
Conformant Planning as a Case Study of Incremental QBF Solving

Uwe Egly, Martin Kronegger, Florian Lonsing, Andreas Pfandler

Institute of Information Systems
Vienna University of Technology, Austria

firstname.lastname@tuwien.ac.at

12th International Conference on Artificial Intelligence and Symbolic Computation,
December 11 - 13, 2014, Sevilla, Spain

This work is supported by the Austrian Science Fund (FWF) under grants S11409-N23 and P25518-N23 and
by the German Research Foundation (DFG) under grant ER 738/2-1.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 1 / 14

firstname.lastname@tuwien.ac.at

Overview (1/2)

Quantified Boolean Formulas (QBF):
Propositional formulae with universally (∀) and (∃) existentially quantified
propositional variables.
E.g. ∃x∀y∃z. C1 ∧ C2 ∧ . . . ∧ Cn.
Solving a QBF: PSPACE-complete.
Applications in model checking, formal verification, testing,. . .
Our focus: conformant planning (ΣP

2 -complete).

QBF in Practice:
In practice, often a sequence ψ0, ψ1, . . . , ψn of related formulas must be solved.
Try to exploit similarity between formulas in a sequence.
Information gathered when solving ψi might help to solve ψj with j > i .
A non-incremental solver forgets everything learned from ψi when solving ψj .

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 2 / 14

Overview (1/2)

Quantified Boolean Formulas (QBF):
Propositional formulae with universally (∀) and (∃) existentially quantified
propositional variables.
E.g. ∃x∀y∃z. C1 ∧ C2 ∧ . . . ∧ Cn.
Solving a QBF: PSPACE-complete.
Applications in model checking, formal verification, testing,. . .
Our focus: conformant planning (ΣP

2 -complete).

QBF in Practice:
In practice, often a sequence ψ0, ψ1, . . . , ψn of related formulas must be solved.
Try to exploit similarity between formulas in a sequence.
Information gathered when solving ψi might help to solve ψj with j > i .
A non-incremental solver forgets everything learned from ψi when solving ψj .

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 2 / 14

Overview (2/2)

QBF-Based Approach to Conformant Planning:
Generic QBF-based workflow to solve conformant planning problems.
Precision: we always find the optimal solution (given sufficient time and memory).
This is in contrast to heuristic approaches.
Workflow implemented in a Java tool.
Our focus: comparison of incremental and non-incremental QBF solving by DepQBF.
Experiments: incremental use of DepQBF performs best.

DepQBF:
General purpose, award-winning incremental QBF solver.
Free software: http://lonsing.github.io/depqbf/
Related work:

Lonsing, Egly: Incremental QBF Solving. In Proc. CP 2014.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 3 / 14

http://lonsing.github.io/depqbf/

Overview (2/2)

QBF-Based Approach to Conformant Planning:
Generic QBF-based workflow to solve conformant planning problems.
Precision: we always find the optimal solution (given sufficient time and memory).
This is in contrast to heuristic approaches.
Workflow implemented in a Java tool.
Our focus: comparison of incremental and non-incremental QBF solving by DepQBF.
Experiments: incremental use of DepQBF performs best.

DepQBF:
General purpose, award-winning incremental QBF solver.
Free software: http://lonsing.github.io/depqbf/
Related work:

Lonsing, Egly: Incremental QBF Solving. In Proc. CP 2014.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 3 / 14

http://lonsing.github.io/depqbf/

Conformant Planning

Variant of classical AI planning.
Given: initial state s0 defined as a set of variables with some unknown values.
Given: a set of (nondeterministic) actions with preconditions and effects. An action,
when executed on a state s under preconditions, produces a successor state s ′.
Given: a set of goal states.
Find a sequence of actions (called a plan) from the initial state s0 to a goal state
which works out with respect to all possible values of the unknown variables.
QBF-based approach: encodings by Rintanen (2007); can be competitive to other
planning tools (c.f. Kronegger, Pfandler, Pichler (2013).

Our Benchmark Problem: “Dungeon”
Captures full hardness of conformant planning (ΣP

2 -complete).
Search for plan can be encoded as a QBF with prefix ∃∀.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 4 / 14

Conformant Planning

Variant of classical AI planning.
Given: initial state s0 defined as a set of variables with some unknown values.
Given: a set of (nondeterministic) actions with preconditions and effects. An action,
when executed on a state s under preconditions, produces a successor state s ′.
Given: a set of goal states.
Find a sequence of actions (called a plan) from the initial state s0 to a goal state
which works out with respect to all possible values of the unknown variables.
QBF-based approach: encodings by Rintanen (2007); can be competitive to other
planning tools (c.f. Kronegger, Pfandler, Pichler (2013).

Our Benchmark Problem: “Dungeon”
Captures full hardness of conformant planning (ΣP

2 -complete).
Search for plan can be encoded as a QBF with prefix ∃∀.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 4 / 14

Dungeon Benchmark

Given: a dungeon with monsters a player wants to fight.
Player needs certain items to defeat a particular monster.
Before entering the dungeon, player can pick items from pools.
Unknown: hidden pools of special items the player picks.
Goal: defeat all monsters in the dungeon regardless of special items the player gets.
Parameters: number of monsters, pools, items necessary to defeat a monster,. . .

Our Approach:
Encode the search for a plan as QBFs to be solved by a QBF solver.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 5 / 14

Dungeon Benchmark

Given: a dungeon with monsters a player wants to fight.
Player needs certain items to defeat a particular monster.
Before entering the dungeon, player can pick items from pools.
Unknown: hidden pools of special items the player picks.
Goal: defeat all monsters in the dungeon regardless of special items the player gets.
Parameters: number of monsters, pools, items necessary to defeat a monster,. . .

Our Approach:
Encode the search for a plan as QBFs to be solved by a QBF solver.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 5 / 14

QBF-Based Approach to Conformant Planning

Idea: search for plans of increasing lengths i = 0, 1,
QBF encoding ψi parametrized by plan length i : ψ0, ψ1,
There exists a plan of length i if the QBF ψi is satisfiable.
If ψi is unsatisfiable, then set i := i + 1 and tackle ψi+1.

Our Approach:
QBF-based workflow including encoding and solving implemented in a Java tool.
Our tool is generic and can solve arbitrary conformant planning problems.
QBF-based approach to conformant planning always finds the optimal (shortest)
plan, in contrast to heuristic search for plan.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 6 / 14

QBF-Based Approach to Conformant Planning

Idea: search for plans of increasing lengths i = 0, 1,
QBF encoding ψi parametrized by plan length i : ψ0, ψ1,
There exists a plan of length i if the QBF ψi is satisfiable.
If ψi is unsatisfiable, then set i := i + 1 and tackle ψi+1.

Our Approach:
QBF-based workflow including encoding and solving implemented in a Java tool.
Our tool is generic and can solve arbitrary conformant planning problems.
QBF-based approach to conformant planning always finds the optimal (shortest)
plan, in contrast to heuristic search for plan.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 6 / 14

QBF-Based Approach: Non-Incremental QBF Solving

(:init (inPool i1 pool1)
(inPool i4 pool1)
(inPool i2 pool2)
(unknown (in u1)) · · ·

)
(:goal (win g))
(:action pick
:parameters (?i - item ?p - pool)
:precondition (and (allowPick ?p) (inPool ?i ?p))
:effect (and (in ?i) (not (allowPick ?p)))

)
(:action fight · · ·
:effect (and

(when (and (in i2) (not (in u3)) (in s1)) (win g))
(when (and (not (in i4)) (in u1)) (win g))

(:action pick
:precondition (and (allowPick pool1) (inPool i1 pool1))
:effect (and (in i1) (not (allowPick pool1)))

)
(:action pick
:precondition (and (allowPick pool2) (inPool i1 pool2))
:effect (and (in i1) (not (allowPick pool2)))

)
· · ·
(:action pick
:precondition (and (allowPick pool1) (inPool i2 pool1))
:effect (and (in i2) (not (allowPick pool1)))

)
· · ·

p cnf 1666 4833
e 516 518 512 514 515 1024 1025 1026 1028 1536 . . . 0
a 34 118 101 130 46 . . . 0
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 0
1 0
· · ·
-30 0
· · ·
-139 140 0
-139 -141 0
-177 46 34 130 -118 178 0
-101 193 0
-348 189 190 191 -192 349 0
-348 152 -193 349 0
· · ·

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 7 / 14

QBF-Based Approach: Non-Incremental QBF Solving

(:init (inPool i1 pool1)
(inPool i4 pool1)
(inPool i2 pool2)
(unknown (in u1)) · · ·

)
(:goal (win g))
(:action pick
:parameters (?i - item ?p - pool)
:precondition (and (allowPick ?p) (inPool ?i ?p))
:effect (and (in ?i) (not (allowPick ?p)))

)
(:action fight · · ·
:effect (and

(when (and (in i2) (not (in u3)) (in s1)) (win g))
(when (and (not (in i4)) (in u1)) (win g))

(:action pick
:precondition (and (allowPick pool1) (inPool i1 pool1))
:effect (and (in i1) (not (allowPick pool1)))

)
(:action pick
:precondition (and (allowPick pool2) (inPool i1 pool2))
:effect (and (in i1) (not (allowPick pool2)))

)
· · ·
(:action pick
:precondition (and (allowPick pool1) (inPool i2 pool1))
:effect (and (in i2) (not (allowPick pool1)))

)
· · ·

p cnf 1666 4833
e 516 518 512 514 515 1024 1025 1026 1028 1536 . . . 0
a 34 118 101 130 46 . . . 0
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 0
1 0
· · ·
-30 0
· · ·
-139 140 0
-139 -141 0
-177 46 34 130 -118 178 0
-101 193 0
-348 189 190 191 -192 349 0
-348 152 -193 349 0
· · ·

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 7 / 14

QBF-Based Approach: Non-Incremental QBF Solving

(:init (inPool i1 pool1)
(inPool i4 pool1)
(inPool i2 pool2)
(unknown (in u1)) · · ·

)
(:goal (win g))
(:action pick
:parameters (?i - item ?p - pool)
:precondition (and (allowPick ?p) (inPool ?i ?p))
:effect (and (in ?i) (not (allowPick ?p)))

)
(:action fight · · ·
:effect (and

(when (and (in i2) (not (in u3)) (in s1)) (win g))
(when (and (not (in i4)) (in u1)) (win g))

(:action pick
:precondition (and (allowPick pool1) (inPool i1 pool1))
:effect (and (in i1) (not (allowPick pool1)))

)
(:action pick
:precondition (and (allowPick pool2) (inPool i1 pool2))
:effect (and (in i1) (not (allowPick pool2)))

)
· · ·
(:action pick
:precondition (and (allowPick pool1) (inPool i2 pool1))
:effect (and (in i2) (not (allowPick pool1)))

)
· · ·

p cnf 1666 4833
e 516 518 512 514 515 1024 1025 1026 1028 1536 . . . 0
a 34 118 101 130 46 . . . 0
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 0
1 0
· · ·
-30 0
· · ·
-139 140 0
-139 -141 0
-177 46 34 130 -118 178 0
-101 193 0
-348 189 190 191 -192 349 0
-348 152 -193 349 0
· · ·

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 7 / 14

QBF-Based Approach: Non-Incremental QBF Solving

(:init (inPool i1 pool1)
(inPool i4 pool1)
(inPool i2 pool2)
(unknown (in u1)) · · ·

)
(:goal (win g))
(:action pick
:parameters (?i - item ?p - pool)
:precondition (and (allowPick ?p) (inPool ?i ?p))
:effect (and (in ?i) (not (allowPick ?p)))

)
(:action fight · · ·
:effect (and

(when (and (in i2) (not (in u3)) (in s1)) (win g))
(when (and (not (in i4)) (in u1)) (win g))

(:action pick
:precondition (and (allowPick pool1) (inPool i1 pool1))
:effect (and (in i1) (not (allowPick pool1)))

)
(:action pick
:precondition (and (allowPick pool2) (inPool i1 pool2))
:effect (and (in i1) (not (allowPick pool2)))

)
· · ·
(:action pick
:precondition (and (allowPick pool1) (inPool i2 pool1))
:effect (and (in i2) (not (allowPick pool1)))

)
· · ·

p cnf 1666 4833
e 516 518 512 514 515 1024 1025 1026 1028 1536 . . . 0
a 34 118 101 130 46 . . . 0
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 0
1 0
· · ·
-30 0
· · ·
-139 140 0
-139 -141 0
-177 46 34 130 -118 178 0
-101 193 0
-348 189 190 191 -192 349 0
-348 152 -193 349 0
· · ·

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 7 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

A Closer Look at the QBF Encoding

Without Optimization, based on Rintanen [2007].
Goal: A quantified Boolean formula ψ that is true iff the corresponding planning
problem has a plan of length k.

ψ := ∃ actions ∀ unknowns ∃ helpers ϕ

ϕ :=
∧

v∈PI

v 0 ∧
∧

v∈NI

¬v 0

︸ ︷︷ ︸
initial state

∧
∧

v∈PG

v k ∧
∧

v∈NG

¬v k

︸ ︷︷ ︸
goal

∧
∧

t∈[k]

∧
a∈At−1

[(
at−1 ∧

∧
p∈pre(a) p

t−1
)
→
∧

e∈eff(a) e
t
]

∧ one action at a time

∧ every change has a cause (framing axioms)

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 8 / 14

Stacks of Clauses in the QBFs for Plan Lengths i and i + 1

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 9 / 14

Stacks of Clauses in the QBFs for Plan Lengths i and i + 1

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 9 / 14

Stacks of Clauses in the QBFs for Plan Lengths i and i + 1

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

trans(i − 1,i)
...

trans(1,2)
trans(0,1)

init

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 9 / 14

Stacks of Clauses in the QBFs for Plan Lengths i and i + 1

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

trans(i ,i + 1)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 9 / 14

Stacks of Clauses in the QBFs for Plan Lengths i and i + 1

goal(i)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

goal(i + 1)
trans(i ,i + 1)
trans(i − 1,i)

...
trans(1,2)
trans(0,1)

init

QBFs ψi and ψi+1 encoding plan lengths i and i + 1 share many clauses.
Use an incremental QBF solver to exploit similarity between ψi and ψi+1.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 9 / 14

QBF-Based Approach: Incremental QBF Solving by DepQBF

// assume u ∈ N is a lower bound on the plan length

DepQBF4J.create();
DepQBF4J.configure("–dep-man=simple");
DepQBF4J.configure("–incremental-use");

DepQBF4J.newScopeAtNesting(DepQBF4J.QTYPE_EXISTS,1);
DepQBF4J.add(0);
// add other quantifiers

// add clauses for initial state
// e.g.: DepQBF4J.add(1); DepQBF4J.add(0);
// add clauses for trans(j − 1,j) ∀j ∈ {1, . . . , u}

DepQBF4J.push(); // add new frame

// add clauses for goal(u)

int ret = DepQBF4J.sat();

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 10 / 14

QBF-Based Approach: Incremental QBF Solving by DepQBF

// assume the QBF for plan length i is UNSAT

DepQBF4J.reset(); // reset solver state but keep learned information
DepQBF4J.pop(); // delete old goal clauses (remove top frame)

// add clauses for trans(i ,i + 1)

DepQBF4J.push(); // add new frame

// add clauses for goal(i + 1)

int ret = DepQBF4J.sat();

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 10 / 14

QBF-Based Approach: Incremental QBF Solving by DepQBF

// assume the QBF for plan length i is UNSAT

DepQBF4J.reset(); // reset solver state but keep learned information
DepQBF4J.pop(); // delete old goal clauses (remove top frame)

// add clauses for trans(i ,i + 1)

DepQBF4J.push(); // add new frame

// add clauses for goal(i + 1)

int ret = DepQBF4J.sat();

PDDL
instance Parser Grounder QBF-Encoder QBF-Solver Plan

No

Yes

dyn. grounding

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 10 / 14

Experiments (1/3): Overall Statistics

Goal of the experimental evaluation
Compare incremental and non-incremental QBF solving for conformant planning.

288 Planning Instances (Dungeons Benchmark)
Time Solved Plan found No plan t b a

DepQBF: 112,117 168 163 5 24.40 2210 501,706
incDepQBF: 103,378 176 163 13 14.55 965 120,166

Time (sec.), solved instances, solved instances where a plan was found and not found
(with length ≤ 200), average time (t), number of backtracks (b) and assignments (a).

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 11 / 14

Experiments (2/3): Cactus Plot of Run Times

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 130 140 150 160 170 180

S
o
lv

in
g

 T
im

e

Planning Instances

DepQBF

incDepQBF

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 12 / 14

Experiments (3/3): Detailed Solving Statistics

Dungeon (81 solved planning instances)
DepQBF incDepQBF diff. (%)
Pe

r
in
st
an
ce

a: 2,114,146 1,509,049 -28.6
b: 20,497 15,276 -25.4
t: 15.47 7.88 -49.0
ã: 1,388 1,391 +0.2
b̃: 13 11 -15.3
t̃: 1.01 0.37 -63.8

Average and median number of assignments (a and ã, respectively), backtracks (b, b̃),
and workflow time (t, t̃) for planning instances where both workflows using DepQBF and
incDepQBF found the optimal plan.

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 13 / 14

Conclusions

Incremental QBF-Based Approach to Conformant Planning:
Iterative stepwise refinement of plan length.
Exploit information learned from previous steps.
Precision: we always find the shortest plan (given sufficient time and memory).
Certification that no plan of certain length exists.
Incremental solving outperforms non-incremental solving in our tool.
Incremental solving compares favourably to heuristic planning tools.

Future Work:
Our tool currently supports preprocessing with non-incremental solving only.

Java Interface of DepQBF:
DepQBF4J, comes with DepQBF: http://lonsing.github.io/depqbf/

Egly, Kronegger, Lonsing, Pfandler (TU Wien) Conformant Planning . . . Incremental QBF Solving 14 / 14

http://lonsing.github.io/depqbf/

