
In: Proceedings 4th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR-97), LNCS 1265, pp. 198–217.

c© Springer, 1997. Preprint.

Computing Non-ground Representations
of Stable Models

Thomas Eiter1 and James Lu2 and V.S. Subrahmanian3

1 AG Informatik, Universität Giessen, Arndtstrasse 2, D-35392 Giessen,
Germany. eiter@informatik.uni-giessen.de

2 CS Dept, Bucknell University, Lewisburg, PA. lu@sol.cs.bucknell.edu
3 Institute for Advanced Computer Studies, University of Maryland,

College Park, Maryland 20742. vs@cs.umd.edu

Abstract. Turi [20] introduced the important notion of a constrained
atom: an atom with associated equality and disequality constraints on
its arguments. A set of constrained atoms is a constrained interpretation.
We show how non-ground representations of both the stable model and
the well-founded semantics may be obtained through Turi’s approach.
As a practical consequence, the well-founded model (or the set of sta-
ble models) may be partially pre-computed at compile-time, resulting
in the association of each predicate symbol in the program to a con-
strained atom. Algorithms to create such models are presented. Query
processing reduces to checking whether each atom in the query is true in
a stable model (resp. well-founded model). This amounts to showing the
atom is an instance of one of some constrained atom whose associated
constraint is solvable. Various related complexity results are explored,
and the impacts of these results are discussed from the point of view
of implementing systems that incorporate the stable and well-founded
semantics.

keywords: stable models, non-ground representation, constraints, algorithms,
complexity

1 Introduction

The declarative semantics of nonmonotonic logic programming has largely been
based on methods that assume propositional programs. For example, the stable
models [9] of a logic program are defined as certain minimal Herbrand models
of the ground instantiation of the program. In addition, the Gelfond-Lifschitz
transform that plays a key role in the definition of both the stable semantics
and the well-founded semantics (WFS, for short) [21] for logic programming
works only on ground instantiations [22, 1]. Clearly, when our interest is in the
computer implementation of these semantics, the requirement of ground instan-
tiations of programs can quickly encounter practical limitations. In addition,
the representation of both stable and well-founded models using ground atoms
is also highly impractical. To see this, consider the following simple example.

Example 1. Let P be the following logic program:

p(X,X)← q(X,Y)← not(p(X,Y)) r(a, s(a))←

This program, which is stratified, has a unique stable model that is also the
well-founded model. It satisfies all atoms of the form p(X,X), the single atom
r(a, s(a)), as well as all atoms q(X,Y) where X 6= Y . Thus, a non-ground rep-
resentation of this stable model contains the following three constrained atoms:

p(X,Y)← X = Y, q(X,Y)← X 6= Y, r(X,Y)← X = a & Y = s(a).

In contrast, were we to attempt to explicitly represent the stable model of this
program using ground atoms, then an infinite set is required. 2

Our basic approach is as follows. A constrained interpretation CI will be a set
of constrained atoms – atoms of the form p(X)← E where X is a vector of
variables and E is a constraint expression built from equality atoms. Given a
normal logic program P and a constrained interpretation CI, we will translate P
into a negation-free constraint logic program, CT(P, CI), where the constraints
are over the domain of terms. Then CI is a (non-ground) stable model of P if
it is “equivalent” (in a sense made precise later) to the least constrained model
(in the sense of Turi [20] and [7]) of CT(P, CI). We also illustrate how to define
similarly a non-ground representation of the well-founded semantics. For the
sake of effective computation, we will confine to finite CIs in our algorithms.

2 Preliminaries and Previous Results

We assume that L is an arbitrary, but fixed language1 with equality generated
by a finite signature Σ of constant symbols c, function symbols f , and predicate
symbols p, as well as an infinite set of variable symbols. We assume that Σ has at
least one constant. We often do not mention L explicitly. We use letters a, b, c, . . .
for constants, p, q, r, . . . for predicates, and X,Y, Z, . . . for variable symbols. A
bold face version of a symbol denotes a tuple of respective symbols, whose length
is clear from the context. Throughout this paper, we focus on Herbrand models
of L; H is the Herbrand pre-interpretation of L.

Elementary constraints with respect to L are all atoms t1 = t2, where t1, t2 are
terms. A constraint with respect to L is any wff built from elementary constraints
using &, ∨, ¬, ∀, and ∃. As usual, we write t1 6= t2 for ¬(t1 = t2).

Definition 1 A solution to a constraint E is a ground substitution σ that binds
all free variables in E (and possibly further) s.t. H |= Eσ, i.e., Eσ is true in all
Herbrand interpretations of L. A constraint is solvable if it has some solution σ.

Example 2. Consider E = ∀X.(((X 6= f(Y))&(Y 6= a)) ∨ ∃Z(f(Z) = X). For
σ = {Y/f(a)}, E is satisfiable in H; σ is a solution to E , which is solvable. 2

1 In general, L is fixed. When discussing complexity, it is useful to allow L to vary,
with a program P and a query defining the nonlogical symbols of the language.

2

Definition 2 Let p be an n-ary predicate symbol, X = X1, . . . , Xn be an n-
tuple of variable symbols, and E be a constraint. Then p(X) ← E is called a
constrained atom, where E is the constraint part. We define [p(X) ← E] by
[p(X)← E] = {p(X)σ | H |= Eσ, σ is a solution of E }.

Example 3. Suppose our language contains three constant symbols a, b, c and no
function symbols. Then p(X,Y)← X 6= Y is a constrained atom, and
[p(X,Y)← X 6= Y] = { p(a, b), p(a, c), p(b, c), p(b, a), p(c, a), p(c, b) }. 2

For convenience, we omit the constraint part E if it is true on H.

Definition 3 A constrained interpretation (c-interpretation, CI) is a set CI of
constrained atoms. For a given CI CI, we let

[CI] =
⋃
p(X)←E∈CI [p(X)← E],

which is the Herbrand interpretation naturally associated with CI.
A constrained atom p(X)← E is true in a CI CI if [p(X)← E] ⊆ [CI].

Example 4. Let CI be the CI that contains the single constrained atom p(X,Y)←.
The constraint part of p(X,Y) ← is empty and hence, any substitution is a
solution. Therefore, for every language p(X,Y)← X 6= Y is true in CI since
[p(X,Y)← X 6= Y] ⊆ [{p(X,Y)←}]. 2

CIs are ordered by a relation ≤ as follows.

Definition 4 For any CIs CI1 and CI2 define CI1 ≤ CI2 iff [CI1] ⊆ [CI2].

Note that ≤ is reflexive and transitive, but not necessarily anti-symmetric.
It induces an equivalence relation ∼, where CI1 ∼ CI2 iff CI1 ≤ CI2 and
CI2 ≤ CI1. It is easily verified that CI1 ∼ CI2 iff [CI1] = [CI2].

Equivalent CIs are treated semantically indiscernible. Therefore, we implic-
itly assume that constraints are standardized apart if needed.

Every finite CI is equivalent to a CI in which in all constraints are standard-
ized apart and where addition each predicate p occurs in exactly one constrained
atom; we call such CIs normal. Indeed, two constrained atoms A1, A2 with the
same predicate p in the head can be replaced by an equivalent single constrained
atom. Therefore, every finite CI can be easily transformed into normal form;
thus, we often assume that finite CIs are in normal form. Moreover, we some-
times refer in the rest of this paper to a CI CI where, strictly speaking, the
equivalence class [CI]∼ of CI with respect to ∼ is meant.

A constraint logic program is a finite set of clauses

A ← E |B1& · · ·&Bn (1)

where A,B1, . . . , Bn are atoms, and A ← E is a constrained atom.With each
constraint logic program P , we associate a logic program P ∗ which contains all
clauses (A← B1& · · ·&Bn)σ for each clause (1) from P where σ is a solution of

3

E . A ground atom A is a logical consequence of P , if A is a logical consequence
of the program P ∗.

Given any constraint logic program P , we associate with P an operator WP

(usually also denoted SP [7]) that maps CIs to CIs. In order to define this
operator, we first define the notion of a resolvent of a clause w.r.t. a CI. Suppose

C = p(X)← E0 | p1(t1)& · · ·&pn(tn)

is a clause and CI is a CI. Without loss of generality, we assume that all clauses
in CI ∪ {C} are (mutually) standardized apart. Then the resolvents of C with
respect to CI, denoted resP (C, CI), is the set of all constraint atoms

p(X)← E0 & (X1 = t1)&E1 & · · ·& (Xn = tn)&En

where pi(Xi)← Ei is in CI for each 1 ≤ i ≤ n; if some pi does not occur in CI,
then resP (C, CI) contains the single constraint atom p(X) ← false where false
is any unsatisfiable constraint. Now WP is defined as follows.

Definition 5 For any constraint logic program P and CI CI, let
WP (CI) =

⋃
C∈P resP (C, CI).

If P and CI are finite, then WP (CI) is finite as well and can be normalized.
It is easy to see that WP is monotone with respect to the ordering ≤; hence,

it has a least fixpoint, which we denote by lfp(WP).

Proposition 1 Let P be a constraint logic program. Then,

1. if CI1 ≤ CI2 then WP (CI1) ≤WP (CI2).
2. if CI1 ∼ CI2, then WP (CI1) ∼WP (CI2).
3. WP has a least fixpoint with respect to ≤, denoted by lfp(WP).
4. a ground atom A is a logical consequence of P iff A ∈ [lfp(WP)]. 2

Example 5. Consider the program:

P = { pi(X,Y)← pi−1(X,Z) & pi−1(Z, Y) | 2 ≤ i ≤ n}
∪{ p1(X,Y)← (X = c1)&(Y = c2) | c1, c2 ∈ {a, b}}.

Here Wn+1
P (∅) = Wn

P (∅), and the size of Wn+1
P (∅) is exponential in n. Note that

lfp(WP) ∼ { pi(X,Y)← (X = c1)&(Y = c2) | c1, c2 ∈ {a, b}, 1 ≤ i ≤ n },

which has only linear size w.r.t. P . This representative is obtainable by applying
the mentioned simplifications to WP . However, as discussed later, we cannot
always find a small (i.e., polynomial size) representative for lfp(WP). 2

Recall that a normal logic program is a set of clauses

p(t)← B1& . . .&Bn & not(D1) & . . .& not(Dm)

4

where B1, . . . , Bn, and D1, . . . , Dm are atoms.2 As the above clause may be
rewritten into an equivalent constrained clause

p(X)← X = t |B1& . . .&Bn & not(D1) & . . .& not(Dm)

where X are fresh variables, we sometimes assume the latter form when consid-
ering normal logic programs.

Given a normal program P and an (Herbrand) interpretation I, the Gelfond-
Lifschitz transformation, GL(P, I), of P w.r.t. I is the set of clauses

{A← B1& . . .&Bn | A← B1& . . .&Bn& not(D1) & . . .& not(Dm)
is a ground instance
of a clause in P such that {D1, . . . , Dm} ∩ I = ∅ }.

Hence GL(P, I) is a logic program free of not. Based GL(P, I), we associate
with a normal logic program P an operator FP as follows:

FP (I) = lfp(TGL(P,I)),

where the T -operator is the usual immediate consequence operator Then, I is a
stable model of P [9] iff FP (I) = I.

In [1] it was shown that FP is anti-monotone, and that the well-founded
semantics (WFS) of P [21] is captured as follows:

Proposition 2 [1] Let P be a normal logic program, A be a ground atom. Then,

– A is true in the WFS of P iff A ∈ lfp(F 2
P).

– A is false in the WFS of P iff A /∈ gfp(F 2
P). 2

3 The Constraint-based Transformation

The new transformation, CT, takes as input a normal logic program P , a CI
CI, and returns a constraint logic program, CT(P, CI). The postulates for this
program are the following properties.

(Desideratum 1) If C = A ← E | B1 & . . .&Bn is a clause in CT(P, CI) and
σ is a solution of E , then all ground instances of (A ← B1 & . . .&Bn)σ are
contained in GL(P, [CI]).

(Desideratum 2) If C is a clause in GL(P, [CI]), then there is a clause C ′ ∈
CT(P, CI) of the form A← E |B1 & . . .&Bn such that for some solution σ
of E , C is (A← B1 & . . .&Bn)σ.

Thus in effect, CT(P, CI) is a “non-ground version” of the Gelfond-Lifschitz
transformation; the grounding of the associated logic program CT(P, CI)∗ coin-
cides with GL(P [CI]). CT(P, CI) can be seen as partial deduction (unfolding).
2 Programs are allowed to be infinite for technical reasons, since we consider (partial)

groundings of such programs. We focus on finite programs, however.

5

Moving towards a definition of CT, we define the elimination of negated
atoms from clauses with respect to a CI. Let C be the clause

A← E |B1& · · ·&Bn & not(D1) & . . .& not(Dm)

where D1 has the form p1(t1). The elimination of not(D1) from C with respect
to a normal CI CI is the set of clauses

A← E & (X1 = t1) &∀Y1¬E1 | B1& . . .&Bn & not(D2) & . . .& not(Dm).

where p1(X1) ← E1 is the unique constrained atom in CI with p1 in the head,
and whose free variables are X1Y1; note that the implicit existential quantifiers
on Y1 in E1 are turned into universals quantifiers.

The elimination of all negated literals from C with respect to CI, denoted
ELIM(C, CI), is obtained by iteratively eliminating not(D1),. . . , not(Dm).

Definition 6 Let P be a normal logic program and CI be a normal CI. The
constraint-based transformation of P with respect to the normal c-interpretation
CI, CT(P, CI), is the set of clauses {ELIM(C, CI) | C ∈ P}.

In other words, we apply the negation elimination process to each clause in P ,
and place the resulting clauses in CT(P, CI). Thus, CT(P, CI) is a negation-free
constraint logic program.

In case of arbitrary finite CIs CI, we first normalize CI to a CI CI∗ and then
apply the transformation CT(P, CI∗). Note that this does not yield a unique
constraint program as normalization is not unique; however, all resulting con-
straint programs are equivalent.

Example 6. Consider the program P consisting of the following clause C:

p(X1, Y1)← not(q(X1, Z1)) & not(r(Z1))

and the normal CI

CI = {p(X0, Y0)← , q(X2, Y2)← (X2 6= Y2)∨ (X2 = a); r(X3)← X3 = b&X3 6= Y3}.

Eliminating not(q(X1, Y1)) from C w.r.t. CI yields the constrained clause

p(X1, Y1)← (X1 = X2) & (Y1 = Y2) &¬((X2 6= Y2) ∨ (X2 = a)) | not(r(Y1)).

Subsequent elimination of not(r(Y1)) leads ELIM(C, CI), which is

p(X1, Y1) ← (X1 = X2) & (Z1 = Y2)

&¬((X2 6= Y2) ∨ (X2 = a)) & (Z1 = X3) & ∀Y3¬((X3 = b) &X3 = Y3).

Pushing through negation and equalities X1 = X2 = Y2 = Z1 = X3, we get

p(X1, Y1)← (X1 = Y1) & (X1 6= a) &∀Y3((X1 6= b) ∨ (X1 = Y3)),

which simplifies to

p(X1, Y1)← (X1 = Y1) & (X1 6= a) & (X1 6= b). (2)

6

The pairs that are not in q are all (t, t) where t 6= a; furthermore, r does not
contain the ground terms different from b, and b only if it is not the single term
in the Herbrand universe (which is true). Thus, GL(P, [CI]) consists of all clauses
p(t, t)← , where t is any ground term different from a and b. However, that are
precisely the clauses (p(X1, Y1)←)σ where σ is a solution for the constraint part
of rule 2. As CT(P, CI) amounts to rule 2, the desiderata are satisfied. 2

In the rest of this paper, we will focus only on finite CIs, as our main goal of
computing the nonground well-founded/stable semantics, is only feasible in the
finite case anyway.

Theorem 1. Let P be a normal logic program, CI be a CI. Then

1. If C = A ← E | B1 & . . .&Bn is a clause in CT(P, CI) and σ is a solution
of E, then all ground instances of (A ← B1 & . . .&Bn)σ are contained in
GL(P, [CI]).

2. If C is a clause in GL(P, [CI]), then there is a clause C ′ ∈ CT(P, CI) of
the form A ← E | B1 & . . .&Bn such that for some solution σ of E, C is
(A← B1 & · · ·&Bn)σ. 2

As CT(P, CI) is negation free, the operator WP is applicable; in particular,
WCT(P,CI) has a least fixpoint w.r.t. ≤. This is captured via the operator FNGP .

Definition 7 Let P be a normal logic program. The operator FNGP , which
maps CIs to CIs, is defined by

FNGP (CI) = lfp(WCT(P,CI)).

As expected, FNGP shares all the nice properties of the ground FP operator.

Theorem 2. Let P be a normal logic program. Then the following holds:

1. FNGP is anti-monotone, i.e. CI1 ≤ CI2 implies FNGP (CI2) ≤ FNGP (CI1).
2. If CI1 ∼ CI2, then FNGP (CI1) ∼ FNGP (CI2).
3. FNG2

P has a least and a greatest fixpoint. 2

3.1 A Discussion of Complexity Issues

Given P and CI, CT(P, CI) can be computed in polynomial time. This is not
possible for FNGP (CI) in general, since lfp(WP) can be exponential even for
a simple function-free program P . Example 5 showed such a program. There,
however, it was possible to use constraint simplification in order to obtain a
small (polynomial-sized) representative for lfp(WP).

However, a small representative for lfp(WP) cannot always be constructed
efficiently. The reason is that deciding whether a ground atom p(a) is derivable
from P , may be reduced to deciding whether p(a) is in [lfp(WP)], i.e., in [CI],
which is in PSPACE in general (if the constraint part of the constrained atom

7

p(X)← E in CI is known to be quantifier-free, then it is even in NP), as shown
in the next theorem.

Furthermore, it is well-known in the folklore that the problem of deciding
whether a ground atom follows from a datalog program P is complete in EX-
PTIME (cf. [23]; for a background on complexity classes, consult [8]). Thus,
the computation of lfp(WP) must take more than polynomial time in general;
otherwise, we could solve an EXPTIME-complete problem in PSPACE (resp. in
NP), which is strongly hypothesized to be impossible. This remains valid even
in presence of a powerful oracle for PSPACE-complete problems; indeed, such
an algorithm renders the problem in PPSPACE, which collapses with PSPACE.
Therefore, by the results below, even if deciding truth of constrained atoms in
CIs and deciding equivalence of CIs are for free, the computation of lfp(WP)
must take more than polynomial time in general (under the assumptions of non-
collapsing complexity classes).

Consider now deciding whether a constrained atom is true in a CI. It is
known that equational reasoning on H is decidable [3, 14]. Hence, it is decidable
whether a given a constraint atom A (not necessarily ground) is true in a given
finite CI CI. However, the complexity is tremendous; recent results on equational
reasoning immediately imply that it is nonelementary [?]. For the function-free
case, we have much lower complexity.

Theorem 3. Assume that the language L is function-free. Given a constrained
atom A = p(X)← E and a finite CI CI, deciding whether A is true in CI is

1. PSPACE-complete, if L generated by A and CI, and Πp
k+2-complete if in

addition the quantifier depth in constraint parts is bounded by the constant
k ≥ 0;

2. NP-complete, if A is a ground atom p(X)← X = t and all constraint parts
in CI are quantifier-free (i.e., have implicit existential quantifiers);

3. solvable in polynomial time with a small (constant) number of NP-oracle calls
and both NP/coNP-hard, if L is fixed3 and all constraints are existential. 2

Here ΠP
j are the problems solvable in coNP, if an oracle for problems in ΣP

j−1

is available, where ΣP
1 = NP, ΣP

2 = NPNP, etc (see [8] for definitions).
The complexity of deciding equivalence of two CIs is similar. Since deciding

truth of a constrained atom in a CI is decidable, clearly so is equivalence of two
given finite CIs.

Theorem 4. Suppose the language L is function-free, and CI1, CI2 are two
finite CIs. Deciding whether CI1 ∼ CI2 is

1. PSPACE-complete, if L is generated by A and CI, and Πp
k+2-complete if in

addition the quantifier depth in constraint parts is bounded by the constant
k ≥ 0; and

3 Fixed L means here and in other complexity results that the predicates and constants
are from fixed finite sets.

8

2. solvable in polynomial time with few (a constant number) of NP-oracle calls
and both NP/coNP-hard, if L is fixed and all constraints are existential. 2

The results in Theorems 3–4 imply that important problems on CIs are
intractable even if k = 0, i.e., no quantifiers occur in constraint parts E ; here,
however, still implicit existential quantifiers are possible. For the important case
that all variables in the constraint part E are from the head, the complexities of
the problems are not that drastic. In particular, the complexity results in parts
2. and 3. are lowered to polynomial time.

4 Constrained Non-Ground Stable Models

Definition 8 A CI CI is a constrained non-ground (CNG) stable model of P
if and only if CI ∼ lfp(WCT(P,CI)) = FNGP (CI).

Example 7. Consider the program

p(X)← not(q(X)), r(X)← p(X) w(0, s(0))←
q(X)← not(p(X)), r(X)← q(X)

This program has uncountably many ground stable models. Each of them is a
CNG-stable model. The CI {p(X)← , r(X)← , w(X,Y)← X = 0 &Y = s(0)},
however, is a CNG-stable model which is a compact representation of the ground
stable model that makes all atoms for p and r true, as well as w(0, s(0)). 2

Theorem 5. Suppose P is a normal logic program. Then:

1. If I is a ground stable model, then {p(X) ← X = t | p(t) ∈ I} is a CNG-
stable model.

2. If CI is a CNG-stable model, then [CI] is a ground stable model.

4.1 Constrained Non-Ground Well-Founded Semantics

Definition 9 Let A = p(t) be an atom (not necessarily ground) and let P be a
normal logic program. Then,

(i) A is true according to the CNG-WFS of P iff p(X) ← X = t is true in
lfp(FNG2

P).
(ii) A is false according to the CNG-WFS of P iff the set of formulas

{¬p(t),∀X1Y1.(E1 → p(X1)), . . . ,∀XiYi.(Ei → p(Xi)), . . . } (3)

is unsatisfiable in H, where the p(Xi) ← Ei are all constrained atoms in
gfp(FNG2

P) with p in the head and XiYi their free variables.
(iii) A is unknown according to the CNG-WFS of P iff A is neither true nor

false according to the CNG-WF of P .

9

The above formulation has important implications for query processing from
a normal logic program under the WFS. It suggests that at compile-time, lfp(FNG2

P)
and gfp(FNG2

P) may be pre-computed and stored. This is feasible if for finite CIs;
they can be normalized and simplified by transformations preserving equivalence.
When a query A = p(t) is posed at run-time, equational reasoning on H can be
performed to check which of the three conditions (i.e. true, false, unknown) is
satisfied. The following theorem shows that this is possible.

Theorem 6. Let P be a normal logic program. Then, a (possibly nonground)
atom A is true (resp. false) in the CNG-WFS of P iff all ground instances of A
are true (resp. false) in the ground well-founded semantics of P . 2

The complexity of query answering under CNG-WFS is similar to Theorem 3.
However, there is a small subtlety: While in Theorem 3 the CI is arbitrary, here
it must represent lfp(FNG2

P) resp. gfp(FNG2
P) of some logic program P .

Theorem 7. Suppose we are given, as input, lfp(FNG2
P), gfp(FNG2

P) for a
function-free program P and an atom A (not necessarily ground). Then, de-
termining whether A is true (resp. false) in the CNG-WFS of P is

1. PSPACE-complete, if the language L is given by P ;
2. NP-complete (resp. coNP-complete), if A is ground and all constraint parts

in lfp(FNG2
P) (resp. gfp(FNG2

P)) are existential, regardless of fixing L in
advance.

3. solvable in polynomial time with few NP-oracle calls and both NP and coNP-
hard, if L is fixed and all constraint parts in lfp(FNG2

P) (resp. gfp(FNG2
P))

are existential. 2

As before, if all variables in the constraint parts are from the variables in the
head, then the complexity decreases. In particular, 2. and 3. are then polynomial.
Thus, if we represent lfp(FNG2

P) and gfp(FNG2
P) by CIs of this form, all ground

queries in CNG-WFS can be answered efficiently. As in the case of CNG-stable
models, using this form we can gain an exponential reduction in the space needed
for storing the well-founded model while we stay within the same order of time
for query answering.

5 Algorithms

In this section, we present an algorithm for computing the CNG stable models of
a normal logic program. The algorithm, which builds on the CNG well-founded
semantics, is effective for function-free programs. It is a generalization of an algo-
rithm for computing the stable models of a ground logic program [19]. However,
this generalization is not immediate, and is far more complex than the algorithm
for the ground case. Additional machinery is needed in order to make it work.

10

5.1 Computing the CNG Well-Founded Semantics

In this section, we will develop a procedure that has the following steps:

1. Pruned Non-Ground Fitting Semantics Computation: It is well known that
Fitting’s Kripke-Kleene semantics for logic programs [6] approximates the
well-founded semantics (cf. [19]). In our first step, we use a nonground ver-
sion ΦP of Fitting’s operator [6] that iteratively computes not only an in-
terpretation, but also simplifies the program P . The least fixpoint of this
operator, lfp(ΦP) = (Tfix, Ffix) satisfies [Tfix] ⊆ [lfp(FNG2

P)] and [Ffix] ⊆
[gfp(FNG2

P)], i.e., approximates the CNG-WFS.
2. After that, we are left with a set of rules that only involve atoms which

are “unknown” according to Fitting’s semantics. We will then compute the
alternating fixpoint associated with these atoms, again in an incremental
way; as in the preceding step, the program will continue to be pruned.

3. The end result of the above two phases has two parts – the first part is
the well-founded semantics, while the second is a logic program all of whose
atoms evaluate to unknown according to the WFS. This latter logic program
will later be used to compute CNG-stable models.

ALGORITHM Compute CNGWFS(P)

Input: A normal logic program P .
Output: T , F so that [T] = [lfp(FNG2

P)], [F] = [gfp(FNG2
P)], simplification P ∗

of program P .

Step 1. Compute lfp(ΦP) = (Tfix, Ffix) and set (T0, F0) = (Tfix, Ffix).
Step 2. i = 0; P0 = P .
Step 3. For each rule R of the form p(X)← E |Body in Pi, do the following:

1. If p(X1)← E1 ∈ Ti and H |= ∀XYX1∃Y1((X = X1)&E → E1), where
XY resp. X1Y1 are the free variables in E resp. E1, then eliminate R
from Pi.

2. If p(X2)← E2 ∈ Fi and H |= ∀XYX2∃Y2((X = X2)&E → E2), where
XY resp. X2Y2 are the free variables in E resp. E2, then eliminate R
from Pi.

3. Otherwise, replace E in R by
E & ((X = X1) &∀Y1.¬E1) ∨ ((X = X2) &∀Y2.¬E2).

Let Pi+1 denote the resulting program.

Step 4.

Fi+1 = Fi ∪ {p(X)← ∀Y¬E | p(X)← E ∈ FNGPi+1(Ti)}
∪ {p(X)←| p does not occur in FNGPi+1(Ti) }

where XY are the free variables of E (and normalize Fi+1).

11

Step 5.

Ti+1 = Ti ∪ FNGPi+1({p(X)← ∀Y¬E | p(X)← E ∈ Fi}
∪ {p(X)←| p occurs not in Fi})

where XY are the free variables of E (and normalize Ti+1).
Step 6. If [Fi] = [Fi+1] and [Ti] = [Ti+1], then halt and return (Ti, Fi, Pi+1).

Otherwise, i := i+ 1. Goto Step 3. 2

We note that this procedure does not terminate on every input. In particular,
already Step 1. may involve an infinite computation. However, it will always ter-
minate if the program P is function-free. As we focus on this case, the algorithm
is thus effective for our purposes.

Example 8. Consider the following logic program P , and assume a language L
having two constants a, b:

p(a)← . (1)
p(X)← p(Y) & not(q(X,Y)). (2)

q(X,Y)← not(p(X)). (3)

(b could be provided e.g. by an additional dummy rule, which we avoid for sim-
plicity). Notice that P has two ground stable models: M1 = {p(a), q(b, a), q(b, b)}
and M2 = {p(a), p(b)}.

The working of the algorithm Compute CNGWFS is now as follows (some
of the constraints are simplified in the presentation below):

1. In Step 1 of the algorithm, (Tfix, Ffix) are computed to be:

Tfix = {p(X)← X=a, q(X,Y)← false}.
Ffix = {p(X)← false, q(X,Y)← X=a}.

We set T0 = Tfix and F0 = Ffix and P0 = P .
2. Rule (1): Part (1) of Step 3 applies and we eliminate rule (1) from P .
3. Rule (2): Part (3) of Step 3 applies, and the rule is replaced by the rule

p(X)← X 6= a | p(Y)¬(q(X,Y)).

4. Rule (3): Again Part (3) of Step 3 applies, and the rule is replaced by the
new rule:

q(X,Y)← X 6= a | not(p(X)).

5. In Step 4, F1 is set to F0.
6. In Step 5, T1 is set to T0.
7. The algorithm halts in Step 6 because T1 = T0 and F1 = F0. It returns:
T1 = {p(X)← X=a} and F1 = {q(X,Y)← X=a} and

12

P1 = p(X)← X 6= a | p(Y) & not(q(X,Y)). (2′)
q(X,Y)← X 6= a | not(p(X))(3′)

2

Theorem 8. Let P be any function-free logic program. Then, the call of Com-
pute CNGWFS(P) effectively computes T , F and P ∗ such that [T] = [lfp(FNG2

P)],
[F] = [gfp(FNG2

P)], and the programs P ∗∪T and P have the same ground stable
models. 2

5.2 Computing CNG-Stable Models

In this section, we describe how to compute all stable models of a normal logic
program using the constraint based approach. The basic idea is to first compute
the well-founded semantics using the Compute CNGWFS algorithm given
above. This algorithm then outputs a triple (Ti, Fi, Pi+1). All atoms in [Ti] (resp.
[Fi]) are true (resp. false) in all stable models of P . We proceed by looking at
atoms that are not in [Ti] ∪ [Fi] and adopt a branch and bound procedure that
searches an (abstract) tree called BB-tree(P). Before defining how BB-tree(P)
is constructed, we need some simple definitions.

Definition 10 Let (T, F) be a consistent pair of CIs. Then the unknown set
U(T, F) generated by (T, F) is

U(T, F) = {p(X)← (X = X1) &∀Y1¬E1 & (X = X2) &∀Y2¬E2 |
p(X1)← E1 ∈ T, p(X2)← E2 ∈ F},

where X1Y1 (resp., X2Y2) are the free variables of E1 (resp., E2).

Example 9. Suppose we return to the program P of Example 8 and consider the
sets T1, F1 returned as a consequence of the Compute CNGWFS algorithm.
In that case, after simplification, we have:

U(T1, F1) ={p(X)← X 6= a; q(X,Y)← X 6= a}. 2

We next define the concept of modification of a program by an assumption
CA = p(X)← E . Intuitively, if CA is assumed true, then in the ground instanti-
ation of the program P , all literals involving a ground atom p(t) such that p(t)
is contained in [CA] are eliminated from rule bodies, by deleting every positive
occurrence of such a literal and by replacing every negative occurrence with false.
The modification by assuming CA is false is symmetric.

Definition 11 Let C = A ← F | Body be a clause, and let p(X) ← E be a
constraint atom with free variables XY. Then the modification of C assuming
p(X) ← E is true is the following set of clauses ∆+(C, p(X) ← E). Suppose
the positive atoms in Body involving p are Ai = p(ti), i = 1, . . . ,m, and the
negative atoms involving p are Bj = not(p(t′j)), j = 1, . . . , n. Set ∆+

0 = {C},
and execute the following two steps:

13

Step 1. For each positive p(ti), i = 1, . . . ,m construct ∆+
i+1 from ∆+

i by adding
for each clause C ′ = A′ ← F ′ |Body′ in ∆+

i the clause

A′ ← F ′& (ti=X) & E |Body′ \ p(ti),

where Body′ \ p(ti) is Body′ with p(ti) removed;
Step 2. For each negative literal not(p(t′j)), j = 1, . . . , n construct ∆+

m+j from
∆+
m+j−1 by replacing the constraint of every clause C ′ = A′ ← F ′ |Body′ in

∆+
m+j−1 with the constraint F ′&∀XY[(t′j=X) ⊃ ¬E(X,Y)]

Then, let ∆+(C, p(X)← E) = ∆+
m+n.

For any normal logic program P , the modification of P assuming p(X)← E
is true, denoted by ∆+(P, p(X)← E), is

∆+(P, p(X)← E) =
⋃
C∈P

∆+(C, p(X)← E).

The modification of a clause C (resp. program P) by assuming p(X)← E is
false, denoted ∆−(C, p(X)← E) (resp. ∆−(P, p(X)← E)), is symmetric. 2

Remark. A more restrict definition of the modification of a clause, which
strengthens the constraints of the clauses from ∆+

i included in ∆+
i+1, is possible,

but omitted for simplicity.

Example 10. Suppose P is as discussed in Examples 8 and 9. Then the modifi-
cation of clause (2’) by assuming the constrained atom CA = p(X ′) ← X ′ 6= a
to be true yields

∆+(2′, CA) = { p(X)← X 6= a | p(Y) & not(q(X,Y)),
p(X)← X 6= a& (Y =X ′) & (X ′ 6= a) | not(q(X,Y))}.

for the clause (3′) = q(X,Y)← X 6= a | not(p(X)), we obtain

∆+(3′, CA) = {q(X,Y)← X 6= a&∀X ′.(X=X ′ ⊃ ¬(X ′ 6= a)) | not(p(X))}
= {}.

Definition 12 A constraint splitting strategy, CS, is any mapping from sat-
isfiable constrained atoms to pairs of satisfiable constrained atoms such that
CS(p(X) ← E) = (p(X) ← E1, p(X) ← E2)), where E1 = E2 = E if [A ← E] con-
tains a single ground atom, and otherwise G1 = [p(X)← E1] and G2 = [p(X)←
E2] satisfy (i) G1 ∩G2 = ∅, and (ii) G1 ∪G2 = [p(X)← E]. 2

In general, there are many different constraint splitting strategies that may
be applied. Two examples are (others exist, but are not discussed here).

1. If A← Ξ is a constraint, and Ξ = Ξ1 ∨ Ξ2, then this constraint atom may
be split into: A← Ξ1 &Ξ2 and A← Ξ1 &¬Ξ2.

14

2. If A ← Ξ is a constraint, and σ is a solution of Ξ, then A ← Ξ &¬σ and
A← σ represents a splitting.

Example 11. Suppose we return to our program P of examples 8 and 9, and
consider the constrained atom CA = p(X) ← X 6= a contained in U(T1, F1).
We notice that σ = {X = b} is the only solution of the constraint X 6= a over
the Herbrand universe consisting just of the constants a, b. Thus, any CS returns
(CA,CA). If there were additional constants, one possible way to split CA,
following the second strategy from above, is into the following two constraints:

p(X)← X=b.
p(X)← X 6= a&X 6= b.

Definition 13 A split selection strategy, SSS is a mapping from the natural
numbers to constraint splitting strategies, (i.e. SSS(i) is a constraint splitting
strategy) which satisfies the following property: Suppose A ← E is any con-
strained atom, where E is solvable. Then, there exists an integer i, such that
SSS(i)(A ← E) = (A ← E1, A ← E2), and [A ← E1] contains a single ground
atom; such an i is called basic for A← E . 2

What a split selection strategy does is to look at a counter i and choose a
constraint splitting strategy. However, split selection strategies are “converging”
in the sense that eventually, a single ground atom is chosen. Notice that if we
choose the second splitting strategy from above, then i = 1 can be basic for
every proper A← E .

Definition 14 Associated with any logic program P , and any split selection
strategy SSS, is a tree, called BB-tree(P, SSS) constructively defined as follows:

Each node N is labeled with a quadruple (P, T, F, U), where P is a program,
T and F are CIs describing true and false atoms, respectively, and U = U(T, F)
is the unknown set generated by them. N is a success node if [T] ∪ [F] = BL,
is a failure node if [T] ∩ [F] 6= ∅, and an open node otherwise.

1. The root N0 of BB-tree(P) is labeled with (P0, T0, F0, U0) where (T0, F0, P0) is
the result of Compute CNGWFS(P) and U0 = U(T0, F0).

2. For each open node N = (PN , TN , FN , UN), nondeterministically pick a con-
strained atom A← E in UN . The node N has children, N1, N2, . . . as follows:

Each child Ni has label (Pi, Ti, Fi, Ui), where Pi is a program and Ti, Fi, and
Ui are c-interpretations obtained as follows. Let P+

i be the program PN modified
by adopting the assumption Ai (described below) and augmented by TN , and let
(T ∗i , F

∗
i , P

∗
i) be the result of Compute CNGWFS(P+

i). Then,

– Pi = P ∗i ;
– Ti = TN ∪ T ∗i ;
– Fi = FN ∪ F ∗i ;
– Ui = U(Ti, Fi).

The assumptions Ai are as follows:

15

– A1 is that A← E is false;
– A2 is that A← E is true;
– for odd integers i = 2k+ 1 > 2, Ai is that A← Ek is false, where Ek appears

in SSS(k)(A← E) = (A← Ek, A← Fk), and
– for even integers i = 2k+2 > 2, Ai is that A← Ek is true, where Ek appears

in SSS(k)(A← E) = (A← Ek, A← Fk). 2

Note that this tree is potentially infinitely branching. However, due to the
assumption on the split selection strategy, in the actual procedure for computing
the non-ground stable models, finite branching suffices (exploiting that at some
point, SSS(k)(A← E)) must yield a single ground atom).

Before proceeding any further, let us take a quick example to see what a
BB-tree may look like.

Example 12. Suppose we return to program P of examples 8–11. The root of
any BB-tree(P, SSS) is labeled with the quadruple N1 = (P1, T1, F1, U1) where
P1, T1, F1 are as described in the preceding examples, and U1 = U(T1, F1) as
described in Example 9. Suppose we pick the constraint p(X) ← X 6= a from
U1 and generate the children N ′1, N

′
2, . . . of N1. The first child, N ′1, is generated

according to the assumption that p(X ′) ← X ′ 6= a is false. The program P+
1 is

after simplifications:

P+
1 = p(X)← X 6= a&Y =a | p(Y) & not(q(X,Y)).

q(X,Y)← X 6= a | not(p(X)).
q(X,Y)← X 6= a.
p(X)← X=a.

(The last clause is from T1). Compute CNGWFS(P+
1) returns (P ∗1 , T ∗2 ,F∗2)

where T ∗1 = {p(X) ← X = a, q(X,Y) ← X 6= a} and F∗1 = {p(X) ← X 6= a,
q(X,Y) ← X=a}. Notice that T ′1 = T ∗1 , F ′1 = F∗1 , and U ′1 = ∅; hence, N ′1 is a
success node.

The second child, N ′2, is generated by assuming p(X ′)← afteX 6= a is true.
Program P+

2 is after simplifications (cf. Example 11):

p(X)← X 6= a& | p(Y) & not(q(X,Y)).
p(X)← X 6= a&Y 6= a | not(q(X,Y)).
p(X)← X=a.

After computing Comp CNGWFS(P+
2), we get T2 = {p(X) ← true} and

F2 = {q(X,Y)← true}. Also N ′2 is a success node. 2

Our basic algorithm builds the tree BB-tree(P, SSS), and uses the following
simple operation children(N, CA, k) for generating the children of a node N :

children(N,CA, k): Given a node N , a constrained atom CA = A ← E , and
and integer k ≥ 0, the children N2k+1 and N2k+2 of the node N as above are
generated and returned. Moreover, a flag basic is set to true if [CA] contains
a single atom or k is basic for CA.

16

Notice that the split selection strategy SSS is here implicit, and that chil-
dren must report basic true after a finite number of calls children(N,CA, k),
k = 0, 1, . . .
An algorithm for stable model computation will now work as follows:

ALGORITHM STABLE COMP(P):

Input: A logic program P .
Output: The set S of all4 CNG-stable models of P .

Step 1. Construct the root N0 = (P0, T0, F0, U0).
If U0 = emptyet, then set S = T0 and halt; otherwise, initialize list Active
to N0.

Step 2. S = ∅. (* Solution collection now empty *)
Step 3. Pick a node N = (PN , TN , FN , UN) in list Active;
Step 4. Choose a constraint-atom p(X)← E in UN ;
Step 5. Execute children(N,CA, k), and let N1 = (P1, T1, F1, U1), N2 =

(P2, T2, F2, U2) be the nodes that are returned.
If basic = true, then remove N from list Active.

Step 6. For Nj where j = 1, 2 do the following:
1. If [Tj] ∪ [Fj] = BL and [Tj] ∩ [Fj] = ∅, then label Nj as a success node

and insert Tj into S.
2. If [Tj] ∩ [Fj] 6= ∅, then label Nj as a failure node.
3. If neither of the previous two cases applies, then Nj is labeled open and

is added to Active.
Step 7. If Active 6= ∅, then goto Step 3. 2

In the above algorithm, Steps 3 and 4 are non-deterministic, and various
heuristics may be used to choose N and p(X)← E .

For step 3, we might use e.g. a depth-first or breadth-first strategy, or based
on some weighting function, a greedy strategy; for Step 4, one could implement
exhaustion of a predicate p1, followed by exhaustion of p2 etc, where the order
of processing is determined by some criterion, possibly based on a heuristics for
the “intricacy” of a predicate estimated from the structure of the constraints in
the CIs. Different such strategies are selectable. Notice that in a previous version
of this paper, a fixed randomized constraint splitting strategy was applied.

Example 13. We continue the example from above. In Step 1, the list Active is
initialized with the node N1 from Example 12, which is chosen in Step 3. Suppose
the constrained atom CA = p(X ′)← X ′ 6= a is chosen in Step 4; then, (CA, 0)
is attached to N1, and in Step 5 the children N ′1 and N ′2 of N1 as in Example 12
are generated. If the Herbrand universe consists of a and b, then basic is set true,
and thus node N1 is removed from Active.

In Step 6, condition 1. applies to both N ′1 and N ′2, which are labeled as success
nodes and inserted into S. Since in Step 7 the list Active is empty, the algorithm
4 The algorithm may be easily modified to compute a single stable model of P , instead

of all by halting the first time an insertion into S is made.

17

terminates and outputs S with two CNG-stable models: I1 = {p(X) ← X = a,
q(X,Y) ← X 6= a} and I2 = {p(X) ← true}. They amount to the two ground
stable models of the program P . 2

Theorem 9. Let P be a function-free logic program. Then, assuming a proper
split selection strategy, STABLE COMP(P) computes all stable models of P
and halts in finite time.

In order to see that the claimed results holds, observe that the tree which
is generated by STABLE COMP(P) is finitely branching. Moreover, by the
properties of a splitting strategy, the set of undefined atoms at node N is always
a proper superset of the set of undefined atoms at any of its children; hence,
every branch in the tree is finite, and thus, by König’s Lemma, the tree is finite.
It remains thus to argue that the output is indeed a collection of all stable
models of P . This can be established by a generalization of the arguments in
[19] for the ground case, taking into account that each node N has two children
which correspond to the assumption that a ground atom p(t) is true and false,
respectively (which guarantees completeness), and that the generation of an open
or success node corresponds to a contracted sequence of respective generations
in the ground case.

Notice that, in general, S contains several equivalent CNG-stable models.
The above algorithm can be enhanced by pruning techniques, in which the gen-
eration of subtrees which do not contribute any CNG stable model or not one
inequivalent from already computed ones is reduced. For example, if two nodes
N = (P, T, F, U) and N ′ = (P ′, T ′, F ′, U ′) satisfy [T] ⊆ [T ′] and [F] ⊆ [F ′], then
only node N needs to be considered further; if [T] ⊃ [CI] (resp. [F] ⊃ [CI]) for
some CNG-stable model CI in S, then node N need not be considered further.

6 Effect on Actual Implementations

The techniques presented here give us now four possible approaches to com-
puting the stable model and the well-founded semantics of logic programs. We
analyze the pros and cons of these approaches and discuss under which condi-
tions a given approach is more appropriate. Table 1 summarizes this discussion,
which focuses on stable models.

The Classical Approach. Here, elementary syntax checking is performed at
compile-time, and all computations are performed during run-time using any
(sound and complete) deduction technique such as resolution.
Full Ground Pre-Computation. All stable models (or as many as are desired)
are pre-computed at compile time, and stored as sets of ground atoms.
Pre-Computations of NG-stable Models. In [11], Gottlob et al. showed
how sets of atoms (non-ground but without constrains) can be used to represent
stable models. These are called NG-stable models and can be pre-computed and
stored, just as in the case of ground stable models.
Pre-Computations of CNG-stable Models. Finally, the CNG-stable mod-
els approach described in this paper may be precomputed and stored. If one

18

examines this table, then we notice that the Classical approach and the Full
Grounding represent extremes – they are best for some things, and truly awful
in others. In contrast, CNG (and NG) stable models represent intermediate ap-
proaches that adopt a “middle ground”. The relative advantages of CNG vs. NG
are listed above.

Criterion Best 2nd Best 3rd Best Worst

Ease of Classical CNG Stable Mod. NG-Stable Mod. Full Ground
Compilation

Storage Classical CNG Stable Mod. NG-Stable Mod. Full Ground
Requirements

Run-Time Query Full Ground NG-Stable Mod. CNG Stable Mod. Classical
Execution

Table 1. Approaches to computing stable modelsx

To our knowledge, the only technique that currently presents a non-ground
representation of the stable and well-founded semantics is the work of Gottlob et
al. [11]. Though [11] and this paper have the same goal, viz. that of developing
non-ground representations of stable and well-founded semantics, they achieve
these goals in quite different ways. The work in [12] is related, but addresses
only definite logic programs. Dix and Stolzenburg have recently presented work
on non-ground representation of disjunctive logic programs a well, focusing on
the D-WFS semantics [5].

Other related work is by McCain and Turner [16], who study how stable
model semantics changes when the underlying language changes. This has a
surface similarity to our work, but they do not attempt to develop non-ground
representations of stable and well-founded semantics. Work by Marek, Nerode
and Remmel [15] considers constraint models that are related to CNG-stable
models. However, the framework is different, and algorithms are not addressed.

Acknowledgment. The authors are obliged to Georg Gottlob for many
useful discussions, which strongly influenced this paper. They further thank
the referees for pointing out improvements and their constructive criticism. In
partiuclar, a referee pointed out that related work on computing non-ground
well-founded semantics has been done by C. Damásio in his PhD thesis (1996,
unpublished).
Subrahmanian’s work was supported in part by the Army Research Office under
Grants DAAH-04-95-10174 and DAAH-04-96-10297, by ARPA/Rome Labs con-
tract F30602-93-C-0241 (ARPA Order Nr. A716), by an NSF Young Investiga-
tor award IRI-93-57756, NSF Grant No. IRI-9423967 and by the Army Research
Laboratory under Cooperative Agreement No. DAAL01-96-2-0002.

19

References

1. C. Baral and V.S. Subrahmanian. Dualities Between Alternative Semantics for
Logic Programming and Non-Monotonic Reasoning, J. Automated Reasoning,
10:399–420, 1993.

2. C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. (1994) Computation and
Implementation of Nonmonotonic Deductive Databases, JACM, 41(6):1178–1215,
1994.

3. H. Comon, P. Lescanne. Equational Problems and Disunification, J. Symbolic
Computation, 7:371–425, 1989.

4. J. Dix and M. Müller. Implementing Semantics of Disjunctive Logic Programs
Using Fringes and Abstract Properties, Proc. LPNMR ’93, (eds. L.-M. Pereira
and A. Nerode), pp 43–59, 1993.

5. J. Dix and F. Stolzenburg. Computation of Non-Ground Disjunctive Well-
Founded Semantics with Constraint Logic Programming. In J. Dix, L. M. Pereira,
and T. C. Przymusinski, eds, Proc. WS Non-Monotonic Extensions of Logic Pro-
gramming (at JICSLP ’96), pp 143–160, 1996. CS-Report 17/96, Univ. Koblenz.

6. M.C. Fitting. A Kripke–Kleene Semantics for Logic Programming, J. Logic Pro-
gramming, 4:295–312, 1985.

7. M. Gabbrielli, G. Levi. Modeling Answer Constraints in Constraint Logic Pro-
grams, Proc. ICLP, 1991, pp.238–251.

8. D. Johnson, A Catalogue of Complexity Classes. In: Handbook of TCS, 1990.

9. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming,
in: Proc. 5th JICSLP, pp 1070–1080, 1998.

10. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing, 9:365–385, 1991.

11. G. Gottlob, S. Marcus, A. Nerode, G. Salzer, and V.S. Subrahmanian. A Non-
Ground Realization of the Stable and Well-Founded Semantics, Theoretical Com-
puter Science, 166:221–262, 1996.

12. V. Kagan, A. Nerode, and V. Subrahmanian. Computing Minimal Models by
Partial Instantiation. Theoretical Computer Science, 155:15–177, 1996.

13. J.W. Lloyd. Foundations of Logic Programming, Springer Verlag, 1987.

14. M. Maher. Complete Axiomatization of the algebra of finite, rational and infinite
trees, in Proc. 3rd IEEE LICS, 1988.

15. W. Marek, A. Nerode, J. Remmel. On Logical Constraints in Logic Programming,
Proc. LPNMR ’95 (eds. W. Marek, A. Nerode, and M. Truszczyński), LNCS 928,
pp 44–56, 1995.

16. N. McCain and H. Turner. Language Independence and Language Tolerance in
Logic Programs, Proc. ICLP, 1994.

17. T. Sato and F. Motoyoshi. A Complete Top-down Interpreter for First Order
Programs, Proc. ILPS ’91, pp 37–53. MIT Press, 1991.

18. P. Stuckey. Constructive Negation for Constraint Logic Programming, Proc. LICS
’91, pp 328–339. IEEE Computer Science Press, 1991.

19. V.S. Subrahmanian, D. Nau and C. Vago. WFS + Branch and Bound = Stable
Models, IEEE TDKE, 7(3):362–377, 1995.

20. D. Turi. Extending S-Models to Logic Programs with Negation, Proc. ICLP ’91,
pp 397–411, 1991.

21. A. van Gelder, K. Ross and J. Schlipf. Well-founded Semantics for General Logic
Programs, JACM, 38(3):620–650, 1991.

20

22. A. van Gelder. The Alternating Fixpoint of Logic Programs with Negation, Proc.
8th ACM Symp. on Principles of Database Systems, pp 1–10.

23. M. Vardi. The On the Complexity of Bounded-Variable Queries, Proc. 14th ACM
Symp. on Theory of Computing, San Francisco, pp. 137–146, 1982.

24. S. Vorobyov. An Improved Lower Bound for the Elementary Theories of Trees.
In J. K. S. M. A. McRobbie, ed, Proc. 13th Conference on Automated Deduction
(CADE ’96), LNCS 1104, pp. 275–287, 1996.

25. S. Vorobyov. Existential Theory of Term Algebras is in Quasi-Linear Non-
Deterministic Time. Manuscript, February 1997.

21

