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Abstract. Recently, several approaches to updating knowledge bases modeled
as extended logic programs (ELPs) have been introduced, ranging from basic
methods to incorporate (sequences of) sets of rules into a logic program, to more
elaborate methods which use an update policy for specifying how updates must be
incorporated. In this paper, we introduce a framework for reasoning about evolv-
ing knowledge bases, which are represented as ELPs and maintained by an update
policy. We describe a formal model which captures various update approaches,
and define a logical language for expressing properties of evolving knowledge
bases. We further investigate the semantical properties of knowledge states with
respect to reasoning. In particular, we describe finitary characterizations of the
evolution, and derive complexity results for our framework.

1 Introduction

Updating knowledge bases is an important issue in the area of data and knowledge rep-
resentation. While this issue has been studied extensively in the context of classical
knowledge bases [18, 11], attention to it in the area of nonmonotonic knowledge bases,
in particular in logic programming, is more recent. Various approaches to evaluating
logic programs in the light of new information have been presented, cf. [1]. The pro-
posals range from basic methods to incorporate an updateU , given by a set of rules,
or a sequenceU1, . . . , Un of such updates into a (nonmonotonic) logic programP [1,
21, 13, 6], to more general methods which use anupdate policyto specify, by means
of update actions, how the updatesU1, . . . , Un should be incorporated into the current
state of knowledge [17, 2, 8]. Using these approaches, queries to the knowledge base,
like “is a factf true inP after updatesU1, . . . , Un?”, can then be evaluated.

Notably, the formulation of such queries is treated on anad-hoc basis, and more
involved queries such as “is a factf true in P after updatesU1, . . . , Un and possi-
bly further updates?” are not considered. More generally, reasoning about an evolving
knowledge baseKB , maintained using an update policy, is not formally addressed.
However, it is desirable to know about properties of the contents of the evolving knowl-
edge base, which also can be made part of a specification for an update policy. For
example, it may be important to know that a facta is always true inKB , or that a fact
b is never true inKB . Analogous issues, calledmaintenanceandavoidance, have been
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recently studied in the agent community [20]. Other properties may involve temporal
relationships such as ifmessage to(tom) is true inKB at some point, meaning that a
message should be sent to Tom, thensent message to(tom) will become true in the
evolvingKB at some point, representing that a message to Tom was sent.

In this paper, we aim at a framework for expressing reasoning problems over evolv-
ing knowledge bases, which are modeled as extended logic programs [12] and possibly
maintained by an update policy as described above. In particular, we are interested in
a logical language for expressing properties of the evolving knowledge base, whose
sentences can be evaluated using a clear-cut formal semantics. The framework should,
on the one hand, be general enough to capture different approaches to incorporating
updatesU1, . . . , Un into a logic programP and, on the other hand, pay attention to
the specific nature of the problem. Furthermore, it should be possible to evaluate a
formula, which specifies a desired evolution behavior, across different realizations of
update policies based on different grounds.

The main contributions of this paper are summarized as follows.
(1) We introduce a formal model in which various approaches for updating extended

logic programs can be expressed (Section 3). In particular, we introduce the concept of
anevolution frame, which is a structureEF = 〈A, EC,AC,Π, ρ,Bel〉 whose compo-
nents serve to describe the evolution of knowledge states. Informally, aknowledge state
s = 〈KB ;E1, . . . , En〉 consists of an initial knowledge baseKB , given by an extended
logic program over an alphabetA, and a sequenceE1, . . . , En of events, which are
sets of rulesEi, drawn from a class of possible eventsEC, that are communicated to
an agent maintaining the knowledge base. The agent reacts on an event by adapting its
belief set through the update policyΠ, which singles out update actionsA ⊆ AC from
a set of possible update actionsAC for application. These update actions are executed,
at a physical level, by compilation, using a functionρ into a single logic programP , or,
more generally, into a sequence(P1, . . . , Pn) of logic programs, denotedcompEF (s).
The semantics of the knowledge states, its belief set, Bel(s), is given by the belief set
of the compiled knowledge state, and is obtained by applying a belief operatorBel(·)
for (sequences of) logic programs tocompEF (s). Suitable choices ofEF allow one to
model different settings of logic program updates, such as [1, 17, 13, 6].

(2) We define the syntax and, based on evolution frames, the semantics of a logical
language for reasoning about evolving knowledge bases (Section 4), which employs lin-
ear and branching-time operators familiar from Computational Tree Logic (CTL) [9].
Using this language, properties of an evolving knowledge base can be formally stated
and evaluated in a systematic fashion, rather than ad hoc. For example, the above main-
tenance and avoidance problems can be expressed by formulasAG a andAG¬b, respec-
tively.

(3) We investigate semantical properties of knowledge states for reasoning (Sec-
tion 5). In particular, since in principle a knowledge base may evolve forever, we are
concerned with finitary characterizations of evolution. To this end, we introduce various
notions of equivalence between knowledge states, and show several filtration results.

(4) We derive complexity results for reasoning (Section 6). Namely, given an evolu-
tion frameEF , a knowledge states, and a formulaϕ, doesEF , s |= ϕ hold? While this
problem is undecidable in general, we single out meaningful conditions under which
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the problem has2-EXPSPACE, EXPSPACE, and PSPACE complexity, respectively,
and apply this to theEPI framework under the answer set semantics [8], showing that
its propositional fragment has PSPACE-complexity. We also consider the complex-
ity of sequences of extended logic programs (ELPs). We show that deciding whether
two sequencesP = (P1, . . . , Pn) and Q = (Q1, . . . , Qm) of propositional ELPs
are strongly equivalent under update answer set semantics, i.e., for every sequence
R = (R1, . . . , Rk), k ≥ 0, the concatenated sequencesP + R andQ + R have the
same belief sets, is coNP-complete. This is not immediate, since potentially infinitely
manyP + R andQ + R need to be checked.

By expressing various approaches in our framework, we obtain a formal seman-
tics for reasoning problems in them. Furthermore, results about properties of these
approaches (e.g., complexity results) may be concluded from the formalism by this
embedding, as we illustrate for theEPI framework.

2 Preliminaries

We consider knowledge bases represented asextended logic programs(ELPs) [12],
which are finite sets of rules built over a first-order alphabetA using default negation
not and strong negation¬. A rule has the form

r : L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (1)

where eachLi is a literal of formA or ¬A, whereA is an atom overA. The set of
all rules is denoted byLA. We callL0 the headof r (denoted byH(r)), and the set
{L1, . . . , Lm,not Lm+1, . . . ,not Ln} thebodyof r (denoted byB(r)). We allow the
case whereL0 is absent fromr; such a ruler is called aconstraint. If B(r) = ∅, thenr
is calledfact. We often writeL0 for a factr = L0 ←. Further extensions, e.g.,not in
the rule head [1], might be added to fit other frameworks.

An update program, P, is a sequence(P1, . . . , Pn) of ELPs (n ≥ 1), representing
the evolution of programP1 in the light of new rulesP2, . . . , Pn. The semantics of
update programs can abstractly be described as a mappingBel(·), which associates with
every sequenceP a setBel(P) ⊆ LA of rules, intuitively viewed as the consequences
of P. Bel(·) may be instantiated in terms of various proposals for update semantics,
like, e.g., the approaches described in [1, 21, 13, 6, 17].

For a concrete example, we consider the answer set semantics for propositional up-
date programs introduced in [6, 7], which defines answer sets ofP = (P1, . . . , Pn)
in terms of answers sets of a single ELPP as follows. An interpretation, S, is a
set of classical literals containing no opposite literalsA and¬A. The rejection set,
Rej (S,P), of P with respect to an interpretationS is Rej (S,P) =

⋃n
i=1 Rej i(S,P),

whereRejn(S,P) = ∅, and, forn > i ≥ 1, Rej i(S,P) contains every ruler ∈ Pi
such thatH(r′) = ¬H(r) andS |= B(r) ∪B(r′), for somer′ ∈ Pj \Rej j(S,P) with
j > i. That is,Rej (S,P) contains the rules inP which are rejected by unrejected rules
from later updates. Then, an interpretationS is ananswer setof P = (P1, . . . , Pn) iff
S is a consistent answer set [12] of the programP =

⋃
i Pi \ Rej (S,P). The set of all

answer sets ofP is denoted byAS(P). This definition properly generalizes consistent
answer sets from single ELPs to sequences of ELPs. Update answer sets for arbitrary
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(non-ground) update programsP are defined in terms of their ground instances similar
to the case of answer sets for ELPs [12].

Example 1.Let P0 = {b ← not a, a ←}, P1 = {¬a ←, c ←}, andP2 = {¬c ←}.
Then,P0 has the single answer setS0 = {a} with Rej (S0, P0) = ∅; (P0, P1) has as
answer setS1 = {¬a, c, b} with Rej (S1, (P0, P1)) = {a ←}; and(P0, P1, P2) has
the unique answer setS2 = {¬a,¬c, b} with Rej (S2, (P0, P1, P2)) = {c←, a←}.

The belief operatorBelE(·) in the framework of [6] is given byBelE(P) = {r ∈
LA | S |= r for all S ∈ AS(P)}, whereS |= r means that for each ground instancer′

of r, eitherH(r′)∈ S, orL /∈S for someL ∈ B(r′), orL∈ S for somenot L ∈ B(r′).

3 Knowledge-Base Evolution

We start with the basic formal notions of aneventand of theknowledge stateof an agent
maintaining a knowledge base.

Definition 1. LetA be some alphabet. Anevent class overA (or simplyevent class,
if no ambiguity arises) is a collectionEC ⊆ 2LA of finite sets of rules. The members
E ∈ EC are calledevents.

Informally, EC describes the possible events (i.e., sets of communicated rules) an
agent may experience. In the most general case, an event is an arbitrary ELP; in a
simpler setting, an event may just be a set facts. In a deductive database setting, the latter
case corresponds to an extensional database undergoing change while the intensional
part of the database remains fixed.

Definition 2. Let EC be an event class over some alphabetA. A knowledge state over
EC (simply, aknowledge state) is a tuples = 〈KB ;E1, . . . , En〉, whereKB ⊆ LA is
an ELP(called initial knowledge base)and eachEi (1 ≤ i ≤ n) is an event fromEC.
Thelength ofs, denoted|s|, isn.

Intuitively, s = 〈KB ;E1, . . . , En〉 captures the agent’s knowledge, starting from its
initial knowledge base. When a new eventEn+1 occurs, the current knowledge states
changes tos′ = 〈KB ;E1, . . . , En, En+1〉, and the agent is required to adapt its belief
set in accordance with the new event by obeying its given update policy.

The “universe” in which the evolution of an agent’s knowledge base takes place is
given by the following concept:

Definition 3. Anevolution frameis a tupleEF = 〈A, EC,AC,Π, ρ,Bel〉, where

– A is a finite (first-order) alphabet;
– EC is an event class overA;
– AC is a set ofupdate commands(or actions);
– Π is anupdate policy, which is a function mapping every knowledge states over
EC and an eventE ∈ EC into a setΠ(s,E) ⊆ AC of update commands;
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– ρ is a mapping, calledrealization assignment, which assigns to each knowledge
states overEC and each setA ⊆ AC of update commands a sequenceρ(s,A) =
(P0, . . . , Pn) of ELPsPi ⊆ LA (1 ≤ i ≤ n); and

– Bel is a belief operator for sequences of ELPs.

The set of all knowledge states determined byEF is denoted bySEF .

The components of an evolution frame allow us to model various update approaches,
as we discuss later on.

We already mentioned above that different event classesEC might be conceived.
Simple, elementary update commands areinsert(r) anddelete(r), which add and re-
move a rule to a logic program, respectively, without a sophisticated semantics handling
potential inconsistencies (which may be delegated to the underlying update semantics).
More involved update commands have been proposed in the literature (cf., e.g., [2, 8]).
However, several update frameworks can be modeled using these simple commands.

Update policiesΠ allow for specifying sensible and flexible ways to react upon in-
coming events. A very simple policy isΠins(s,E) = {insert(r) | r ∈ E}; it models
an agent which incorporates the new information unconditionally. More sophisticated
policies may define exceptions for the incorporation of rules from events, or the inser-
tion of rules may be conditioned on the belief in other rules.

WhileΠ determineswhatto do, the realization assignmentρ stateshowthis should
be done. Informally,ρ(s,A) “executes” actionsA on the knowledge states by produc-
ing a logic programP or, more generally, a sequenceP of logic programs. We can use
ρ to “compile” a knowledge states into a (sequence of) logic programs, by determining
the set of actionsA from the last event ins. We introduce the following notation.

For any knowledge states = 〈KB ;E1, . . . , En〉 over EC, denote byπi(s) =
〈KB ;E1, . . . , Ei〉 its projection to the firsti events, for0 ≤ i ≤ n. We callπi(s) a
previous knowledge state(or simply anancestor) of s if i < n. Dually, each knowledge
states′ overEC is a future knowledge state(or simply adescendant) of s if s is previous
to s′. Furthermore,πn−1(s) is thepredecessorof s, ands′ is a successorof s if s is
predecessor ofs′. Finally, for eventsE′1, . . . , E

′
m, we writes + E′1, . . . , E

′
m to denote

the concatenated knowledge state〈KB ;E1, . . . , En, E
′
1, . . . , E

′
m〉 (a similar notation

applies to the concatenation of sequences of logic programs).

Definition 4. LetEF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame. For any knowl-
edge states = 〈KB ;E1, . . . , En〉 overEC, thecompilation associated withs is

compEF (s) =
{
ρ(s, ∅) if |s| = 0, i.e.,s = 〈KB〉;
ρ(πn−1(s),Π(πn−1(s), En)) otherwise.

This definition of compilation is fairly general. It first computes the actions for
the latest eventEn, and then requires that these actions are executed on the predecessor
state. Observe that, in view ofcompEF (s), we could equally well model update policies
as unary functionŝΠ(·) such thatΠ̂(s) = Π(πn−1(s), En). However, we chose binary
update policies to stress the importance of the last event ins.

An important class of compilations are those in whichcomp(s′) for a future knowl-
edge states′ results by appending some further elements to the sequencecomp(s) of
logic programs for the current knowledge states. This motivates the following notion:
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Definition 5. Given an evolution frameEF = 〈A, EC,AC,Π, ρ,Bel〉, compEF (·) is
incrementaliff, for eachs = 〈KB ;E1, . . . , En〉, compEF (s) = (P0, . . . , Pn) such that
ρ(〈KB〉, ∅) = P0 andρ(πi−1(s),Π(πi−1(s), Ei)) = (P0, . . . , Pi) for 1 ≤ i ≤ n.

This amounts to the expected meaning:

Proposition 1. The mappingcompEF (·) is incremental iff, for each knowledge states,
compEF (s) = Q if |s| = 0, andcompEF (s) = compEF (π|s|−1(s)) + Q otherwise,
whereQ is a logic program and “+” is the concatenation of sequences.

A simple, incremental compilation results forACins = {insert(r) | r ∈ LA},Π =
Πins as defined above, andρins such thatcompEF (〈KB〉) = KB andcompEF (s) =
compEF (π|s|−1(s)) + ({r | insert(r) ∈ A}). Note thatcompEF (〈KB ;E1, . . . , En〉)
is in this setting just the sequence(KB , E1, . . . , En).

While incremental compilations are natural, we stress that others are of course also
relevant. In particular, the compilation might perform optimizations (cf. Section 5.2),
or output only an ordinary logic program.

Finally, the belief set emerging from a knowledge state is as follows:

Definition 6. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame ands a knowl-
edge state. The belief set ofs, denotedBel(s), is given byBel(compEF (s)).

Remarks.Our definition of an update policy and of a realization assignment, which
effectively lead to the notion of a compilation, is quite general. We may stipulate addi-
tional postulates upon them, like the incrementability property or an iterativity property
(which me omit here), and similar onBel(·).

Our definition does not capture nondeterministic update policies, whereΠ(s,E)
may return one out of several possible sets of update actions. Accordingly, the notion
of a knowledge state can be extended by taking previous actions into account, i.e., a
knowledge states is then of the form〈KB , (E1, A1), . . . , (En, An)〉, where eachEi is
an event, andAi is the set of update commands executed at stepi. In practice, we may
assume a suitableselection functionσ, which chooses one of the possible outcomes of
Π(s,E), and we are back to a deterministic update policyΠσ. If the selection function
σ is unknown, we may consider all evolution framesEFσ arising for eachσ.

Example 2.Consider a rather simple mailing agent, which has the following initial
knowledge baseKB , whose rules are instantiated over suitable variable domains:

r1: type(M , private) ← from(M , tom);
r2: type(M , business) ← subject(M , project);
r3: type(M , other) ← not type(M , private),not type(M , business),msg(M );
r4: trash(M ) ← remove(M ),not save(M );
r5: remove(M ) ← date(M ,T ), today(T ′),not save(M ), T ′ > (T + 30);
r6: found(M ) ← search(T ), type(M ,T ),not trash(M );
r7: success ← found(M );
r8: failure ← search(T ),not success.

The knowledge base contains rules about classifying message types (r1–r3), trash
and removal of mails (r4, r5), and further rules (r6–r8) to determine success or failure
of a search for messages of a particular type. An eventE might consist in this setting
of one or more of the following items:
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– at most one facttoday(d), for some dated;
– a factempty trash, which causes messages in the trash to be eliminated;
– factssave(m) or remove(m), for mail identifiersm;
– at most one factsearch(t), for some mail typet ∈ {other , business, private};
– zero or more sets of factsfrom(m,n), subject(m, s), or date(m, d) for mail iden-

tifier m, namen, subjects, and dated.

The update policyΠ may be as follows:

Π(s, E) = {insert(R) | R ∈ E} ∪ {insert(msg(M )) | from(M,N) ∈ E}
∪ {delete(today(D)) | today(D ′) ∈ E , today(D) ∈ Bel(s)}
∪ {delete(α) | α ∈ {trash(M ),msg(M ), type(M ,T )},

empty trash ∈ E , trash(M ) ∈ Bel(s)}
∪ {delete(α) | α ∈ {from(M ,N ), subject(M ,S), date(M ,D)},

save(M ) /∈ Bel(s),msg(M ) ∈ Bel(s), remove(M ) ∈ E}
∪ {delete(α) | α ∈ Bel(s) ∩ {search(T ), found(T ), success,

failure, empty trash} }

This update policy (which does not respect possible conflicts ofsave andremove),
intuitively adds all incoming information, plus a factmsg(M) for each incoming mail
to the knowledge base. The current date is maintained by deleting the old date. As well,
all old information from a previous event, relative to a search or to the trash, is removed.
If an event containsempty trash, then all messages in the trash are eliminated.

Capturing frameworks for knowledge evolution. Finally, we briefly discuss how
existing frameworks for updating nonmonotonic knowledge bases can be captured in
terms of evolution frames. This is possible at two different levels:

(1) At an “immediate update” level, frameworks for updating logic programs can
be considered, where each event is anupdate program, and the update policy is the
(implicit) way in which update programs and the current knowledge are combined, de-
pending on the semantics of updates of each approach. For example, the formalisms of
update programs [6, 7], dynamic logic programming [1], revision programming [16,
17], abductive theory updates [13], and updates through prioritized logic programs
(PLPs) [21] fall into this category.

(2) At a higher level, frameworks can be considered which allow for specifying an
explicit update policyin some specification language, and which offer a greater flexi-
bility in the handling of updates. Examples of such frameworks areEPI [8], LUPS [2],
and, while not directly given in these terms,PDL [14].

For illustration, we consider update programs [6] and theEPI framework for update
policies. Update programs are captured by the following evolution frame:

EF � = 〈A, ECA,ACins ,Πins , ρins , BelE〉,

whereECA is the collection of all ELPs overA, andBelE is the belief operator defined
in Section 2. TheEPI framework corresponds to the evolution frame

EF EPI = 〈A, EC,ACEPI,ΠEPI, ρEPI, BelE〉,

where
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– ACEPI = {assert(r), retract(r), always(r), cancel(r),
assert event(r), retract event(r), always event(r) | r ∈ LA}

and the commands have the meaning as in [8];
– ΠEPI is defined by any set of update statements in the languageEPI, which are

evaluated through a logic program as defined in [8];
– ρEPI realizes the translationtr(KB ;U1, . . . , Un) from [8], which compiles the ini-

tial knowledge baseKB and the sets of update commandsU1, . . . , Un, in response
to the eventsE1, . . . , En in s = 〈KB , E1, . . . , En〉, into a sequence(P0, . . . , Pn)
of ELPs. The resulting compilationcompEPI is incremental.

Furthermore, the following formalisms can be expressed in a similar fashion: dy-
namic logic programming [1] (by allowingnot in rule heads), LUPS [2], abductive
theory updates [13], and program updates by means of PLPs [21]. Thus, several well-
known approaches to updating logic programs can be modeled by evolution frames.

4 Reasoning About Knowledge-Base Evolution

We now introduce our logical language for expressing properties of evolving knowledge
bases. The primitive logical operators of the language are: (i) the Boolean connectives
∧ (“and”) and¬ (“not”); (ii) the evolution quantifiersA (“for all futures”) andE (“for
some future”); and (iii) the linear temporal operatorsX (“next time”) andU (“until”).

Atomic formulas are identified with rules inLA; composite formulas are eitherstate
formulasor evolution formulas, defined as follows:

1. Each atomic formula is a state formula.
2. If ϕ,ψ are state formulas, thenϕ ∧ ψ and¬ϕ are state formulas.
3. If ϕ is an evolution formula, thenEϕ andAϕ are state formulas.
4. If ϕ,ψ are state formulas, thenXϕ andϕUψ are evolution formulas.

Further Boolean connectives∨ (“or”), ⊃ (“implies”), and ≡ (“equivalence”) are
defined in the usual manner. As well, we useFϕ = >Uϕ (“finally φ”), where> stands
for any tautology,AGϕ = ¬EF¬φ, andEGφ = ¬AFφ (“globally φ”).

Next, we define the semantics of such formulas with respect to a given evolution
frameEF = 〈A, EC,AC,Π, ρ,Bel〉. To this end, we introduce the following notation:

A sequencep = (si)i≥0 of knowledge states overEC is called apath iff each si
(i > 0) is a successor ofsi−1. We denote bypi the state at positioni in p, i.e.,pi = si.

Definition 7. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame,s a knowledge
state overEC, andp a path. The relation|= is recursively defined as follows:

1. EF , s |= r iff r ∈ Bel(s), for any atomic formular;
2. EF , s |= ϕ1 ∧ ϕ2 iff EF , s |= ϕ1 andEF , s |= ϕ2;
3. EF , s |= ¬ϕ iff EF , s 6|= ϕ;
4. EF , s |= Eϕ iff EF , p′ |= ϕ, for some pathp′ starting ats;
5. EF , s |= Aϕ iff EF , p′ |= ϕ, for each pathp′ starting ats;
6. EF , p |= Xϕ iff EF , p1 |= ϕ;
7. EF , p |= ϕ1Uϕ2 iff EF , pi |= ϕ2 for somei ≥ 0 andEF , pj |= ϕ1 for all j < i.
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If EF , s |= ϕ holds, then knowledge states is said tosatisfy formula ϕ in the
evolution frameEF (orϕ is aconsequence ofs in the evolution frameEF ).

Notice that any evolution frameEF induces an infinite transition graph which
amounts to a standard Kripke structureKEF = 〈S,R, L〉, whereS = SEF is the
set of knowledge states,R is the successor relation between knowledge states, andL
labels each states with Bel(S), such thats satisfiesϕ in EF iff KEF , s |= ϕ (where
|= is defined in the usual way).

Example 3.In order to see whether the mailing agent in Example 2 works properly,
we may consider the following properties. For convenience, we allow in formulas non-
ground rules as atoms, which stand for the conjunction of all ground instances which is
assumed to be finite. Recall that we identify facts with literals.

1. There can never be two current dates:

AG((today(D) ∧ today(D′)) ⊃ D = D′). (2)

2. The type of a message cannot change:

AG(type(M,T ) ⊃ ¬EF(type(M,T ′) ∧ T 6= T ′)). (3)

3. A message is not trashed until it is either deleted or saved:

AG
(
msg(m) ⊃ AG(¬trash(m)U(delete(m) ∨ save(m))

)
. (4)

While the initialKB satisfies formulas (2) and (4) in the respectiveEPI evolution frame
EF EPI, it is easily seen that it does not satisfy formula (3).

5 Knowledge-State Equivalence

While syntactically different, it may happen that knowledge statess ands′ are seman-
tically equivalent in an evolution frame, i.e.,s ands′ may have the same set of conse-
quences for the current and all future events. We now consider how such equivalences
can be exploited to filtrate a given evolution frameEF such that, under suitable con-
ditions, we can decideEF , s |= ϕ in a finite structure extracted from the associated
Kripke structureKEF . We start with the following notions of equivalence.

Definition 8. LetEF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame andk ≥ 0 some
integer. Furthermore, lets, s′ be knowledge states overEC. Then,

1. s and s′ are k-equivalent inEF , denoteds ≡kEF s′, if Bel(s + E1, . . . , Ek′) =
Bel(s′ + E1, . . . , Ek′), for all eventsE1, . . . , Ek′ fromEC and allk′ ≤ k;

2. s ands′ are strongly equivalent inEF , denoteds ≡EF s′, iff s ≡kEF s′ for every
k ≥ 0.

We call 0-equivalent states alsoweakly equivalent. The following result is obvious.

Theorem 1. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame ands, s′ knowl-
edge states overEC. Then,
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1. s ≡EF s′ implies thatEF , s |= ϕ is equivalent toEF , s′ |= ϕ, for any formulaϕ;
2. s ≡kEF s′ implies thatEF , s |= ϕ is equivalent toEF , s′ |= ϕ, for any formulaϕ

in whichU does not occur and the nesting depth w.r.t.E andA is at mostk.

Due to Part 1 of Theorem 1, strong equivalence can be used to filtrate an evolu-
tion frameEF in the following way. For an equivalence relationE over some setX,
and anyx ∈ X, let [x]E = {y | 〈x, y〉 ∈ E} be the equivalence class ofx and let
X/E = {[x]E | x ∈ X} be the set of all equivalence classes. Furthermore,E is said
to have afinite index(with respect toX) iff X/E is finite. Then, any equivalence re-
lation E over some setS ⊆ SEF of knowledge states ofEF compatible with≡EF

(i.e., such thatsE s′ implies s ≡EF s′, for all s, s′ ∈ S) induces a Kripke structure
KE,S

EF = 〈S/E,RE , LE〉, where[s]E RE [s′]E iff sR s′ andLE([s]E) = L(s), which
is bisimilar to the Kripke structureKEF restricted to the knowledge states inS. Thus,
for every knowledge states and formulaϕ, it holds thatEF , s |= φ iff KE,S

EF , [s]E |= φ,
for anyS ⊆ SEF such thatS contains all descendants ofs.

In the following, we consider two cases in whichS/E has finite index.

5.1 Local belief operators

In the first case, we consider≡EF itself as a relation compatible with strong equiva-
lence. We obtain a finite index if, intuitively, the belief setBel(s) associated withs
evolves differently only in a bounded context. We have the following result.

Theorem 2. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame such thatEC is
finite, and letS ⊆ SEF be some set of knowledge states overEC. Then, the following
two conditions are equivalent:

(a) ≡EF has a finite index with respect toS.
(b) ≡0

EF has a finite index with respect toS and there is somek ≥ 0 such thats ≡kEF s′

impliess ≡EF s′, for all s, s′ ∈ S.

Moreover, in case(a), there is somek ≥ 0 such that|S/ ≡EF | < d|EC|
k

, where
d = |S/ ≡0

EF|.

The condition that≡0
EF has a finite index, i.e., such that only finitely many knowl-

edge statess have different belief sets, is, e.g., satisfied by common belief operators if
everys is compiled to a sequencecompEF (s) of ELPs over a finite set of function-free
atoms (in particular, ifA is a finite propositional alphabet).

By taking natural properties ofBel(·) andcompEF (·) into account, we can derive
an alternative version of Theorem 2. To this end, we introduce the following notation.

Given a belief operatorBel(·), we call update programsP and P′ k-equivalent,
if Bel(P + (Q1, . . . , Qk)) = Bel(P′ + (Q1, . . . , Qk)), for every ELPsQ1, . . . , Qi
(0 ≤ i ≤ k). Likewise,P andP′ arestrongly equivalent, if they arek-equivalent for
all k ≥ 0. We say thatBel(·) is k-local, if k-equivalence ofP andP′ implies strong
equivalence ofP and P′, for any update programsP and P′. Furthermore,Bel(·) is
local, if Bel(·) is k-local for somek ≥ 0. We obtain the following result:
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Theorem 3. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame such thatEC
is finite and≡0

EF has a finite index with respect toS ⊆ SEF . If Bel(·) is local and
compEF (·) is incremental, then≡EF has a finite index with respect toS.

As an application of this result, we show that certainEPI evolution frames have a
finite index. Recall thatBelE(·) is the belief operator of the answer set semantics of
update programs [7], as described in Section 2. We can show the following result:

Theorem 4. BelE is local. In particular,1-equivalence of update programsP andP′

impliesk-equivalence ofP andP′, for all k ≥ 1.

The proof is by induction and appeals to the rejection mechanism of the semantics.
Furthermore, in anyEPI evolution frameEF = 〈A, EC,ACEPI,ΠEPI, ρEPI, BelE〉, the
update policyΠEPI is, informally, given by a logic program such thatΠEPI returns a set
of update actions from a finite setA0 of update actions, which are compiled to rules
from a finite setR0 of rules, providedEC is finite. Consequently,≡0

EF has finite index
with respect to any setS of knowledge statess which coincide onπ0(s), i.e. the initial
knowledge baseKB . Furthermore,compEPI(·) is incremental. Thus, we obtain:

Corollary 1. Let EF = 〈A, EC,ACEPI,ΠEPI, ρEPI, BelE〉 be anEPI evolution frame
such thatEC is finite, and letS ⊆ SEF be a set of knowledge states such that{π0(s) |
s ∈ S} is finite. Then,≡EF has a finite index with respect toS. Moreover,|S/ ≡EF| ≤
d|EC|, whered = |S/ ≡0

EF|.

5.2 Contracting belief operators

Next, we discuss a refinement of strong equivalence, calledcanonical equivalence,
which also yields a finite index, providing the evolution frame possesses, in some sense,
only a “bounded history”. In contradistinction to the previous case, canonical equiva-
lence uses semantical properties which allow for a syntactic simplification of update
programs. We need the following notions.

Definition 9. LetBel(·) be a belief operator. Then,Bel(·) is calledcontractingiff the
following conditions hold:(i)Bel(P+∅+P′) = Bel(P+P′), for all update programsP
andP′; and(ii )Bel(P) = Bel(P0, . . . , Pi−1, Pi\{r}, Pi+1, . . . , Pn), for any sequence
P = (P0, . . . , Pn) and any ruler ∈ Pi ∩ Pj such thati < j. An evolution frame
EF = 〈A, EC,AC,Π, ρ,Bel〉 is contracting iffBel(·) is contracting.

Examples of contracting belief operators areBelE(·) and the analogous operator
from [1]. By repeatedly removing duplicate rulesr and empty programsPi from any
sequenceP = (P0, . . . , Pn) of ELPs, we eventually obtain a non-reducible sequence
P∗ = (P ∗1 , . . . , P

∗
m), which is called thecanonical formof P. Observe thatm ≤ n

always holds, and thatP∗ is uniquely determined, i.e., the reduction process is Church-
Rosser. We get the following property:

Theorem 5. For any contracting belief operatorBel(·) and any update sequenceP,
we have thatP andP∗ are strongly equivalent.
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Let us call knowledge statess ands′ in an evolution frameEF canonically equiv-
alent, denoteds ≡canEF s′, iff they are strongly equivalent in the canonized evolution
frameEF ∗, which results fromEF by replacingcompEF (s) with its canonical form
compEF (s)∗ (i.e.,compEF∗(s) = compEF (s)∗). We note the following property.

Theorem 6. Let EF be a contracting evolution frame. Then,EF , s |= ϕ iff EF ∗, s |=
ϕ, for any knowledge states and any formulaϕ. Furthermore,≡can

EF is compatible with
≡EF for anyS ⊆ SEF , i.e.,s ≡can

EF s′ impliess ≡EF s′, for everys, s′ ∈ S.

As a result, we may use≡canEF for filtration of EF , based on the following concept.

Definition 10. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame andc ≥ 0 an
integer. We say thatEF is c-boundediff there are functionsα, f , andg such that

1. α is a function mapping knowledge states into sets of events such that, for each
s = 〈KB ;E1, . . . , En〉, α(s) = 〈En−c′+1, . . . , En〉, wherec′ = min(n, c); and

2. Π(s,E) = f(Bel(s), α(s), E) andρ(s,A) = g(Bel(s), α(s), A), for each knowl-
edge states ∈ SEF , each eventE ∈ EC, and eachA ⊆ AC.

This means that, in ac-bounded evolution frame, the compilationcompEF (s) de-
pends only on the belief set of the predecessors′ of s and the latestc events ins.

Theorem 7. Let EF = 〈A, EC,AC,Π, ρ,Bel〉 be an evolution frame whereEC is
finite, and letS ⊆ SEF . If (i) EF is contracting,(ii ) there is some finite setR0 ⊆ LA
such thatcompEF (s) ⊆ R0, for anys ∈ S, and(iii ) EF is c-bounded, for somec ≥ 0,
then≡can

EF has a finite index with respect toS.

6 Complexity

In this section, we study the computational complexity of the following reasoning task:

TEMPEVO: Given an evolution frameEF = 〈A, EC,AC,Π, ρ,Bel〉, a knowledge
states overEC, and some formulaϕ, doesEF , s |= ϕ hold?

In order to obtain decidability results, we assume that the constituents of the evo-
lution frameEF in TEMPEVO are all computable. More specifically, we assume that
(i) EC,AC, andBel are given as computable functions decidingE ∈ EC, a ∈ AC, and
r ∈ Bel(P), and (ii)Π andρ are given as computable functions. Nonetheless, even
under these stipulations, it is easy to see that TEMPEVO is undecidable.

The results of Section 5 provide a basis for characterizing some decidable cases. We
consider here the following class of propositional evolution framesEF = 〈A, EC,AC,
Π, ρ,Bel〉 (i.e.,A is propositional). CallEF regular, if the following applies:

1. the membership testsE ∈ EC andr ∈ Bel(P), as well asΠ andρ are computable
in polynomial space (the latter with polynomial size output); e.g., the functions may
be computable in the polynomial hierarchy;

2. rules in compilationscompEF (s) and eventsE have size polynomial in the repre-
sentation size ofEF , denoted by‖EF‖ (i.e., repetition of the same literal in a rule
is bounded), and events have size at most polynomial in‖EF‖;
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3. Bel(·) is model based, i.e.,Bel(P) is determined by a set ofk-valued models,
wherek is small (typically,k ≤ 3 as forBelE(·)).

The conditions 1 and 3 apply to the approaches in [1, 6, 8, 16, 17, 13, 21], and condi-
tion 2 is reasonable to impose; note that none of these semantics is sensible to repetitions
of literals in rule bodies.

Theorem 8. DecidingEF , s |= ϕ, given a regular propositional evolution frameEF =
〈A, EC,AC,Π, ρ,Bel〉, a knowledge states, and a formulaϕ is

1. 2-EXPSPACE-complete, ifBel(·) is k-local for somek which is polynomial in
‖EF‖, andcompEF (·) is incremental;

2. EXPSPACE-complete, ifEF is contracting andc-bounded, wherec is polynomial
in ‖EF‖; and

3. PSPACE-complete, ifEF is as in 2 and, moreover, all rules in the compilations
compEF (s′) of successorss′ of s are from a setR0 of size polynomial in‖EF‖.

For the upper bounds of these results, we note that in the case whereϕ has formEψ,
only finite paths of length at most|S/ ≡EF|must be considered for satisfyingψ, where
S is the set of all future knowledge states ofs. Part 1 of the theorem can then be shown
by Theorem 3 using the estimation given in Theorem 2. Concerning Part 2, there are

O(2l
|A|+‖EF‖m) = O(22m

′‖EF‖
) many knowledge statess that are not strongly equiv-

alent, for some constantsl,m andm′; eachBel(s) can be represented, using canonical
update programs, together with the lastc events, in single exponential space. Further-
more, the representation of every successor state is computable in polynomial space in
the input size. Hence, overall exponential space is sufficient. Finally, the additional con-
dition in Part 3 of the theorem guarantees PSPACE complexity. The lower bounds can
be shown by encoding Turing machine computations into particular evolution frames.

Part 3 of Theorem 8 implies that the propositionalEPI framework has also PSPACE
complexity. While here, in general,Bel(s) depends on all events ins, it is possible
to restrictACEPI to the commandsassert and retract, by efficient coding tech-
niques which store relevant history information inBel(s), such that the compilation
in compEPI(s) depends only onBel(πn−1(s)) and the last eventEn in s. Furthermore,
the policyΠEPI is sensible only to polynomially many rules in events, andcompEPI(s)
contains only rules from a fixed setR0 of rules, whose size is polynomial in the repre-
sentation size ofEF . Thus, we get the following corollary.

Corollary 2. LetEF = 〈A, EC,ACEPI,ΠEPI, ρEPI, BelE〉 be a propositionalEPI evo-
lution frame, lets be a knowledge state, and letϕ be a formula. Then, decidingEF , s |=
ϕ is in PSPACE.

On the other hand, computations of a PSPACE Turing machine can be easily en-
coded in a propositionalEPI evolution frame using a single event which models the
clock. Thus, Corollary 2 has a matching lower bound.

We conclude our complexity analysis with results concerning weak, strong, and
k-equivalence of two propositional update programs, respectively.

Theorem 9. Deciding whether two given propositional update programsP andQ are
weakly equivalent, i.e., satisfyingBelE(P) = BelE(Q), is coNP-complete.
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Intuitively, the upper bound follows from the property that, for any propositional
update programsP andQ, Bel(P) = Bel(Q) is equivalent toAS(P) = AS(Q). The
matching lower bound follows easily from the coNP-completeness of deciding whether
an ELP has no answer set (cf. [5]).

For deciding1-equivalence, the following lemma is useful:

Lemma 1. Let P andQ be propositional update programs. Then,P andQ are not 1-
equivalent underBelE iff there is an ELPP and a setS such that(i) S ∈ AS(P + P )
butS /∈ AS(Q+P ), or vice versa,(ii ) |S| is at most the number of atoms inP+Q plus
1, and(iii ) |P | ≤ |S|+ 1. Furthermore,P has polynomial size in the size ofP andQ.

Intuitively, this holds since any answer setS of P + P can be generated by at most
|S| many rules. Furthermore, ifS is not an answer set ofQ + P , by unfolding rules in
P we may disregard for anS all but at most one atom which does not occur inP or Q.
To generate a violation ofS in Q + P , an extra rule might be needed; this means that a
P with |P | ≤ |S|+ 1 is sufficient.

Theorem 10. Deciding strong equivalence(or k-equivalence, for any fixedk ≥ 0) of
two given propositional update programsP andQ is coNP-complete.

Proof. (Sketch) Fork = 0, the result is given by Theorem 9. Fork ≥ 1, the member-
ship part follows from Lemma 1, in virtue of Theorem 4. Hardness can be shown by
constructing, given a propositional DNFφ, suitable programsP andQ in polynomial
time such thatφ is valid in classical logic iffP = (P ) andQ = (Q) are1-equivalent.2

Note that Theorems 9, 10 and Lemma 1 make no finiteness assumption on the al-
phabetA. They also hold for ground update programsP andQ in a first-order alphabet,
whereP in Lemma 1 is ground.

7 Discussion and Conclusion

We presented a general framework for reasoning about evolving logic programs, which
can be applied to several approaches for updating logic programs in the literature. Since
the semantics of evolution frames can be captured by Kripke structures, it is suggestive
to transform reasoning problems on them into model checking problems [4]. However,
in current model checking systems, state transitions must be stated in a polynomial-time
language, and descriptions of these Kripke structures would require exponential space
also for evolution frames with PSPACE complexity (e.g.,EPI evolution frames). Thus,
extensions of model checking systems would be needed for fruitful usability.

Lobo et al. introduced thePDL [14] language for policies, which contain event-
condition-action rules and serve for modeling reactive behavior on observations from
an environment. While similar in spirit, their model is different, and [14] focuses on
detecting action conflicts (which, in our framework, is not an issue). In [15], reason-
ing tasks are considered which center around actions. Further related research is on
planning, where certain reachability problems are PSPACE-complete (cf. [3]). Similar
results were obtained in [20] for related agent design problems. However, in all these
works, the problems considered are ad hoc, and no reasoning language is considered.
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Fagin et al.’s [10] important work on knowledge in multi-agent systems addresses
evolving knowledge, but mainly at an axiomatic level. Wooldridge’s [19] logic for rea-
soning about multi-agent systems embeds CTL∗ and has belief, desire and intention
modalities. The underlying model is very broad, and aims at agent communication and
cooperation. It remains to see how our particular framework fits into these approaches.

Our ongoing work addresses these and further issues. Further meaningful properties
of evolution frames would be interesting; e.g., iterativity of the compilationcompEF ,
i.e., the events are incorporated one at a time, or properties of the belief operatorBel.
Other issues are algorithms and fragments of lower (especially, polynomial) complexity.
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17. V. Marek and M. Truszczýnski. Revision Programming.TCS, 190(2):241–277, 1998.
18. M. Winslett.Updating Logical Databases. Cambridge University Press, 1990.
19. M. Wooldridge.Reasoning about Rational Agents. MIT Press, 2000.
20. M. Wooldridge. The Computational Complexity of Agent Design Problem. InProc. Inter-

national Conference on Multi-Agent Systems(ICMAS) 2000. IEEE Press, 2000.
21. Y. Zhang and N. Foo. Updating Logic Programs. InProc. ECAI’98, pp. 403–407. 1998.

421


