
Complexity of Model Checking and Bounded Predicate Arities for Non-ground
Answer Set Programming∗

Thomas Eiter and Wolfgang Faber and Michael Fink
Institut für Informationssysteme, TU Wien
Favoritenstraße 9-11, A-1040 Wien, Austria
{eiter,faber,michael}@kr.tuwien.ac.at

Gerald Pfeifer
SUSE LINUX AG

Maxfeldstr. 5, D-90409 N̈urnberg, Germany
gerald@pfeifer.com

Stefan Woltran
Institut für Informationssysteme, TU Wien
Favoritenstraße 9-11, A-1040 Wien, Austria

stefan@kr.tuwien.ac.at

Abstract

Answer Set Programming has become a host for expressing
knowledge representation problems, which reinforces the in-
terest in efficient methods for computing answer sets of a
logic program. While for propositional programs, the com-
plexity of this task has been amply studied and is well-
understood, less attention has been paid to the case of non-
ground programs, which is much more important from a KR
language perspective. Existing Answer Set Programming
systems employ different representations of models, but the
consequences of these representations for answer set compu-
tation and reasoning tasks have not been analyzed in detail.
In this paper, we present novel complexity results on answer
set checking for non-ground programs under two methods for
representing answer sets and a variety of syntactic restric-
tions. In particular, we consider set-based and bitmap-based
representations, which are popular in implementations of An-
swer Set Programming systems. Based on these results, we
also derive new complexity results for the canonical reason-
ing tasks over answer sets, under the assumption that predi-
cate arities are bounded by some constant. Our results imply
that in such a setting – which appears to be a reasonable as-
sumption in practice – more efficient implementations than
those currently available may be feasible.

Introduction
After extensive theoretical research on non-monotonic logic
programming, in the recent years several implemented sys-
tems have become available, e.g., (Leoneet al. 2002;
Simons, Niemel̈a, & Soininen 2002; Lin & Zhao 2002;
Lierler & Maratea 2004). These systems provide the com-
putational backbone for the Answer Set Programming (ASP)
paradigm (Provetti & Son 2001), which has become a host
for expressing knowledge representation problems. In ASP,

∗This work was partially supported by the Austrian Science
Fund (FWF) under projects Z29-N04 and P15068-INF as well as
the European Commission projects IST-2002-33570 INFOMIX,
IST-2001-32429 ICONS, IST-2001-37004 WASP, and the IST-
2001-33123 CologNeT Network of Excellence.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

problems are encoded as logic programs, such that the an-
swer sets of such a program yield the solutions of the orig-
inal problem. This approach is particularly interesting for
logic-based KR formalisms which can be (efficiently) ex-
pressed by logic programs. So far, it has been successfully
applied to planning, diagnosis, and inheritance reasoning,
and is under investigation for other areas such as description
logics and ontologies, e.g. (Swift 2004).

This, in turn, reinforces the interest in efficient algo-
rithms and methods for computing answer sets of a logic
program, cf. (Anger, Konczak, & Linke 2001; Lierler &
Maratea 2004; Leoneet al. 2002; Lin & Zhao 2002;
Nicolas, Saubion, & Stéphan 2002; Simons, Niemelä, &
Soininen 2002). While for propositional programs, the com-
plexity of computing answer sets has been amply studied
and is well-understood, less attention has been paid to non-
ground programs. However, the latter are very important
from a user perspective, since an expressive KR language
should offer predicates allowing for natural problem repre-
sentations. Indeed, all the ASP systems mentioned above
support the use of predicates in some way (while functions
symbols are usually disregarded or restricted).

Similar as in other non-monotonic formalisms, the fol-
lowing major problems have been identified for ASP:

Answer Set Existence:Given a program P, decide
whetherP has some answer set.

Brave Reasoning: Given a programP, and a ground literal
a, decide whethera is true in some answer set ofP.

Cautious Reasoning:Given a programP, and a ground lit-
erala, decide whethera is true in all answer sets ofP.

Answer Set Checking: Given a programP, and a setM of
ground literals, decide whetherM is an answer set ofP.

The complexity of the former three problems has been an-
alyzed in depth for several classes of programs (stratified,
normal, disjunctive, etc., (Ben-Eliyahu & Dechter 1994;
Ben-Eliyahu-Zohary & Palopoli 1997; Eiter & Gottlob
1995; Eiter, Leone, & Saccà 1998; Marek & Truszczýnski
1991); see (Dantsinet al. 2001) for a survey) and the
respective results typically show an exponential shift be-

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P P co-NP

{∨h} P co-NP P co-NP P co-NP

{∨} co-NP ΠP
2 co-NP ΠP

2 co-NP ΠP
2

Table 1: Complexity of ASC for propositional fragments of DL. All entries are completeness results.

Brave / Cautious {} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP / co-NP ∆P
2

{∨h} NP / co-NP ∆P
2 NP / co-NP ∆P

2 NP / co-NP ∆P
2

{∨} ΣP
2 / co-NP ∆P

3 ΣP
2 / ΠP

2 ∆P
3 ΣP

2 / ΠP
2 ∆P

3

Table 2: Complexity of brave and cautious reasoning for propositional fragments of DL. All entries are completeness results.

tween propositional and non-ground programs (fromNP to
NEXP, for instance).

For the problem of answer set checking (ASC), until now
the picture has not been so clear. This can be partly ex-
plained by the fact that, historically, ASC has not been con-
sidered as a standard reasoning task. There are, however,
at least two reasons why ASC should be considered en par
with the other problems mentioned above:

1. In ASP, solutions to a problem are encoded in the answer
sets of a corresponding logic program, so it is of natural
interest to test whether a given claimed-to-be solution is
in fact a proper one.

2. Most ASP systems proceed by generating answer set can-
didates and subsequently checking these. This includes
DLV and GnT (which solve problems above NP where
such an approach is natural), as well as ASSAT and
Cmodels (which employ a transformation to SAT with
solutions not corresponding 1-1 with the answer sets of
the original program in general) (Leoneet al. 2002;
Janhunenet al. 2000; Lin & Zhao 2002; Lierler &
Maratea 2004). ASC emerges as a computational subtask
in these systems.

For the propositional case, (Leoneet al. 2002) gives an
overview on the complexity of ASC, which is depicted in
Table 1, but to our knowledge the non-ground case has not
been studied in depth so far.

This may partly be due to the fact that, in line with the
definition of the Answer Set semantics (Gelfond & Lifschitz
1991), the computation in the non-ground case is commonly
reduced to the ground case by instantiating the input pro-
gramP and then running an algorithm for the propositional
case. However, even though today’s state of the art ASP sys-
tems try to keep the grounding as small as possible, it still
may cause an exponential blow-up in the worst case.

To fill this gap, in this paper we consider ASC for non-
ground programs, and apply our findings to derive novel re-
sults for reasoning over non-ground programs. Our main
results can be summarized as follows:

1. We show, analyzing a number of common syntactic frag-

ments of ASP, that in most cases the complexity of ASC
for non-ground programs is located within the polynomial
hierarchy (PH), and thus does not follow the exponential
shift which is incurred by the aforecited grounding meth-
ods.

2. Furthermore, we show that the computational complexity
of ASC depends on the representation of interpretations,
i.e., how possible candidates for answer sets are provided.
In practice, two concepts have proven useful:

SR: An interpretationI is represented as (an explicit
enumeration of) the set of ground atoms which are true,
i.e., an enumeration of alla ∈ I (set representation).
Commonly used instances of SR are binary trees and
hash tables and variations thereof, like red-black trees.

BR: An interpretationI is represented as a bitmap, i.e.,
for each ground atoma, we have a bitba which is 1 if
a ∈ I and0 if a /∈ I (bitmap representation).

Both forms have been used in ASP systems, and the DLV
system, for example, currently employs SR for grounding
and BR for subsequent computations. It is thus of interest
to know how the design choice for a particular represen-
tation affects (in theory) the computational properties of
reasoning problems.

3. Furthermore, we present novel complexity results for ASP
where the arity of predicates is bounded by a constant. We
show that under this restriction, brave and cautious rea-
soning for non-ground programs fall back into PH; oth-
erwise, these reasoning tasks are known to be complete
for classes ranging fromEXP to (co-)NEXPNP, respec-
tively, depending on the class of programs considered. We
emphasize that this result is of high practical significance,
since nearly all known applications for ASP are expressed
by predicates with bounded arity.

Our results extend and complement previous results in the
literature. More importantly, they alert to the fact that the
grounding procedures used by current ASP systems are an
inherent bottleneck which, as shown by our results, may be

overcome by a different system architecture in many rele-
vant cases.

The results on bounded arities complement previous com-
plexity results for queries to a database where the number
of variables in the query language is bounded by a con-
stant (Vardi 1995). These two settings are orthogonal, since
bounded predicate arity still allows for arbitrarily many vari-
ables in each rule of a program, and conversely a bounded
number of variables does not restrict the arity of predicates
up front, since any variable may occur in the same atom mul-
tiple times.

Preliminaries and Previous Results
In this section, we first give a brief overview of the syn-
tax and semantics of disjunctive datalog under the answer
sets semantics (Gelfond & Lifschitz 1991); for further back-
ground, see (Eiter, Gottlob, & Mannila 1997; Leoneet al.
2002).

An atomis an expressionp(t1, . . .,tn), wherep is apred-
icate of arity n ≥ 0 and eachti is either a variable or a
constant. A(classical) literall is an atomp (in this case, it
is positive), or a negated atom¬p (in this case, it isnega-
tive). Given a literall, its complement¬l is defined as¬p
if l = p andp if l = ¬p. A setL of literals is said to be
consistentif, for every literall ∈ L, ¬l /∈ L.

A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm.

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where
a1, . . . , an, b1, . . . , bm are literals. We refer to “¬” asstrong
negationand to “not” as default negation. The head of
r is the setH(r) = {a1, . . . , an}, and thebody of r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,
B+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}.

A rule r is calledfact if m = 0, n > 0, in which case
the symbol :- is usually omitted; (integrity)constraint if
n = 0; r is normal if n ≤ 1, definiteif n = 1, disjunctiveif
n > 1, andpositiveif k = m, Horn if k = m andn = 1.

A weak constraint (Buccafurri, Leone, & Rullo 2000) is
an expressionwc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where m ≥ k ≥ 0 and b1, . . . , bm are literals, while
weight(wc) = w (theweight) andl (the level) are positive
integer constants or variables. For convenience,w and/or
l may be omitted and are set to 1 in this case. The sets
B+(wc), andB−(wc), are defined as for rules.

A programP is a finite set of rules and weak constraints.
Rules(P) denotes the set of rules andWC(P) the set of
weak constraints inP. wP

max and lPmax denote the maxi-
mum weight and maximum level overWC(P), respectively.
Programs are normal (resp., definite, disjunctive, positive,
Horn) if all of their rules enjoy this property. Horn programs
without constraints and strong negation aredefinite Horn.

For any programP, let UP be the set of all constants ap-
pearing inP (if no constant appears inP, an arbitrary con-
stant is added toUP); let BP be the set of all ground literals
constructible from the predicate symbols appearing inP and
the constants ofUP ; and letGround(P) be the set of rules

rσ obtained by applying, to each rule and weak constraint
r ∈ P, all possible substitutionsσ from the variables inP
to elements ofUP . UP is usually called theHerbrand Uni-
verseof P andBP theHerbrand Literal Baseof P.

Classifying Logic Programs. Starting from Horn pro-
grams without weak constraints, we define classes DL[L]
with L ⊆ {nots,not,∨h,∨, w}. This set is used to indicate
the (possibly combined) admission of

nots: negation; the program remains stratified;
not: unrestricted negation;
∨h: disjunction; the program remains HCF;
∨: unrestricted disjunction;
w: weak constraints.

Recall that stratified negation,nots, cf. (Apt, Blair, &
Walker 1988; Przymusinski 1988) allows only a layered use
of default negationnot, such that negative literals of any rule
instantiation are in a lower layer than the head literals, which
must all be in the same layer, while positive body literals
may occur in the same or lower layers than head literals.
As well, in head-cycle-free disjunction ,∨h, (Ben-Eliyahu &
Dechter 1994), for short HCF, no different head literals of
any rule instance positively depend mutually on each other
(a head literala ∈ H(r) depends on a literalb, if b ∈ B+(r),
or some literalc ∈ B+(r) depends onb).

Thus, for instance, DL[∨h,nots] contains all HCF strat-
ified programs without weak constraints, and DL=
DL[∨,not, w] is the full language of all logic programs.

Semantics. A ground ruler is satisfiedby a consistent set
of literals I iff H(r) ∩ I 6= ∅ wheneverB+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground programP, if each
r ∈ P is satisfied byI. ForP non-ground, we say thatI
satisfiesP iff I satisfiesGround(P). A (weak) constraint
c is violatedby I, iff B+(c) ⊆ I andB−(c) ∩ I = ∅; it is
satisfied otherwise.

Recall that forP ∈ DL[∨,not], a consistent setI ⊆ BP
is ananswer set1 iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct

PI = {H(r) :- B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}

ForP ∈ DL[∨,not, w], a consistent setI ⊆ BP is an(opti-
mal) answer setof P iff I is an answer set ofRules(P) and
HP(I) is minimal among all the answer sets ofRules(P),
where the penalizationHP(I) for weak constraint violation
is defined as follows:

HP(I) =
∑lPmax

i=1

(
fP(i) ·

∑
w∈NPi (I) weight(w)

)
fP(1) = 1, and
fP(n) = fP(n− 1) · |WC(P)| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of the weak constraints in level

i violated byI.

1Note that we only considerconsistent answer sets, while in
(Gelfond & Lifschitz 1991) also the inconsistent set of all possible
literals can be a valid answer set.

SR / BR {} {w} {nots} {nots,w} {not} {not,w}

{} DP DP DP DP DP co-NEXP / ΠP
2

{∨h} DP co-NEXP / ΠP
2 DP co-NEXP / ΠP

2 DP co-NEXP / ΠP
2

{∨} ΠP
2 co-NEXPNP / ΠP

3 ΠP
2 co-NEXPNP / ΠP

3 ΠP
2 co-NEXPNP / ΠP

3

Table 3: Complexity of ASC for DL. All entries are completeness results.

For any programP, we denote the set of its answer sets
byAS(P).

The following proposition is immediate from the well-
known result that that any normal stratified program has at
most one answer set:

Proposition 1 For anyP ∈ DL[L] with {L}⊆{w,nots},
|AS(P)| ≤ 1.

Hence:

Corollary 1 For P ∈ DL[L] with {L} ⊆ {w,nots},
AS(P) = AS(Rules(P)).

Previous Results. We assume that the reader is acquainted
with NP-completeness and basic notions of complexity the-
ory, and refer to (Johnson 1990; Papadimitriou 1994) for fur-
ther background.

As mentioned in the Introduction, previous work on the
complexity of ASP mostly considered the case of propo-
sitional programs. Tables 1 and 2, which are taken from
(Leoneet al. 2002), provide a complete overview of the
complexity of answer set checking and brave and cautious
reasoning, respectively, for the propositional variants of the
language fragments considered in this paper.

In these tables the rows specify the form of disjunction
allowed (in particular,{} = no disjunction), whereas the
columns specify the support for negation and weak con-
straints. So the field in rowR and columnC indicates
DL[L], where{L} = R ∪ C .

For the canonical reasoning problems in the general non-
ground case, the complexity of brave and cautious reasoning
in general increases by one exponential compared to the ac-
cording results in the propositional case. In particular, the
results shift fromP to EXP, NP to NEXP, ∆P

2 to EXPNP,
ΣP

2 to NEXPNP, etc. For disjunctive programs and cer-
tain fragments, complexity results in the non-ground case
have been derived e.g. in (Eiter, Gottlob, & Mannila 1997;
Eiter, Leone, & Sacc̀a 1998). For the other fragments, the re-
sults can be derived using complexity upgrading techniques
(Eiter, Gottlob, & Mannila 1997; Gottlob, Leone, & Veith
1999).

Complexity of Answer Set Checking
In what follows, we shall distinguish between two different
representations for setsI ⊆ BP , for any programP. To
be more specific, we consider a set representation (SR) ofI
as an explicit enumeration of the set of atomsa ∈ I, and
a bit representation (BR) ofI which sets in a bitmap over
all elementsa ∈ BP , those bitsba to 1 wherea ∈ I holds,

and the remaining bits to0. Hence, in the case of BR the
representation of a setI may be exponential in the size of
I, sinceBP is responsible for the size of the representation,
rather thanI itself.

In particular, we observe the following basic relations be-
tween BR and SR:

Lemma 1 (i) If ASC under SR is in complexity classC and
C is closed under polynomial-time transformations, then
ASC under BR is also inC.

(ii) If ASC under BR is hard for classC (under polynomial
transformations), then ASC under SR is also hard forC.

(iii) If BP is polynomial in the size ofP andUP , and if
ASC under SR is hard forC (under polynomial transforma-
tions), then ASC under BR is also hard forC.

Note that all complexity classes considered in this paper
are closed under polynomial transformations. Items (i) and
(ii) hold because SR can be produced from BR in polyno-
mial time (and in logarithmic space). Concerning (iii), BR
can be produced from SR only ifBP is small. We now state
the main results for ASC.
Theorem 1 The complexity of answer set checking inDL
under both the set representation SR and the bitmap repre-
sentation BR is given by the respective entries in Table 3.

Compared to propositional answer set checking, we ob-
serve that we move up only one level in the polynomial hi-
erarchy, provided that weak constraints are not in the con-
sidered fragment, or that answer sets are represented as
bitmaps. One key issue towards the complexity results is
the following lemma, which holds for both BR and SR.

Lemma 2 Given a programP and a consistent setI ⊆ BP
of literals, deciding whetherI satisfiesPI is in co-NP.

The result follows easily from the observation that for
deciding the complementary problem it suffices to guess a
ground substitutionθ and a ruler ∈ P and check whether
I does not satisfy(rθ)I , whererθ denotes the standard way
of applying the substitutionθ to r. In fact, the problem is
also co-NP-hard; and in the propositional case, the problem
is polynomial.

In ASC, the above problem is a necessary subtask, and
under BR, an interpretationI ′ compromising a candidate an-
swer setI has always polynomial size, and can intuitively be
guessed and checked for this property. However, for ASC
under SR,I ′ might be exponentially larger. Note that this
can only occur if the language has weak constraints and if
there is a choice for determining the optimal answer set (i.e.,
multiple regular answer sets may exist; thus Corollary 1 does
not apply). This explains the drastic complexity increase by
an exponential in these cases.

Example 1 Consider the programPexp:

bit(0). bit(1).
w∨number(X1, . . . , Xn) :- bit(X1), . . . , bit(Xn).

The ground programGround(Pexp) is clearly exponential
in the size ofPexp:

bit(0). bit(1).
w∨number(0, . . . , 0) :- bit(0), . . . , bit(0).
...
w∨number(1, . . . , 1) :- bit(1), . . . , bit(1).

Checking that an interpretationI0 = {number(0, . . . , 0)}
does not satisfy PI0

exp (instability of I0) can
be done by guessing a ground rulervio =
w∨number(1, . . . , 1) :- bit(1), . . . , bit(1). (among
exponentially many) such thatI0 does not satisfyrI0

vio. One
can see that in general this task is in NP for both SR and
BR, and therefore the complementary stability check is in
co-NP.

Now consider a different interpretationI2 =
{w, number(0, . . . , 0), . . . , number(1, . . . , 1)}. Note
that I2 is exponential inPexp, but it is part of the problem
input. In order to check whetherI2 is not an answer set of
Pexp, either the instability check (NP) succeeds onI2 or
the stability check (co-NP) succeeds for anI ′2 ⊆ I2. There
are exponentially manyI ′2, but the size of each is bounded
by the size ofI2 for both SR and BR. So in general an
NP algorithm which uses an NP oracle can be employed.
This justifies that checking whether an interpretation is an
answer set is inΠP

2 for a positive disjunctive program.
Now considerI3 = {w} and let us check whether it is

an answer set ofPwexp = Pexp ∪ {:∼ w. [1 : 1]}. In
order to check the complementary problem, is not sufficient
to check instability ofI3 (in NP) or instability (in co-NP) for
someI ′3 ⊆ I3, as before. Now, it can also happen that the
co-NP check succeeds for someI ′′3 * I3 andHPwexp(I ′′3) <
HPwexp(I3), invalidatingI3 as an answer set. Indeed,I ′′3 =
{number(0, . . . , 0), . . . , number(1, . . . , 1)} is such a case
(it does not violate any weak constraints, whileI3 does).
But observe that the size ofI ′′3 is exponentially larger than
I3 (and hence exponentially larger than the input, consisting
of I3 andPwexp) when SR is used, while with BR both are of
equal size. This is the reason for this problem to be hard for
co-NEXPNP for SR, but to be located in a lower complexity
class for BR. �

In the following we shall discuss all results from The-
orem 1 in detail. Note that for showing program classes
DL[L1] ⊆ DL[L2] ⊆ . . . ⊆ DL[Lk] to be complete
for a complexity classC, it suffices to proveC-hardness
for DL[L1] andC-membership for DL[Lk]. Furthermore,
C-hardness for normal programs is immediate fromC-
hardness for HCF programs, due to a faithful polynomial-
time rewriting of HCF programs to equivalent normal pro-
grams (Ben-Eliyahu & Dechter 1994). We will implicitly
employ this technique in the remainder of the paper.

ASC under the Set Representation (SR)
The first two results justify allco-NEXP- andco-NEXPNP-
completeness results in Table 3.

Lemma 3 ASC under SR is inco-NEXPNP for DL pro-
grams; it is inco-NEXP for DL[∨h,not, w] programs.

The lemma holds by a simple exponential blowup of the re-
spective results for the ground case after a preliminary ex-
ponential grounding step.

Lemma 4 ASC under SR is co-NEXPNP-hard for
DL[∨, w] programs andco-NEXP-hard for DL[∨h, w]
programs.

Proof. To show the lemma, we first give the following re-
sult: Let P be a (non-ground) positive program without
weak constraints and w.l.o.g. assumeP contains at least one
(possibly disjunctive) fact, to avoid thatP has an empty
answer set. Moreover, leta be a ground atom,w a fresh
ground atom, and consider a programP ′, which results from
addingw to each head inP, and adding a weak constraint
:∼ not a. [1 : 1]. Then,{w} is an answer set forP ′ iff P has
no answer set containinga (including the case thatP has no
answer set at all).

Hence, we reduced the complement of brave reasoning
(i.e., given a programP without weak constraints and an
atoma, is there no answer set ofP containinga?) to ASC
(i.e., given a programP ’ and a consistent set of literalsI,
is I an answer set ofP ’?) in polynomial time. Note that a
polynomial reduction is only guaranteed in the case of SR,
since the interpretationI wherew is true and everything else
is false can be compactly represented in SR, but not in BR
(in the case the Herbrand base is exponential in the size ofP
andUP .) Moreover, note thatP ′ is positive wheneverP is
positive, and thatP ′ is HCF wheneverP is HCF. Combined
with the known complexity results for brave reasoning in
the non-ground case this showsco-NEXPNP-hardness for
positive disjunctive logic programs andco-NEXP-hardness
for HCF programs. �

We proceed with theDP -entries; the classDP contains
the decision problems whoseyesinstances are characterized
by the conjunction of anNP property and an independent
co-NP property.

The next two results, together with Corollary 1, cover all
DP -entries in Table 3.
Lemma 5 ASC is inDP for DL[not] programs.
Proof.Given a normal programP without weak constraints
and a consistent setI of literals. I is an answer set ofP,
iff (i) I satisfies the reductPI , and (ii) I is minimal in sat-
isfying PI . From Lemma 2, we know that (i) is inco-NP.
Second, we can check the minimality ofI by providing, for
each atoma ∈ I, a founded proofPra which is a sequence
of rule applicationsr1θ1, . . . , rkθk which derivesa starting
from scratch, where default negation is evaluated w.r.t.I.
SincePI is Horn, the number of steps required to derivea
is at most the the number of atoms inI, which is obviously
linear in the size of the problem. Hence, we can guess such
proofsPra for all a ∈ I at once and check them in polyno-
mial time. To conclude, we have needed both aco-NP- and
anNP-test, implying membership inDP . �

Lemma 6 ASC under SR isDP -hard for DL[] programs.

Proof. The result is easily shown by a reduction from
conjunctive query evaluation, which isNP-complete (see
(Abiteboul, Hull, & Vianu 1995)): Given a querya :- B
and a databaseDB , deciding whether the query fires and
derives atoma is NP-complete. This holds even if all in-
volved predicates have arity bounded by a constant. Con-
siderP = DB1 ∪ DB2 ∪ {a1 :- B1. a2 :- B2} for two
conjunctive queriesa1 :- B1 anda2 :- B2, wherea1 6= a2,
andDB1 andDB2 are over disjoint alphabets not contain-
ing a1 anda2. Obviously,P is Horn and polynomial in size
of the databases and queries involved. It is easily seen that
DB1 ∪DB2 ∪{a1} is an answer set ofP iff a1 :- B1 evalu-
ates to true underDB1 anda2 :- B2 evaluates to false under
DB2; this impliesDP -hardness. �

Remaining are theΠP
2 -entries in the third row. Again, we

have two results.

Lemma 7 ASC forDL[∨,not] programs is inΠP
2 .

Proof. We show that the complementary problem is inΣP
2 .

Let P be a program without weak constraints andI a con-
sistent set of literals. Clearly,I is not an answer set forP
iff (i) I does not satisfyPI or (ii) there exists someI ′ ⊂ I
which satisfiesPI Obviously, (i) is inNP. For (ii), we have
to guessI ′ ⊂ I and use anNP oracle for the check. Hence,
(ii) is in NPNP = ΣP

2 , and so is the complementary problem
of ASC. �

Note that for programs with weak constraints this argu-
mentation does not hold since we have to guess an arbitrary
set of literalsI ′ 6= I rather than a proper subset, in order to
check whether a “cheaper” answer set ofRules(P) exists.
But then,I ′ is not necessarily polynomial in the size of the
problem input (i.e.,P andI) if SR is used. Recall that un-
der BR, which is discussed in the next section, this problem
does not occur.

Lemma 8 ASC under SR isΠP
2 -hard for DL[∨] programs.

Proof.The proof is via a polynomial reduction of the evalu-
ation problem for QBFs of formΦ = ∀X∃Y c1 ∧ · · · ∧ ck,
where theci are clauses overX ∪ Y . This problem isΠP

2 -
hard, even if all clauses have size 3. The reduction presented
here is similar to the “classic” reduction of such formulas to
the problem of brave reasoning over disjunctive programs.
In particular, we construct a programP for each QBFΦ of
above form, such that a dedicated set of atomsB+ (see be-
low) is an answer set ofP iff Φ is true. The construction is
as follows:

First, set up a disjunctive fact

t(xi)∨ f(xi). for eachxi ∈ X (1)

usingxi as a constant. For each clauseci = Li,1∨Li,2∨Li,3,
we introduce a predicate whose arity is the number of vari-
ables fromY . We then define, by rules, which truth assign-
ments to these variables make the clause true, given the truth
of the variables fromX in ci, This is best illustrated by ex-
amples. Suppose we havec1 = x1 ∨ ¬x2 ∨ y3. Then, we
introducec1(V), where the argumentV is reserved for the

truth assignments toy3, and define:

c1(0) :- t(x1). c1(1) :- t(x1).
c1(0) :- f(x2). c1(1) :- f(x2).
c1(1) :- f(x1), t(x2).

Informally, this states that clausec1 is satisfied, if eitherx1

is true orx2 is false, and in both cases the value of theY -
variable is irrelevant. Or,x1 is false andx2 is true and the
Y -variable is true as well. As another example, consider
c2 = x2 ∨ ¬y1 ∨ y5. Here, we introducec2(V1, V2), and
define:

c2(0, 0) :- t(x2). c2(0, 1) :- t(x2).
c2(1, 0) :- t(x2). c2(1, 1) :- t(x2).
c2(0, 0) :- f(x2). c2(0, 1) :- f(x2). c2(1, 1) :- f(x2).

Now set up a rule which corresponds to evaluating the for-
mula∃Y c1 ∧ · · · ∧ ck for a given assignment toX:

w :- c1(Ȳ1) ∧ · · · ∧ ck(Ȳk). (2)

whereȲi, 1 ≤ i ≤ k, is a vector representing the variables
from Y occurring inci, put at proper position. In the case
above, we havec1(Y3) andc2(Y1, Y5).

Let us call the program built so farPQBF ; it will also
be used in some of the subsequent proofs. Note thatPQBF

is positive, disjunctive, and HCF, as well as polynomial in
the size of the underlying QBF. The functioning ofPQBF

is as follows: The disjunctive clauses (1) generate a truth
assignment toX, and the remaining clauses check whether
∃Y c1 ∧ · · · ∧ ck is true under this assignment, derivingw if
so.

For proving Lemma 8, we create a maximal interpretation
if w holds as follows. LetB+ be the set of all positive literals
in BPQBF , and add rules

p :- w. for each ground atomp ∈ B+ \ {w}, (3)

to PQBF . Call the resulting programP. Note thatP is not
HCF, and thatBP = BPQBF

has polynomial size, since the
arity of each predicate is at most 3. If we derivew from
PQBF , any element fromB+ can be derived inP. Hence, if
for each possible truth assignment toX a truth assignment
to Y exists s.t.c1 ∧ · · · ∧ ck is true (i.e.,Φ is true),B+ is an
answer set ofP. On the other hand, if a truth assignment to
X exists such that no assignment toY makesc1 ∧ · · · ∧ ck

true (i.e.,Φ is false),B+ cannot be an answer set ofP, as
there exists a proper subset (not containingw) of B+ which
is an answer set ofP. Hence,B+ is an answer set ofP iff
Φ is true. �

ASC under the Bitmap Representation (BR)
From the discussion at the beginning of the problem descrip-
tion, all upper bounds for SR carry over to BR, since the
classes appearing in the characterization of SR are closed
under polynomial time transformations. Moreover, The Her-
brand literal bases of the programs used in theDP -hardness
proof of ASC under SR (Lemma 6) and theΠP

2 -hardness
proof of ASC under SR (Lemma 8) have polynomial size
in the problem input. Therefore, also these hardness results
carry over to BR. Recall that this is not the case for the pro-
gram used in the proof of Lemma 4.

Brave / Cautious {} {w} {nots} {nots,w} {not} {not,w}

{} DP ∗ / NP DP ∗ / NP ∆P
2 ∆P

2 ΣP
2 / ΠP

2 ∆P
3

{∨h} ΣP
2 / ΠP

2 ∆P
3 ΣP

2 / ΠP
2 ∆P

3 ΣP
2 / ΠP

2 ∆P
3

{∨} ΣP
3 / ΠP

2 ∆P
4 ΣP

3 / ΠP
3 ∆P

4 ΣP
3 / ΠP

3 ∆P
4

∗ Without constraints and strong negation (= definite Horn) the complexity isNP.

Table 4: Complexity of brave and cautious reasoning under bounded predicate arities. All entries are completeness results.

It thus remains to verify the results for those fragments
where the set representation caused an exponential shift.
The following result immediately clarifies the upper bounds
for ASC under BR, viz.ΠP

2 for HCF programs andΠP
3 in

general.

Proposition 2 Suppose that, for a fragmentDL[L], ASC
under BR is feasible in∆P

k+1. Then, for the fragment
L′ = L ∪ {w}, it is feasible inΠP

k+1.

Proof.LetP ∈ DL[L] andI a consistent set of literals. We
have to check thatI is an answer set ofRules(P) and, us-
ing the oracle, that no other answer set ofRules(P) exists
which has smaller cost. The bitmap representation guaran-
tees that the respective guesses are polynomial in size of the
problem instance. SinceΠP

k+1 is closed under conjunction,
we can combine this into a singleΠP

k+1 test. �
As an immediate consequence, ASC under BR is inΠP

3
for DL programs, and inΠP

2 for DL[∨h,not, w] programs.
The subsequent two results provide the matching lower
bounds to complete the table entries for BR.

Lemma 9 ASC isΠP
2 -hard for DL[∨h,not, w] programs.

Proof.The proof is by reduction of a QBF of the formΦ =
∀X∃Y c1 ∧ · · · ∧ ck. Recall the programPQBF as defined
in the proof of Lemma 8, add a fresh atomq in the head
of each rule ofPQBF , and finally add the weak constraints
:∼ q. [1 : 1] and :∼ w. [2 : 1]. The resulting programP
is HCF (in fact, it is acyclic). We claim that̂I = {q} is the
optimal answer set ofP iff Φ is true. This can be seen as
follows. First,Î is an answer set ofRules(P). This follows
from the fact thatq occurs in the head of each rule inP, and
among them we have (disjunctive) facts – in particular those
resulting from the rules (1). Due to minimality,Î is the only
answer set ofRules(P) which containsq. The cost of̂I for
P is 1. By the weak constraints inP, any other answer setI

has smaller cost than̂I iff w /∈ I. This, however, amounts to
the existence of a truth assignment to the variablesX such
that∃Y c1 ∧ · · · ∧ ck is false, i.e., formulaΦ is false. Hence,
Î is an (optimal) answer set ofP iff Φ is true. �

Lemma 10 ASC isΠP
3 -hard for DL[∨, w] programs.

Proof. Consider an existential QBFΦ = ∃X1∀X2∃Y c1 ∧
· · · ∧ ck, takePQBF from the proof of Lemma 8, but now
with X = X1 ∪ X2, and add rulesp :- w. for each ground
atomp ∈ B+ \ {w, t(xi), f(xi) | xi ∈ X1}, making the
program non-HCF, whereB+ is defined as in Lemma 8,
as well. The resulting program intuitively guesses a truth
assignmentσ for the atomsX1. Then, for each of these

truth assignments, the program has a corresponding answer
set and exactly behaves like the program in Lemma 8 for
Φ′ = ∀X2∃Y (c1 ∧ · · · ∧ ck)σ. In particular,w is in an
answer set iffΦ′ is true.

Now extend the program as follows. Add a fresh atom
q to the head of all rules and add the two weak constraints
:∼ q. [1 : 1] and :∼ not w. [2 : 1]. Let P be the resulting
program, which again is obviously polynomial in the size of
Φ. We remark thatP is a positive program, since negation
occurs only in the weak constraints.2 We show thatÎ =
{q} is an answer set ofP iff Φ is false. This proves the
claim since the evaluation problem for QBFs of formΦ is
ΣP

3 -complete. Clearly,Φ is false iff there exists no truth
assignmentσ to X1 such thatΦ′ is true.Î is the only answer
set ofRules(P) containingq, and it has cost 1. Thus,̂I is an
answer set ofP iff Rules(P) has no answer setI containing
w. But as already shown above, such an answer setI exists
iff there is a truth assignmentσ to X1 such thatΦ′ is true,
i.e. iff Φ is true. �

Complexity of Bounded Predicate Arities
If we constrain the programs to have the arities of predicates
bounded by some constant, then representations SR and BR
of an interpretationI are polynomially intertranslatable. In
this case, interpretations (as sets) have size polynomial in
the size of the problem instance. The following result is
obtained from Theorem 1 and the derivation of the results it
summarizes.

Theorem 2 The complexity of ASC under both SR and BR
for predicate arities bounded by a constant coincides with
the complexity of ASC under BR for arbitrary predicate ari-
ties.

The complexity results for brave and cautious reasoning
under bounded intensional predicate arities are summarized
in Theorem 3.

Theorem 3 The complexity of brave and cautious reason-
ing under bounded predicate arities is given by the respec-
tive entries in Table 4.

These results show, that if we move from ground (i.e.,
propositional) programs to non-ground programs but allow
only predicates with small arity, the complexity of the lan-
guage moves uponly one level in the polynomial hierarchy

2However, the negation in the weak constraint body is essential
to obtain the hardness result.

(PH), but not more. Thus, unless we use growing pred-
icates arities, we (most likely) can not encode problems
above PH, e.g. PSPACE-complete problems. On the other
hand, it means that an exponential-size grounding-at-once
can be avoided. Furthermore, a number of the problems can
be polynomially mapped to ASP with disjunctive proposi-
tional programs (harboringΣP

2 / ΠP
2 complexity), avoiding

grounding.
We note that the results remain valid if we just restrict the

arities of the intensional predicates, i.e., those occurring in
the heads of non-facts, and predicates of non-ground atoms
in disjunctive facts. Intuitively, any answer setS has then
polynomial size modulo a fixed part, while checking rule
compliance of a candidate answer setS is co-NP-complete
rather than polynomial as in the ground case.

In what follows, we informally summarize some remarks
on the results in Table 4, and afterwards give the formal
proofs.

TheDP results are explained similarly as those in the case
of ASC. Theco-NP part is needed to show that no contra-
diction is derivable (which vanishes for definite Horn pro-
grams), while theNP part stems from a foundedness (mini-
mality) check.

For stratified normal programs, we have slightly higher
complexity since we must evaluate a sequence ofNP prob-
lems according to the layers of the program.

In the presence of weak constraints, the upper bounds eas-
ily follow from the complexity of ASC, first computing the
cost of an optimal answer set in a binary search, and then
deciding the problem with a single oracle call.

The only peculiarity in Theorem 3 is for DL[∨], for which
brave reasoning is one level higher than cautious reasoning.
However, also this is carried over from the propositional
case in which a similar gap exists, see Table 2. This gap
can explained by the fact that minimality is not important
for cautious reasoning in this case, while it is for brave rea-
soning. These results (alsoΠP

3 -hardness when negation is
involved) can be proved similar to Lemma 10, whereΠP

3 -
hardness of ASC for positive disjunctive programs using
weak constraints was shown.

We proceed with a more formal elaboration of the results,
starting with theDP andNP entries in Table 4.

Lemma 11 Brave reasoning is inDP for Horn programs
and inNP for definite Horn programs. Cautious reasoning
is in NP for Horn programs in general.

Proof.For brave reasoning, we do not need to guess an inter-
pretationI, but instead can guess a polynomial-size founded
proof Pra for the query literala, as described in Lemma 5.
If the program is definite, we do not need to take care of a
violation, and thus the test is inNP. If constraints or strong
negation are present, we need an additional, independent
co-NP-check to ensure that no constraint is violated and ob-
tain DP -membership in this case. Concerning cautious rea-
soning, it is sufficient to guess and check a polynomial-size
founded proof for either the querya or a constraint violation
in order to witness cautious consequence ofa. �

Lemma 12 For definite Horn programs without weak con-
straints, both brave and cautious reasoning areNP-hard.

For Horn programs without weak constraints, brave reason-
ing isDP -hard.

Proof. The results are inherited from (bounded) conjunc-
tive queries as used in the proof of Lemma 6. Indeed, con-
sider a conjunctive querya :- B over a databaseDB . Then
a :- B evaluates to true underDB iff the uniqueanswer set
of the definite Horn programDB∪{a :- B.} containsa. For
the DP -hardness result, consider two conjunctive queries
a1 :- B1, a2 :- B2 with a1 6= a2, and two databasesDB1,
DB2 over disjoint alphabets not containinga1 or a2. Then,
a1 :- B1 evaluates to true underDB1 anda2 :- B2 evaluates
to false underDB2 iff a1 is a brave consequence of the (non-
definite) Horn programDB1∪DB2∪{a1 :- B1. :- a2, B2.}.

�
Without weak constraints, complexity of brave (resp. cau-

tious) reasoning has obvious upper bounds ofΣP
k+1 (resp.

ΠP
k+1), if answer set checking is in∆P

k+1. The following
results give the matching lower bounds.

Lemma 13 For DL[∨h] programs brave reasoning isΣP
2 -

hard, and cautious reasoning isΠP
2 -hard.

Proof. ΠP
2 -hardness immediately follows from the re-

duction in theΠP
2 -hardness proof of Lemma 8:w is a cau-

tious consequence of the programP used iff the formula
Φ = ∀X∃Y c1 ∧ · · · ∧ ck is true. We obtain the dualΣP

2 -
hardness result for brave reasoning by adding the disjunctive
factu∨w. toP, whereu is a fresh atom, and asking whether
u is a brave consequence of the resulting program; this is the
case iffw is not a cautious consequence of the original pro-
gram. �

Lemma 14 For DL[∨] programs, brave reasoning isΣP
3 -

hard, and cautious reasoning isΠP
2 -hard. For DL[∨,nots]

programs, cautious reasoning isΠP
3 -hard.

Proof. ΣP
3 -hardness of brave reasoning follows from the

construction in the proof of Lemma 10, whereΠP
3 -hardness

of ASC for positive disjunctive programs using weak con-
straints was shown. In fact,w is a brave consequence of the
program there iffΦ = ∃X1∀X2∃Y c1 ∧ · · · ∧ ck is true.
Cautious reasoning for this fragment, however, is inΠP

2 ,
since to disprove a cautious consequence it is sufficient to
find some (not necessarily subset-minimal) interpretationI
which satisfiesP and does not contain the query; suchI can
be guessed and checked with an NP oracle in polynomial
time.

If negation is involved, we obtainΠP
3 -hardness of cau-

tious inference by a simple reduction of the complement of
brave reasoning of the atomw as above, by adding the strat-
ified rulew′ :- not w., wherew′ is a fresh atom, and asking
whetherw′ is a cautious consequence. �

Lemma 15 For DL[nots, w] programs, both brave and
cautious inference are∆P

2 -complete, where hardness holds
also forDL[nots].

Proof. Membership holds, since the number of strata is
polynomially bounded.
We show hardness by a reduction from deciding the last bit
of the lexicographic maximum satisfying truth assignment
for a CNFC = c1∧ · · ·∧ ck over atomsX = {x1, . . . , xn},

which is∆P
2 -complete, cf. (Papadimitriou 1994). W.l.o.g.,

eachci = Li,1 ∨ Li,2 ∨ Li,3 contains three literals andC is
known to be satisfiable.

Let P contain facts of ternary predicates describing the
satisfying truth assignments for each clauseci. For example,
if c1 = x1 ∨ ¬x2 ∨ x3, we add

c1(0, 0, 0). c1(0, 0, 1). c1(0, 1, 1).
c1(1, 0, 0). c1(1, 0, 1). c1(1, 1, 0). c1(1, 1, 1).

Furthermore, we introduce a facttrue(1)., and for each
atomxi ∈ X, we add a predicatevalxi

(V) and rules

valxi(1) :- c1(t̄1), . . . , ck(t̄k), true(Vi),
valxi−1(Vi−1), . . . , valx1(V1).

valxi(0) :- not valxi(1).

wheret̄j = Vi1 , Vi2 , Vi3 , 1 ≤ j ≤ k, given that the atoms of
literal Lj,1, Lj,2, andLj,3 arexi1 , xi2 , andxi3 , 1 ≤ i ≤ k,
respectively. This completes the program.

Note thatP is definite and (locally) stratified. The max-
imum satisfying truth assignment forC is computed in the
layers ofP, and encoded byvalxi(bi) in the unique answer
set I of P. At the bottomvalx1(1) is derived iff Cθ for
θ = {x1/1} is satisfiable. Otherwise,valx1(0) is derived.
Next, depending on the value ofvalx1(b1), valx2(1) is de-
rived iff Cθ for θ = {x1/b1, x2/1} is satisfiable, otherwise
valx2(0) is derived, and so on. Thus,valxn

(1) is in I iff
the last bit of the maximum satisfying assignment is 1, and
valxn

(0) is in I otherwise. �

Lemma 16 For DL[∨h, w] programs, both inference tasks
are∆P

3 -hard.

Proof. Consider the open QBFΦ[X] = ∃Y c1 ∧ · · · ∧ ck,
with X = {x1, . . . , xn}. Deciding the last bit of the lexico-
graphic maximum assignment to the atomsx1, . . . , xn mak-
ing Φ[X] false is∆P

3 -complete.
Consider now the programP which extendsPQBF by the

weak constraints:∼ w. [: n + 1] and:∼ f(xi). [: n− i + 1]
for eachi ∈ {1, . . . , n}. As in previous proofs,P is posi-
tive and HCF. The answer sets ofRules(P) correspond to
all possible truth assignments toX and containw iff Φ[X]
evaluates to true under the corresponding guess forX. Now
we are interested in those assignments makingΦ[X] false
and w.l.o.g. we assume that at least one such assignment ex-
ists. The intuition of the weak constraints then is as fol-
lows: If w is in an answer set ofRules(P) then the highest
penalty is given. For the remaining ones, we first eliminate
those wherex1 is set to false, then those wherex2 is set to
false, and so on. The unique optimal answer set ofP thus
corresponds to the lexicographic maximum assignment toX
which makesΦ[X] false. Hence, via both brave and cautious
reasoning, we can decide the last bit of this assignment.�

Lemma 17 For DL[∨, w] programs, both inference tasks
are∆P

4 -hard.

Proof. The proof is similar to the one of Lemma 16; the
differences mirror the lifting between the proofs of Lem-
mas 9 and 10, respectively. In fact, consider the open QBF
Φ[X1] = ∀X2∃Y c1∧· · ·∧ck with X1 = {x1, . . . , xn}. De-
ciding the last bit of the lexicographic maximum satisfying

truth assignment to the atomsx1, . . . , xn for Φ[X1] is ∆P
4 -

complete. LetQ = Rules(P), whereP is as in Lemma 10,
which is positive and disjunctive, but not HCF.Q guesses
a truth assignmentσ for X1, andw is in the corresponding
answer set iffΦ[X1]σ is true. We then add weak constraints
:∼ not w. [: n + 1] and :∼ f(xi). [: n − i + 1] for each
i ∈ {1, . . . , n}, giving the highest penalty ifΦ[X1]σ is false.
By a similar argumentation as in the proof of Lemma 16, we
get that the optimal answer set of the resulting program cor-
responds to the maximal truth assignment to variablesX1

such thatΦ[X1] is true. Both brave and cautious reason-
ing therefore allow to decide the last bit of this assignment.
Hence, we derive∆P

4 -hardness. �

Conclusions and Implications
We have provided new complexity results on answer set
checking (ASC) for non-ground programs under various
syntactic restrictions. We have demonstrated that the choice
of representation for interpretations is crucial in terms of
ASC complexity. If a set-oriented, explicit enumeration
(SR) is chosen, an exponential blowup can be witnessed
for programs containing weak constraints and disjunctions
or unstratified negation, while with a bitmap representation
(BR), these problems just move up one level within the poly-
nomial hierarchy.

In general, comparing ASC for propositional programs to
ASC for non-ground programs, the complexity moves from
P toDP and from co-NP toΠP

2 for program classes without
weak constraints and with weak constraints but without dis-
junctions and unstratified negation, respectively, under both
SR and BR. For other classes, complexity shifts from co-NP
to co-NEXP and fromΠP

2 to co-NEXPNP if SR is chosen,
while it moves from co-NP toΠP

2 and fromΠP
2 to ΠP

3 (and
thus remains in the Polynomial Hierarchy) for BR

Furthermore, we have demonstrated that bounding predi-
cate arities moves the complexity of both brave and cautious
reasoning over non-ground programs from an area ranging

from EXP to EXPΣP
2 to an area from NP to∆P

4 . Since
bounding arities is a natural restriction, these results are of
high practical interest.

In particular, the results in Table 4 imply that it should
be feasible to find methods for non-ground query answer-
ing that operate in polynomial space and exponential time if
the predicate arities are bounded. The classical approach of
computing the (more or less) full ground program as a first
step, which is employed in virtually all competitive answer
set programming systems (DLV, Smodels/GnT, ASSAT,
Cmodels), cannot guarantee these resource restrictions, as
the ground program may consume exponential space in the
worst case.

Top-down algorithms appear to be good candidates for
fulfilling these requirements, but so far there is relatively
little work on this topic: In (Bonatti 2001) a resolution
method for cautious reasoning with DL[not] programs has
been presented. Several approaches to top-down derivation
for DL[∨] programs have been proposed, see e.g. (Yahya
2002) and references therein. Very recently, a method for
top-down cautious query answering for DL[nots,∨] pro-

grams has been described (Johnson 2003). Unfortunately, it
is not clear whether the space and time complexities of these
approaches stay in polynomial space and time, respectively,
whenever predicate arities are bounded. We are not aware
of any top-down methods for full DL[not,∨] programs or
programs containing weak constraints.

Another approach to overcome exponential space require-
ments could be to perform a focused grounding using the
query, in principle “emulating” a top-down derivation. In
(Greco 2003) a generalization of the magic sets technique to
DL[∨] has been described, but it is highly unclear to what
extent such an optimization technique can reduce grounding
size, and in particular whether exponential space consump-
tion can always be avoided, given that standard grounding
techniques are employed on the rewritten program.

We believe that our results carry over to other nonmono-
tonic formalisms, such as default logic, autoepistemic logic,
or circumscription, as they are closely related to ASP. How-
ever, we leave this issue for future work.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995.Foundations
of Databases. Addison-Wesley.
Anger, C.; Konczak, K.; and Linke, T. 2001.NoMoRe: A
System for Non-Monotonic Reasoning. In Eiter, T.; Faber,
W.; and Truszczýnski, M., eds.,Logic Programming and
Nonmonotonic Reasoning — 6th International Conference,
LPNMR’01, Vienna, Austria, September 2001, Proceed-
ings, number 2173 in Lecture Notes in AI (LNAI), 406–
410. Springer Verlag.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards
a Theory of Declarative Knowledge. In Minker, J., ed.,
Foundations of Deductive Databases and Logic Program-
ming. Washington DC: Morgan Kaufmann Publishers, Inc.
89–148.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional Se-
mantics for Disjunctive Logic Programs.Annals of Math-
ematics and Artificial Intelligence12:53–87.
Ben-Eliyahu-Zohary, R., and Palopoli, L. 1997. Reasoning
with Minimal Models: Efficient Algorithms and Applica-
tions. Artificial Intelligence96:421–449.
Bonatti, P. A. 2001. Resolution for Skeptical Stable Model
Semantics. Journal of Automated Reasoning27(4):391–
421.
Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Enhancing
Disjunctive Datalog by Constraints.IEEE Transactions on
Knowledge and Data Engineering12(5):845–860.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys33(3):374–425.
Eiter, T., and Gottlob, G. 1995. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Mathematics and Artificial Intelligence
15(3/4):289–323.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive Datalog. ACM Transactions on Database Systems
22(3):364–418.

Eiter, T.; Leone, N.; and Saccà, D. 1998. Expres-
sive Power and Complexity of Partial Models for Disjunc-
tive Deductive Databases.Theoretical Computer Science
206(1–2):181–218.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases.New Genera-
tion Computing9:365–385.

Gottlob, G.; Leone, N.; and Veith, H. 1999. Succinctness
as a Source of Expression Complexity.Annals of Pure and
Applied Logic97(1–3):231–260.

Greco, S. 1999. Optimization of Disjunction Queries. In
Schreye, D. D., ed.,Proceedings of the 16th International
Conference on Logic Programming (ICLP’99), 441–455.
Las Cruces, New Mexico, USA: The MIT Press.

Greco, S. 2003. Binding Propagation Techniques for the
Optimization of Bound Disjunctive Queries.IEEE Trans-
actions on Knowledge and Data Engineering15(2):368–
385. Extended Abstract appeared as (Greco 1999).

Janhunen, T.; Niemelä, I.; Simons, P.; and You, J.-H.
2000. Partiality and Disjunctions in Stable Model Seman-
tics. In Cohn, A. G.; Giunchiglia, F.; and Selman, B.,
eds.,Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reason-
ing (KR 2000), April 12-15, Breckenridge, Colorado, USA,
411–419. Morgan Kaufmann Publishers, Inc.

Johnson, D. S. 1990. A Catalog of Complexity Classes. In
van Leeuwen, J., ed.,Handbook of Theoretical Computer
Science, volume A. Elsevier Science Pub. chapter 2.

Johnson, C. A. 2003. Computing only minimal an-
swers in disjunctive deductive databases. Technical Report
cs.LO/0305007, arXiv.org.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2002. The DLV System for
Knowledge Representation and Reasoning. Technical Re-
port cs.AI/0211004, arXiv.org. To appear in ACM TOCL.

Lierler, Y., and Maratea, M. 2004. Cmodels-2: Sat-based
answer set solver enhanced to non-tight programs. In Lifs-
chitz, V., and Niemel̈a, I., eds.,Proceedings of the Seventh
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR-7), number 2923 in Lec-
ture Notes in Computer Science, 346–350. Fort Laud-
erdale, Florida, USA: Springer.

Lin, F., and Zhao, Y. 2002. ASSAT: Computing Answer
Sets of a Logic Program by SAT Solvers. InProceed-
ings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-2002), 112–117. Edmonton, Alberta,
Canada: AAAI Press / MIT Press.

Marek, V. W., and Truszczýnski, M. 1991. Autoepistemic
Logic. Journal of the ACM38(3):588–619.

Nicolas, P.; Saubion, F.; and Stéphan, I. 2002. Answer
Set Programming by Ant Colony Optimization. In Flesca,
S.; Greco, S.; Ianni, G.; and Leone, N., eds.,Proceedings
of the 8th European Conference on Logics in Artificial In-
telligence (JELIA 2002), number 2424 in Lecture Notes in
Computer Science, 481–492. Cosenza, Italy: Springer.

Papadimitriou, C. H. 1994.Computational Complexity.
Addison-Wesley.
Provetti, A., and Son, T. C., eds. 2001.Proceedings AAAI
2001 Spring Symposium on Answer Set Programming: To-
wards Efficient and Scalable Knowledge Representation
and Reasoning. Stanford, CA: AAAI Press.
Przymusinski, T. C. 1988. On the Declarative Semantics
of Deductive Databases and Logic Programs. In Minker, J.,
ed., Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann Publishers, Inc. 193–216.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics.Artificial
Intelligence138:181–234.
Swift, T. 2004. Deduction in Ontologies via ASP. In Lifs-
chitz, V., and Niemel̈a, I., eds.,Proceedings of the Seventh
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR-7), number 2923 in Lec-
ture Notes in Computer Science, 275–288. Fort Laud-
erdale, Florida, USA: Springer.
Vardi, M. 1995. On the Complexity of Bounded-Variable
Queries. InProceedings PODS-95, 266–276.
Yahya, A. H. 2002. Duality for Goal-Driven Query Pro-
cessing in Disjunctive Deductive Databases.Journal of Au-
tomated Reasoning28(1):1–34.

