUM-hardness and TRANS-ENUM-completeness for com-
putations problems, i.e., problems with output. Here, Π reduces to Π ′, if there
a polynomial functions f, g s.t. for any input I of Π , f(I) is an input of Π ′,
and if O is the output for f(I), then g(O) is the output of I , cf. [40]; we also
request that O has size polynomial in the size of the output for I (if not, trivial
reductions may exist).

The rest of this paper is organized as follows. In the next two sections, we
illustrate some of the applications of TRANS-HYP and TRANS-ENUM in Logic
and in Artificial Intelligence. Some of the results have been established already
some time ago [10, 11], and were announced in [11] but remained yet unpub-
lished. After that, Section 4 is dedicated to a review of recent developments on
complexity of TRANS-HYP, and a new result is contributed (Theorem 11). The
final Section 5 presents some open issues.

We close this section with some terminology. For any decision problem Π , we
denote by co-Π the complementary problem, which has yes- and no-instances
exchanged. A hypergraph H = (V,E) is simple (or Sperner, clutter-free), if no
edge e of H strictly contains any other edge e′ of H, i.e., ∀e, e′ inE : e ⊆ e ⇒
e = e′. We denote by min(H) the hypergraph on V whose edges are the ones
of H which are minimal with respect to set inclusion, i.e., min(H) = (V, {e ∈
E | ∀e′ ∈ E e′ 6⊂ e}). We refer to H = (V, {V \ e | e ∈ E}) as the complemented
hypergraph of H. If H = H, then H is called self-complemented.

2 Applications in Logic

2.1 Satisfiability Checking

The satisfiability problem of propositional formulas, in particular of sets of
clauses, has special importance in complexity theory. There is a strong intercon-
nection between satisfiability of a set of clauses and 2-colorability of hypergraphs,
and these problems are decidable by similar resolution methods, cf. [34].

Recall that the satisfiability problem (SAT) is to decide whether a set of
propositional clauses C = {C1, . . . , Cm}, where each Ci is a set of literals, on
atoms X = {x1, . . . , xn} is satisfied by some truth assignment to X . Its restric-



tion MSAT, where every clause of C must be either positive or negative, i.e.,
must not contain any negative or positive literal, respectively, is still NP-hard.

In what follows, let us denote Y ¬ = {¬y | y ∈ Y } for any set of atoms Y ,
and for any instance C of MSAT on atoms X , let C+(C) and C−(C) denote the
hypergraphs of the families of atom sets in the positive and the negative clauses
of C, respectively, i.e., C+(C) = (X,C) and C−(C) = (X, {Y ⊆ X | Y ¬ ∈ C}).
If C is clear, we simply write C+ and C− for C+(C) and C−(C), respectively.

Example 1. LetX = {x1, . . . , x4}, and C = {{x1}, {x2, x4}, {¬x2, ¬x4}, {¬x3}}.
Then C+ = (X, {{x1}, {x2, x4}}) and C− = (X, {{x2, x4}, {x3}}).

The following lemma, which can be found in various forms in the literature,
links satisfiability to hypergraph transversals. Let, for hypergraphs H = (V,E)
and H′ = (V,E′), denote H � H′ that every edge of H contains some edge of
H′, i.e., ∀e ∈ E ∃e′ ∈ E′ : e′ ⊆ e holds.

Lemma 1. An instance C of MSAT is unsatisfiable iff Tr(C+) � C−.

Proof. We may identify every truth value assignment φ to X with the set Xφ ⊆
X of atoms which are assigned the value true. Let X+

φ denote the set of all truth

assignments that satisfy the positive clauses in C. Clearly, every τ ∈ X+
φ must

be a transversal of C+, i.e. (X,X+
φ ) � Tr(C+) holds. Now assume Tr(C+) � C−

is true. Since � is transitive, (X,X+
φ ) � C− holds and each τ ∈ X+

φ assigns all
literals in some negative clause of C false, hence C is unsatisfiable. Conversely, if
C− is unsatisfiable, then (X,X+

φ ) � C− holds. Since for each τ ∈ Tr(C+), clearly

τ ∈ X+
φ , we have Tr(C+) � (X,X+

φ ) and thus Tr(C+) � C−. ut

The first subcase of MSAT which we consider is made up of instances with
the property that every pair of a positive clause and a negative clause resolves,
i.e. there is an atoms which occurs unnegated in the positive and negated in
the negative clause. This subcase of MSAT, which we refer to turns out to be
computationally equivalent to TRANS-HYP.

More formally, a set of clauses C (on atoms X) is an instance of Intersect-

ing MSAT (IMSAT), if C is an instance of MSAT and, moreover, C satisfies
∀e ∈ C+ ∀e′ ∈ C− : e ∩ e′ 6= ∅.

We have the following characterization of satisfiable IMSAT clause sets.

Theorem 1. An instance C of IMSAT is satisfiable iff Tr(min(C+)) = min(C−).

Proof. Since C is an IMSAT instance, min(C−) � Tr(min(C+)) holds. Further-
more, as easily checked, � is a partial order on simple hypergraphs, i.e., for any
simple hypergraphs G and H, H � G and G � H is equivalent to H = G. Thus,
Tr(min(C+)) = min(C−) is equivalent to Tr(min(C+)) � min(C−). By Lemma 1,
C is satisfiable iff Tr(C+) 6� C−, which is equivalent to Tr(min(C+)) 6� min(C−).
Hence, the result follows. ut

Corollary 1. Problem co-IMSAT is TRANS-HYP-complete.



Proof. By Theorem 1, unsatisfiability testing for any IMSAT instance C is clearly
polynomial transformable into TRANS-HYP. Conversely, any instance of co-
TRANS-HYP is also easily transformable into an equivalent instance of co-IMSAT

by Theorem 1. ut

We remark that for the more general class of SAT instances where every pair
of (distinct) clauses resolves, SAT is decidable in polynomial time. This follows
from the observation of D.A. Plaisted (1991, personal communication) that such
a clause set C = {C1, . . . , Cm} is satisfiable if and only if

∑m

i=1 2−|Ci| 6= 1,
provided that no clause is subsumed by some other clause and that no variable
occurs both negated and unnegated in the same clause. (Note that since all
numbers |Ci| are given in unary notation, computing this sum is easy.)

In comparison to this subclass of SAT, the intersection restriction on the
clause sets in IMSAT is weaker in a sense, since positive and negative clauses,
respectively, are not interrelated among each other, and hence the whole clause
set “splits” into two groups. However, imposing the intersection condition also
on the positive and negative clauses makes IMSAT no easier.

Let Symmetric IMSAT (SIMSAT) be the restriction of IMSAT to instances
C where the negative clauses are precisely all clauses C− such that C− = {¬u :
u ∈ C+} for some positive clause C+ ∈ C. (By this restriction, nonempty positive
clauses of C are mutually intersecting.)

Corollary 2. Problem co-SIMSAT is TRANS-HYP-complete.

Proof. By Corollary 1, any SIMSAT instance C can be polynomially transformed
into a TRANS-HYP instance (H,G) such that C is unsatisfiable iff (H,G) is a yes-
instance of TRANS-HYP. On the other hand, as shown in [11], instances (H,G)
of TRANS-HYP such that H = G are TRANS-HYP-hard. We may, without loss of
generality, assume in addition that H = (V,E) is simple, that e ∩ e′ 6= ∅, for all
e, e′ ∈ E, and that |E| > 0. By Theorem 1, the clause set C = E ∪ {e¬ | e ∈ E}
on atoms V is satisfiable iff H 6= Tr(H); since C is efficiently constructible from
H, the result follows. ut

Yet other subcases of SAT can be found whose unsatisfiability is equivalent to
TRANS-HYP; one are MSAT instances where the positive clauses are a collection
of partitions of the variable set X , i.e. if X ′ ⊆ X appears, then also X − X ′

appears, such that no positive clause subsumes any other, and the negative
clauses are the clauses which result if, for each clause Ci, a positive atom from
X \ Ci is added to Ci in all ways, and then all atoms are negated.

There is an interesting observation regarding the clause sizes of the instances.
Problem MSAT remains NP-complete even if each clause contains at most three
literals (M3SAT, [20]); if an instance C of M3SAT is also an instance of IM3SAT,
however, deciding satisfiability is polynomial: We may select any positive clause
C1 and negative clause C2 from C, and for every of the at most 25 = 32 truth
value assignments to the literals in C1 ∪ C2, the clause set is reducible to an
instance of 2SAT, since each such assignment leaves in every clause at most two
literals unassigned; 2SAT is well-known polynomial [20].



By Theorem 1 and results in [11], polynomiality of satisfiability testing gener-
alizes from IM3SAT to IMkSAT, the restriction of IMSAT in which the clause size
is bounded by a constant k, and even more general, also to the subclass where
the size of either only the positive clauses or the negative clauses is bounded
by k. Note that for k > 3, checking whether C is satisfiable for the at most
2k−1 many truth assignments to a positive clause C1 and a negative clause C2

is not promising for an efficient procedure, since the reduced clause sets are not
evidently contained in a tractable subclass of SAT.

2.2 Dualization

There is a well-known and close connection of TRANS-ENUM to the well-known
dualization problem of Boolean Functions:

Problem: Dualization

Instance: A CNF ϕ of a Boolean function f = f(x1, . . . , xn)
Output: A prime CNF ψ of its dual fd, i.e., the function which has value

1 in input vector b = (b1, . . . , bn) iff f has value 0 on the input
vector b = (b1 ⊕ 1, . . . , bn ⊕ 1).

Recall that a CNF ϕ is prime, if it consists of prime clauses, i.e., no literal
may be removed from any clause γ of ϕ without violating logical equivalence.

Special algorithms for the dualization problem can be tracked down at least
to the 60’s of the past century, cf. [2]. It is not hard to see that this problem is
intractable; in fact, its decisional variant:

Problem: Dual

Instance: CNFs ϕ and ψ of Boolean functions f and g, respectively.
Output: Do ϕ and ψ represent a pair (f, g) of dual Boolean functions?

is co-NP-complete, where hardness holds even if ψ is asserted to be a prime
CNF of g. In case of monotone Boolean functions, the dualization problem is
equivalent to determining the transversal hypergraph. Let Monotone Dual-

ization be the subcase of Dualization where f is a monotone Boolean func-
tion, and similarly Monotone Dual the subcase of Dual where f is a mono-
tone Boolean function. (Notice that in general, deciding whether a given CNF
represents a monotone function is intractable, and thus strictly speaking these
cases are promise problems [29], since valid input instances are not recognized
in polynomial time. Under suitable syntactic restrictions, such as that the CNFs
for f are negation-free, this can be ensured.)

The following result summarizes well-known results that are part of the folk-
lore.

Theorem 2. Monotone Dualization is TRANS-ENUM-complete, and Mono-

tone Dual is TRANS-HYP-complete.

Proof. Let ϕ be a CNF expression for a monotone Boolean function f on vari-
ables X = {x1, . . . , xn}. Then, the CNF ϕ′ which results from ϕ by removing all



negative literals from ϕ is logically equivalent to ϕ. Indeed, clearly ϕ′ logically
implies ϕ. On the other hand, each clause γ in ϕ must be subsumed by same
prime implicate γ? of f . As well known, a Boolean function f is monotone iff
every prime implicate of f is positive, i.e., contains no negative literal. Thus, γ
is replaced in ϕ′ by some clause γ′ such that γ? ⊆ γ′; hence, ϕ logically implies
ϕ′. The clauses of the (unique) prime CNF ψ of the dual function g = f d are
then given by the edges of Tr(C+(C)), where C+(C) is the hypergraph associated
with the set C of clauses in ϕ′.

Thus, Monotone Dualization and reduces in polynomial time to TRANS-

ENUM. Similarly, Monotone Dual reduces in polynomial time to TRANS-

HYP, since fd is monotone if f is monotone, and if a CNF ψ representing a
monotone Boolean function g is ¬-free, then the unique prime CNF of g is de-
scribed by the edges of min(C+). On the other hand, by the correspondence
C+(C) between a monotone clause set C and a hypergraph, TRANS-ENUM

and TRANS-HYP trivially reduce to Monotone Dualization and Monotone

Dual, respectively, in polynomial time. ut

3 Applications in Artificial Intelligence

3.1 Theory Revision

Dealing with knowledge in flux , i.e. with knowledge bases that are subject to
change in the light of new information, is an important problem of artificial
intelligence. The subject has been studied in the database research community
as well (e.g., [16, 45]) and has also attracted attention of philosophers of reasoning
(e.g., [1, 19]). A number of different change approaches have been proposed (see
[45, 39] for overviews); many of them adhere to the principle of Minimal Change,
according to which the body of knowledge should change as little as possible if
new information is incorporated.

A well-known knowledge change approach is the Set-Of-Theories approach,
a formula-based change method first defined in [16] in the context of databases
and considered for AI applications e.g. in [22, 38]. This method works as follows.
Assume that the sentence p must be incorporated into the knowledge base T ,
which is a finite set of sentences. If T is consistent with p, then p is simply
added to T ; otherwise, ¬p is provable from T . In this case, a set R of sentences
is removed from T such that ¬p is no longer provable from T − R, and then p
is added; by the principle of Minimal Change, this set R is selected as small as
possible under set inclusion.

Observe that R must pick a sentence from every subset T ′ ⊆ T of sentences
from which ¬p is provable. Denote the collection of all such subsets T ′ ⊆ T by
P(T ;¬p). Thus, R must be a transversal of the hypergraph (T,P(T ;¬p)); since
R is selected as small as possible, R must even be minimal.

In general, R will not be unique; the result of the update, U(T ; p), is thus
defined as the set of all KBs obtained by removing some possible R and adding
p. The possible R’s constitute, as easily seen, the edges of Tr(T,P(T ;¬P )).



Formally, let T = {f1, . . . , fn} be a finite set of satisfiable sentences and let
p be a satisfiable sentence in a suitable logic. Then, define

P(T ;¬p) = {T ′ ⊆ T | T ′ |= ¬p},
W(T ; p) = {T −R | Tr(T,P(T ;¬p)) = (T,E), R ∈ E},
U(T ; p) = {W ∪ {p} |W ∈ W(T ; p)}.

W(T ; p) denotes the “possible worlds” [22], which are with respect to set inclu-
sion maximal subsets of T in which the sentence pmay be true. It is easily verified
that W(T ; p) is the collection of all maximal independent sets of the hypergraph
P(T ;¬p) = (T,E), i.e., the maximal sets (under set inclusion) W ⊆ T such that
S 6⊆ W for every S ∈ E, and that W(T ; p) = {T ′ ⊆ T | T ′ 6|= ¬p ∧ ∀U : T ′ ⊂
U ⊆ T ⇒ U |= ¬p}. A sentence f is implied by U(T ; p) (denoted U(T ; p) |= f),
if T ′ |= f for each T ′ from U(T ; p), i.e., if f follows from the logical disjunction
of the knowledge bases in U(T ; p).

Example 2. Let T = {x1, x2, x1 ∧ x2 ⇒ x3} and p = ¬x3 in propositional logic,
where x1, x2, x3 are propositional atoms. Then

P(T ;¬p) = {{x1, x2, x1 ∧ x2 ⇒ x3}},
Tr(T,P(T ;¬p)) = {{x1}, {x2}, {x1 ∧ x2 ⇒ x3}},

W(T ; p) = {{x2, x1 ∧ x2 ⇒ x3}, {x1, x1 ∧ x2 ⇒ x3}, {x1, x2}},
U(T ; p) = {{x2, x1 ∧ x2 ⇒ x3,¬x3}, {x1, x1 ∧ x2 ⇒ x3,¬x3}, {x1, x2,¬x3}}.

We have U(T ; p) |= x1 ∨ x2, but neither U(T ; p) |= x1 nor U(T ; p) |= x2.

Procedures to compute U(T ; p) are described in [22, 23]. They basically pro-
ceed in two steps: In the first step, the set MP(T ;¬p) of all minimal proofs
of ¬p from T , i.e. (T,MP(T ;¬p)) = min(T,P(T ;¬p))), is computed by a the-
orem prover. Then, U(T ; p) is computed from MP(T ;¬p) collecting all sets
S = (T ∪ {p}) − R, where R is a transversal of MP(T ;¬p), such that S is
maximal under set inclusion; [22] suggests to compute U(T ; p) incrementally, i.e.
“world by world”. The essential task in step 2 of this method is to determine
W(T ; p). Consider the following decision problem:

Problem: Additional World

Instance: A finite satisfiable set T of first-order sentences, a satsifiable
first-order sentence p, the collection MP(T ;¬p), and a collection
W ⊆ W(T ; p).

Question: Does there exist T ′ ∈ W(T ; p) −W?

If this problem is intractable, then no output-polynomial algorithm to com-
pute the possible worlds W(T ; p) from MP(T ;¬p) is likely to exist. We note the
following result, which appears in [10]:

Theorem 3. Problem co-Additional World is TRANS-HYP-complete.

Proof. It is easily seen that W(T ; p) are the edges of Tr(T,MP(T ;¬p)). Since
W ⊆ W(T ; p), this problem is thus easily reduced in polynomial time trans-
formable to the complement of TRANS-HYP. On the other hand, let (H;G) be a



TRANS-HYP instance, such that H and G are simple, H ⊆ Tr(G), and G = (V,E)
has no empty edge.

Take V as propositional atoms, and denote by f(ei) the formula ¬v1 ∨ · · · ∨
¬vk, where ei = {v1, . . . , vk} and E = {e1, . . . , em}, for 1 ≤ i ≤ m. Then,
define T = V and p = f(e1) ∧ · · · ∧ f(em). It is immediately verified that T
as well as p is satisfiable and that MP(T ;¬p) = E. Therefore, W(T ; p) =
Tr(T,MP(T ;¬p)) = Tr(G). Since H ⊆ Tr(G), we have that H ⊆ Tr(G) =
W(T ; p). Therefore, H = Tr(G) holds iff there exists no additional world for p,
i.e. W(T ; p) = H. Hence, co-Additional World is TRANS-HYP-hard. ut

Note that [24] showed (independently) TRANS-ENUM-hardness of computing
U(T ; p) from T and p if all formulas in T and p are Horn; this result is implicit
in the proof above.

By results in [11], computing W(T ; p) from MP(T ;¬p) is polynomial in the
input size if ¬p has few minimal proofs from T , and is output-polynomial if the
minimal proofs for ¬p only refer to at most constantly many sentences of T .

3.2 Machine Learning and Data Mining

Im machine learning, the hypergraph transversal problem is related to problems
in learning Boolean functions. In a simple model, an adversary fixes a Boolean
function f : {0, 1}n → {0, 1}, which models a concept in the world. The learner
should find out f , or an approximation of it, given access to an oracle which
discloses partial information about f . In particular, a membership query oracle
MQ(f) allows the learner to ask the value of f at a given vector b ∈ {0, 1}n. The
hypothesis on f produced by the learner is a Boolean formula, which is typically
a CNF or a DNF expression.

The following result is due to [28]. Let, for any monotone Boolean func-
tion f , denote CNF (f) and DNF (f) its unique prime CNF and prime DNF,
respectively.

Theorem 4. If TRANS-ENUM can be solved in output-polynomial time, then
there exists a learning algorithm for monotone Boolean functions f with member-
ship queries, which produces both a CNF and a DNF representation of the func-
tion. The number of membership queries is bounded by |CNF (f)| · (|DNF (f)| =
n2) and the running time of the algorithm is polynomial in n, |CNF (f)|, and
|DNF (f)|.

There is also a relation to hypergraph transversals in the other direction,
which has also been pointed out in [28].

Theorem 5. If there is a learning algorithm for monotone Boolean functions
f with membership queries, which produces both a DNF representation of the
function and whose running time and number of queries to MQ(f) are bounded
by a function T (n+ |DNF (f)|+ |CNF (f)|), then TRANS-ENUM can be solved
in time T (n+ |DNF (f)| + |CNF (f)|).



Thus, if T () is a polynomial, then TRANS-ENUM can be solved in output-
polynomial time. Note that as shown in [43], for almost all monotone Boolean
functions a polynomial T () exists if n tends to infinity.

These results are closely related to results on generating frequent sets in
data mining. Given a 0/1 m× n matrix A and an integral threshold t, associate
with each subset C ⊆ {1, . . . , n} of column indices the subset R(C) of all rows
r ∈ {1, . . . ,m} in A such that A(r, j) = 1 for every j ∈ C. Then C is called
frequent, if |R(C)| ≥ t, and C is called infrequent, if |R(C)| < t. Let us denote
by Ft(A) and F̂t(A) the sets of all frequent and infrequent column sets C in A,
respectively.

The generation of frequent and infrequent sets in A is a key problem in
knowledge discovery and data mining, which occurs in mining association rules,
correlations, and other tasks. Of particular interest are the maximal frequent
sets Mt ⊆ Ft and the minimal infrequent sets It ⊆ F̂t, since they mark the
boundary of frequent sets (both maximal and minimal under set inclusion). The
following result has been recently proved in [6].

Theorem 6. The problem of computing, given a 0/1 matrix A and a threshold
t, the sets Mt and It is TRANS-ENUM-complete.

A related but different task in data mining is dependency inference. Here the
problem is, given a (not necessarily 0/1) m× n matrix A, to find the dependen-
cies Ci1Ci2 · · ·Cik

→ Ci0 which hold on A (denoted A |= Ci1Ci2 · · ·Cik
→ Ci0 ),

i.e., for each pair of rows r, r′ ∈ {1, . . . ,m}, either A(r, ij) 6= A(r′, ij) for some
j ∈ {1, . . . , k} or A(r, i0) = A(r′, i0). Such implications are known as functional
dependencies (FDs) in databases. The set Dep(A) = {f | A |= f} of all depen-
dencies which hold on A, is usually represented by a subset C ⊆ Dep(A), called
a cover, such that {f | C |= f} = Dep(A), where C |= f is logical implication.
Consider thus the following problem:

Problem: FD-RELATION EQUIVALENCE (FD-EQ)

Instance: A m× n matrix A, a set D of dependencies.
Question: Is D a cover for Dep(A)?

This problem, as shown in [27], is TRANS-HYP-hard; however, it is not known
whether FD-EQ is reducible to TRANS-HYP in polynomial time; as shown in
the extended version of [11], this is possible if D is in MAK-form, i.e., D =
{X → Ci0 ∈ Dep(A) | X = Ci1 · · ·Cik

, and X \ Cij
→ Ci0 /∈ Dep(A), for all

j ∈ {1, . . . , k} }. (Informally, X is a minimal key or prime implicant for attribute
Ci0 .)

Theorem 7. Problem FD-EQ for instances (A,D) where D is in MAK-form is
TRANS-HYP-complete.

Some polynomial cases of FD-EQ are given in [27]. As shown in [33], FD-EQ

is related to similar problems involving charcteristic models and Horn CNFs. For
these and further results about problems in data mining equivalent to TRANS-

ENUM and TRANS-HYP, see [33].



3.3 Model-Based Diagnosis

Different from the heuristic approach, model-based diagnosis [41, 8] takes a log-
ical description of the technical system and the behavior of its components as a
basis for diagnosing faults by means of consistency. Since model-based diagnosis
offers several advantages, much efforts were spent on it in the last 15 years.

Briefly, a system is a pair (SD ,COMP ), where SD , the system description,
is a set of sentences from an underlying decidable fragment of first-order logic
(e.g., propositional logic) and COMP is a set of constants which model the
system components. SD is used together with a set OBS of sentences, which are
particular observations on the system behavior, to diagnose faults. For that, SD
makes use of a distinguished predicate AB(c) which reads “component c operates
in abnormal mode”. Now a diagnosis for (SD ,COMP ,OBS ) is a minimal (under
inclusion) set ∆ ⊆ COMP of components such that

T = SD ∪ OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMP \∆}

is satisfiable.If there is no fault, ∆ = ∅ must be a diagnosis, otherwise the system
description SD is not sound.

In [41] a characterization of diagnoses in terms of so called conflict sets is
given. A conflict set is a set C ⊆ COMP such that SD∪OBS∪{¬AB(c) | c ∈ C}
is unsatifiable; C is minimal, if no proper subset of C is a conflict set. In terms
of hypergraphs, the fundamental theorem on conflict sets and diagnoses in [41]
is as follows. Let CS (DP ) denote the collection of all all minimal conflict sets of
DP = (SD ,COMP ,OBS ).

Theorem 8. ∆ ⊆ COMP is a diagnosis for DP = (SD ,COMP ,OBS) iff ∆ ∈
Tr(COMP ,CS (DP )).

Therefore, we obtain the following result for computing all dignoses.

Corollary 3. The problem of computing, given CS (DP ) of s diagosis problem
DP = (SD ,COMP , OBS ), all diagnoses of DP is TRANS-ENUM-complete.

Proof. By Theorem 8, it remains to show TRANS-ENUM-hardness. Let H =
(V,E) be simple and define DP = (SD ,COMP ,OBS ) by SD = {AB(v1)∨ · · · ∨
AB(vk)∨a | {v1, . . . , vk} ∈ E}, OBS = {¬a}, and COMP = V ∪{a}, where a is
a fresh symbol. As easily checked, CS (DP ) = H, and thus the edges of Tr(H)
are given by the diagnoses of DP . ut

We remark that modulo the costs of satisfiability checking, a diagnosis for
DP = (SD ,COMP ,OBS ) can be found in polynomial time: Set C = COMP ,
and test if C is a superset of some diagnosis. Subsequently remove any com-
ponent c from C such that C − {c} is also superset of a diagnosis. Repeating
this elimination step until no longer possible, the procedure stops with C as a
diagnosis. However, given a set D of diagnoses for DP , deciding whether there
is another diagnosis not in D was proved NP-complete in [18] for propositional
Horn theories, where consistency checking is polynomial.



3.4 Horn Envelope

Recall that a logical theory Σ is Horn, if it is a set of Horn clauses, i.e., dis-
junctions l1 ∨ · · · ∨ lm of literals li such that at most one of them is positive.
Semantically, Horn theories are characterized by the property that their set of
models, mod(Σ), is closed under intersection, i.e., M,M ′ ∈ mod(Σ) implies
M ∩M ′ ∈ mod(Σ); here, M ∩M ′ is the model M ′′ which results by atomwise
logical conjunction of M and M ′, i.e., M ′′ |= a iff M |= a and M ′ |= a, for every
atom a.

Any theory Σ has a unique Horn envelope, which is the strongest (w.r.t.
implication) Horn theory Σ ′ such that Σ |= Σ′. The Horn envelope might be
represented by different Horn theories, but there is a unique representation,
which we denote by HEnv(Σ), which consists of all prime clauses of Σ ′. The
following result was established in [33], where the TRANS-ENUM hardness part
was proved in [32].

Theorem 9. The problem of computing, given the models mod(Σ) of a propo-
sitional theory Σ, the Horn envelope HEnv(Σ) is TRANS-ENUM-complete.

3.5 Abductive Explanations

Abduction is a fundamental mode of reasoning, which has been recognized as an
important principle of common-sense reasoning which is in particular used for
finding explanations. Given a Horn theory Σ, called the background theory, a
formula q (called query), and a set of literals A ⊆ Lit, an explanation of q w.r.t.
A is a minimal set of literals E over A such that (i) Σ ∪ E |= q, and (ii) Σ ∪ E
is satisfiable.

As shown by Kautz et al. [31], it is possible to generate an explanation for
a query q that is an atom, w.r.t. a given set A = S ∪ {¬p | p ∈ S} of literals
over a given subset S of the atoms, in polynomial time, if Σ is semantically
represented by the set of its characteristic models, char(Σ); under syntax-based
representation, the problem is intractable [42]. A model m of Σ is characteristic,
if m 6∈ Cl∧(mod(Σ) \ {v}), where Cl∧(S) denotes for any set of models S its
closure under intersection, i.e., the least set of models S ′ ⊇ s such that M,M ′ ∈
S′ implies M ∩M ′ ∈ S′.

The polynomial abduction algorithm in [31] implicitly involves the compu-
tation of a minimal transversal of a hypergraph, which is the bulk of the com-
putation effort. This result has been extended in [13] to the following result.

Theorem 10. Given the characteristic set char(Σ) of a Horn theory Σ, a query
literal q, and a subset A of all literals, computing the set of all explanations for
q from Σ w.r.t. A is TRANS-ENUM-complete.

Thus, the generation of explanations and of the transversal hypergraph are
intimately related in the model-based representation framework.



4 Recent Developments on Complexity of the Problems

4.1 Structural complexity

Let us first turn to issues of structural complexity. In a landmark paper, Fredman
and Khachiyan [17] proved that TRANS-HYP can be solved in time no(log n), and
thus in quasi-polynomial time. This shows that the problem is most likely not
co-NP-complete, since no co-NP-complete problem is known which is solvable in
quasi-polynomial time; if any such problem exists, then all problems in NP and
co-NP can be solved in quasi-polynomial time.

A natural question is whether TRANS-HYP lies in some lower complexity
class based on other resources than just runtime. In a recent paper [12], it was
shown that the complement of this problem is solvable in polynomial time with
limited nondeterminism, i.e, by a nondeterministic polynomial-time algorithm
that makes only a poly-logarithmic number of guesses in the size of the input.
For a survey on complexity classes with limited nondeterminism, and for several
references see [25]. More precisely, [12] shows that non-duality of a pair G,H) can
be proved in polynomial time with O(χ(n) · logn) suitably guessed bits, where
χ(n) is given by χ(n)χ(n) = n; note that χ(n) = o(log n).

This result is surprising, because most researchers dealing with the com-
plexity of the transversal hypergraph thought so far that these problems are
completely unrelated to limited nondeterminism.

4.2 Tractable cases

A large number of tractable cases of TRANS-HYP and TRANS-ENUM are known
in the literature, e.g. [7, 5, 4, 9, 11, 14, 12, 21, 35, 37], and references therein.

Examples of tractable classes are instances (H,G) where H has the edge sizes
bounded by a constant, or where H is acyclic. Various “degrees” of hypergraph
acyclicity have been defined in the literature [15]. The most general notion of hy-
pergraph acyclicity (applying to the largest class of hypergraphs) is α-acyclicity;
less general notions are (in descending order of generality) β-, γ-, and Berge-
acyclicity (see [15]). In [11], it was shown that Hypergraph transversal instances
with β-acyclic H are tractable. In [12], this tractability result has been recently
improved to instances where H is α-acyclic and simple. This result is a corol-
lary to a more general tractability result for hypergraphs whose degeneracy is
bounded by a constant; simple, α-acyclic hypergraphs have degeneracy 1.

Furthermore, [12] shows that instances (H,G) of TRANS-HYP where the
vertex-hyperedge incidence graphs of H (or of G) have bounded treewidth are
solvable in polynomial time. Note that this class of hypergraphs does not gener-
alize α-acyclic hypergraphs. In [26] a concept of hypertree width of a hypergraph
was defined, which generalizes α-acyclicity properly, as follows.1

A hypertree for a hypergraph H = (V,E) is a triple 〈T, χ, λ〉 where T is a
rooted tree (N,A) and χ : N → 2V and λ :→ 2E are labeling functions which

1 Actually, this notion was defined for conjunctive queries rather than hypergraphs,
but is obvious from the natural correspondence between queries and hypergraphs.



associate with each node n ∈ T a set of vertices χ(n) ⊆ V and a set of edges
λ(n) ⊆ E. For any subtree T ′ = (N ′, A′) of T , we denote χ(T ′) =

⋃
n∈N ′ χ(n).

Definition 1. A hypertree 〈T, χ, λ〉 for a hypergraph H = (V,E) is a hypertree
decomposition of H, if it satisfies the following conditions:

1. for each e ∈ E, there exists some n ∈ N such that e ⊆ χ(n), i.e., each edge
of E is covered by some vertex label of T ;

2. for each vertex v ∈ V , the set {n ∈ N | v ∈ λ(n)} induces a connected
subtree in T ;

3. for each node n ∈ N , χ(n) ⊆
⋃
λ(n) holds, i.e., each vertex in the vertex

label occurs in some edge of the edge label; and
4. for each node n ∈ N ,

⋃
λ(n) ∩ χ(Tn) ⊆ χ(n), where Tn denotes the subtree

of T rooted at n; that is, each vertex v that occurs in some edge of the edge
label and in the vertex label of n or some node below, must already occur in
the vertex label of n.

The width of hypertree decomposition 〈T, χ, λ〉 is given by maxn∈N |λ(n)|, i.e.,
the largest size of some edge label.

Then, the hypertree width of a hypergraph H is the minimum width over all
hypertree decompositions for H.

A (nonempty) hypergraph is α-acyclic, if and only if its hypertree width
is equal to one. It was shown that several NP-hard decision problems whose
underlying structure can be described by a hypergraph become tractable if its
hypertree width is bounded by a constant. In particular, this turned out to be the
case for answering Boolean conjunctive queries and for finite-domain constraint
satisfaction problems. However, as the following result shows, even a bound on
the hypertree-with as low as two does not imply the tractability of TRANS-HYP

(unless P=NP). Denote by HTk the subcase of TRANS-HYP where the hypertree
width of H in instances (H,G) is bounded by k.

Theorem 11. HT2 for instances (H,G) where H is simple is TRANS-HYP-hard.

Proof. It obviously suffices to logspace-reduce a TRANS-HYP instance (H,G) to
an instance (H∗,G∗) of HT2, where H = (V,E) is simple and |E| > 1. We define
H∗ = (V ∗, E∗) as follows. Let V ∗ = V ∪ {a, b}, where a and b are new distinct
vertices, and let E∗ consist of the following edges:

– eab := {a, b},
– eaV := {a} ∪ V ,
– eb := e ∪ {b}, for each e ∈ E.

It is not hard to see that H∗ is simple and has hypertree width bounded by 2. In
fact, a hypertree decomposition of width 2 is given by the hypertree decompo-
sition 〈T, χ, λ〉 where the root of T groups together the two edges eab and eaV ,
and where each edge eb is appended as a singleton child to the root. Moreover,
all variables at each node n of the decomposition are “relevant”, i.e., in terms



of [26], χ(n) =
⋃
λ(n). On the other hand, there is no hypertree decomposition

〈T, χ, λ〉 for H which has width 1.
Now observe that the minimal transversals of H∗ are the following subsets

of V ∗: {a, b}, {a} ∪ τ , where τ ∈ Tr(H), and {b, x}, where x ∈ V .
Let G∗ = (V ∗, F ∗) where F ∗ consists of the edges {a, b}, {a}∪τ , where τ ∈ G,

and {b, x}, where x ∈ V . It is clear that Tr(H) = G iff Tr(H∗) = G∗. Moreover,
the reduction is clearly feasible in polynomial time (in fact, even in logspace).

Note that this reduction can also be used to transform TRANS-ENUM to the
subcase of HT2 instances in polynomial time. ut

Thus, different from hypergraph degeneracy, bounded hypertree-width alone
is not a criterion which lets us establish tractability of TRANS-HYP.

5 Conclusion

Computing some or all minimal transversals of hypergraph is an important prob-
lem, which has applications to many areas of computer science, and in particular
to logic and AI. While many algorithms or solving this problem exist, cf. e.g.
[30, 10, 12], unfortunately the complexity of this problem is not fully understood
today, and it is open whether the problem is tractable (in the sense of permit-
ting output-polynomial algorithms [30]) or not. Recent progress on the status
of this problem, and in particular solvability by limited nondeterminism, sug-
gests however that this problem is more likely to be expected tractable than
intractable.

Several open issues remain for further work. One is whether the amount
of nondeterminism for solving TRANS-HYP and TRANS-ENUM can be further
significantly decreased, e.g., to O(log log v · log v) many bits. Another issue is,
of course, to find new tractable cases; an interesting question is whether the
tractability result for TRANS-HYP where either G or H has edge size bounded
by a constant can be generalized to a non-constant bound, in particular to bound
O(log n). Finally, it remains to formally assess that known algorithms for solving
TRANS-HYP (see, e.g., [10]) are non-polynomial; only most recently, it was shown
that a simple, well-known algorithm which uses additional information is not
polynomial [44].
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