
Data Integration and Answer Set Programming

Thomas Eiter

Knowledge Based Systems Group, Institute of Information Systems,
Vienna University of Technology, A-1040 Vienna, Austria

eiter@kr.tuwien.ac.at

Abstract. The rapid expansion of the Internet and World Wide Web led to grow-
ing interest in data and information integration, which should be capable to deal
with inconsistent and incomplete data. Answer Set solvers have been considered
as a tool for data integration systems by different authors. We discuss why data
integration can be an interesting model application of Answer Set programming,
reviewing valuable features of non-monotonic logic programs in this respect, and
emphasizing the role of the application for driving research.

1 Introduction

Triggered by the rapid expansion of the Internet and the World Wide Web, the inte-
gration of data and information from different sources has emerged as a crucial issue
in many application domains, including distributed databases, cooperative information
systems, data warehousing, or on-demand computing.

However, the problem is complex, and no canonical solution exists. Commercial
software solutions such as IBM’s Information Integrator [1] and academic systems (see
e.g. [2]) fulfill only partially the ambitious goal of integrating information in complex
application scenarios. In particular, handling inconsistent and/or incomplete data is,
both semantically and computationally, a difficult issue, and is still an active area of
research; for a survey of query answering on inconsistent databases, see [3].

In recent years, there has been growing interest in using non-monotonic logic pro-
grams, most prominently answer set solvers like DLV [4], Smodels [5], or Cmodels-2
[6] as a tool for data integration, and in particular to reconcile data inconsistency and
incompleteness, e.g. [7,8,9,10,11,12,13,14,15]. In our opinion, data integration can in
fact be viewed as an interesting model application of Answer Set Programming (ASP),
for a number of different reasons:

1. The problem is important. There is rapidly growing interest in data and information
integration, and this was estimated to be a $10 Billion market by 2006 [16].

2. Some of the key features of non-monotonic logic programming and ASP in partic-
ular, namely declarativity, expressiveness, and capability of nondeterminism can be
fruitfully exploited.

3. Interest in ASP engines as a tool for solving data integration tasks emerged with
people outside the ASP community, and in fact by different groups [7,8,11,12,13].

4. The application has raised new research problems and challenges, which have
driven research to enhance and improve current ASP technology.

C. Baral et al (Eds.): LPNMR 2005, LNAI 3662, pp. 13–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 T. Eiter

global (user) database B source database D
︷ ︸︸ ︷ ︷ ︸︸ ︷

player : ? ? ?
. . .

team : ? ? ?
. . .

coach : ? ? ?
. . .

s1 : 10 Totti RM 27

9 Beckham MU 28

s2 : RM Roma 10

s3 : MU ManU 8

RM Real Madrid 10

s4 : 7 Camacho RM

Fig. 1. Simple soccer data integration scenario – global and source relations

Example 1. To illustrate the problem, we consider a simple scenario of a data integra-
tion system which provides information about soccer teams. At the global (user) level,
there are three relations

player (Pcode,Pname,Pteam), team(Tcode ,Tname,Tleader), and
coach(Ccode,Cname,Cteam),

which are interrelated with source relations

s1(A1, A2, A3, A4), s2(B1, B2, B3), s3(C1, C2, C3), and s4(D1, D2, D3)

in the following way:

– player correlates with the projection of s1 to first three attributes;
– team correlates with the union of s2 and s3; and
– coach correlates with s4.

(The precise form of correlation will be detailed later.) Now given the instance of the
source database shown in Figure 1, how should a corresponding global database in-
stance look like? In particular, if there are key constraints for the user relations, and
further constraints like that a coach can neither be a player nor a team leader. Further-
more, if we want to pose a query which retrieves all players from the global relations
(in logic programming terms, evaluate the rules

q(X)← player (X, Y, Z)
q(X)← team(V, W, X)

where q is a query predicate), how do we semantically determine the answer? �

Different approaches to data integration have been considered; see [17,2] for dis-
cussion. The most prominent ones are the Global As View approach (GAV), in which
the relations at the user level are amount to database views over the sources, and Local
As View approach (GAV), in which conversely the relations of the source database are

Data Integration and Answer Set Programming 15

database views on the global relations. For both approaches, the usage of ASP has been
explored, cf. [7,8,10,11,12,13,15].

In this remainder of this paper, we shall first briefly present a framework for data
integration from the literature [17,18] which accommodates both GAV and LAV, along
with proposals for semantics to deal with data inconsistencies. We then discuss why em-
ploying non-monotonic logic programs for this application is attractive, but also what
shortcomings of ASP technology have been recognized, which have been driving (and
still do so) research to improve ASP technology in order to meet the needs of this
application. This is further detailed on the example of the INFOMIX information inte-
gration project, in which ASP has been adopted as the core computational technology
to deal with data inconsistencies. We conclude with some remarks and issues for future
research.

2 Data Integration Systems

While semi-structured data formats and in particular XML are gaining more and more
importance in the database world, most of the theoretical work on advanced data inte-
gration has considered traditional relational databases, in which a database schema is
modeled as a pair 〈Ψ, Σ〉 of a set Ψ of database relations and a set Σ of integrity con-
straints on them. The latter are first-order sentences on Ψ and the underlying (finite or
infinite) set of constants (elementary values) Dom. A database instance can be viewed
as a finite set of ground facts on Ψ and Dom, and is legal if it satisfies Σ.

A commonly adopted high-level structure of a data integration system I in a rela-
tional setting is a triple 〈G,S,M〉 with the following components [17,18]:

1. G = 〈Ψ, Σ〉 is a relational schema called the global schema, which represents the
user’s view of the integrated data. The integrity constraints Σ are usually from par-
ticular constraint classes, since the interaction of constraints can make semantic
integration of data undecidable. Important classes of constraints are key constraints
and functional dependencies (as well-known from any database course), inclusion
dependencies (which enforce presence of certain tuples across relations), and ex-
clusion dependencies (which forbid joint presence of certain tuples).

2. S is the source schema, which is given by the schemas of the various sources that
are part of the data integration system. Assuming that they have been standardized
apart, we can view S as a relational schema of the form S = 〈Ψ ′, Σ′〉. The common
setting is that Σ′ is assumed to be empty, since the sources are autonomous and
schema information may be not disclosed to the integration system.

3. M is the mapping, which establishes the relationship between G and S in a seman-
tic way. The mapping consists of a collection of mapping assertions of the forms

(1) qG(x) � qS(x) and (2) qS(x) � qG(x),

where qG(x) and qS(x) are database queries (typically, expressible in first-order
logic) with the same free variables x, on G respectively S.

In the above framework, the GAV and LAV approach result as special cases by
restricting the queries qG(x) respectively qS(x) to atoms r(x).

16 T. Eiter

Example 2. (cont’d) Our running example scenario is represented as a data integration
system I = 〈G, S,M〉, where G consists of the relations player , team, and coach . The
associated constraints Σ are that the keys of player , team , and coach are the attributes
{Pcode,Pteam}, {Tcode}, and {Ccode,Cteam}, respectively, and that a coach can
neither be a player nor a team leader. The source schema S comprises the relations s1,
s2, s3 and s4. Finally, the GAV mappingM is defined in logic programming terms as
follows (where qS � qG amounts to qG ← qS):

player (X, Y, Z)← s1(X, Y, Z, W)
team(X, Y, Z)← s2(X, Y, Z)
team(X, Y, Z)← s3(X, Y, Z)
coach(X, Y, Z)← s4(X, Y, Z) �

The formal semantics of a data integration system I is defined with respect to a given
instanceD of the source schema, S, in terms of the set sem(I, D) of all instances B of
the global schema, G, which satisfy all constraints in G and, moreover,

– {c | B |= qG(c)} ⊆ {c | D |= qS(c)} for each mapping assertion of form (1), and
– {c | D |= qS(c)} ⊆ {c | B |= qG(c)} for each mapping assertion of form (2),

where for any constants c on Dom, DB |= q(c) denotes that q(c) evaluates to true on
the database DB.

The notions of sound, complete, and exact mapping between query expressions
qG(x) and qS(x) [17], reflecting assumptions on the source contents, are then elegantly
captured as follows:

– sound mapping: qS(x) � qG(x) (intuitively, some data in the sources is missing),
– complete mapping: qG(x) � qS(x) (intuitively, the sources contain excess data),
– exact mapping: qS(x) � qG(x) ∧ qG(x) � qS(x)

The answer to a query Q with out query predicate q(x) against a data integration
system I with respect to source data D, is given by the set of tuples ans(Q, I,D) =
{c | B |= q(c), for each B ∈ sem(I,D)}; that is, ans(Q, I,D) collects all tuples
c on Dom such that q(c) is a skeptical consequence with respect to all “legal” global
databases.

In a GAV setting under sound mappings, the smallest candidate database B for
sem(I,D), is given by the retrieved global database, ret(I,D), which is the mate-
rialization of all the views on the sources. Under exact mappings, ret(I,D) is in fact
the only candidate database for sem(I,D).

Example 3. (cont’d) Note that the mappingM in our running example is a sound map-
ping. The global database B0 = ret(I,D) for D as in Figure 1 is shown in Figure 2. It
violates the key constraint on team, witnessed by the two facts team(RM, Roma, 10)
and team(RM, Real Madrid, 10), which coincide on Tcode but differ on Tname . Since
this key constraint is violated in every database B′ which contains B0, it follows that
sem(I,D) is empty, i.e., the global relations can not be consistently populated. �

Data Integration and Answer Set Programming 17

global database B0 = ret(I,D) source database D
︷ ︸︸ ︷ ︷ ︸︸ ︷

player : 10 Totti RM
9 Beckham MU

team : RM Roma 10
MU ManU 8
RM Real Madrid 10

coach : 7 Camacho RM

s1 : 10 Totti RM 27

9 Beckham MU 28

s2 : RM Roma 10

s3 : MU ManU 8

RM Real Madrid 10

s4 : 7 Camacho RM

Fig. 2. Global database B0 = ret(I,D) for the soccer scenario as retrieved from the sources

repair R1 repair R2

︷ ︸︸ ︷ ︷ ︸︸ ︷

player : 10 Totti RM
9 Beckham MU

team : RM Roma 10
MU ManU 8

coach : 7 Camacho RM

player : 10 Totti RM
9 Beckham MU

team : MU ManU 8
RM Real Madrid 10

coach : 7 Camacho RM

Fig. 3. Repairs in the example data integration scenario I w.r.t. D

Since “ex-falso-quodlibet” is not a desirable principle for database query answers
(e.g., in our scenario (Roma) would be a query answer), relaxations aim at adopt-
ing global databases B which (1) satisfy all constraints and (2) satisfy the mapping
assertion M with respect to D as much as possible. The latter may be defined in
terms of a preference ordering (i.e., a reflexive and transitive relation) � over global
databases B, such that those B are accepted which are most preferred. Different pos-
sibilities for instantiating � exist and have been considered in a number of papers
[7,8,19,10,11,12,20,13,21,15]. A popular one with GAV mappings is the one which
prefers databases B which are as close as possible, under symmetric set difference, to
the retrieved global databases ret(I,D); it amounts to the smallest set of tuples to be
added and/or deleted. Other orderings are based on giving preferences to retaining tu-
ples in ret(I,D) over adding new ones (as in loosely sound semantics [20,13]), or even
demand that only deletion of tuples is allowed (guided by some completeness assump-
tion [21]). These databases are commonly referred to as “repairs” of the global database
ret(I,D).

Example 4. (cont’d) Let us adopt the preference relation�B0 which prefers B1 over B2

if the symmetric difference B1 	B0 is a subset of B2 	B0. Then the retrieved global
database B0 for the running example has two repairs R1 and R2 shown in Figure 3.

18 T. Eiter

Accordingly, the example query Q evaluates to ans(Q, I,D) = {(8), (9), (10)}, since
the respective facts q(c) are derived over both repairs. �

For a more rigorous discussion of the above model, in particular from the perspec-
tive of logic, we refer to [18], where it is also shown that a number of different orderings
� used by different authors can be generically captured.

3 Employing Non-monotonic Logic Programs

Recently, several approaches to formalize repair semantics by using non-monotonic
logic programs have been proposed, cf. [7,8,9,19,10,11,12,13,14,15]. The idea com-
mon to most of these works is to encode the constraints Σ of the global schema G into
a function-free logic program, Π , using unstratified negation and/or disjunction, such
that the answer sets of this program [22] yield the repairs of the global database. An-
swering a user query, Q, then amounts to cautious reasoning over the logic program Π
augmented with the query, cast into rules, and the retrieved database B. For an elabo-
rated discussion of these proposals, we refer to [23]. In [19], the authors consider data
integration via abductive logic programming, where, roughly speaking, the repairs of a
database are computed as abductive explanations.

In the following, we discuss some key features of answer set programs which can
be fruitfully exploited for doing data integration via ASP.

High expressiveness. ASP is a host for complex database queries. ASP with disjunc-
tion has ΠP

2 -expressiveness, which means that each database query with complexity in
ΠP

2 can be expressed in this formalism [24]. Such expressiveness is strictly required
for query answering in some settings [13,21,25]; for example, under loosely-exact se-
mantics in the presence of inclusion dependencies for fixed queries, but also for ad
hoc queries under absence of such dependencies. And, ASP with disjunction has co-
NEXPNP program complexity [24], and thus very complex problems can be polynomi-
ally reduced to it (as for query answering, however, not always in a data-independent
manner). For more on complexity and expressiveness of ASP, see [26,27].

Declarative language. ASP supports a fully declarative, rule-based approach to infor-
mation integration. While languages such as Prolog also support declarative integration,
the algorithm-oriented semantics makes it more difficult to design and understand inte-
grations policies for the non-expert.

Nondeterminism. ASP engines have been originally geared towards model generation
(i.e., computation of one, multiple, or all answer sets) rather than towards theorem prov-
ing. This is particularly useful for solving certain AI problems including model-based
diagnosis, where given some observations and a background theory, a model is sought
which reconciles the actual and predicted observations in terms of assumptions about
faulty components applying Occam’s Razor.

Repair semantics for query answering from inconsistent data bases and integra-
tion systems [7,8,10,11,12,13,15] is closely related to this diagnostic problem. Using
an ASP engine, a particular repair for a corrupted database might be computed and
installed in its place.

Data Integration and Answer Set Programming 19

Proximity to database query languages. ASP programs are close to logic-based
database query languages such as conjunctive queries, union of conjunctive queries,
(plain) SQL, and datalog. This in particular facilitates a seamless integration of vari-
ous components of a data integration system – query evaluation, database “repair”, and
database mapping – into a uniform language.

Executable specifications. Given the seamless integration of various components of
a data integration system, an ASP program for information integration tasks can be re-
garded as an executable specification, which can be run on supplied input data. This
has been elaborated in [14,23] where abstract logic specification for querying a GAV
data integration I with a query Q has been considered in terms of a hierarchically com-
posed disjunctive datalog program ΠI(Q) = ΠM ∪ΠΣ ∪ΠQ such that (in simplified
notation):

1. ret(I,D) � AS(ΠM ∪ D), where ΠM is a stratified normal datalog program,
computing the mappingM;

2. repI(D) � AS(ΠΣ ∪ ret(I,D)), where ΠΣ is an (unstratified resp. disjunctive)
program computing the repairs, and

3. ans(Q, I,D) = {c | q(c) ∈M for each M ∈ AS((ΠM∪ΠΣ ∪ΠQ∪D)}, where
ΠQ is a non-recursive safe datalog program with negation (defining the query out-
put predicate q);

here, AS(P) are the answer sets of a program P and � denotes a polynomial-time
computable correspondence between two sets.

Language constructs. The original ASP language [22] has been enriched with a num-
ber of constructs, including different forms of constraints such as DLV’s weak con-
straints, Smodels’s choice rules and weight constraints, rule preferences (see e.g. [28]
for a survey), and more recently aggregates (see [29,30,31] and references therein).

Aggregates, for instance, are very desirable for querying databases (SQL provides
many features in this respect). Weak and weight constraints are convenient for specify-
ing certain integration semantics, such as repairs based on cardinality (Hamming) dis-
tance of changes to the retrieved global database. Rule preferences might be exploited
to expressing preferences in repair, and e.g. help to single out a canonical repair. There-
fore, refinements and variants of standards proposals for integration semantics can be
accomodated well.

Knowledge representation capability. ASP provides, thanks to the availability of
facts and rules, different kinds of negation (strong and weak i.e. default negation), a
rich language for representing knowledge. This makes ASP attractive for crafting spe-
cial, domain dependent integration policies, in which intuitively a knowledge-base is
run for determining the best integration result.

4 Emerging ASP Research Issues

While ASP is attractive as a logic specification formalism for data integration, and avail-
able ASP engines can be readily applied for rapid prototyping of experimental systems

20 T. Eiter

that work well on small examples, it becomes quickly apparent that ASP technology
needs to be seriously improved in order to meet the requirements of this application
and make its usage feasible in practice. Among others, the following important issues
emerge:

Scalability. In real data integration scenarios, one needs to deal with massive amounts
of data (in the Gigabytes and beyond), rather than with a few tuples. A graceful scaling
of an integration system’s response time with respect to the amount of data processed
is desired. A problem in this respect is that current ASP technology builds on program
grounding, i.e., the reduction of non-ground programs to ground (propositional) pro-
grams which are then evaluated with special algorithms. Even though the grounding
strategies of DLV and Smodels’ grounder Lparse are highly sophisticated and avoid as
much as possible the generation of “unnecessary rules,” the grounding of a repair pro-
gram over a large dataset will be ways too large to render efficient query answering.
Therefore, optimization methods are needed which allow for handling large amounts of
data. A call for this has been made e.g. in [11].

Nonground queries. Another issue is that as seen in the example scenario, queries to
an integration system typically contain variables, all whose instances should be com-
puted. ASP solvers, however, have been conceived for model computation rather than
for query answering. Query answering, e.g. as originally supported in DLV, was limited
to ground (variable-free) queries (which can be reduced to model computation resp.
checking program consistency by simple transformations). The straightforward method
of reducing a non-ground query by instantiation to a series of (separate) ground queries
is not efficient, since roughly the system response time will be O(#gq ∗ srt), where
#gq is the number of ground queries and srt is the response time for a single ground
query. Therefore, efficient methods for answering non-ground queries are needed.

Software interoperability. In data integration settings in practice, data is stored in
multiple repositories, and often in heterogeneous formats. In a relational setting, such
repositories will be managed by a commercial DBMS such as Oracle, DB2, SQLServer
etc. Data exchange between a DBMS and an ASP engine via files or other operating
systems facilities, as was the only possibility with early ASP systems, requires extra
development effort and, moreover, is an obvious performance bottleneck. To facilitate
efficient system interoperability, suitable interfaces from ASP solvers to DBMS must
be provided, such as an ODBC interface as available in other languages. Furthermore,
interfaces to other software for carrying out specific tasks in data integration (e.g., data
cleaning, data presentation) are desirable.

These issues are non-trivial and require substantial foundational and software devel-
opment work. Scalability and non-ground query answering are particularly challenging
issues, which are not bound to the data integration application. Advances on them will
be beneficial to a wide range of other applications as well.

The above issues have been driving some of the research on advancing and enhanc-
ing ASP technology in the last years, and in particular of the ASP groups at the Univer-
sity of Calabria and at TU Vienna. A number of results have been achieved, which are
briefly summarized as follows.

Data Integration and Answer Set Programming 21

– As for scalability and optimization, the magic set method (introduced in [32]) has
been extended to disjunctive programs and tuned for data integration [33,34,35];
focusing techniques and optimization methods genuine to data integration are pre-
sented in [14,23]; different variants of repair programs have been examined for
their suitability, in this context, recent notions and results on program equivalence
[36,37,38,39] turned out to be a useful tool.

– Non-ground query answering is supported in the current releases of DLV.
– Interfacing of relational DBMS is supported by an ODBC interface in DLV [40],

and a tight coupling between ASP engines and relational DBMSs has been con-
ceived [41].

These results have been obtained in the course of the INFOMIX project, which is
briefly presented in the next subsection, since to our knowledge it is the most compre-
hensive initiative to employ ASP in a data integration system.

4.1 The INFOMIX Project

INFOMIX [42] has been launched jointly by the ASP groups of the University of
Calabria and TU Vienna, the data integration group at the University of Rome “La
Sapienza,” and Rodan Systems S.A., a Polish database software house, with the ob-
jective to provide powerful information integration for handling inconsistent and in-
complete information, using computational logic tools as an implementation host for
advanced reasoning tasks. The usage of an ASP engine like DLV or Smodels which
is capable of handling non-ground programs and provides the expressiveness needed,
appeared to be well-suited. However, the research issues mentioned above had to be ad-
dressed in order to make employment of ASP in realistic integration scenarios feasible
beyond toy examples.

The INFOMIX prototype [43,44] is built on solid theoretical foundations, and im-
plements the GAV approach under sound semantics. It offers the user a powerful query
language which, as a byproduct of the usage of ASP, allows in certain cases also queries
beyond recursion-free positive queries (which are those expressed by non-recursive
ASP programs without negation), in particular stratified queries or queries with ag-
gregates, depending on the setting of the integrity constraints of the global schema;
the underlying complexity and undecidability frontier has been charted in [20]. Fur-
thermore, INFOMIX provides the user with tools for specifying and managing a data
integration scenario, as well as with a rich layer for accessing and transforming data
from sources (possibly dispersed on the Internet) in heterogeneous formats (including
relational format, XML, and HTML under constraints) into a homogenous format (con-
ceptually, into a fragment of XML Schema) by data wappers.

At the INFOMIX core are repair logic programs for handling data inconsistencies,
which are dynamically compiled by rewriting algorithms. Pruning and optimization
methods are applied which aim at reducing the portion of data which need to be ac-
cessed for query answering. In particular, the usage of the ASP engine is constrained to
the inconsistent data part which needs repair. Details about this can be found in paper
and reports [42,13,14,35].

Compared to data integration systems with similar semantics, of which the most
prominent are the Hippo [45] and ConQuer [46], INFOMIX is capable of handling a

22 T. Eiter

much larger range of queries and constraint settings which are realistic in practice. This
is exemplified by the INFOMIX Demo Scenario, in which data from various legacy
databases and web pages of the University of Rome “La Sapienza” are integrated into a
global view which has 14 relations and about 30 integrity constraints, including key con-
straints, inclusion and exclusion dependencies. Most of the 9 typical user queries in the
Demo Scenario can’t be handled by Hippo; ConQuer can only handle key constraints,
and thus is not applicable to the scenario. On the other hand, Hippo and ConQuer are
very efficient and faster than INFOMIX on the specific settings which they can handle.

Thanks to improved ASP technology and the optimization techniques, INFOMIX
is able to handle the queries in the Demo Scenario reasonably efficient within a few
seconds for core integration time, and tends to scale gracefully. Without these improve-
ments and optimizations, the performance is much worse and the system response time
barely acceptable.

5 Discussion and Conclusion

As argued above, data integration can be seen as an interesting model application of
Answer Set Programming. The results which have been obtained so far are encouraging,
and show clear benefits of using ASP. We remark that an experimental comparison
of computing database repairs with different logic-based methods – QBF, CLP, SAT,
and ASP solvers – in a propositional setting is reported in [9], which shows that ASP
performs very well. We suspect that in the realm of a relational setting (in which QBF
and SAT solvers can’t be directly applied and require preliminary grounding), it behaves
even more advantageous.

In spite of the advances that have been achieved on the issues in Section 4, research
on them is by no means closed, and in fact a lot of more work is necessary.

Optimization of ASP programs is still at a rather early stage, and there is room for
improvement. Currently, optimization is done at the level of ASP solvers, which employ
internal optimization strategies that to some extent build on heuristics. Optimization at
the “external” level, independent of a concrete ASP solver, is widely unexplored. Recent
results on program equivalences (cf. [36,37,38,47,39] and references therein) might pro-
vide a useful basis for optimization methods. However, as follows from classic results
in database theory, basic static optimization tasks for ASP programs are undecidable
in very plain settings (cf. [48]), and thus a detailed study and exploration of decidable
cases is needed.

Efficient non-ground query answering is an issue which is perhaps tied to a more
fundamental issue concerning the architecture of current state-of-the-art answer set en-
gines: it is unclear whether their grounding approach is well-suited as a computational
strategy. Indeed, for programs in which predicate arities are bounded by a constant,
non-ground query answering can be carried out in polynomial space (as follows from
results in [49]) while current answer set engines use exponential space for such queries
in general.

As for software interoperability, ASP engines need to interface a large range of
other data formats besides relational data, including popular formats like XML and,
more recently, also RDF. For XML data, ASP extensions are desired which allow to
manipulate them conveniently. The Elog language [50] may be a guiding example in

Data Integration and Answer Set Programming 23

this direction. In turn, integration of ASP solvers into more complex software systems
needs also better support.

As for future developments of ASP and data integration, one interesting issue would
be to realize an operational data integration system which is deployed in a concrete ap-
plication. The results of INFOMIX are encouraging in this direction. Here, a hybrid
system combining complementary approaches like those of Hippo, ConQuer, and IN-
FOMIX would be an intriguing idea. As for the perspective of advanced data integration
at the level of a full-fledged commercial DBMS, we feel that research is still at an early
stage and industry seems not to be ready for immediate takeup.

There are several interesting directions for further research on the usage of ASP
in data integration. Among them is powerful mediated data integration, as discussed
e.g. in [19], and peer-to-peer data integration in a network of information systems
[51]. Furthermore, applications of ASP in advanced integration of information sources
which contain information beyond factual knowledge, and in data model and ontology
management might be worthwhile to explore. Thanks to its rich knowledge represen-
tation capabilities, ASP might prove to be a valuable tool for developing declarative
formalisms in these areas.

Acknowledgments. I am very grateful to Wolfgang Faber for comments on a draft of
this paper. I would like to thank all the many colleagues with whom I had the pleasure
to discuss about and work on issues on data integration using non-monotonic logic
programming, and here in particular the INFOMIX project team. The views expressed
here are, however, personal and not necessarily in line with those of INFOMIX folks.
Furthermore, I am very grateful to the support of the European Commission of this
work under contracts IST-2001-33570 INFOMIX, FET-2001-37004 WASP, and IST-
2001-33123 CologNeT, and the Austrian Science Fund (FWF) project P18019-N04.

References
1. Hayes, H., Mattos, N.: Information on demand. DB2 Magazine 8 (2003)
2. Halevy, A.Y.: Data integration: A status report. In: Proc. 10. Conference on Database Sys-

tems for Business, Technology and Web (BTW 2003), LNI 26, GI (2003) 24–29
3. Bertossi, L., Chomicki, J.: Query answering in inconsistent databases. In Chomicki, J., van

der Meyden, R., Saake, G., eds.: Logics for Emerging Applications of Databases. Springer
(2003) 43–83

4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic, to appear. Available via http://www.arxiv.org/ps/cs.AI/0211004.

5. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138 (2002) 181–234

6. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. In: Proc. 7th Int’l Conf. on Logic Programming and Nonmonotonic Reasoning
(LPNMR-7). LNCS 2923, Springer (2004) 346–350

7. Arenas, M., Bertossi, L.E., Chomicki, J.: Specifying and querying database repairs using
logic programs with exceptions. In: Proc. 4th Int. Conf. on Flexible Query Answering Sys-
tems (FQAS 2000), Springer (2000) 27–41

8. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Logic Programming 3 (2003) 393–424

http://www.arxiv.org/ps/cs.AI/0211004

24 T. Eiter

9. Arieli, O., Denecker, M., Nuffelen, B.V., Bruynooghe, M.: Database repair by signed for-
mulae. In: Proc. 3rd Int’l Symp. on Foundations of Information and Knowledge Systems
(FoIKS 2004). LNCS 2942, Springer (2004) 14–30

10. Bertossi, L.E., Chomicki, J., Cortes, A., Gutierrez, C.: Consistent answers from integrated
data sources. In: Proc. 6th Int’l Conf. on Flexible Query Answering Systems (FQAS 2002).
(2002) 71–85

11. Bravo, L., Bertossi, L.: Logic programming for consistently querying data integration sys-
tems. In: Proc. 18th Int’l Joint Conf. on Artificial Intelligence (IJCAI 2003). (2003) 10–15

12. Bravo, L., Bertossi, L.: Deductive databases for computing certain and consistent answers to
queries from mediated data integration systems. Journal of Applied Logic 3 (2005) 329–367

13. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data
integration systems. In: Proc. IJCAI 2003. (2003) 16–21

14. Eiter, T., Fink, M., Greco, G., Lembo, D.: Efficient evaluation of logic programs for querying
data integration systems. In: Proc. 19th Int’l Conf. on Logic Programming (ICLP 2003).
LNCS 2916, Springer (2003) 163–177

15. Greco, G., Greco, S., Zumpano, E.: A logic programming approach to the integration, re-
pairing and querying of inconsistent databases. In: Proc. ICLP 2001. (2001) 348–364

16. Mattos, N.M.: Integrating information for on demand computing. In: Proc. 29th Int’l Conf.
on Very Large Data Bases (VLDB 2003). (2003) 8–14

17. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. 21st ACM Symposium
on Principles of Database Systems (PODS 2002). (2002) 233–246

18. Andrea Calı́, D.L., Rosati, R.: A comprehensive semantic framework for data integration
systems. Journal of Applied Logic 3 (2005) 308–328

19. Arieli, O., Denecker, M., Nuffelen, B.V., Bruynooghe, M.: Coherent integration of databases
by abductive logic programming. J. Artificial Intelligence Research 21 (2004) 245–286

20. Calı̀, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over
inconsistent and incomplete databases. In: Proc. PODS 2003. (2003) 260–271

21. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions.
Information and Computation 197 (2005) 90–121

22. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

23. Eiter, T., Fink, M., Greco, G., Lembo, D.: Optimization methods for logic-based consis-
tent query answering over data integration systems. Tech. Report INFSYS RR-1843-05-05,
Institute of Information Systems, TU Vienna, Austria (2005). Extends [14]

24. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Trans. on Database Systems
22 (1997) 364–417

25. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing incon-
sistent databases. IEEE Trans. Knowl. Data Eng. 15 (2003) 1389–1408

26. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33 (2001) 374–425

27. Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming. Journal of
the Theory and Practice of Logic Programming 3 (2003) 551–567

28. Delgrande, J.P., Wand, K., Schaub, T., Tompits, H.: A classification and survey of preference
handling approaches in nonmonotonic reasoning. Computational Intelligence 20 (2004) 308–
334

29. Gelfond, M.: Representing Knowledge in A-Prolog. In Kakas, A.C., Sadri, F., eds.: Compu-
tational Logic. Logic Programming and Beyond. LNCS 2408, Springer (2002) 413–451

30. Pelov, N.: Semantics of Logic Programs with Aggregates. PhD thesis, Katholieke Univer-
siteit Leuven, Leuven, Belgium (2004)

Data Integration and Answer Set Programming 25

31. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In: Proc. 9th European Conference on Logics in Artificial Intel-
ligence (JELIA 2004). LNCS 3229, Springer (2004) 200–212

32. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to
Implement Logic Programs. In: Proc. PODS 1986. (1986) 1–16

33. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE Trans. Knowledge and Data Engineering 15 (2003) 368–385

34. Cumbo, C., Faber, W., Greco, G.: Enhancing the magic-set method for disjunctive datalog
programs. In: Proc. ICLP 2004 (2004) 371–385

35. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In: Proc.
10th Int’l Conf. on Database Theory (ICDT 2005). LNCS 3363, Springer (2005) 306–320

36. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2 (2001) 526–541

37. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In: Proc. 8th Int’l Conf. on Principles of Knowledge Representation and Rea-
soning (KR 2002), (2002) 170–176

38. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Proc. LPNMR-7. LNCS 2923, Springer (2004) 87–99

39. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Transactions on Computational Logic, to appear. Tech.
Rep. INFSYS RR-1843-05-01, TU Vienna, Austria (2005)

40. Calimeri, F., Citrigno, M., Cumbo, C., Faber, W., Leone, N., Perri, S., Pfeifer, G.: New DLV
features for data integration. In: Proc. JELIA 2004. LNCS 3229, Springer (2004) 698–701

41. Leone, N., Lio, V., Terracina, G.: DLV DB: Adding efficient data management features to
ASP. In: Proc. LPNMR-7. LNCS 2923, Springer (2004) 341–345

42. INFOMIX homepage (since 2001) http://sv.mat.unical.it/infomix.
43. Leone, N., et al.: The INFOMIX system for advanced integration of incomplete and incon-

sistent data. In: Proc. ACM SIGMOD 2005 Conference, ACM (2005) 915–917
44. Leone, N., et al.: Data integration: a challenging ASP application. In: Proc. LPNMR 2005.

LNCS, Springer (2005). This volume
45. Chomicki, J., Marcinkowski, J., Staworko, S.: Computing consistent query answers using

conflict hypergraphs. In: Proc. 13th ACM Conference on Information and Knowledge Man-
agement (CIKM-2004), ACM Press (2004) 417–426

46. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient management of inconsistent
databases. In: Proc. ACM SIGMOD 2005 Conference, ACM (2005) 155-166

47. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set
programming: Characterizations and complexity results for the non-ground case. In: Proc.
20th National Conference on Artificial Intelligence (AAAI ’05) (2005)

48. Halevy, A.Y., Mumick, I.S., Sagiv, Y., Shmueli, O.: Static analysis in datalog extensions.
Journal of the ACM 48 (2001) 971–1012

49. Eiter, T., Faber, W., Fink, M., Pfeifer, G., Woltran, S.: Complexity of model checking and
bounded predicate arities for non-ground answer set programming. In: Proc. KR 2004 (2004)
377–387

50. Baumgartner, R., Flesca, S., Gottlob, G.: The Elog web extraction language. In: Proc. 8th
Int’l Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001).
LNCS 2250, Springer (2001) 548–560

51. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of peer-to-peer
data integration. In: Proc. PODS 2004 (2004) 241–251

http://sv.mat.unical.it/infomix

	Introduction
	Data Integration Systems
	Employing Non-monotonic Logic Programs
	Emerging ASP Research Issues
	The INFOMIX Project

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

