
Efficient Clause Learning for Quantified Boolean

Formulas via QBF Pseudo Unit Propagation⋆

Florian Lonsing1, Uwe Egly1, and Allen Van Gelder2

1 Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/{lonsing,egly}
2 University of California, Santa Cruz, http://www.cse.ucsc.edu/~avg

Abstract. Recent solvers for quantified boolean formulas (QBF) use a clause

learning method based on a procedure proposed by Giunchiglia et al. (JAIR

2006), which avoids creating tautological clauses. Recently, an exponential worst

case for this procedure has been shown by Van Gelder (CP 2012). That paper

introduced QBF Pseudo Unit Propagation (QPUP) for non-tautological clause

learning in a limited setting and showed that its worst case is theoretically poly-

nomial, although it might be impractical in a high-performance QBF solver, due

to excessive time and space consumption. No implementation was reported.

We describe an enhanced version of QPUP learning that is practical to incorporate

into high-performance QBF solvers, being compatible with pure-literal rules and

dependency schemes. It can be used for proving in a concise format that a QBF

formula is either unsatisfiable or satisfiable (working on both proofs in tandem).

A lazy version of QPUP permits non-tautological clauses to be learned without

actually carrying out resolutions, but this version is unable to produce proofs.

Experimental results show that QPUP is somewhat faster than the previous non-

tautological clause learning procedure on benchmarks from QBFEVAL-12-SR.

1 Introduction

Solvers for Quantified Boolean Formulas (QBFs) are rapidly increasing in strength,

partly due to increased understanding of how to incorporate conflict-driven clause learn-

ing (CDCL), which found great practical success in propositional satisfiability. Several

current solvers are patterned after the Q-resolution method described by Giunchiglia et

al. [3]. A thorough survey of the field through 2005 may be found in this paper.

We present a formal framework for solvers to search for proofs that an instance is

true or false in tandem, and to use information found in one proof search to assist in the

other proof search. The framework is closely related to the work of Zhang and Malik

[19], and Giunchiglia et al. [3], but uses the idea of a Complete Guard Formula and a

closely related Basic Guard Formula to prove some key properties straightforwardly.

This approach differs from that used for CirQit2 [4] and GhostQ [7] in that those

solvers use a representation in which the entire negated formula is known, whereas the

guard formula is only partially known.

This paper then presents a prototype implementation of QBF Pseudo Unit Propaga-

tion (QPUP) non-tautological clause learning. The main innovation is to identify a cut

⋆ The first two authors are supported by the Austrian Science Fund under grant S11409-N23.

in the conflict graph such that the learned clause associated with the cut will be non-

tautological and asserting: that is, after backtracking, the learned clause will enable a

new literal to be implied immediately. After the cut is identified, resolution proceeds

from clauses on the boundary of the cut toward the conflicting clause, in an order such

that tautologies cannot occur. Previous techniques performed resolutions beginning at

the conflicting clause and working back toward the boundary of the cut, without ever

explicitly defining the cut. When the latter order is used, tautologies can occur and

require possibly expensive special treatment (exponential time in the worst case).

All clauses derived during the QPUP procedure satisfy an invariant that permits

an asserting learned clause to be constructed lazily, without actually performing the

resolutions. This shortcut saves substantial clause-learning time, but does not permit a

detailed Q-resolution proof to be output as a by-product, and occasionally constructs a

slightly weaker learned clause.

An implementation of QPUP learning was incorporated in the open-source solver

DepQBF [8, 10, 9]. Experimental results (Section 6) illustrate the potential of QPUP

learning compared to traditional clause learning in terms of more solved formulas, fewer

backtracks and reduced run times.3

2 Preliminaries

In this section, we collect specific notation for later use. In general, quantified boolean

formulas (QBFs) generalize propositional formulas by adding universal and existential

quantification of boolean variables. See [6] for a thorough introduction. For this paper

QBFs are in prenex conjunctive normal form (PCNF): Ψ =
−→
Q.F consists of prenex

−→
Q

and clause-matrix F (the original clauses). The prenex
−→
Q is partitioned into maximal

contiguous subsequences of the same quantifier type, called quantifier blocks. Each

quantifier block has a different qdepth with the outermost block having qdepth = 1.

If p and q are variables of opposite quantifier types, we say that q is inner to p if

qdepth(p) < qdepth(q).

Clauses may be written as literals enclosed in square brackets (e.g., [p, q, r]), and

[] denotes the empty clause. Where the context permits, letters e and others near the

beginning of the alphabet denote existential literals, while letters u and others near

the end of the alphabet denote universal literals. Letters like p, q, r denote literals of

unspecified quantifier type. We use ⊥ to denote the constant false in the role of a literal.

The variable underlying literal p is denoted by |p|.

A closed QBF (all variable occurrences are quantified) evaluates to either 0 (false)

or 1 (true), as defined by induction on its principal operator: (1) (∃xφ(x)) = 1 iff

φ(0) = 1 or φ(1) = 1. (2) (∀xφ(x)) = 0 iff φ(0) = 0 or φ(1) = 0. (3) Other

operators have the same semantics as in propositional logic. This definition emphasizes

the connection of QBF to two-person games with complete information, in which player

E (Existential) tries to set existential variables to make the QBF evaluate to 1, and

player A (Universal) tries to set universal variables to make the QBF evaluate to 0.

3 Please visit http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz for a longer ver-

sion of this paper, binaries, and some logs.

Players set their variable when it is outermost, or for non-prenex, when it is the root of

a subformula (see [7] for more details). Only one player has a winning strategy.

The proof system known as Q-resolution consists of two operations, resolution and

universal reduction (some papers combine them into one operation). Q-resolution is of

central importance for QBFs because it is a sound and complete proof system [5].

Definition 2.1 Resolution is defined as usual. The resolvent of C1 and C2 on existen-

tial e is denoted as resq(C1, C2) = [(C1 − e), (C2 − e)] or as C1 ∗e C2. (We drop

set-forming braces around singleton sets where obvious.) The resolvent must be non-

tautologous for Q-resolution. Universal reduction is special to QBF. The notation is

unrdq(C3) = (C3 − u), where C3 is non-tautologous and u is tailing for C3. Here, a

universal literal u is said to be tailing for C3 if no existential literal in C3 is inner to u.

A postfix operator notation for the same expression is C3 ∆u. Performing all possible

universal reductions on C3 is denoted by unrd∗(C3) or C3 ∆∗, and the resulting clause

is said to be fully reduced. The operators are left-associative, like + and −, so that

compound expressions without parentheses can be read left to right.

A Q-derivation of a clause is a proof using the Q-resolution operations; a Q-refuta-

tion is a Q-derivation of the empty clause.

Definition 2.2 An assignment (sometimes called a partial assignment) is a partial

function from variables to truth values, and is usually represented as the set of literals

that it maps to true. A total assignment assigns a truth value to every variable. Assign-

ments are denoted by σ, τ , etc. Applications of σ to logical expressions are denoted by

q⌈σ , C⌈σ , F⌈σ , etc., and consist of replacing assigned variables in the expression by

their truth values in σ, then simplifying with truth-value identities (but not propagating

unit clauses). If σ assigns variables that are quantified in Ψ , those quantifiers are deleted

in Ψ⌈σ, and their variables receive the assignment specified by σ.

3 Guard Formulas

This section describes guard formulas, and states their main properties that are impor-

tant for QBF solving. We begin with some terminology.

Definition 3.1 Let the initial PCNF formula be Ψ =
−→
Q.F , where

−→
Q is the quantifier

prefix and F is the matrix of clauses. A consistent minimal hitting set (cmhs) for a set

of clauses F is a partial assignment σ (regarded as a consistent set of literals) such that

every clause C ∈ F is satisfied by σ and no proper subset of σ has this property. Note

that F has no hitting set if it is propositionally unsatisfiable.

Let Q̃ be the same as
−→
Q except that the quantifier type of each variable is inverted.

The Complete Guard Formula for Ψ is the PCNF Γ∗ = Q̃.G∗(F), where G∗(F) is the

set of clauses defined as follows:

C ∈ G∗(F) if and only if ¬(C) is a cmhs for F (1)

Here, ¬(C) is the partial assignment consisting of the negations of all literals in C. (The

negation of a clause is often called a cube.)

Ψ ∀u ∃d ∃a ∀v ∃b ∃c ∃e

C1 u d a

C2 u a v c e

C3 u e

C4 d a v b

C5 d a v b

C6 d c

C7 a v b c

C8 v b

C9 v b

C10 v c

Γ∗ ∃u ∀d ∀a ∃v ∀b ∀c ∀e

D1 u d a v b c

D2 u d a v b c

D3 u d v b c e

D4 d a v b e

D5 d a v b c e

ΓB ∃u ∀d ∀a ∃v ∀b ∀c ∀e

D1 u d a v

D2 u d a v

D3 u d v

D4 d a v

D5 d a v

Fig. 1. QCNFs Ψ , Γ∗, and ΓB , discussed in Example 3.6 and later examples.

Since Γ∗ is a PCNF we may exploit the soundness and completeness of Q-resolution

for PCNF refutations. In general discussions we call Ψ the original formula and call Γ∗

and related formulas guard formulas.

Definition 3.2 If two propositional formulas F1 and F2 evaluate to the same truth value

for every total assignment, then F1 ≡ F2, read as F1 and F2 are propositionally equiv-

alent. If every total assignment that satisfies F1 also satisfies F2, then F1 |= F2, read

as F1 logically implies F2.

The idea of cubes is familiar in QBF, but Γ∗ has this important property, which has

not been enunciated before, as far as we know (proofs are omitted to save space):

Lemma 3.3 With the notation of Definition 3.1: (A) G∗(F) ≡ ¬F ; (B) Γ∗ has the

opposite truth value from Ψ .

Definition 3.4 Let Ψ and Γ∗ and F and G∗ be as defined in Definition 3.1. The Basic

Guard Formula for Ψ is the PCNF ΓB = Q̃.GB(F), where GB(F) is the set of clauses

arising by performing all possible universal reductions on clauses in G∗(F). (Recall that

the quantifier type of each variable in Q̃ is the opposite of its quantifier type in
−→
Q .)

Lemma 3.5 With the notation of Definition 3.4: (A) ΓB has the opposite truth value

from Ψ ; (B) ΓB has a Q-refutation if and only if the truth value of Ψ is true; (C) For

any C ∈ GB(F), ¬(C) can be extended to a cmhs for F by adding only literals ei such

that ei is inner to some u ∈ ¬(C), where ei is existential and u is universal in
−→
Q .

Example 3.6 Let Ψ be the QCNF shown in chart form on the left of Figure 1. The

corresponding Γ∗ and ΓB are shown on the right. ΓB does not admit a Q-refutation, so

we conclude by Lemma 3.5 that Ψ is false.

It is not practical for a solver to construct G∗(F) or GB(F) explicitly since the sizes

of these clause sets might be anywhere from empty to exponentially larger than F .

Instead, solvers (ideally) discover clauses in G∗(F) as the proof search goes along, re-

duce them to clauses in GB(F), and record them. (Some implementations may discover

non-minimal consistent hitting sets and not extract a cmhs.) Any partial assignment that

satisfies all clauses in F is a consistent hitting set. If at any point the solver discovers a

Q-refutation of whatever guard clauses have been discovered, Ψ is proven to be true.

4 QBF Conflict-Driven Clause-Learning Solvers (Review)

The QBF conflict-driven clause-learning (QCDCL) strategy for PCNF solving is in-

spired by the great success of conflict-driven clause-learning (CDCL) in propositional

SAT solving [11, 12, 2]. Although CDCL is often described in the literature as a variant

of DPLL with learning added, it has been argued that the idea of CDCL is actually quite

different [11, 16].

Due to universal quantifiers, the QCDCL strategy becomes considerably more tech-

nical. To date, the most in-depth treatment in the literature is found in Giunchiglia et al.

[3], although they call it Q-DLL-LN. This section reviews the main ideas so that QPUP

clause learning may be placed in context.

4.1 QCDCL Rounds

A QCDCL solver proceeds by rounds. Initially a PCNF Ψ =
−→
Q.F is known and

Γ∗ = Q̃.G∗(F) (see Section 3) is unknown. As clauses related to G∗(F) are discovered,

they are added to an (initially empty) set of guard clauses G. Each round proceeds by

decision levels until a terminating event occurs. Assignments accumulate throughout a

round in a sequence often called the trail, τ . Each assignment is applied to Ψ (and is

implicitly applied to Γ∗), giving Ψ⌈τ and Γ∗⌈τ , and is appended to τ before the next

assignment is made. Assignments have categories, such as “assumption,” or one of the

safe assignments detailed in Section 4.2, to facilitate clause learning after a conflict.

The alevel (assignment level) of a literal is the decision level at which it was assigned.

At decision-level 0, beginning with an empty τ , safe assignments are applied to

Ψ⌈τ and G⌈τ , where G is whatever part of ΓB has been discovered and recorded. Safe

assignments are those that cannot change the truth value of Ψ⌈τ and Γ∗⌈τ . Safe variable

assignments continue until no more are found, or until a terminating event occurs.

At positive decision levels, the first variable assignment is an assumption, which is

unsafe (may change the truth value of Ψ⌈τ or Γ∗⌈τ). For soundness, the assumption

literal must not be inner to any unassigned literal.

Subsequent variable assignments on the same decision level are safe for Ψ⌈τ and

Γ∗⌈τ . Safe variable assignments continue until no more are found, or until a terminating

event occurs. For all decision levels, if no terminating event has occurred, the decision

level is increased by 1, a new assumption is made, and the higher decision level contin-

ues with additional safe variable assignments, as just described.

4.2 Safe QCDCL Assignments

Perhaps the major complication in going from CDCL to QCDCL is the number of safe

assignments to be managed. The first complication is that there are two quite different

PCNF formulas being updated and a safe assignment needs to be safe for both formulas.

In many cases, it is obviously safe for one formula, but not so clear for the other.

The safe assignments typically implemented in QCDCL-based solvers are:

Unit-clause implication: If C ∈ F and C⌈τ , followed by universal reductions, con-

tains the single existential literal e, append e to τ .

Guard unit implication: If C ∈ G and C⌈τ , followed by universal reductions, contains

the single existential literal u, based on Q̃, append u to τ .

Existential pure-literal rule: If the existential literal e appears in some clause in F⌈τ ,

and e does not appear in F⌈τ , then append e to τ .

Universal pure-literal rule: If the universal literal u appears in some clause in F⌈τ ,

and u does not appear in F⌈τ , then append u to τ .

4.3 QCDCL Terminating Events

There are three kinds of terminating events for a round:

(1) All clauses in F are satisfied; i.e., F⌈τ is empty. Then the assignments in τ
comprise a consistent hitting set for F and a clause of G∗(F) may be discovered by

finding a cmhs and negating it. (In practice an implementation might settle for an over-

approximation of the cmhs.) This clause is simplified by universal reductions, keeping

in mind that the quantifier types are now dictated by Q̃, yielding a new guard clause

G. If a cmhs was used, G ∈ ΓB , otherwise it is subsumed by some clause in ΓB . G is

added to G. Applying τ falsifies G, since it was a negated hitting set before the universal

reductions. Next, assignments are retracted from τ , a complete decision level at a time,

from highest to lower, until the remaining assignments no longer falsify G.

(2) A conflict occurs in some clause C ∈ F , meaning that τ , coupled with uni-

versal reductions in C, have falsified C, i.e., C⌈τ , followed by universal reductions, is

an empty clause. In this case a new clause D is derived from Ψ by Q-resolution and

added to F . D⌈τ , followed by universal reductions, also is an empty clause. Next, as-

signments are retracted, a complete decision level at a time, from highest to lower, until

the remaining assignments, followed by universal reductions, no longer falsify D.

(3) A conflict occurs in some clause C ∈ G, meaning that C⌈τ , followed by univer-

sal reductions, is an empty clause. Note that the only clauses in G are those added by

earlier instances of case 1 and this case. In this case a new guard clause E is derived

from Q̃.G by Q-resolution4 and added to G. E⌈τ , followed by universal reductions,

also is an empty clause. Next, assignments are retracted, a complete decision level at

a time, from highest to lower, until the remaining assignments, followed by universal

reductions, no longer falsify E.

If D in case 2 is an empty clause, the truth value of Ψ can be proven to be false.

If E in case 3 is an empty clause, the truth value of Ψ can be proven to be true. It is

straightforward in principle to extract either Q-refutation from a trace of the solver’s

actions [1, 13]. If G in case 1 is an empty clause, the truth value of Ψ can be shown

to be true simply by applying the hitting set underlying G to Ψ , because the hitting set

contains only existential variables (based on
−→
Q). In these cases, the instance is solved.

If no empty clause has been derived, another round is started. The unretracted part

of τ from the previous round is the initial value of τ for the next round. Whatever

decision levels were not retracted remain in place. Safe assignments continue on the

highest unretracted decision level.

4 Previous descriptions of this general strategy in the literature speak of “cubes,” and “term res-

olution,” as separate concepts, but the formulation as a guard formula needs only Q-resolution.

Definition 4.1 An asserting clause in the context of a trail σ is a clause C such that

C⌈σ satisfies the conditions for unit-clause implication in the original formula or for

guard unit implication in the guard formula (Section 4.2). I.e., C⌈σ has only one ex-

istential literal e (possibly ⊥), called the asserting literal, and e is not inner to any

universal literals in C⌈σ . This terminology is primarily used when σ is the trail after

backtracking from τ ; i.e., σ is a proper prefix of τ .

An important optimization is that the learned clause, D in case 2 or E in case 3, is

asserting after backtracking, so at least one safe assignment is available before a new

assumption is needed. When the learned clause is asserting, it is usual to backtrack as

many decision levels as possible, while maintaining the asserting property.

By the nature of a round, an asserting learned clause cannot be subsumed by an

already known clause, or else it would have become a unit-clause implication or guard

unit implication before the completion of the decision level to which the round back-

tracked after learning this clause. We know this did not happen because at least one

higher decision level was started before the asserting clause was learned. Since every

round learns a clause, it follows that the number of rounds is finite (as long as all learned

clauses are remembered).

5 Learning with QBF Pseudo Unit Propagation (QPUP)

We introduce a practical version of QPUP which can be used to derive a learned clause

from a conflict graph. A simple version of QPUP uses the entire conflict graph and

was introduced as a theoretical, rather than practical construct [17]. Its point was to

show that a non-tautological asserting clause (Definition 4.1) could be learned in time

polynomial in the size of the conflict graph (whereas the published methods of learning

a non-tautological clause might take exponential time).

This section describes how to selectively apply QPUP after a conflict has occurred,

keeping operations confined to recent decision levels as far as practical, in the spirit of

the propositional CDCL strategy. This more sophisticated version of QPUP learning is

deferred to Section 5.2, until additional nomenclature has been introduced. The proce-

dure is essentially the same for conflicts in the original formula and the guard formula.

5.1 QCDCL Conflict Graphs

During a QCDCL search suppose a falsified clause is encountered after a sequence of

assumptions, unit-clause implications, and otherwise-assigned literals, as described in

Section 4. Each literal in the trail τ is either an assumption or an implied literal or an

otherwise-assigned literal (any other safe assignment).

Definition 5.1 A clause is effectively unit in the context of τ if the restriction based on

τ , followed by universal reductions (see Definition 2.1), makes the clause a unit clause.

A clause is said to be effectively empty (or falsified) in the context of a partial assignment

τ if the restriction based on τ , followed by any applicable universal reductions, makes

the clause an empty clause. The antecedent clause of an implied literal p (denoted

ante(p)) is the (unique) clause that became effectively unit earliest to imply p. If a

clause became effectively empty, we say that ⊥ is the “implied literal”.

.

.

?
v

bb

a

v

c

a

u

v

e

c

∆
c

dlevel 1 d

ulevel 0 u e

u

level 2 v

2UIP Clause: [u ; d℄

1UIP
Clause: [u ; v ; v; c ; e ℄ ?

Fig. 2. QCDCL conflict graph; see Example 5.2 and later examples. Circles enclose implied

literals. Boxes at the left enclose assumptions. Diamonds enclose otherwise-assigned literals.

Rounded boxes enclose an antecedent clause. The antecedent clause of a universal implied literal

is in the opposite formula and cannot be used for resolution. The rounded box has dashed lines to

denote this. Dashed arrows show connections to universal literals. The dotted arcs show various

cuts. A solid arrow crossing a cut goes to an existential literal whose negation is definitely in

the QCDCL learned clause associated with that cut (cf. propositional CDCL). A dashed arrow

always crosses the cut and goes to a universal literal, but its negation may not be in the learned

clause.

The conflict graph associated with a falsified clause is the rooted directed acyclic

graph (DAG) in which ⊥ is the root vertex and its antecedent is the falsified clause. The

remaining vertices are the assumptions, implied literals, and otherwise-assigned literals

reachable from ⊥, based on the directed edges.

The directed edges of the conflict graph are (p, q), where p and q are vertices in the

conflict graph, p is existential, and q ∈ ante(p). See Figure 2.

Otherwise-assigned literals in the conflict graph for the original formula can arise

through the universal pure-literal rule and through guard unit implication. Like as-

sumptions, otherwise-assigned literals have no antecedent. Existential pure literals are

not vertices in the conflict graph of an original formula.

The only differences in a conflict graph for the guard formula are that the vertices

with antecedents are guard unit implications (which are existential literals in the context

of the guard formula) and the otherwise-assigned literals are existential pure literals in

the original formula or unit-clause implications in the original formula. Both of these

literal types are universal in the context of the guard formula. Universal pure literals are

not in the guard conflict graph.

Example 5.2 For concreteness we suppose that the QCDCL proof search assumes neg-

ative literals. Figure 2 shows a conflict graph for the original formula of Figure 1 that

occurs in round 4. In the first three rounds the guard clauses D1 and D2 were discovered

and the guard clause [u] was derived, causing all decision levels to be retracted.

At the beginning of round 4, u is a guard unit implication at level 0, so it is an

otherwise-assigned literal for purposes of the original formula. Now e is implied via

C3. Round 4 continues as follows: Level 1: assume d ; imply c via C6; imply a via C2.

Level 2: assume v ; imply b via C7; imply ⊥ via C8. Discussion is continued in several

subsequent examples.

Definition 5.3 In a QCNF conflict graph a conflict-generating cut is a partition of the

vertices in the reason side and the conflict side such that: (A) ⊥ is on the conflict side;

(B) every vertex on the conflict side is reachable from ⊥ by a directed path using only

vertices on the conflict side; (C) every assumption and otherwise-assigned literal is on

the reason side. We abbreviate “conflict-generating cut” to “cut” in later discussions.

A unique implication point (UIP) p is an existential vertex such that all edges from

existential literals that are reachable from ⊥ and are assigned later than p go to: (D) p
or (E) an existential literal assigned later than p or (F) an existential literal assigned at

a decision level less than p or (G) a universal literal.

In propositional CDCL, the clause associated with a cut consists of the negations

of literals on the reason side that are reached by a single edge from some literal on

the conflict side. In QCNF this clause might not be derivable in Q-resolution because

universal literals can result in tautologous resolvents. Moreover, some universal literals

might be removable by universal reduction.

The UIP cut for a UIP p in traditional CDCL places all existential literals that are

assigned later than p and are in the conflict graph on the conflict side, and places all

other literals in the conflict graph on the reason side. This paper refines the definition

of the UIP cut in the context of QCDCL to permit certain existential literals that are

assigned earlier than p to appear on the conflict side. This might be necessary to be able

to associate a non-tautological clause with the cut.

Example 5.4 Figure 2 shows a typical situation where the traditional UIP cut would

derive a tautological clause. The dotted arcs show some conflict-generating cuts. Vertex

c is a UIP. The traditional associated 1UIP cut is shown by the rightmost dotted arc. The

clause associated with this cut, obtained by resolving the clauses on the conflict side,

is tautological. Neither v nor v can be eliminated by universal reduction using only

clauses on the conflict side because they are always blocked by b or c or e .

Long distance resolution was proposed by Zhang and Malik [19] to accommo-

date such tautological clauses. Giunchiglia and co-authors pioneered the derivation of

learned clauses using Q-resolution and avoiding tautological clauses [3].

5.2 QPUP Clauses

The idea of QPUP is that resolutions are performed that mimic the derivation of the im-

plied literal by unit-clause resolution, treating certain earlier-assigned existential literals

as unit clauses. However, the negations of those earlier-assigned literals are included in

the QPUP clause. In this sense, QPUP extends propositional Pseudo Unit Propagation

(PUP) [18].

Definition 5.5 Let a conflict graph and a conflict-generating cut be given, as described

in Section 5.1. Recall alevel (assignment level) from Section 4.1. Each assumption in-

creases the alevel by one and subsequently assigned literals up to the next assumption

take this value for their alevel. Let dlevel be the decision level at which the conflict

occurred.

A function qpup(e, aℓ) is any function that returns a clause for each existential

literal e on the conflict side of the cut, including ⊥, with certain properties:

1. If all edges leaving e go to the reason side, then qpup(e, aℓ) = ante(e).
2. If r ∈ qpup(e, aℓ), then r is on the reason side and is reachable by a single edge

from some vertex on the conflict side.

3. Let A be the set of existential literals in qpup(e, aℓ) with alevel ≤ aℓ. If r ∈
qpup(e, aℓ) and r is universal and r would be unassigned after retracting all as-

signments with alevel > aℓ, then r is tailing in (qpup(e, aℓ) − A − e).
4. A clause that subsumes qpup(e, aℓ) can be derived by Q-resolution from ante(e)

and the clauses qpup(ri, aℓ) such that ri ∈ ante(e) and ri is on the conflict side.

(Note that a clause subsumes itself.)

The properties are well defined because the conflict graph is acyclic. Note that proper-

ties 1 and 4 ensure that qpup(e, aℓ) is not tautological.

Not every cut permits qpup to be defined. Suppose qpup can be defined for a given

cut and a backtrack level aℓ < dlevel. The important invariant for D = qpup(e, aℓ) is

unrd∗(qpup(e, aℓ) − {e}) ⊆ qpup(⊥, aℓ) (2)

I.e., if e is removed from D and all possible universal reductions are performed in D−e,

then the remaining literals are in qpup(⊥, aℓ). Note that the invariant holds also when

e = ⊥. Given a conflict graph, the goal is to identify a suitable conflict-generating cut

such that the clause qpup(⊥, aℓ) is non-tautological and asserting and hence can be

used as a learned clause.

Example 5.6 Referring again to Figure 2, it is easy to see by inspection that qpup

cannot be defined for the rightmost cut for any aℓ < dlevel, because a is on the conflict

side and a cannot be resolved out without creating a tautology.

For the leftmost cut, qpup is easily defined for aℓ = 0. For c and e their qpup is their

antecedent. Then qpup(a, 0) = ante(a) ∗e qpup(e, 0) ∗c qpup(c, 0)∆ v = [u , d, a].
This can be resolved against the clause with a , etc., without creating a tautology. Fi-

nally, qpup(⊥, 0) = [u , d], which is asserting for level 0.

Note that alevel(e) < alevel(d), but including e on the conflict side is necessary

to enable tautologies to be avoided. Finally, it is worth noting that traditional QCDCL

based on [3] derives the weaker clause [u , d, v , e] by starting at the falsified clause

[v, b] and resolving on b, c, a, and again on c.

Our principal contribution is the description (in the next section) and experimental

evaluation of a practical procedure to identify a cut and a value of aℓ such that qpup is

efficient to compute and has the further property that qpup(⊥, aℓ) is non-tautological

and asserting after backtracking.

5.3 Cuts and Backtrack Levels for QPUP

This section provides an abstract description of our procedure to identify a suitable cut

and backtrack level for QPUP after a conflict. For simplicity a conflict in the original

formula is assumed.

The key idea is that an agenda is constructed and processed. The agenda is a se-

quence of literals in trail-assignment order that are relevant to deriving the needed qpup
clauses. As an exception, unassigned universal literals appear with the same clause that

caused them to be inserted. Processing the agenda corresponds to finding a suitable cut

in iterative fashion. The procedure is illustrated by Examples 5.7 and 5.8 to make it

easier to follow the general description.

Starting from an empty cut, existential literals are put on the conflict side until a UIP

cut is found. If that cut cannot be associated with a non-tautological clause, processing

continues and further literals are put on the conflict side, thus modifying the cut. During

processing, no clauses are constructed explicitly. The state of the agenda is inspected to

check if the clause associated with the current cut is non-tautological and asserting.

Literals are annotated with some status information. We use these graphical mnem-

onics: p/k denotes that alevel(p) = k (∞ denotes it is unassigned); e© means that e
must be on the conflict side and its qpup must eventually be computed to produce a

Q-derivation of the learned clause; q denotes that q is a suitable UIP, i.e., qpup will be

computed with aℓ = (alevel(q)− 1) and q will be the asserting literal in qpup(⊥, aℓ),
the learned clause.

Literals are processed from right to left, i.e., in reverse trail order. Universal literals

are skipped over and each existential literal is processed just once. Processing may

cause other literals to be inserted into the agenda, but such inserts are always to the left

of the literal being processed, i.e., in the part of the agenda yet to be processed.

In general terms, the processing has two phases: In the first phase a suitable UIP

literal is identified and this establishes the value of aℓ for which qpup is needed. In the

second phase the complete cut is identified.

The agenda is initialized with the literals in ante(⊥), with ⊥© rightmost, unassigned

universals immediately to its left, and remaining literals further to the left, in trail order.

For phase 1, proceeding right to left, examine the next existential literal, say e /k.

(1) If some literal to the left of e has alevel = k, e must go on the conflict side. (2)

If e is inner to some pair of complementary universal literals in the agenda, e must go

on the conflict side. (3) If e is inner to some universal literal u/m in the agenda where

m ≥ k, e must go on the conflict side.

If none of the above tests determines that e must go on the conflict side, then change

the notation to e /k, denoting that e will be the asserting literal, set aℓ = k − 1, and

proceed to phase 2.

Otherwise, replace e /k with ante(e) in the agenda, as follows: e© replaces e /k;

unassigned universal literals that are not already in the agenda are inserted immediately

to the left of e©; remaining literals of ante(e) that are not already in the agenda are

inserted in correct trail order (somewhere to the left of e©), annotated with their alevels.

Continue phase 1 to the left of e©.

If phase 1 reaches the left end of the agenda without identifying an asserting literal,

then qpup(⊥, 0) will reduce to the empty clause.

Example 5.7 Referring again to Figure 2, Table 1 shows the evolution of the agenda

through phase 1. After step 1, a cannot be the asserting literal because c is earlier on

the same alevel. After step 2, c cannot be the asserting literal because it is inner to v

Table 1. Agenda processing discussed in Examples 5.7 and 5.8.

Step Agenda

0 v/2 b/2 ⊥©

1 c /1 a /1 v/2 b© ⊥©

2 u /0 e /0 c /1 v /2 a© v/2 b© ⊥©

3 u /0 e /0 d/1 c© v /2 a© v/2 b© ⊥©

4 u /0 e /0 d /1 c© v /2 a© v/2 b© ⊥©
end phase 1

5 u /0 e© d /1 c© v /2 a© v/2 b© ⊥©

and v . After step 3, d can be the asserting literal because it is not inner to v and v .

Step 4 terminates phase 1.

Phase 2 begins immediately to the left of the asserting literal in the agenda. Proceed-

ing right to left as in phase 1, examine the next existential literal, say f /j. We know

j ≤ aℓ. If f is inner to some pair of complementary universal literals in the agenda,

f must go on the conflict side. Otherwise, f /j remains unchanged in the agenda and

processing moves left. If f must go on the conflict side, replace f /j with ante(f) in

the agenda, following the same procedure as above for replacing e /k with ante(e). In

particular f© now appears in the agenda and phase 2 continues to the left of f©. Phase

2 terminates after the leftmost literal in the agenda has been processed. At this point,

the UIP cut has been found and is associated with the non-tautological asserting clause

qpup(⊥, aℓ), which is to be learned.

Example 5.8 Continuing from Example 5.7, the end of Table 1 shows the evolution of

the agenda through phase 2. After step 4, e cannot be on the reason side because it is

inner to v and v , so it is replaced by ante(e). After step 5, no existential literals inner

to v and v remain on the reason side and processing terminates. Literal d is the UIP.

Literals e, c, a and b are on the conflict side.

After termination of agenda processing, clauses qpup(e, aℓ) are computed for every

existential literal e on the conflict side. The computations are done in trail order, i.e.,

from left to right in the agenda. The order is important because the computation of some

qpup(e2, aℓ) might use qpup(e1, aℓ) if e1 is left of e2 in the agenda, i.e., earlier on trail.

Finally, the clause qpup(⊥, aℓ) is computed. Example 5.6 illustrates the computation

of the QPUP clauses referring to the agenda from Example 5.8.

Lemma 5.9 The agenda-based procedure presented above (A) has worst-case run time

which is polynomial in the size of the conflict graph and (B) allows to derive a non-

tautological asserting learned clause C = qpup(⊥, aℓ).

5.4 Lazy QPUP

The agenda-based approach from the previous section allows for a lazy form of QPUP

learning where no resolutions are carried out. In effect, it inspects the final agenda to

determine which literals will be in qpup(⊥, aℓ), i.e., the learned clause. No literals on

the conflict side (those enclosed in circles) will appear; all existential literals on the

Table 2. Running times in seconds on qdpllexp family. “segv” denotes “segmentation violation”.

family index 18 19 20 21 22 23

QuBE 1.3 10 22 47 105 segv segv

DepQBF 0.1 8 16 32 69 140 298

CirQit 3.15 1 1 3 5 11 21

DepQBF QPUP .00 .00 .00 .00 .00 .00

Note: DepQBF QPUP does not regis-

ter any CPU time, even up to level

99. The run logs show that the reso-

lution count increases by 8 for each

level in the family.

reason side must appear. For universal literals, those that can be reduced out at the

end and complementary pairs definitely will not appear. To be safe, other universal

literals are kept, but they cannot prevent the learned clause from being asserting after

backtracking to aℓ.

6 Experimental Results

We implemented a prototype version of QPUP learning and lazy QPUP as described in

Sections 5.2 and 5.4 in the open-source search-based QBF solver DepQBF5 for compar-

isons with traditional QCDCL. QPUP learning is applied to the original formula as well

as to the guard formula. It is compatible with all the sophisticated techniques already in

DepQBF, including pure literal detection, proof generation for certificate extraction [1,

13], and the standard dependency scheme.

It has been reported that QCDCL clause learning, published as Q-DLL-LN [3] and

used in other solvers (often under the label QDPLL), can spend time that is exponential

in the size of the conflict graph to learn a single clause [17]. A family of small instances

was given that elicits exponential behavior. Since the original motivation for QPUP was

to avoid this behavior, we checked it on this family. The first three lines of Table 2,

reproduced from [17], provide empirical confirmation of the theoretical analysis that

the running time for traditional QDPLL learning doubles for each increase of one level

in the family. The note shows that QPUP does not experience exponential growth.

To compare DepQBF with QPUP learning, lazy QPUP and traditional QCDCL,

we considered the 276 preprocessed instances used for QBFEVAL-12 Second Round

(QBFEVAL-12-SR). We did not apply any further preprocessing to these instances.6

For additional tests we used preprocessed instances from QBFEVAL-10 which were

not solved by preprocessing. We ran experiments on 64-bit Linux AMD Opteron 6176

SE with a time limit of 900 seconds and a memory limit of 7 GB.7

Table 3 shows a comparison of DepQBF with traditional QCDCL, QPUP learning

and lazy QPUP. Figure 3 shows these results in a cactus plot. Lazy QPUP solves the

largest number of instances, both overall and individually with respect to satisfiable and

unsatisfiable ones. The PAR10 time (i.e., average time with timeouts multiplied by 10)

of lazy QPUP is moderately smaller than the time of the other two configurations.

5 Please visit http://lonsing.github.com/depqbf/ for released versions. The version reported in

this section is available from the first author.
6 Visit http://fmv.jku.at/seidl/qbfeval2012r2/ and select “eval12bloqqer,”
7 Please visit http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz for binaries, logs

and a longer report.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e

c
o

n
d

s
)

Solved Formulae

DepQBF Lazy QPUP
DepQBF QPUP

DepQBF trad. learning

Fig. 3. Cactus plot of run times related to Table 3 for QBFEVAL-12-SR.

Table 4 shows detailed statistics on instances solved by both QPUP learning and

traditional QCDCL. Due to the large overlap in solved instances these statistics are

comparable. (Lazy QPUP counts closely match QPUP.) QPUP is higher on most counts,

but is 12% lower on backtracks. Additional tests on the 373 preprocessed QBFEVAL-

10 instances that were not solved during preprocessing showed a similar pattern, and

are omitted to save space.

When all three methods are forced to use the same variable re-weighting policy, it

becomes clear that QPUP produces shorter learned clauses than traditional QCDCL.

It is noteworthy that the logical computation (meaning the sequence of assumptions,

safe assignments, learned clauses and backtracks) was exactly the same on 228 of the

273 instances solved by both methods on preprocessed QBFEVAL-10 instances. This

confirms that QPUP almost always produces the same learned constraint as traditional

QCDCL. For the 45 instances that did differ in their logical computations Table 5

shows some statistics. In one striking instance,8 both methods learned the same first

four clauses, but then the fifth learned clause by traditional QCDCL was a superset of

that learned by QPUP, and contained 128 additional literals (534 vs. 406).

Lazy QPUP performed the same logical computation as QPUP on 97% of the 273

instances reported in Table 5 and used 111 CPU Seconds on average. In addition it

solved one additional instance on which QPUP timed out, which we attribute to a faster

procedure, not a different learning strategy.

The overall picture in Table 3, the reduced numbers of backtracks in Tables 4 and 5,

and the reduced learned-clause lengths in Table 5 show the potential of QPUP learning.

Higher resolution counts for QPUP are expected when QCDCL does not encounter

conflicting universal literals, based on the analysis of PUP [18], but other benefits of

QPUP appear to compensate.

8 TOILET16.1.iv.32-shuffled

Table 3. (Left) DepQBF with QPUP, lazy QPUP, and traditional QCDCL on the 276 prepro-

cessed instances from QBFEVAL-12-SR. Times are average including timeouts multiplied by 10

(PAR10).

Table 4. (Right) Comparison of QPUP learning and traditional QCDCL based on the runs from

Table 3. Averages are based on 113 instances solved by both configurations. “Resolutions” and

“length” are per learned clause.

Solved Time

(sat,unsat) (avg.)

Trad. QCDCL 119 (62, 57) 5,148

QPUP 119 (63, 56) 5,151

Lazy QPUP 125 (65, 60) 4,963

Both Solved Trad. vs. QPUP

Time 55.21 51.93

Assignments 9.1·106 11.1·106

Backtracks 59,000 52,000

Resolutions 23.50 34.05

Length 53.58 82.50

Table 5. Comparison of traditional QCDCL and QPUP learning on the 45 instances with dif-

fering logical computation among the 273 preprocessed QBFEVAL-10 instances solved by both

configurations. Statistics are average values and standard deviation (σ) of the difference.

Trad. QCDCL QPUP Difference σ of Diff.

No. Learned Clauses 228,666 154,379 74,287 210,332

Learned Clause Length 191.8 131.4 60.4 141.7

No. Clause Resolutions 3.96·106 4.80·106 -0.84·106 4.93·106

No. Learned Cubes 79,555 89,723 -10,168 54,825

Learned Cube Length 409.2 408.3 0.9 7.2

No. Cube Resolutions 51,674 107,167 -55,493 237,015

Backtracks 268,528 209,942 58,586 216,325

CPU Seconds 208 186 22 111

7 Conclusion

This paper presented QPUP learning, a novel approach to conflict-driven clause-learn-

ing (QCDCL) in QBF solvers. Given a conflict graph, the idea is to resolve on variables

in the same order as they were assigned, rather than in reverse order. In contrast to

traditional QCDCL, QPUP learning is a polynomial-time procedure.

The implementation of QPUP learning in DepQBF is compatible with sophisticated

techniques like pure literals, dependency schemes [14, 15, 8], proof generation and hence

also certificate extraction. Experimental results show the potential of QPUP learning

but, at the same time, identified several procedural optimizations as future work.

Further research directions are comparison of certificates obtained by resolution

proofs based on traditional QCDCL and QPUP learning, a detailed analysis of the

learned clauses, and formally proving the correctness of QPUP learning in the con-

text of guard formulas and dependency schemes, building upon the framework of guard

formulas.

References

1. V. Balabanov and J. R. Jiang. Unified QBF certification and its applications. Formal Methods

in System Design, 41:45–65, 2012.

2. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT (LNCS 2919), pages

502–518. Springer, 2004.

3. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term resolution and learning in the

evaluation of quantified boolean formulas. JAIR, 26:371–416, 2006.

4. A. Goultiaeva and F. Bacchus. Exploiting QBF duality on a circuit representation. In AAAI,

2010.

5. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified boolean formulas.

Information and Computation, 117:12–18, 1995.

6. H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction and Algorithms. Cam-

bridge University Press, 1999.

7. W. Klieber, S. Sapra, S. Gao, and E. Clarke. A non-prenex, non-clausal QBF solver with

game-state learning. In SAT, LNCS, 2010.

8. F. Lonsing and A. Biere. A compact representation for syntactic dependencies in QBFs. In

SAT, pages 398–411. Springer, 2009.

9. F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver: System description.

JSAT, 7:71–76, 2010.

10. F. Lonsing and A. Biere. Integrating dependency schemes in search-based QBF solvers. In

SAT, pages 158–171. Springer, 2010.

11. J. P. Marques-Silva and K. A. Sakallah. GRASP–a search algorithm for propositional satis-

fiability. IEEE Transactions on Computers, 48:506–521, 1999.

12. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient

SAT solver. In 39th Design Automation Conference, June 2001.

13. A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere. Resolution-based certificate

extraction for QBF (tool presentation). In Proc. SAT, 2012.

14. M. Samer. Variable dependencies of quantified CSPs. In LPAR, LNCS 5330, pages 512–527,

2008.

15. M. Samer and S. Szeider. Backdoor sets of quantified boolean formulas. JAR, 42:77–97,

2009.

16. A. Van Gelder. Generalized conflict-clause strengthening for satisfiability solvers. In Proc.

SAT (LNCS 6695), pages 329–342. Springer, 2011.

17. A. Van Gelder. Contributions to the theory of practical quantified boolean formula solving.

In Proc. CP, 2012.

18. A. Van Gelder. Producing and verifying extremely large propositional refutations: Have your

cake and eat it too. AMAI, 65(4):329–372, 2012.

19. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver.

In Proc. ICCAD, pages 442–449, 2002.

