
Plan Reversals for Recovery in
Execution Monitoring

Thomas Eiter and Esra Erdem and Wolfgang Faber
Institut für Informationssysteme 184/3,

Technische Universität Wien
Favoritenstraße 9-11, 1040 Wien, Austria

Abstract

In this paper, we introduce a new method to recover from
discrepancies in a general monitoring framework where the
agent finds some explanations (points of failure) for discrep-
ancies. According to this method, the agent finds a reverse
plan to backtrack to a diagnosed point of failure and subse-
quently continues with the original plan. This method is ap-
pealing given that such a reverse plan is short with respect to
the overall plan to be executed. While a reverse plan could be
computed online by solving a planning problem, we present
a potentially more efficient method: We first build offline a
reverse plan library by finding reverse plans for action se-
quences, and then use this library online to construct reverse
plans. The former part is done by reducing the problem of
finding pairs of action sequences and reverse plans (of a cer-
tain length) to a conformant planning problem; for the latter,
we present a polynomial time algorithm. Furthermore, we
analyze the complexity of finding reverse plans, and obtain
that the presented reduction is reasonable in general.

Introduction
When an agent is situated in a nondeterministic environ-
ment, execution of a plan may need to be monitored to en-
sure that the plan does not fail to achieve the goal. For
example, imagine a shopping agent that accidentally picks
the wrong, but more expensive, milk from a shelf. Later, at
the cashier, she might realize that she does not have enough
money to pay, and the remainder of her shopping plan is ob-
solete.

Execution monitoring may help to reveal that things go
wrong and to recover from any detected execution failure.
To this end, the agent may determine a discrepancy between
the actual and the expected state of the world. Such a dis-
crepancy usually implies a failure (at least in the agent’s be-
lief), for which a recovery should be sought. A diagnosis of
the discrepancy can be useful to find a reasonable plan re-
covery. In the previous scenario, by monitoring, the agent
might discover earlier the wrong milk in the shopping cart
and conclude that she did not pick the right one. She then
can return the expensive milk, grab the right one instead, and
continue with the execution of the rest of her shopping plan.

In this paper, we are concerned with a single agent in a
logic-based monitoring framework. We consider in particu-
lar the issue of plan recovery. Detecting discrepancies and

generating diagnoses for them has been considered in (Eiter,
Erdem, & Faber 2004).

Among the possible strategies for recovery are
replanning—replacing the remaining plan by a new
plan, patch planning—adding actions to be executed before
the remaining plan, and backtracking—adding actions
which lead to a diagnosed point of failure and executing the
remaining plan from there. In this paper, we will focus on
backtracking.

Backtracking to a diagnosed point of failure can be done
in various ways such as by (a) finding a reverse plan, (b)
reversing the given plan, (c) reversing action occurrences,
or (d) restarting actions. Here, each way can be regarded
as a special case of the preceding one. The most general
one, (a), amounts to solving a planning problem, and any
plan is acceptable. In (b), this plan should be assembled
from a reverse plan library, while in (c), each executed ac-
tion is undone by some reverse action fetched from the li-
brary. Finally, restartable actions in (d) do not require un-
doing. Clearly, more specific backtracking methods will be
less often applicable in general.

The main contributions of this paper are summarized as
follows:

• We formally define and illustrate the notions of a reverse
action and a reverse plan for an action in a general frame-
work, addressing both items (b) and (c) above. These
notions are extended to multi-step reversals where a se-
quence of actions can be reversed, and to conditional re-
versals where the applicability of a reversal is subject to a
condition on the current state.

• We consider offline computation of a reverse plan library
and online computation of a reverse plan from a given
library. We show that the former can be achieved by
conformant planning, and, for the latter, we provide a
polynomial-time algorithm.

• Finally, we analyze the complexity of some problems re-
lated to the computation of a reverse plan library, includ-
ing the problem of finding a reverse action or a reverse
plan.

In order to keep our results at a general level, we de-
scribe execution monitoring in a general action represen-
tation framework as in (Turner 2002). In this framework,
an action description can be represented by a transition

diagram—a directed graph whose nodes correspond to states
and whose edges correspond to action occurrences. It can
accommodate nondeterminism, concurrent actions and dy-
namic worlds. Such action representations can be obtained
from domain descriptions in STRIPS-based languages or
in more expressive action description languages, such as
C+ (Giunchiglia et al. 2003) or K (Eiter et al. 2002). This
allows us to use systems like CCALC, CPLAN, and DLVK for
reasoning about actions.

In the logic-based frameworks (Giacomo, Reiter, &
Soutchanski 1998; Soutchanski 1999; 2003), execution
monitoring is described in the situation calculus as in (Re-
iter 2001), which makes them applicable to Golog pro-
grams (Levesque et al. 1997). In (Fichtner, Großmann,
& Thielscher 2003), execution monitoring is described
in the fluent calculus (Thielscher 2001) for FLUX pro-
grams (Thielscher 2004). These works differ from ours with
respect to plan recovery mainly in that plan reversals are not
studied in detail (see the last section).

In the following, first we present the action representa-
tion framework and the planning framework we consider,
and briefly discuss our monitoring framework. Then, we
precisely describe the reverse of an action and a plan, and
extend these definitions to handle various cases. After that,
we discuss how to compute offline plan reversals, and how
to exploit this library of plan reversals online for plan re-
covery. After a complexity analysis of these problems, we
conclude with a discussion of the related work.

Preliminaries
We consider the action representation and planning frame-
work described in (Turner 2002).

Action representation framework
We begin with a set A of action symbols and a disjoint set
F of fluent symbols. Let state(F) be a formula in which the
only nonlogical symbols are elements of F . This formula
encodes the set of states that correspond to its models. Let
act(F ,A,F ′) be a formula whose only nonlogical symbols
are elements of F ∪ A ∪ F ′, where F ′ is obtained from F
by priming each element of F . Then the formula

state(F) ∧ act(F ,A,F ′) ∧ state(F ′) (1)

encodes the set of transitions that corresponds to its models.
That is,
(i) the start state corresponds to an interpretation of the sym-

bols in F ,

(ii) the set of actions executed corresponds to an interpreta-
tion of actions executed correspond to an interpretation of
the symbols in A, and

(iii) the end state corresponds to an interpretation of the
symbols in F ′.

Formula (1) is abbreviated as tr(F ,A,F ′).

Example 1 [(Giunchiglia et al. 2003)] Putting a puppy in
water makes the puppy wet, and drying a puppy with a towel
makes it dry. With the fluents

F = {inWater ,wet},

and actions

A = {putIntoWater, dryWithTowel}

the states can be described by the formula

state(F) = inWater ⊃ wet .

Since there are three interpretations of F satisfying the for-
mula above, there are 3 states:

{inWater ,wet}, {¬inWater ,wet}, {¬inWater ,¬wet}.

The action occurrences can be defined as follows:

act(F ,A,F ′) =
(inWater ′ ≡ inWater ∨ putIntoWater) ∧
(wet ′ ≡ (wet ∧ ¬dryWithTowel) ∨ putIntoWater) ∧
(dryWithTowel ⊃ (¬inWater ∧ ¬putIntoWater))

The last line expresses that dryWithTowel is executable
when inWater is false and it is not executable concurrently
with putIntoWater .

For instance, the interpretation

{¬inWater ,wet , dryWithTowel ,¬putIntoWater ,

¬inWater ′,¬wet ′}

satisfies tr(F ,A,F′), therefore it describes a transition:

〈{¬inWater ,wet}, {dryWithTowel}, {¬inWater ,¬wet}〉.

Note that the interpretation of A above describes the occur-
rence of dryWithTowel .

The meaning of a domain description can be represented
by a transition diagram—a directed graph whose nodes cor-
respond to states and whose edges correspond to action oc-
currences. In a transition diagram, a “trajectory” of length n
is obtained by finding a model of

trn(F ,A) =
∧n−1

t=0
tr(Ft,At,Ft+1)

where each Fi (resp., each Ai) is the set of fluents obtained
from F (resp., A) by adding time stamp i to each fluent sym-
bol (resp., each action symbol). A trajectory is an alternating
sequence of states and action occurrences that correspond to
interpretations of fluent and action atoms, respectively. A
trajectory is of the form

S0, A0, S1, . . . , Sn−1, An−1, Sn (2)

where each Si is the state that corresponds to (the interpreta-
tion of fluents in) Fi, and each Ai is the action occurrences
that correspond to (the interpretation of action atoms in) Ai.
In the rest of the paper, S and Si denote states and A and Ai

denote action occurrences.

Example 2 According to the transition diagram for the ac-
tion description of Example 1 presented in Figure 1, here is
a trajectory:

{¬inWater0,wet0}, {dryWithTowel0},
{¬inWater1,¬wet1}, {putIntoWater1},
{inWater2,wet2}

expressing that the wet puppy is first dried with a towel and
then put into the water.

{dryWithTowel}

{putIntoWater}

{−inWater,−wet}

{inWater, wet} {−inWater,wet}

{putIntoWater}
{}

{}

{dryWithTowel}{putIntoWater}

{}

Figure 1: The transition diagram for the action description
of Example 1.

Planning framework
In a planning problem, an initial state is described by a for-
mula init(F) (where init(F) |= state(F)), and the goal
is described by a formula goal(F). A plan of length n is
obtained from any model of

init(F0) ∧ trn(F ,A) ∧ goal(Fn). (3)

The plan is the sequence of action occurrences that corre-
spond to the interpretation of action atoms. It is of the form

〈A0, . . . , An−1〉 (4)

where each Ai is the action occurrences that correspond to
the interpretation of action atoms in Ai.

A trajectory for a plan P (4) is a trajectory

S0, A
′
0, S1, . . . , Sn−1, A

′
n−1, Sn

such that Ai = A′
i (0 ≤ i < n), S0 |= init(F0), and

Sn |= goal(Fn). In the following, we will denote by TP

the set of all trajectories for a plan P .

Example 3 Consider a version of the blocks world in which
a block B can be thrown from location L1 to another loca-
tion L2. Unfortunately, throwing is not accurate and so the
block may end up on any location, and not necessarily on
L2.

With the fluents on(B,L) (“block B is on location L”),
and the actions throw(B,L,L1) (“throw block B from lo-
cation L to location L1”), the states, i.e., state(F), can be
defined by the conjunction of the following formulas:1

• every block should be on some location:
∨

L

on(B,L); (5)

1In the following, B, B1, B2 range over a finite set of block
constants, and L, L1, L2, L3 range over the set of location con-
stants that consists of the set of block constants and the constant
table .

• if a block is on some location then it is not anywhere else:

on(B,L) ⊃
∧

L6=L1

¬on(B,L1); (6)

• a block cannot have more than one block on itself:

on(B1, B) ⊃
∧

B16=B2

¬on(B2, B); (7)

• every block is “supported” by the table (here
supported(B) is an auxiliary propositional variable
defined in terms of on(B,L)):

supported(B). (8)

Formula act(F ,A,F ′) can be defined by the conjunction
of the following formulas:

• the preconditions of throw(B,L,L1):

throw(B,L,L1) ⊃ (on(B,L) ∧
∧

B1

¬on(B1, B)); (9)

• the effects of throw(B,L,L1), and inertia:

on(B,L1)′ ⊃
(on(B,L1) ∨

∨

L,L2
throw(B,L,L2)); (10)

• no-concurrency:

throw(B,L,L1) ⊃
∧

B16=B,L2,L3
¬throw(B1, L2, L3). (11)

Consider, in this domain, a planning problem P with the
following initial and goal states:

d
a

bc d c
b
a

goalinitial

A solution to this problem would be the plan

P = 〈throw0(a, c, d), throw1(b, table, c), throw2(a, d, b)〉.

A unique trajectory TP exists for P , shown in the follow-
ing graph:

d
a

bc d bc
a

d c
ba

d c
b
a

0 1 2 3

An evolution of a state Si reached at time stamp i from
an initial state S0 after action occurrences A0, . . . , Ai−1 of
a plan P is a trajectory

S0, A0, . . . , Si−1, Ai−1, Si (12)

obtained by finding a model of the formula

init(F0) ∧ tri(F ,A).

Example 4 Assume that during the execution of plan P of
Example 3, at time stamp 2, the following state S2 is ob-
served:

d a c
b

There is one evolution EP of the state S2 reached at time
stamp 2 from the initial state S0:

d
a

bc bcd a d c
b

a

0 1 2

A conformant plan is a plan (4) such that every evolu-
tion (12) (0 ≤ i ≤ n) of any state can be extended to a
trajectory for the plan:

∀F0, . . . ,Fn∃F
′
0, . . . ,F

′
n init(F ′

0)

∧
∧n−1

t=0

(

init(F0) ∧ trt(F , A) ⊃ tr(Ft, At,F
′
t+1)

)

∧ (init(F0) ∧ trn(F , A) ⊃ goal(Fn)) .
(13)

The formula above expresses the following conditions on
plan (4). The first conjunct expresses that there is at least
one possible initial state. The second conjunct describes the
executability of the plan. The last conjunct ensures that exe-
cution of the plan at an initial state leads to a goal state.

Example 5 Plan P of Example 3 is not a conformant plan
for the planning problem P , witnessed by evolution EP , in
which throw(a, d, b) is not executable. No conformant plan
made of throw actions exists for P .

Now assume that another action is available, by which the
agent can carry a block B safely to a location L (denoted by
carry(B,L)), such that B will definitely reside on L after
the execution of this action. With this new action, the defini-
tion of act(F ,A,F ′) is modified as follows. The conjunc-
tion (9) with the formula below describes the preconditions
of actions:

carry(B,L) ⊃
∧

B1

¬on(B1, B), (14)

and the conjunction of the following with (11) describes no-
concurrency:

(carry(B,L) ⊃
(
∧

B1,L2,L3
¬throw(B1, L2, L3) ∧

∧

B16=B,L2
¬carry(B1, L2))).

(15)

The effects of actions, and inertia are defined, instead
of (10), with the conjunction:

(carry(B,L) ⊃ on(B,L)′) ∧
(on(B,L1)′ ⊃

(on(B,L1) ∨ carry(B,L1)∨
∨

L,L2
throw(B,L,L2))).

(16)

A conformant plan for P then is

P ′ = 〈carry0(a, d), carry1(b, c), carry2(a, b)〉.

In the following sections, F ≡ F ′ denotes
∧

f∈F f ≡ f ′.

Monitoring Framework
According to our framework, for monitoring the execution
of a plan relative to a set of intended trajectories, the moni-
toring agent

1. checks whether there is a discrepancy between the current
state and the corresponding states of the given trajectories;

2. if no discrepancy is detected then continues with the ex-
ecution of the plan; otherwise, tries to find a diagnosis of
discrepancies by examining the given trajectories against
evolutions of the current state;2

3. if a diagnosis is found then recovers from the discrepan-
cies by backtracking to the diagnosed point of failure and
executing the plan from that point on; otherwise, finds an-
other plan from the current state to reach a goal state.

Consider, for instance, the setting of Example 4. Here, a
discrepancy can be observed between the state S2 and the
trajectory TP at time stamp 2. The point of failure for this
discrepancy is the state S0 at time stamp 0 because, the evo-
lution EP of S2 “deviates” from the trajectory TP at time
stamp 0 in state S0. That is, the states of TP and EP are
identical at time stamp 0, but they differ at time stamp 1. The
reason is that, in EP , block a ended up on the table rather
than on block d when executing throw(a, c, d). This point
of failure can be used to recover from the discrepancy above.
In particular, the agent can backtrack to the state S0 from the
state S2 and then execute P again. In the following, we will
describe how such a backtracking can be done, and we will
give formal specifications of that. More details about points
of failure can be found in (Eiter, Erdem, & Faber 2004).

Backtracking
In the process of recovering from discrepancies, backtrack-
ing from the state where a discrepancy is observed to a state
diagnosed as a point of failure can be done in several ways.
For instance, one can compute a plan to reach the point of
failure, or “undo” every action till the point of failure. An
action can be undone by executing one of its “reverse ac-
tions” or by executing a “reverse plan”. Sometimes, several
actions can be undone by executing a reverse plan. In the
following, we will make these concepts precise.

Reverse actions and plans
We define a reverse of an action below relative to a given
action description represented by a transition diagram.

An action A′ is a reverse action for A, if, for all F and
F ′, the formula

revAct(F ,F ′;A,A′) =
tr(F , A,F ′) ⊃

(tr(F ′, A′,F) ∧ ∀F ′′ (tr(F ′, A′,F ′′) ⊃ F ≡ F ′′))

is true (i.e., ∀F∀F ′revAct(F ,F ′;A,A′) is a tautology).
The formula above expresses the following condition

about actions A and A′. Take any two states S, S′ (described

2In our framework, like in (Fichtner, Großmann, & Thielscher
2003), the detected discrepancies may not be relevant to the suc-
cessful execution of the rest of the plan.

by the interpretations of fluents in F and F ′ respectively)
such that executing A at S leads to S ′. Then executing A′ at
state S′ always leads to S.

Example 6 In the setting of Example 5, carry(B,L) is a
reverse action for throw(B,L,L1). Indeed, consider any
two states S, S′ such that, for some block B, and for some
locations L,L1, executing throw(B,L,L1) at state S leads
to state S′. Due to the preconditions of throw(B,L,L1),
i.e., (9), we know that S is a state at which block B is on
location L and block B is clear. Due to the nondeterminis-
tic effect of throw(B,L,L1) and due to inertia, i.e., (16),
we know that S′ is a state at which block B is on some
location L2, block B is clear, and other blocks are in the
same locations as they are in S. Due to the preconditions of
carry(B,L), i.e., (14), we can execute carry(B,L) at state
S′. Due to the deterministic effect of carry(B,L) and due
to inertia, i.e., (16), carrying block B onto location L leads
to the state S′′ at which B is on location L, and other blocks
are in the same locations as they are in S. That is, S ′′ = S.

A reverse plan for an action A is a sequence
〈A0, . . . , Am−1〉 (m ≥ 0) of actions such that, for all F
and F ′, the formula

revPlan(F ,F ′;A, [A0, . . . , Am−1]) =
tr(F , A,F ′) ⊃

∀F0, . . . ,Fm∃F ′
1, . . . ,F

′
m(F0 ≡ F ′ ⊃

(
∧m−1

t=0
(trt(F , A) ⊃ tr(Ft, At,F

′
t+1)) ∧

(trm(F , A) ⊃ Fm ≡ F)))

holds.
The formula above expresses the following condition

about an action A and an action sequence 〈A0, . . . , Am−1〉.
Take any two states S, S′ (described by the interpretations
of fluents in F and F ′ respectively) such that executing A
at S leads to S′. If the action sequence 〈A0, . . . , Am−1〉 is
executable at state S′, then it always leads to S. The exe-
cutability condition of 〈A0, . . . , Am−1〉 is described above
by the formula

∧m−1

t=0
(trt(F , A) ⊃ tr(Ft, At,F

′
t+1)).

Note that revPlan(F ,F ′;A, [A0]) is equivalent to
revAct(F ,F ′;A,A0).

Multi-step reversals
We can further generalize the notion of reversing by consid-
ering plans, rather than actions, to be reversed. There are
two motivations for this generalization: It might not always
be possible to find reverse plans for single actions, but only
for sequences of actions. Also, a reverse plan for an action
sequence might be shorter than a reverse plan obtained by
concatenating reverse plans for subsequences (as in Exam-
ple 7).

A sequence 〈A′
0, . . . , A

′
m−1〉 (m ≥ 0) of actions is a re-

verse plan for an action sequence 〈A0, . . . , Ak−1〉 (k > 0),
if, for all F and F ′, the formula
multiRev(F ,F ′; [A0, . . . , Ak−1], [A

′
0, . . . , A

′
m−1]) =

∃F0, . . . ,Fk (F ≡ F0 ∧ trk(F , A) ∧ F ′ ≡ Fk) ⊃
∀F ′

0, . . . ,F
′
m∃F ′′

0 , . . . ,F ′′
m(F ′

0 ≡ F ′ ⊃
∧m−1

t=0

(

trt(F
′, A′) ⊃ tr(F ′

t, A
′
t,F

′′
t+1)

)

∧

(trm(F ′, A′) ⊃ F ′
m ≡ F))

is true.
The formula above is very similar to

revPlan(F ,F ′;A, [A0, . . . , Am−1]). The only differ-
ence is that, in the premise of the formula, a trajectory is
considered instead of a single transition.

Note that multiRev(F ,F ′; [A0], [A
′
0, . . . , A

′
m]) is equiv-

alent to revPlan(F ,F ′;A0, [A
′
0, . . . , A

′
m]).

Example 7 In the setting of Example 5, a reverse plan for
the action sequence

〈throw(B1, L1, L2), carry(B1, L3),
throw(B1, L3, L4), carry(B1, L5)〉

is 〈carry(B1, L1)〉. Indeed, executing the action sequence
above at a state S changes the location of block B1 from
location L1 to location L5, without changing the locations
of other blocks. Carrying block B1 to location L1 at this
new state brings the blocks world back to its state S.

Conditional reversals
In the above, a reverse plan is defined for an action sequence
at any reachable state. However, at some such states, an ac-
tion sequence may not admit any reverse plan. That is, an
action sequence may have a reverse plan under conditions
that do not hold at every reachable state. To make plan re-
versals applicable in such cases, we extend the concept of a
reverse plan to a “conditional reverse plan” that takes state
information into account.

A sequence 〈A′
0, . . . , A

′
m−1〉 (m ≥ 0) of actions is a φ-

reverse plan for an action sequence 〈A0, . . . , Ak−1〉 (k > 0)
if, for any F and F ′, the formula

φ(F ′) ⊃
multiRev(F ,F ′; [A0, . . . , Ak−1], [A

′
0, . . . , A

′
m−1]).

is true. Here φ(F ′) is a formula whose only free variables
are F ′.

Example 8 Consider a variant of Example 5 with another
deterministic action of carrying a block B from a location
L to another location L1: carry2 (B,L,L1). Note that
〈carry2 (B,L4, L1)〉 is not a reverse plan for the action se-
quence

〈throw(B,L1, L2), carry(B,L3), throw(B,L3, L4)〉,

as B need not be on L4 after the execution of this
action sequence, due to the nondeterministic effects of
throw(B,L3, L4). However, it is a φ-reverse plan, with
φ(F ′) being on(B,L4)′.

Computation
A reverse plan item, RPI, is a tuple of the form (AS,R, φ)
such that R is a φ-reverse plan for the (nonempty) action
sequence AS, where φ = φ(F). An RPI is single-step, if
|AS| = 1, i.e., AS consists of a single action, and uncon-
ditional, if φ = true. A reverse plan library L is a (finite)
set of RPIs; it is called single-step (resp., unconditional), if
each RPI in it is single-step (resp.,unconditional). For in-
stance, according to Example 6,

(〈throw(B,L,L1)〉, 〈carry(B,L)〉, true)

is a single-step unconditional RPI; whereas, according to
Example 8, the RPI

(〈throw(B,L1, L2), carry(B,L3), throw(B,L3, L4)〉,
〈carry2 (B,L4, L1)〉,
on(B,L4))

is neither single-step nor unconditional.
We now discuss how to compute offline a reverse plan

library and how to exploit it online during plan recovery.

Offline RPI computation
Given an action description D represented by a transition
diagram tr(F ,A,F ′), one can compute RPIs (AS,R, φ) for
every action sequence AS by solving conformant planning
problems Prev defined relative to a modification Drev of D.
The solutions to these planning problems can then be used
to fill a reverse plan library.

We discuss first how to compute all unconditional RPIs
for AS. For that we define Drev and Prev as fol-
lows. We consider the fluents in Frev = F ∪ F̃ , where
F̃ = {f̃ | f ∈ F} consists of new fluent symbols. For Drev ,
the states are defined by the interpretations of Frev such
that state(F). The transition function is defined by formula
trrev(Frev,A,F ′

rev) where fluent values in F̃ are copied to
F̃ ′:

trrev(Frev,A,F ′
rev) = (tr(F ,A,F ′) ∧ F̃ ≡ F̃ ′).

For Prev , the initial state is defined by the formula
initrev(Frev), which encodes all possible states over F , and
which additionally duplicates all fluents of F to F̃ :

initrev(Frev) = (state(F) ∧ F ≡ F̃).

The goal conditions are defined by the formula
goalrev(Frev) which makes sure that the fluent values
for F (which have been changed by actions according to
tr(F ,A,F ′)) are equal to those in F̃ (which are equal to
the initial state fluent values):

goalrev(Frev) = (F ≡ F̃).

Any conformant plan for Prev of length ≥ 1 represents
reverse plans:

Theorem 1 Let Prev be the planning problem defined rela-
tive to the action description Drev , and let 〈A0, . . . , An−1〉
(0 < n) be a conformant plan of Prev . Then for any
i ∈ {1, . . . , n}, 〈Ai, . . . , An−1〉 is a reverse plan of
〈A0, . . . , Ai−1〉 relative to D.

Example 9 Consider the setting of Example 5. The asso-
ciated planning problem Prev admits the following confor-
mant plans of length 2:

〈throw(X,Y, Z), carry(X,Y)〉

(X ∈ {a, b, c, d}, Y 6= Z, Y, Z ∈ {table, a, b, c, d}). These
plans give rise to a single-step, unconditional plan library.

The complexity of deciding the existence of reverse ac-
tions and repair plans of up to polynomial length (longer
ones do not seem to be economical) can be characterized as
follows.

Theorem 2 Deciding if a given action description D has
some pair (AS,R), such that AS is an action sequence
of length m> 0 and R is a reverse action (resp. a reverse
plan of length n bounded by a polynomial) for AS, is Σp

2-
complete (resp. Σp

3-complete). Hardness holds also if AS is
fixed or if m= 1, and, in case of reverse plans, for n= 2.

Membership follows from the structures of the formulas
given in the previous sections, and from the reduction to con-
formant plans. Hardness can be shown by reductions from
evaluation of suitable fragments of QBFs (2-QSAT and 3-
QSAT), respectively.

These results follow from the fact that checking whether
an action (resp. a plan of length n > 1) R is a reverse action
(resp. plan) for a (possibly fixed) AS in D is coNP-complete
(resp. Πp

2-complete).
Note that, when only sequential actions and short plans

(length bound by a constant) are considered, the complexity
of finding a reverse plan drops to that of checking (i.e. coNP
or Πp

2).
The reduction from finding reverse plans to conformant

planning (which is also Σp
3-complete (Turner 2002; Eiter et

al. 2004)) is reasonable from a complexity point of view.
However, for the simpler case of finding reverse actions, it
is not immediate that Prev falls into a simpler class. Con-
formant planners might therefore not be able to detect that
solving it is an easier task. To overcome this problem,
we have created an alternative reduction (which we omit
for space reasons) of finding reversal actions to a confor-
mant planning problem in which actions are always exe-
cutable, which is known to be Σp

2-complete (Turner 2002;
Eiter et al. 2004).

Online reverse plan assembly

We first consider reverse plan libraries L which contain
only single-step RPIs. In this case, a reverse plan for a
given action sequence AS = A0, . . . , Ai−1 (occurring in
a plan) from the reached state, Si, can be done by the al-
gorithm presented in Figure 2. Here, exec(S,R) computes
the state which results from executing the action sequence
R = 〈B1, . . . , Bk〉 starting in state S.

Proposition 1 (i) S-REVERSE(AS, Si, L) is a polynomial-
time algorithm.
(ii) S-REVERSE(AS, Si, L) correctly outputs, relative to L,
a reverse plan RP for AS starting at Si, and the resulting
state S0; or it determines that such a reverse plan does not
exist.

Example 10 Consider the setting of Example 5. Take L to
be the derived single-step unconditional plan library of Ex-
ample 9. Consider the plan P of Example 3 with the ob-
served state S2 of Example 4. Then, as described earlier,
the point of failure is state S0. To produce a reverse plan
for the action sequence 〈throw(a, c, d), throw(b, table, c)〉,
to reach the point of failure from state S2, we call

S-REVERSE(〈throw(a, c, d), throw(b, table, c)〉, S2, L).

Algorithm S-REVERSE(AS, Si, L)

Input: Action sequence AS = 〈A0, . . . , Ai−1〉, i ≥ 0,
state Si, single-step reverse plan library L;

Output: Reverse plan RP from L for AS from state Si

and resulting state, S0, or “no” if none exists

S := Si; RP := ε ; /* empty plan */
for each j = i−1, i−2, . . . , 0 do

if some (〈A〉, R, φ) ∈ L exists
s.t. A=Aj ∧ φ(S)= true then

begin
RP := RP + R;
S := exec(S,R); /* undo Aj */

end
else return “no”;

return (RP , S)

Figure 2: Algorithm S-REVERSE to compute plan reversals
using a single-step plan library.

According to S-REVERSE, after initialization, for j=1, the
only match is

(〈throw(b, table, c)〉, 〈carry(b, table)〉, true).

Therefore, RP := 〈carry(b, table)〉 and S is computed as
the state of time stamp 1 in EP . For j = 0, the only match
in L is

(〈throw(a, c, d)〉, 〈carry(a, c)〉, true);

hence, S = S0 and RP := 〈carry(b, table), carry(a, c)〉
are finally returned.

When we consider a multi-step plan library, i.e., not nec-
essarily a single-step plan library, finding a reverse plan RP
is trickier since RP may be assembled from L in many dif-
ferent ways, and state conditions might exclude some of
them. For instance, take

AS = 〈A,B,C〉,

and
L = {(〈A,B〉, 〈D〉, φ1), (〈C〉, 〈E〉, φ2), (〈A〉, 〈F 〉, φ3),

(〈B,C〉, 〈G〉, φ4)}.

We can assemble the action sequence 〈A,B,C〉 from
〈A,B〉 and 〈C〉, or from 〈A〉 and 〈B,C〉. However, in the
former case, φ1 might be false at the state resulting from re-
versing C by E, while, in the latter case, φ3 might be true at
the state resulting from reversing the action sequence 〈B,C〉
by the action G. Therefore, we need to consider choices and
constraints when building a reverse plan.

Fortunately, this is not a source of intractability, and a re-
verse plan from L can be found in polynomial time (if one
exists) by the algorithm REVERSE in Figure 3, which gener-
alizes algorithm S-REVERSE.

The auxiliary array S in the algorithms in Figure 3 is used
to keep state information when available, i.e., each S[j] con-
tains information about the state Sj before the action occur-
rences Aj . The main algorithm, REVERSE, initializes ev-
ery S[j] (j < i) of S to ⊥ since we do not have informa-
tion about the states S0, . . . , Si−1 initially. The recursive

Algorithm REVERSE(AS, Si, L)

Input: Action sequence AS = 〈A0, . . . , Ai−1〉, i ≥ 0,
state Si, reverse plan library L;

Output: Reverse plan RP from L for AS from state Si

and resulting state, S0, or “no” if none exists

Set S[0] := ⊥, . . . , S[i−1] := ⊥ and S[i] := Si;
RP := REVERSE1(i);
if RP = “no” then return “no”
else return (RP ,S[0])

Algorithm REVERSE1(j)

Input: integer j, 0 ≤ j ≤ i (=|AS|);
Output: Reverse plan RP for 〈A0, . . . , Aj−1〉 from S[j],

or “no”

if j = 0 then return ε ; /* empty plan */
for each (As,R, φ) ∈ L

s.t. As is a suffix of 〈A0, . . . , Aj−1〉 do
if φ(Sj)= true ∧ S[j−|As|] = ⊥ then

begin
S[j−|As|] := exec(S[j],R); /* undo As from Sj*/
RP := REVERSE1(j−|As|);
if RP 6= “no” then return R + RP

end
return “no”

Figure 3: Algorithm REVERSE to compute plan reversals
using a multi-step plan library.

algorithm REVERSE1 updates S whenever new knowledge
is gained. For instance, if the action Ai−1 can be reversed at
state Si, then we can get some information about state Si−1

and modify S[j−1] accordingly. Having such state informa-
tion available in S helps us find a reverse plan for the action
sequence AS from L. Also, it prevents us explore the same
search space over and over.

The algorithm REVERSE starts constructing a reverse plan
for an action sequence A0, . . . , Aj−1 by considering its suf-
fixes As. For efficiently determining all As in L, we can
employ search structures such as a trie (or indexed trie) to
represent L: consider each node of the trie labeled by an
action so that the path from the root to the node would
describe an action sequence. If the node describes an ac-
tion sequence As such that (As,R, φ) is in L then the
node is linked to a list of all RPIs (As′, R, φ) in L where
As=As′. With such a trie representation, all matching suf-
fixes As in L can be determined in time O(m̀ax(L)), where
`max(L) = max{|As| | (As,R, φ) ∈ L}.

Notice that exec(S[j], R) is called at most i times, and
that each action in A0, . . . , Ai−1 is covered by exactly one
such undo.

Theorem 3 (i) REVERSE(AS, Si, L) is a polynomial-time
algorithm. Its running time is of order O(|AS|(|L| ·
φmax(L)+`max(L)+execmax(A))), where φmax(L) and
execmax(A) bound the times to evaluate φ(S) for formula
φ in L and exec(S,A) for any action occurrence A, re-
spectively.

(ii) REVERSE(AS, Si, L) correctly outputs, relative to L, a
reverse plan RP for AS starting at Si, and the resulting
state S0; or it determines that such a plan does not exist.

Related Work and Conclusion
We have introduced a new method to recover from discrep-
ancies in plan execution, according to which the agent finds
a reverse plan to backtrack to a diagnosed point of failure
and continues with the execution of the original plan from
that point on.

This method is different from the plan recovery ap-
proaches of the other logic-based monitoring frameworks
(Giacomo, Reiter, & Soutchanski 1998), (Soutchanski 1999)
(Soutchanski 2003), and (Fichtner, Großmann, & Thielscher
2003) as follows. In (Giacomo, Reiter, & Soutchanski
1998), backtracking is not considered; instead, a new plan
is computed so that executing it followed by the remaining
plan would lead to a goal situation from the current situa-
tion. In (Soutchanski 1999), the authors consider restartable
plans so that the agent can backtrack to a past nondetermin-
istic choice point without having to compute a plan. Af-
ter identifying the latest nondeterministic choice point, the
agent executes the plan from that point on, to reach a goal
situation from the current situation. If the agent cannot reach
a goal situation then she identifies the next past nondeter-
ministic choice point, and follows the recovery procedure as
above. In (Soutchanski 2003), backtracking is considered in
connection with inserting corrective plans as in (Giacomo,
Reiter, & Soutchanski 1998), by a recursive recovery proce-
dure like the one in (Soutchanski 1999). The agent computes
a plan from the current situation to reach the latest nondeter-
ministic choice point. If executing the plan from that point
on does not lead to a goal situation then the agent tries to re-
cover by inserting a corrective plan at that point. If the agent
cannot find a corrective plan then she finds the next past non-
deterministic choice point, and follows the recovery proce-
dure as above. In (Fichtner, Großmann, & Thielscher 2003),
backtracking is not considered. If a diagnosis is found then
some predefined plans are executed to achieve the goals; oth-
erwise, a new plan is computed to reach to a goal situation
from the current situation.

The idea of backtracking for recovery is similar to “re-
verse execution” in program debugging (Zelkowitz 1973;
Agrawal, DeMillo, & Spafford 1991), where every action
is undone to reach a “stable” state. Our method is more gen-
eral because it does not require an execution history to be
able to undo actions.

Implementation of the algorithms above, including the
generation of conditional reverse plan libraries, is on our fu-
ture agenda. Another future direction is to extend the recov-
ery framework above, from propositional logic, to a strips-

style predicate language.

Acknowledgments
Thanks to Mikhail Soutchanski for useful discussions. This
work was supported by FWF (Austrian Science Funds) un-
der project P16536-N04.

References
Agrawal, H.; DeMillo, R. A.; and Spafford, E. H. 1991. An
execution backtracking approach to program debugging.
IEEE Software 8(3):21–26.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2002. A logic programming approach to knowledge-
state planning, II: The DLVK system. Artificial Intelligence
144(1–2):157–211.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning, semantics and complexity. ACM TOCL 5(2).
Eiter, T.; Erdem, E.; and Faber, W. 2004. Finding explana-
tions for discrepancies in plan execution.
Fichtner, M.; Großmann, A.; and Thielscher, M. 2003.
Intelligent execution monitoring in dynamic environments.
Fundamenta Informaticae 57(2–4).
Giacomo, G. D.; Reiter, R.; and Soutchanski, M. 1998. Ex-
ecution monitoring of high-level robot programs. In Prin-
ciples of Knowledge Representation and Reasoning, 453–
465.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2003. Nonmonotonic causal theories. Artificial
Intelligence. To appear.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1-3):59–83.
Reiter, R. 2001. Knowledge in action: Logical Foundations
for specifying and implementing dynamical systems. MIT
Press.
Soutchanski, M. 1999. Execution monitoring of high-level
temporal programs. In Proc. of IJCAI Workshop on Robot
Action Planning.
Soutchanski, M. 2003. High-level robot programming and
program execution. In Proc. of ICAPS Workshop on Plan
Execution.
Thielscher, M. 2001. The concurrent, continuous Fluent
Calculus. Studia Logica 67(3):315–331.
Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic Pro-
gramming. To appear.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In Proc. of Eighth European Conf.
on Logics in Artificial Intelligence (JELIA’02), 111–124.
Zelkowitz, M. 1973. Reversible execution. Communica-
tions of ACM 16(9):566.

