
Testing Strong Equivalence of Datalog Programs -
Implementation and Examples?

Thomas Eiter1, Wolfgang Faber2??, and Patrick Traxler1

1 Institute of Information Systems, Vienna University of Technology, 1040 Vienna, Austria
eiter@kr.tuwien.ac.at,e0027287@student.tuwien.ac.at

2 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
faber@mat.unical.it

Abstract. In this work we describe a system for determining strong equivalence
of disjunctive non-ground datalog programs under the stable model semantics.
The problem is tackled by reducing it to the unsatisfiability problem of first-
order formulas in the Bernays-Schönfinkel fragment. We then employ a tableaux-
based theorem prover, which (unlike most other currently available provers) is
guaranteed to terminate for these formulas. To the best of our knowledge, this is
the first strong equivalence tester for disjunctive non-ground datalog.

1 Introduction
Answer Set Programming (ASP) [1] is by now an acknowledged tool for knowledge
representation and reasoning. The availability of efficient solvers has furthermore stim-
ulated its use in practical applications in recent years. This development had quite some
implications on ASP research. For example, increasingly large applications require fea-
tures for modular programming. Another requirement is the fact that in applications,
ASP code is often generated automatically by so-called frontends, calling for optimiza-
tion methods which remove redundancies, as also found in database query optimizers.
For these purposes, the more recently suggested notion of strong equivalence for pro-
grams [2, 3] can be used. Indeed, if two ASP programs are strongly equivalent, they can
be used interchangeably in any context. This gives a handle on showing the equivalence
of ASP modules. If a program is strongly equivalent to a subprogram of itself, then
one can always use the subprogram instead of the original program, a technique which
serves as an effective optimization method.

So far, work on strong equivalence has mostly focused on propositional, or variable-
free programs. The complexity of deciding whether two variable-free datalog programs
are strong equivalent is in co-NP [4], however, when admitting variables, we obtain
completeness for co-NEXPTIME [5]. Several systems have been proposed for testing
strong equivalence of variable-free programs, some of which encode the problem again
in ASP (e.g. [6]) or in propositional satisfiability [7, 4].

In this work, we build on [4] and use a variant of the reduction described there,
which in the non-ground case produces first-order formulas in the Bernays-Schönfinkel
class which are unsatisfiable iff the original logic programs are strongly equivalent.
? This work was supported by FWF under project P18019-N04 and the European Commission

under projects IST-2001-37004 WASP and IST-2001-33570 INFOMIX.
?? Funded by an APART grant of the Austrian Academy of Sciences.

2 Preliminaries
Disjunctive Datalog Programs A (disjunctive) rule r is a formula

a1(x̄1)∨· · ·∨an(x̄n) :- b1(ȳ1), · · · , bk(ȳk), not bk+1(ȳk+1), · · · , not bm(ȳm). (1)

n ≥ 0, m ≥ k ≥ 0, where all ai(x̄i) and bj(ȳj) are function-free atoms; if n = 0,
r is also called a constraint. A disjunctive datalog program P is a finite set of rules
and constraints. Two programsΠ1 andΠ2 are strongly equivalent [2] iff every program
extensions Π1 ∪R and Π2 ∪R have the same answer sets [1].

Bernays-Schönfinkel Fragment of First-Order Logic Any first-order sentence ψ of form

∃x1...xk∀y1...ylϕ(x1, ..., xk, y1, ..., yl) (2)

where ϕ is quantifier-free and without function and constant symbols, is a Bernays-
Schönfinkel formula. Deciding satisfiability of such formulas is NEXPTIME-complete.

3 Reduction
In this section, we describe a reduction from the complementary problem of strong
equivalence to satisfiability of Bernays-Schönfinkel formulas (whose quantifier-free
part is in CNF), which is similar to the reduction defined in [4].

Given two logic programs Π and Π ′, let for each predicate p occurring in Π ∪Π ′,
be p′ a fresh predicate of the same arity. Then

Σ(x̄) :=
∧

p∈Pred(Π∪Π′)(p
′(x̄) ∨ ¬p(x̄))

For any rule r of the form (1), we define γr as the formula (z̄ = x̄1 · · · x̄nȳ1 · · · ȳm):

∀z̄

(a1(x̄1)∨· · ·∨an(x̄n) ∨ b′k+1(ȳk+1)∨· · ·∨b
′
m(ȳm) ∨ ¬b1(ȳ1)∨· · ·∨¬bk(ȳk))

∧

(a′1(x̄1)∨· · ·∨a
′
n(x̄n) ∨ b′k+1(ȳk+1)∨· · ·∨b

′
m(ȳm) ∨ ¬b′1(ȳ1)∨· · ·∨¬b

′
k(ȳk))

For a program Π , we then define ΓΠ :=
∧

r∈Π γr, which we can easily rewrite to
∀x̄WΠ(x̄) where WΠ(x̄) is a quantifier-free CNF. We next define a formula encoding
the unique name assumption for the constants c̄ = c1, ..., cn occurring in Π and Π ′:

U :=
∧n

i=1(Ui(ci) ∧
∧

j∈{1,...,n}\{i} ¬Ui(cj)).

For a formula ϕ, let ϕx
y be the formula with y replaced by x, and for a set S of formulas,

let Sx
y = {ϕx

y | ϕ ∈ S}. As shown in [4], Π and Π ′ are not strongly equivalent iff at
least one of the following two Bernays-Schönfinkel sentences is finitely satisfiable:

– ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū) ∧Σ(z̄) ∧WΠ

ū
c̄ (x̄, ū) ∧ ¬WΠ′

ū
c̄ (ȳ, ū)), resp.

– ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū) ∧Σ(z̄) ∧WΠ′

ū
c̄ (x̄, ū) ∧ ¬WΠ

ū
c̄ (ȳ, ū)).

(By the finite model property of Bernays-Schönfinkel, this is tantamount to un-
restricted satisfiability.) Note that U , Σ, WΠ , and WΠ′ are CNFs, while ¬WΠ and

¬WΠ′ are not (moving negation inside, they are in DNF). Instead of the simple con-
version to CNF, which is exponential in the worst case, we may for our purpose re-
place them with CNFs W ∗

Π and W ∗
Π′ , respectively, which are equivalent with respect

to satisfiability. To this end, we use the following transformation of a quantifier-
free DNF D(x̄) =

∨n

i=1 τi(x̄i) with free variables x̄ = x̄1 · · · x̄n, where τi(x̄i) =
li,1(x̄i,1)∧ · · · ∧ li,mi

(x̄i,mi
) into a CNF D∗(x̄) which is satisfiability-equivalent if the

x̄i and x̄j are pairwise disjoint:

D∗(x̄) = (s(d1) ∨ · · · ∨ s(dn)) ∧
∧

1≤i≤n

∧

1≤j≤mi

(li,j(x̄i,j)∨¬s(dj))

where s is a new unary predicate symbol and d1,. . . , dn are fresh constant symbols.

Lemma 1. ∀x̄D(x̄) is satisfiable iff ∀x̄D∗(x̄) is satisfiable, if all x̄i and x̄j are disjoint.

We note that the size of (¬WΠ)∗ is linear in the size of Π , since it is linear in the
size of WΠ , which in turn is linear in the size of Π . Let nr and nc be the number of
predicate and constant symbols, respectively, in Π and Π ′. Then, the size of Σ is linear
in nr and the size of U is quadratic in nc.

Let∆(Π,Π ′) denote the clausal form of ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū)∧Σ(z̄)∧WΠ

ū
c̄ (x̄, ū)∧

(¬WΠ′(ȳ) ū
c̄ (ȳ, ū))∗) after Skolemization, i.e., the set of clauses in (U∧Σ(z̄)∧WΠ(x̄)∧

(¬WΠ′(fȳ, f ū))∗). It can be easily generated, and its size is bounded as follows.

Proposition 1. |∆(Π,Π ′)| ≤ k · (|Π| + |Π ′| + nr + n2
c) for some constant k.

4 Implementation
The input language is similar to the one of DLV, but add-ons like built-ins, aggregates,
weak constraints etc. are not supported. Also comments and anonymous variables are
currently unsupported, as well as strong negation.3

The implementation is in C++ employing a flex/bison-generated parser. Our
basic data structures include a symbol table and a collection of rules. The generation of
the clausal forms∆(Π,Π ′) and∆(Π ′, Π) is carried out via suitable functions working
on these basic structures. We use the DARWIN theorem prover 4 as a back-end to solve
the formulas. A distinguishing feature of DARWIN is that it is refutation-complete on
our types of formulas, and thus strong equivalence of programs Π and Π ′, tantamount
to refutations of ∆(Π,Π ′) and ∆(Π ′, Π), is definitely answered in all cases. Indeed,
we are not aware of other provers which would guarantee this property.

The tool (including some examples) is available at http://www.kr.tuwien.
ac.at/students/prak_setest/.

5 Examples
Example 1 Consider the program

Π: a(k1). a(k2).
h(X):- a(X). t(X):- h(X). a(X):- t(X). a(X):- h(X).

3 In fact, strong negation ¬a(x̄) is realized in DLV and other systems viewing ¬a as a new pred-
icate and adding a constraint :-a(x̄),¬a(x̄); this can be respected and handled accordingly.

4 http://goedel.cs.uiowa.edu/Darwin/

Π states that a ⊆ h ⊆ t ⊆ a, i.e. a = h = t. By dropping the last rule, we obtain

Π ′: a(k1). a(k2). h(X):- a(X). t(X):- h(X). a(X):- t(X).

The components of the formula ∆(Π,Π ′) are, in Darwin syntax, as follows.

Σ: a (X1):-a(X1). t (X1):-t(X1). h (X1):-h(X1).

WΠ: a(k1). a(k2). a (k1). a (k2).

h(X):- a(X). h (X):- a (X). t(X):- h(X). t (X):- h (X).

a(X):- t(X). a (X):- t (X). a(X):- h(X). a (X):- h (X).

W ∗
Π′: -a(k1):- s (1). -a (k1):- s (6). -a(k2):- s (2). -a (k2):- s (7).

-h(sk 1):- s (3). -h (sk 4):- s (8). a(sk 1):- s (3). a (sk 4):- s (8).

-t(sk 2):- s (4). -t (sk 5):- s (9). h(sk 2):- s (4). h (sk 5):- s (9).

-a(sk 3):- s (5). -a (sk 6):- s (0). t(sk 3):- s (5). t (sk 6):- s (0).

s (1), s (2), s (3), s (4), s (5), s (6), s (7), s (8), s (9), s (0).

U: u1(k1). -u1(k2). -u2(k1). u2(k2).

A refutation is found by Darwin for ∆(Π,Π ′), and also for ∆(Π ′, Π). Hence, Π ′

and Π are strongly equivalent.

Example 2 Consider the two programs

Π: t(X,Y):-a(X,Y). Π ′: t(X,Y):-a(X,Y).
t(X,Z):-t(X,Y),t(Y,Z). t(X,Z):-a(X,Y),t(Y,Z).

which both compute the transitive closure of a. They are, however, not strongly
equivalent, since Π ∪ {t(1, 2)., t(2, 3).} and Π ′ ∪ {t(1, 2)., t(2, 3).} have different an-
swer sets. ∆(Π,Π ′) is unsatisfiable and ∆(Π ′, Π) is satisfiable, reflecting this fact.

6 Benchmarks
When experimenting with our tool, we have found that it often terminates quickly (less
than one second), for instance for the examples presented in the previous section or
for pairs of programs which differ substantially. We have been looking for parametric
benchmark examples which create formulas that are increasingly hard to solve. These
examples should be (1) scalable and (2) sufficiently similar to each other. We find that
the following example interesting in this respect:

Example 3 (n-Layer TC Programs) Let Πn be the following n-layer transitive closure:

t1(X,Y):- r(X,Y). t1(X,Y):- r(X,Z), t1(Z,Y).
t2(X,Y):- t1(X,Y). t2(X,Y):- t1(X,Z), t2(Z,Y).

· · ·

tn(X,Y):- tn−1(X,Y). tn(X,Y):- tn−1(X,Z), tn(Z,Y).

Π ′
n is similar but with one additional redundant rule for each layer except the first:

t1(X,Y):- r(X,Y). t1(X,Y):- r(X,Z), t1(Z,Y).
t2(X,Y):- t1(X,Y). t2(X,Y):- t1(X,Z), t2(Z,Y).
t2(X,Y):- r(X,Z), t2(Z,Y).

· · ·

tn(X,Y):- tn−1(X,Y). tn(X,Y):- tn−1(X,Z), tn(Z,Y).
tn(X,Y):- r(X,Z), tn(Z,Y).

n 10 20 30 40 50 60
CPU time (sec) 0.38 1.43 3.66 7.93 13.55 23.56

Table 1. Run-times for n-layer transitive closure

The programs Πn and Π ′
n are strongly equivalent. We have tested this for various n

on an 800MHz PowerPC with 1GB main memory, running GNU/Linux and DARWIN
in version 08-27-04. The results are shown in Table 1. We can observe that the runtimes
roughly double when increasing n by 10. Thus the scaling shows exponential behavior.
On the other hand, viewed from computational complexity the n-layer TC is not among
the “hard” instances of the problem; such hard instances could be systematically gener-
ated from complexity proofs.

We have also considered variants of these programs, where we added the rule
in(X,Y) ∨ out(X,Y) :- tn.

to Πn, arriving at Πfinal,∨
n . To Πn, we added the two body-shift variants of this rule

in(X,Y) :-tn(X,Y), not out(X,Y). out(X,Y) :-tn(X,Y), not in(X,Y).

to obtain Πfinal,¬
n . The programs Πfinal,∨

n and Πfinal,¬
n are not strongly equivalent,

and our tool was always very fast (less than one second) to decide this. Finding testcases
which are not strongly equivalent and hard for our tool remains as an open issue.

7 Conclusion
We have implemented a non-ground strong equivalence tester, which works by a reduc-
tion to unsatisfiability of Bernays-Schönfinkel formulas, which are solved by the the-
orem prover Darwin, which is guaranteed to terminate on these formulas. The size of
the resulting Darwin programs is nearly linear in the size of the input programs. Hence,
the overall performance of testing strong equivalence depends heavily on the automated
theorem prover. We have made a positive experience with our tool. We could find a class
of problems which is apparently hard for the employed prover. With similar examples
that are not strongly equivalent, its performance was, however, very good.

References
1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9 (1991) 365–385
2. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transac-

tions on Computational Logic 2 (2001) 526–541
3. Turner, H.: Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.

Theory and Practice of Logic Programming 3 (2003) 602–622
4. Lin, F.: Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-

tional Logic. In: Proc. KR-2002. 170–176
5. Eiter, T., Faber, W., Greco, G., Fink, M., Lembo, D., Tompits, H., Woltran, S.: Methods

and Techniques for Query Optimization. TR D5.3, EC Project IST-2001-33570 (INFOMIX)
(2004) Available at http://www.mat.unical.it/infomix/.

6. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In Proc. LPNMR-7, Springer (2004) 87–99

7. Pearce, D., Tompits, H., Woltran, S.: Encodings for Equilibrium Logic and Logic Programs
with Nested Expressions. In Proc. EPIA 2001. 306–320

