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Abstract

Generalising the ideas of [10] we define a simple extension of the notion of unfounded
set, called assumption set, that applies to disjunctive logic programs with strong nega-
tion. We show that assumption-free interpretations of such extended logic programs
coincide with equilibrium models in the sense of [13] and hence with the answer sets of
[3, 4].
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1 Introduction

The notion of unfounded set for normal logic progams was introduced in [2].
It was extended to disjunctive logic programs in [10] where it was used to
give declarative characterisations of stable models for disjunctive programs (see
also [9]). In this note we show that a simple generalisation of the concept
of unfounded set can be used to capture answer sets for disjunctive programs
extended with an additional strong negation operator([3, 4]). Instead of un-
founded set, we speak here of assumption set. To prove the equivalence with
answer sets we use the characterisation of answer sets given by the third author
in [13].

2 Assumption Sets

We deal with disjunctive ground logic programs extended by an additional
negation, called strong negation. The usual default or weak negation will be
denoted by ’¬’, strong negation will be denoted by ’∼’. A literal is an atom
or strongly negated atom. A logic program is a set of formulas ϕ, also called
rules, of the form:

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln → K1 ∨ . . . ∨Kk (1)

where the Li and Kj are literals. The consequent K1 ∨ . . .∨Kk of a formula ϕ
of form (1) is called the head and denoted by h(ϕ). The antecedent L1 ∧ . . . ∧
Lm∧¬Lm+1∧ . . .¬∧Ln is called the body and denoted by b(ϕ). We distinguish
between the weakly positive part of the body, denoted by b+(ϕ), being L1 ∧
. . . ∧ Lm and the weakly negative part, b−(ϕ), which is ¬Lm+1 ∧ . . . ∧ ¬Ln.

In order to define assumption sets in this more general setting, we need to
consider interpretations comprising sets of literals. Accordingly we say that an
interpretation I is a non-empty and consistent set of literals, ie. for no atom
A do we have both A ∈ I and ∼ A ∈ I. Truth and falsity wrt interpretations
is defined as follows. A literal L is true wrt I, in symbols I |= L if L ∈ I,
and false (I 6|= L) otherwise. The |= relation is extended as follows. I |= ¬L
if I 6|= L, equivalently L 6∈ I. It follows from the consistency condition that
I |=∼ A implies I |= ¬A. I |= ϕ∧ψ if I |= ϕ and I |= ψ. I |= ϕ∨ψ if I |= ϕ or
I |= ψ. I |= ϕ→ ψ if I |= ψ whenever I |= ϕ. An interpretation I is a model of
a program Π if I |= ϕ for each formula ϕ ∈ Π.

With respect to this more general notion of interpretation, we can define
the concept of assumption set as a simple extension of the usual notion of
unfounded set (it reduces to the ordinary notion of unfounded set of [2] in the
case of total interpretations on normal logic programs without disjunction and
strong negation).

Definition 1 Let Π be a logic program and I an interpretation for Π. A non-
empty subset X of I is said to be an assumption set for Π wrt I if for each
L ∈ X, every formula ϕ of Π having L in its head satisfies at least one of the
following three conditions.
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1. The weakly negative body is false wrt I, ie. I 6|= b−(ϕ).
2. The weakly positive body is false wrt I\X, ie. I\X 6|= b+(ϕ).

3. The head is true wrt I\X, ie. I\X |= h(ϕ).

Given a program Π, an interpretation I is said to be assumption-free if there
are no assumption sets for Π wrt I.

Models of a program that are assumption-free correspond to the answer
sets of the program. To show this we use a characterisation of answer sets as
minimal models of a certain kind in the logic of here-and-there with strong
negation, denoted by N2. The minimal models in question were studied in
[13] and are called equilibrium models. We show that for disjunctive programs
equilibrium models and assumption-free models coincide.1 In fact we shall
demonstrate an even closer link between assumption sets and N2-models, to be
described in the next section.

3 Logical Preliminaries

In logic, the notion of strong negation was introduced by Nelson [12] in 1949.
Nelson’s logic N is known as constructive logic with strong negation. N can
be regarded as an extension of intuitionistic logic, H, in which the language
of intuitionistic logic is extended by adding a new, strong negation symbol,
‘∼’, with the intepretation that ∼ A is true if A is constructively false. The
axioms and rules of N are those of H (see eg. [1]) together with the axiom
schemata involving strong negation, originally given by Vorob’ev [15, 16] (see
[13]). A Kripke-style semantics for N is straightforward. In general, one may
take Kripke-frames for intuitionistic logic, but require valuations V to be partial
rather than total, extending the truth-conditions to include the strongly negated
formulas (see eg. [6, 1]). Since we deal here with fully instantiated or ground
logic programs we omit the semantics of quantification. Accordingly, for our
present purposes we consider Kripke frames F , where

F = 〈W,≤〉
such that W is a set of stages or possible worlds and ≤ is a partial-ordering
on W . A Nelson-model M is then defined to be a frame F together with an
N -valuation V assigning 1, 0 or −1 to each sentence ϕ and world w ∈ W .
Moreover, V satisfies the following. If A is an atom, then if V (w,A) 6= 0 then
V (w′, A) = V (w,A) for all w′ such that w ≤ w′. In addition,

V (w,∼ ϕ) = −V (w,ϕ)

V (w,ϕ ∨ ψ) = max{V (w,ϕ), V (w,ψ)}
V (w,ϕ ∧ ψ) = min{V (w,ϕ), V (w,ψ)}

V (w,ϕ→ ψ) =

{
1 iff for all w′ ≥ w, V (w′, ϕ) = 1 implies V (w′, ψ) = 1
−1 iff V (w,ϕ) = 1 and V (w,ψ) = −1

1Equilbrium models remain more general since they are defined for syntactically broader
classes of theories.
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V (w,¬ϕ) = 1 ⇔ V (w′, ϕ) < 1 for all w′ ≥ w

V (w,¬ϕ) = −1 ⇔ V (w,ϕ) = 1

A sentence ϕ is said to be true in a Nelson-model M, written M |=N ϕ, if for
all w ∈ W , V (w,ϕ) = 1. Similarly, M is said to be an N -model of a set Π of
N-sentences, if M |=N ϕ, for all ϕ ∈ Π.

We also consider intermediate logics, obtained by adding additional axioms
to H. An intermediate logic is called proper if it is contained in classical logic.
For any intermediate logic Int, we can define a least constructive (strong nega-
tion) extension of Int, obtained simply by adding to Int the Vorob’ev axioms.
In the lattice of intermediate logics, classical logic has a unique lower cover
which is the supremum of all proper intermediate logics. This greatest proper
intermediate logic will be denoted by J . It is often referred to as the logic of
“here-and-there”, since it is characterised by linear Kripke frames having pre-
cisely two elements or worlds: ‘here’ and ‘there’. J is also characterised by
the three element Heyting algebra, and is known by a variety of other names,
including the Smetanich logic, and the 3-valued logic of Gödel, [5].  Lukasiewicz
[11] characterised J by adding to H the axiom schema

(¬α→ β) → (((β → α) → β) → β).

Let us denote by N2 the least constructive extension of J , which is complete
for the above class of 2-element, here-and-there frames under 3-valued, Nelson
valuations (see [8]).

4 N2 and Assumption Sets

Since N2 is the logic determined by Nelson models based on the 2-element,
‘here-and-there’ frame, an N2-model N is a structure 〈{h, t},≤, V 〉, where the
worlds h and t are reflexive, and h ≤ t. Simplifying, we can also regard an
N2-model simply as a pair 〈H,T 〉, where H is the set of literals verified at
world h and T is the set of literal verified at world t. Note that for any such
model 〈H,T 〉, we always have H ⊆ T . We now consider the relation between
assumption sets and N2-models.

Proposition 1 Let Π be a program and let M be an interpretation such that
M |= Π. A non-empty subset X of M is an assumption-set for Π wrt M iff
〈M\X,M〉 is an N2-model of Π.

Proof. Let M be an interpretation such that M |= Π. Consider a non-empty
subset X of M such that X is an assumption set for Π wrt M . We show that
〈M\X,M〉 is an N2-model of Π. Consider the conditions 1-3 of Definition 1
applied to X, and consider any formula ϕ of Π whose head contains some literal
in X. If condition 1 holds, then, since M |= ϕ, clearly ϕ holds at each point
in 〈M\X,M〉, by the semantics for N2; so 〈M\X,M〉 |= ϕ. Likewise it is
easily seen that ϕ is verified at the first point if either 2 or 3 holds; and it is
automatically verified at the second point, since M is a model of the program.
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It remains to consider those formulas ϕ of Π whose heads contain no literals in
X. For such a formula ϕ of form (1), since M |= ϕ, the following condition is
satisfied:

L1, . . . , Lm ∈M & Lm+1, . . . , Ln 6∈M ⇒ Ki ∈M for some i ≤ k (2)

It follows that if L1, . . . , Lm ∈M\X and Lm+1, . . . , Ln 6∈M , then Ki ∈M for
some i ≤ k, hence Ki ∈ M\X, since no Ki is in X. Given that ϕ is already
satisfied in M , this is precisely the condition for ϕ to be verified also at the first
point in 〈M\X,M〉. So 〈M\X,M〉 |=N2 Π, as required.

For the other direction, suppose that M = 〈M ′,M〉 is an N2-model of Π
with M ′ a proper subset of M . We verify that M\M ′ is an assumption set for Π
wrt M . Set X = M\M ′ and consider any formula ϕ of Π whose head contains
a literal in X. Since M |= ϕ, in particular wrt the first point M ′, either h(ϕ) is
true or b(ϕ) is false. The latter condition occurs if either b+(ϕ) is false wrt to
M ′ or if b−(ϕ) is false wrt M . So at least one of conditions 1 - 3 of Definition
1 holds for X. Therefore X is an assumption-set for Π wrt M , as required. 2

5 Equilibrium Logic

Equilibrium logic was introduced in [13, 14] as a special kind of minimal model
reasoning in N2, defined as follows.

Definition 2 We define a partial ordering ≤ among N2-models as follows.
For any models M = 〈H,T 〉, M′ = 〈H ′, T ′〉, we set M ≤ M′ iff T = T ′ and
H ⊆ H ′. A model M of a program Π is said to be a minimal model of Π, if it
is minimal under the ≤-ordering among all models of Π.

Definition 3 An N2-model 〈H,T 〉 of Π is said to be an equilibrium model of
Π iff it is minimal and H = T .

Thus an equilibrium model is a model 〈H,T 〉 in which H = T and no other
model verifying the same literals at its t-world verifies fewer literals at its h-
world. Clearly this model is equivalent to a one-element model. The system of
inference based on reasoning from all equilibrium models of a theory is called
equilibrium logic. We now state the equivalence between assumption-free sets,
equilibrium models and answer sets ([3, 4]).

Proposition 2 Let Π be a program and let M be an interpretation such that
M |= Π. The following three conditions are equivalent.

1. M is assumption-free for Π

2. M is an answer set of Π

3. 〈M,M〉 is an equilibrium model of Π

Proof. The equivalence of 2 and 3 was shown in [13]. The equivalence of 1
and 3 is a simple corollary of Proposition 1. If M is a model of Π that is
not assumption-free, then there exist a non-empty assumption-set X wrt M .
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By Proposition 1, 〈M\X,M〉 is an N2-model of Π, and so 〈M,M〉 is not in
equilibrium. Conversely, if 〈M,M〉 is not in equilibrium, then there exist an
N2-model 〈M ′,M〉 of Π, where M ′ is a proper subset of M . By Proposition 1,
M\M ′ is an assumption-set for Π wrt M . Hence M is not assumption-free. 2
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