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Call an hypergraph, that is a family of subsets (edges) from a finite vertex set, an

exact transversal hypergraph iff each of its minimal transversals, i.e., minimal vertex
subsets that intersect each edge, meets each edge in a singleton. We show that such

hypergraphs are recognizable in polynomial time and that their minimal transversals
as well as their maximal independent sets can be generated in lexicographic order with
polynomial delay between subsequent outputs, which is impossible in the general case

unless P= NP. The results obtained are applied to monotone Boolean µ-functions,
that are Boolean functions defined by a monotone Boolean expression (that is, built
with ∧,∨ only) in which no variable occurs repeatedly. We also show that recognizing
such functions from monotone Boolean expressions is co-NP-hard, thus complementing
Mundici’s result that this problem is in co-NP.

1. Introduction

A hypergraph, i.e., a family of subsets (called edges) of a finite vertex set, is a natu-
ral generalization of the concept of a graph to attack combinatorial problems beyond
graphs (Berge, 1989). A well-known problem of generating all solutions to a problem on
hypergraphs is computing all minimal transversals (hitting sets) of a hypergraph H, cf.
(Reiter, 1987; Mannila and Räihä, 1991; Eiter and Gottlob, 1991). A minimal transversal
is a minimal vertex subset that has a nonempty intersection with each edge; Tr(H) is
the hypergraph whose edges are all minimal transversals of H. The minimal transversals
correspond 1-1 to the maximal independent sets of H, which are the maximal vertex
subsets that contain no edge of H. The standard notion of a polynomial time algorithm
for generating all minimal transversals refers to input-polynomiality, which is as follows.

Input-polynomial time: An algorithm meets this criterion if it runs in time polynomial
in the input size of H.

It is well-known and easy to see that H can have exponentially many minimal transver-
sals resp. maximal independent sets in the number of edges of H, and hence they cannot
be computed in input-polynomial time. It remains to see whether this is possible in
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‘output-polynomial time’, i.e., if the output size is accounted in measuring the ‘complex-
ity’ of such an algorithm; two possible criteria for output-polynomial computation are
the following (see Johnson, Yannakakis and Papadimitriou (1988) for a discussion and
further criteria):

Total output-polynomial time: An algorithm meets this criterion if it works in time
bounded by a polynomial in the input size of H and the number of minimal transversals
(maximal independent sets).

Output with polynomial delay: An algorithm meeting this criterion must output the
minimal transversals (maximal independent sets) of H in some order such that the time
until the first output and the time between subsequent outputs (and the time after the
last output) is always bounded by a polynomial in the size of H.

Note that the latter criterion strengthens the former. It is open whether a total output-
polynomial algorithm for computing Tr(H) resp. all maximal independent sets of a hyp-
ergraph exists, cf. (Lawler, Lenstra and Rinnooy Kan 1980; Johnson, Yannakakis and
Papadimitriou, 1988; Mannila and Räihä, 1991; Ibaraki and Kameda, 1990; Eiter and
Gottlob, 1991).

We describe an polynomial-delay algorithm for lexicographic output of the minimal
transversals of xt-hypergraphs, i.e., hypergraphs whose minimal transversals meet each
edge in a singleton; for general hypergraphs, this is not possible unless P = NP. We
also show that the maximal independent sets of such a hypergraph can be output in
lexicographic order with polynomial delay. Moreover, we show that xt-hypergraphs can
be recognized in polynomial time. Notice that deciding whether a hypergraph has any
minimal transversal that meets each edge in exactly one vertex is NP-complete.

Our results on hypergraphs have an interesting application to the class of Boolean
µ-functions, which are definable by Boolean expressions in which no variable occurs
repeatedly (called µ-formulas in (Valiant, 1984; Mundici, 1989b)); such formulas have
applications in machine learning, for instance (Valiant, 1984; Pitt and Valiant, 1988).
The properties of µ-formulas, especially if the Boolean expression is monotone, i.e., built
with ∧,∨ only, have recently been studied in (Hunt III and Stearns, 1986,1990; Mundici
1989a,1989b); monotone µ-formulas correspond to series-parallel networks (cf. Mundici,
1991). Mundici showed that deciding whether a monotone Boolean expression E is equiv-
alent to some monotone µ-formula is in co-NP. We show that this problem is polynomial
if E is in CNF or DNF, and that the problem is co-NP-hard in the general case. We
also show that the dualization problem, i.e., computing from the prime implicants of a
Boolean function the prime implicants of the dual function, as well as a variant thereof
can be solved in case of monotone Boolean µ-functions by polynomial delay algorithms.

The rest of the paper is organized as follows. Section 2 introduces preliminaries and
notation. Section 3 treats recognition of xt-hypergraphs, while Section 4 considers mini-
mal transversals and maximal independent sets computation. The results of Sections 3,4
are applied in Section 5 to Boolean µ-functions. Section 6 concludes the paper.

2. Preliminaries and Notation
Definition 2.1. A hypergraph is a pair (V, E) of a finite vertex set V = {v1, . . . , vn}
and a family E = {E1, . . . , Em} of subsets of V , called hyperedges or simply edges.

We will identify a hypergraph H = (V, E) with E if V is understood, and we will write
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H ∈ H for H ∈ E , H1 ∪H2 for (V1 ∪ V2, E1 ∪ E2) where Hi = (Vi, E i), i = 1, 2 if there is
no danger of ambiguity.

We assume that sets (and edges) are stored as bit vectors, and hence the problem size
S = S(H) of a hypergraph H on V is of order Θ(|V ||E|).

For every hypergraph H, let Ve(H) = {v : ∃H ∈ H s.t. v ∈ H} denote the essential
vertices of H. A hypergraph H is called simple iff H ⊆ H ′ ⇒ H = H ′ for each H,H ′ ∈ H.
In particular, ∅ is simple.

Let for each hypergraph H on V denote min(H) the hypergraph on V with edge set
{H ∈ H :6 ∃H ′ ∈ H s.t. H ′ ⊂ H}. Clearly, min(H) is simple.

The star St(v,H) of vertex v in the hypergraph H on V is the hypergraph (V, {H ∈
H : v ∈ H}).

Definition 2.2. A set T ⊆ V is called a transversal (Berge, 1989) (or hitting set) of
hypergraph H on V iff ∀H ∈ H : T ∩H 6= ∅, and T is called minimal iff for all T ′ ⊂ T ,
T ′ is not a transversal of H. The transversal hypergraph Tr(H) of H is the hypergraph
on V with edge set {T : T is a minimal transversal of H}. In particular, Tr(∅) = {∅}
and Tr({∅}) = ∅.

The following properties of Tr(H) are well-known (cf. Berge, 1989).

Proposition 2.1. For every hypergraph H, Tr(H) is simple and Tr(H) = Tr(min(H)).

Proposition 2.2. Let G,H be simple hypergraphs. Then Tr(Tr(H)) = H and Tr(G) =
Tr(H) iff G = H.

Corollary 2.3. Let H be a simple hypergraph on V , and let v ∈ V . Then there exists
T ∈ Tr(H) such that v ∈ T iff v ∈ Ve(H).

Definition 2.3. A set I ⊆ V is an independent set of a hypergraph H on V iff ∀H ∈
H : H 6⊆ I, and I is called maximal iff no I ′ ⊃ I is an independent set of H.

Clearly, I is a maximal independent set of H iff V − I ∈ Tr(H) holds.
Given a linear order < on V = {v1, . . . , vn}, v1 < v2 < · · · < vn, the lexicographic

order <l on the powerset P(V ) is defined as follows: V1 <l V2 iff the least element in
(V1 − V2) ∪ (V2 − V1) is in V1 (Johnson, Yannakakis and Papadimitriou, 1988). Johnson
et al. showed the following.

Proposition 2.4. Finding the lexicographically last maximal independent set of a hyp-
ergraph (even graph) H is NP-hard.

It is easily checked that V1 <l V2 iff V − V2 <l V − V1 holds. Hence

Corollary 2.5. Finding the lexicographically first minimal transversal of a hypergraph
(even graph) H is NP-hard.

Thus, unless P = NP, there is no polynomial delay algorithm that outputs the minimal
transversals of a hypergraph (even a graph) in lexicographic order. (For graphs, (Johnson,
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Yannakakis and Papadimitriou, 1988) entails a clever polynomial delay algorithm for
inverse lexicographic ordering.)

Call a transversal T of hypergraph H exact iff |T ∩H| = 1, for each H ∈ H.

Definition 2.4. A hypergraph H is an exact transversal (xt-)hypergraph iff each T ∈
Tr(H) is an exact transversal of H. In particular, ∅ and {∅} are xt-hypergraphs.

Notice that deciding if any T ∈ Tr(H) is exact is NP-complete, since deciding if
H has an exact transversal is well-known NP-complete (Karp, 1972). The similar xt-
hypergraph recognition problem is as follows. Given a hypergraph H, decide whether H
is an xt-hypergraph. This problem is in a sense dual to deciding if some minimal exact
transversal exists, and turns out to be polynomial.

We conclude this section with additional notation. For any hypergraph H on V and
V ′ ⊆ V , H[V ′] denotes the hypergraph (V, {H∩V ′ : H ∈ H}), and for v ∈ V , R(H; v;V ′)
denotes the hypergraph (V, {H − V ′ : H ∈ H, v /∈ H}). That is, H[V ′] contains all edges
of H projected to V ′, and R(H; v;V ′) contains all edges of H that do not contain v,
projected to V − V ′.

3. Recognizing Exact Transversal Hypergraphs

We show in this section that recognizing an xt-hypergraph is polynomial. We note the
following properties of xt-hypergraphs.

Lemma 3.1. Let H be a hypergraph on vertices V , and let v ∈ V , H ∈ H such that
v ∈ H, and let H′ = R(H; v;H). Then Tr(H′) = {T − {v} : T ∈ Tr(H), T ∩H = {v}}.

Proof. It is easily checked that this holds if H′ = {∅}, which is the case iff H ′ ⊆ H−{v}
exists such that H ′ ∈ H. For the rest, we exclude this case.

Let T ∈ Tr(H′). Clearly, T ∪{v} is a transversal of H. Furthermore, T ∪{v} ∈ Tr(H)
holds; for if not, since T ∩H = ∅ clearly holds, T ′ ⊂ T must exist such that T ′ ∪ {v} ∈
Tr(H); since T ′ is a transversal of H′, this contradicts T ∈ Tr(H′). On the other hand,
if T ∈ Tr(H) such that T ∩H = {v}, then T −{v} must be a transversal of H′. Assume
T −{v} /∈ Tr(H′) holds. Then T ′ ∈ Tr(H′) with T ′ ⊂ T −{v} exists, and since T ′ ∪ {v}
is a transversal of H, this contradicts T ∈ Tr(H). Hence Tr(H′) = {T − {v} : T ∈
Tr(H), T ∩H = {v}}. 2

Corollary 3.2. Let H be an xt-hypergraph on vertices V , and let v ∈ V , H ∈ H such
that v ∈ H, and let H′ = R(H; v;H). Then Tr(H′) = {T − {v} : T ∈ Tr(H), v ∈ T} and
H′ is an xt-hypergraph.

Proof. Follows easily from Lemma 3.1 and the definition of xt-hypergraphs. 2

Consider the algorithm XTREC in Figure 1.

Theorem 3.3. On input hypergraph H on vertices V , XTREC correctly outputs whether
H is an xt-hypergraph in time O(mS2), where m = |H|.

Proof. From Lemma 3.1, Proposition 2.1, and Corollary 2.3 it is easily verified that
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Algorithm XTREC(H);

input: a hypergraph H.

output: true if H is an xt-hypergraph, otherwise false.

begin
for v ∈ Ve(H) do

F :=
⋃
H∈St(v,H)

H;

for H ∈ St(v,H) do

H′ = min(R(H; v;H));

if F ∩ Ve(H′) 6= ∅ then output(false);
stop;

fi;
endfor;

endfor;
output(true);

end.

Figure 1. Algorithm XTREC .

XTREC outputs false iff there exist v, v′ ∈ V , H,H ′ ∈ H and T ∈ Tr(H) such that
v′ /∈ H, T ∩H = {v}, {v, v′} ⊆ H ′, and {v, v′} ⊆ T holds. However, this is clearly the
case if and only if T is not an xt-hypergraph.

Let n = |V |. Note that Ve(H), F are computable in O(nm) time (assume that set
operations on vertex sets take linear time.) Clearly, H′ = min(R(H; v;H)) is computable
in time O(nm2), and Ve(H′) is computable in O(nm) time. The inner loop is executed
no more than m times, and the outer no more than n. Thus it is not hard to see that
the runtime of XTREC is bounded by O(n2m3) = O(mS2). 2

4. Generating all Minimal Transversals and all Maximal Independent Sets

In this section, we show that the minimal transversals as well the maximal independent
sets of an xt-hypergraph H can be output in lexicographic order with polynomial delay.
Notice that Hn = {{v2i−1, v2i} : 1 ≤ i ≤ n} on V = {v1, . . . , v2n}, n ≥ 0, is an xt-
hypergraph and that Tr(Hn) = {{w1, . . . , wn} : wi ∈ {v2i−1, v2i}}, |Tr(Hn)| = 2n, thus
no input-polynomial algorithms for these problems exist.

Lemma 4.1. Let H be an xt-hypergraph on vertices V , and let v ∈ V . Then H′ = H[V −
{v}] is an xt-hypergraph and Tr(H′) = {T ∈ Tr(H) : T ⊆ V − {v}}.

Proof. It is easily checked that this holds if H′ = {∅}. For the rest, we exclude this
case. Clearly, every T ∈ Tr(H) such that T ⊆ V −{v} is a transversal of H′; furthermore
T ∈ Tr(H′) holds: for if T ′ ⊂ T is a transversal of H′, then T ′ is a transversal of H
which contradicts T ∈ Tr(H). On the other hand, every T ∈ Tr(H′) fulfills T ⊆ V −{v}
and is a transversal of H. Clearly, T ∈ Tr(H) holds, for if T ′ ⊂ T with T ′ ∈ Tr(H)
exists, T /∈ Tr(H′) follows. Thus Tr(H′) = {T ∈ Tr(H) : T ⊆ V − {v}}. Since H is an
xt-hypergraph, it is not hard to see that H′ is an xt-hypergraph. 2

Theorem 4.2. Let H be an xt-hypergraph on vertices V , and let v ∈ V , H ∈ H such
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Algorithm XTR(U,H);

input: a finite set U and a hypergraph H, U ∩ Ve(H) = ∅.
output: {U ∪ T : T ∈ Tr(H)} in lexicographic order.

begin
if (H = ∅) then output(U);
else

if (∅ /∈ H) then
select least v ∈ Ve(H) and H ∈ St(v,H);
XTR(U ∪ {v}, R(H; v;H));

XTR(U,H[V − {v}]);
fi;

fi;
end.

Figure 2. Algorithm XTR.

that v ∈ H. Then, Tr(H) = H+
v ∪H

−
v , where H+

v = {T ∪{v} : T ∈ Tr(R(H; v;H))} and
H−v = Tr(H[V − {v}]).

Proof. Follows immediately from Corollary 3.2 and Lemma 4.1. 2

Now consider the algorithm XTR in Figure 2.
Recall that finding the lexicographically first minimal transversal of an arbitrary hyp-

ergraph (even graph) is NP-hard.

Theorem 4.3. Let H be an xt-hypergraph on V . Then, XTR(∅,H) outputs the minimal
transversals of H in lexicographic order with O(nS) output delay, where n = |V | and S
is the input size.

Proof. Let ne(H) = |Ve(H)|. We show by induction on ne(H) that if H is an xt-
hypergraph and U ∩ Ve(H) = ∅, then XTR(U,H) outputs the elements of {U ∪ T : T ∈
Tr(H)} in lexicographic order. For the base ne = 0, this is obvious. The inductive step
ne > 0 is verified as follows. We have H 6= ∅. If ∅ ∈ H, the induction statement clearly
holds; if ∅ /∈ H, then by Corollary 3.2 and Lemma 4.1 and the induction hypothesis,
the sets in {U ∪ {v} ∪ T : T ∈ Tr(R(H; v;H))} and {U ∪ T : T ∈ Tr(H[V − {v}])}
respectively, are output in lexicographic order; since v is the least vertex in Ve(H), by
Theorem 4.2 {U ∪ T : T ∈ Tr(H)} is output in lexicographic order, and the induction
statement holds. Thus XTR(∅,H) outputs the minimal transversals of H in lexicographic
order.

Concerning the polynomial delay property, let nf , nb, nl denote the number of recursive
calls of XTR before the first output, between outputs and after the last output upon call
of XTR(U,H), respectively. (nf , nb, nl depend only on H.) It can be shown by induction
on ne again that nf (H) ≤ ne(H), nb(H) ≤ 2ne(H), and nl(H) ≤ ne(H) holds (smaller
bounds exist though). The base ne = 0 is trivial. For the inductive step ne > 0, if ∅ ∈ H,
then the induction statement holds. If ∅ /∈ H, then by the induction hypothesis (let
H1 = R(H; v;H), H2 = H[V − {v}])

nf (H) = max{1 + nf (H1), 1 + nf (H2)} ≤ (ne(H)− 1) + 1 = ne(H)



Exact Transversal Hypergraphs and Application to Boolean µ-Functions 221

nb(H) ≤ max{nb(H1), nb(H2), nl(H1) + nf (H2) + 1} ≤ 2(ne(H)− 1) + 1
< 2ne(H)

nl(H) = max{nl(H1) + 1, nl(H2)} ≤ (ne(H)− 1) + 1 = ne(H),

hence the induction statement holds. It is not hard to see that the runtime of the body of
XTR is bounded by O(n|H|). Since the number of edges of the hypergraphs in recursive
calls monotonically decreases, the O(nS) output delay property of XTR clearly follows.
2

It is easy to see that if the order of the statements XTR(U ∪ {v}, R(H; v;H)) and
XTR(U,H[V −{v}]) in XTR is changed, then the resulting algorithm outputs the minimal
transversals of H in inverse lexicographic order, and it is not difficult to show that the
same bound for output delay holds. Thus,

Theorem 4.4. The minimal transversals of an xt-hypergraph can be output in inverse
lexicographic order with O(nS) delay.

Corollary 4.5. The maximal independent sets of an xt-hypergraph can be output in
lexicographic order with O(nS) delay.

5. Application to Boolean µ-Functions

In this section, we apply the results of the previous sections to Boolean µ-functions.
The reader is assumed familiar with Boolean functions (BFs); for a background, see
Wegener (1987).

Boolean expressions (BEs) are built using the connectives ¬,∧,∨,→ from Boolean
variables x1, . . . , xn and constants 0, 1. The BF represented by the Boolean expression E
is denoted by fE . A BE is monotone iff it is built only with ∧,∨, and a BF is monotone iff
it is represented by some monotone BE. We adopt the terminology of Mundici (1989b).

Definition 5.1. A BE E is a µ-formula iff each variable occurs in E at most once, and
a BE F is called µ-equivalent iff F is equivalent to some µ-formula E.

Call a BF f a µ-function iff there is some µ-formula E that represents f . It is easy
to see that a monotone µ-function f is represented by a monotone µ-formula (Mundici,
1989b). Hunt III and Stearns (1990) showed that deciding whether a monotone BE E
defines a particular µ-function is co-NP-complete. For deciding whether E defines any
µ-function, Mundici obtained the following upper bound.

Proposition 5.1. Mundici (1989b). Given a monotone BE E, deciding if fE is a µ-
function is in co-NP.

This bound is tight, as we will show. We first show that this problem is polynomial
if E is in CNF or in DNF. Recall that a BE is in CNF (DNF) iff it is a conjunction
of clauses, i.e., disjunctions of literals (a disjunction of monomials, i.e., conjunctions of
literals), where a literal is a BE of type x or ¬x.

We can think of a prime implicant (prime clause) of a monotone BF f(x1, . . . , xn) as a
minimal set {y1, . . . , yk} ⊆ {x1, . . . , xn} such that y1∧· · ·∧yk → E (E → y1∨· · ·∨yk) is a
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tautology (in case of the empty set, 1→ E and E → 0, respectively) (cf. Mundici, 1989b).
Let PI(f) and PC(f) denote the hypergraphs on vertices {x1, . . . , xn} with respective
edge sets of all prime implicants and prime clauses of f .

Clearly, PI(f) and PC(f) are simple hypergraphs, which are well-known related as
follows.

Lemma 5.2. Let f be a monotone BF. Then, PI(f) = Tr(PC(f)), PC(f) = Tr(PI(f)).

Monotone µ-functions can be characterized by xt-hypergraphs due to a deep structural
result by Mundici (1989a) as follows.

Proposition 5.3. A monotone BF f is a µ-function if and only if PI(f) is an xt-
hypergraph.

Thus we get the following result.

Lemma 5.4. Given PI(f) or PC(f) for a monotone BF f , deciding if f is a µ-function
is possible in O(mS2) time.

Proof. If H is a simple hypergraph, then H is xt iff Tr(H) is xt. Hence the lemma
follows immediately from Proposition 5.3, Lemma 5.2, and Theorem 3.3. 2

Theorem 5.5. Let E be a monotone BE on variables x1, . . . , xn which is in CNF (DNF).
Deciding if fE is µ-equivalent is possible in time O(n2m3), where m is the number of
clauses (monoms) of E.

Proof. If E =
∨m
i=1(xi1 ∧· · ·∧xiki ), then PI(fE) = min(H) where H is the hypergraph

on {x1, . . . , xn} with edge set {{xi1 , . . . , xiki} : 1 ≤ i ≤ m}. (The case of CNF is similar.)
Since min(H) is computable in time O(nm2), the result follows by Lemma 5.4. 2

The complexity of recognizing µ-functions from monotone BEs not necessarily in DNF
or CNF is co-NP-complete, however. co-NP-hardness results already if DNF and CNF
are mixed. We refer in the proof of this result to the following lemma.

Lemma 5.6. Let H be a simple hypergraph on vertices V = {v1, . . . , v2n}, n ≥ 1, such
that (i) {vi, vn+i} ∈ H, 1 ≤ i ≤ n, and (ii) ∀H ∈ H : |H| ≤ 2⇒ H = {vi, vn+i} for some
i ∈ {1, . . . , n}. Then, H is an xt-hypergraph if and only if H = {{vi, vn+i} : 1 ≤ i ≤ n}.

Proof. The if direction is trivial. The only-if direction is shown by contradiction.
Assume that H is an xt-hypergraph but H 6= {{vi, vn+i} : 1 ≤ i ≤ n}. Hence, H ∈ H
exists such that |H| = k > 2. Without loss of generality we may assume that H =
{v1, . . . , vk}. Indeed, since H is simple, {vi, vn+i} 6⊂ H ′ for 1 ≤ i ≤ n and all H ′ ∈ H,
thus H = {v1, . . . , vk} can be reached by a vertex renaming. Since v1 ∈ Ve(min(H)), by
Proposition 2.1 and Corollary 2.3, there exists a T ∈ Tr(H) such that T ∩(H−{v1}) = ∅;
it follows that {vn+2, . . . , vn+k} ⊆ T . By the xt-property of H, we have that no edge of
H contains two vertices from {vn+2, . . . , vn+k}, and hence each edge of H must contain
a vertex from T ′ = V − {vn+2, . . . , vn+k}. Consequently, T ′ is a transversal of H. Since
T ′ − {vi} is not a transversal of H for 2 ≤ i ≤ k, it follows that T ′′ ∈ Tr(H) exists with
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{v2, . . . , vk} ⊆ T ′′ ⊆ T ′. But {v2, . . . , vk} ⊆ H ∩ T ′′ and k > 2 means that H is not an
xt-hypergraph, a contradiction. 2

Notice that without (ii) the lemma no longer holds. E.g., the hypergraph (V, {{v1, v3},
{v2, v4}, {v1, v2}, {v3, v4}}) with V = {v1, v2, v3, v4} is an xt-hypergraph.

Theorem 5.7. Let E be a monotone BE. Deciding if fE is a µ-function is co-NP-
complete. This holds even if E = E1 ∨ E2, where E1 is in CNF and E2 is in DNF.

Proof. Membership of this problem in co-NP is given by Proposition 5.1.
We prove co-NP-hardness by a polynomial transformation from deciding if a BE E

on distinct variables x1, . . . , xn, n ≥ 1, which is in CNF is a contradiction. Let y1, . . . , yn
be new distinct Boolean variables, and define the monotone BE E′ as follows.

E′ = E[y] ∨ (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn),

where E[y] denotes the BE obtained if in E each occurrence of ¬xi is replaced by yi,
for 1 ≤ i ≤ n. (We remark that this construction is similar to the one used in the proof
of Theorem 3.3 from (Hunt III and Stearns, 1990). ) Without loss of generality we may
assume that there exists no I ∈ PI(fE) such that |I| ≤ 2. Indeed, this can be decided
in polynomial time, hence deciding if E is a contradiction is easily transformable to this
subcase in polynomial time.

Under this restriction, I = {{xi, yi} : 1 ≤ i ≤ n} ⊆ PI(fE′) holds, and I = PI(fE′) if
and only if E is a contradiction. Since each I ∈ PI(fE′)−I fulfills |I| > 2, by Lemma 5.6
and Proposition 5.3 it follows that E′ is µ-equivalent if and only if E is a contradiction.
Since E′ is polynomially constructible, we have the result. 2

Another immediate result is obtained for the dualization problem of monotone BFs,
which is to compute from PI(f) the prime implicants of the dual function fd (cf. Wegener
(1987) for dual functions). By well-known properties of duality, PI(fd) = PC(f) holds.
Hence by Theorem 4.3,

Theorem 5.8. Given the prime implicants of a n-ary monotone µ-function f , the prime
implicants of the dual function fd can be generated in lexicographic order with O(nS)
delay.

A variant of the dualization problem is formulated by Crama (1987) as follows. Let ≤
partially order the Boolean n-vectors by (a1, . . . , an) ≤ (b1, . . . , bn) iff ai = 1 ⇒ bi = 1,
for all i, and let f(x1, . . . , xn) be a monotone BF. Given the minimal vectors a such
that f(a) = 1 (the minimal true points, MTPs, of f), find all maximal vectors b such
that f(b) = 0 (the maximal false points, MFPs, of f). Let for a = (a1, . . . , an) denote
σ(a) = {xi : ai = 1, 1 ≤ i ≤ n}. It is easy to see that a is a MTP of f iff σ(a) ∈ PI(f)
holds, and since f is monotone iff a ≤ b, f(a) = 1 ⇒ f(b) = 1 for all a, b, cf. Wegener
(1987), it is not hard to see that a is a MFP of f iff σ(a) is a maximal independent set of
PI(f). Define the linear order <t on Boolean vectors by (a1, . . . , an) <t (b1, . . . , bn) iff
ai = 1 for the least i with ai 6= bi. Thus if x1 < · · · < xn, a <t b iff σ(a) <l σ(b). Hence
by Corollary 4.5,
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Theorem 5.9. Given the MTPs of a n-ary monotone Boolean µ-function f , the MFPs
of f can be generated in <t order with O(nS) delay, where S is the input size.

6. Conclusion

We have shown that hypergraphs whose minimal transversals are their exact transver-
sals, i.e., those vertex subsets that meet each edge in a singleton, are efficiently recogniz-
able, and that the minimal transversals as well as the maximal independent sets of such
hypergraphs can be output in lexicographic order with polynomial delay. Lexicographi-
cally sorted output of the minimal transversals is not possible for general hypergraphs
unless P = NP; it is open whether any output total-polynomial algorithm for computing
all minimal transversals (equivalently, all maximal independent sets) exists.

We have further applied the results on hypergraphs to monotone Boolean µ-functions,
i.e., Boolean functions represented by a Boolean expression with ∧,∨, 0, 1 in which no
variable occurs repeatedly (Hunt III and Stearns, 1986,1990; Mundici, 1989a,1989b). We
obtained that such functions are efficiently recognizable from the prime implicants resp.
prime clauses. However, the recognition problem from general monotone expressions was
shown co-NP-hard. This complements the upper bound of membership in co-NP ob-
tained by Mundici (1989b), and shows that Mundici’s bound is tight.

Finally, we considered the dualization problem for monotone Boolean µ-functions.
Our results imply a polynomial delay algorithm for this problem, thus showing that the
problem can be solved efficiently with respect to the combined size of the input and the
output. This result extends the classes of Boolean functions for which such an algorithm
is known, cf. Crama (1987).
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