Conformant Planning as a Case Study of Incremental QBF Solving

Uwe Egly, Martin Kronegger, Florian Lonsing, Andreas Pfandler

Institute of Information Systems Vienna University of Technology, Austria firstname.lastname@tuwien.ac.at

12th International Conference on Artificial Intelligence and Symbolic Computation, December 11 - 13, 2014, Sevilla, Spain

This work is supported by the Austrian Science Fund (FWF) under grants S11409-N23 and P25518-N23 and by the German Research Foundation (DFG) under grant ER 738/2-1.

Overview (1/2)

Quantified Boolean Formulas (QBF):

■ Propositional formulae with universally (∀) and (∃) existentially quantified propositional variables.

E.g. $\exists x \forall y \exists z. C_1 \land C_2 \land \ldots \land C_n$.

- Solving a QBF: PSPACE-complete.
- Applications in model checking, formal verification, testing,...
- Our focus: conformant planning (Σ_2^P -complete).

Overview (1/2)

Quantified Boolean Formulas (QBF):

■ Propositional formulae with universally (∀) and (∃) existentially quantified propositional variables.

E.g. $\exists x \forall y \exists z. C_1 \land C_2 \land \ldots \land C_n$.

- Solving a QBF: PSPACE-complete.
- Applications in model checking, formal verification, testing,...
- Our focus: conformant planning (Σ_2^P -complete).

QBF in Practice:

- In practice, often a sequence $\psi_0, \psi_1, \dots, \psi_n$ of related formulas must be solved.
- Try to exploit similarity between formulas in a sequence.
- Information gathered when solving ψ_i might help to solve ψ_j with j > i.
- A non-incremental solver forgets everything learned from ψ_i when solving ψ_j .

Overview (2/2)

QBF-Based Approach to Conformant Planning:

- Generic QBF-based workflow to solve conformant planning problems.
- Precision: we always find the optimal solution (given sufficient time and memory). This is in contrast to heuristic approaches.
- Workflow implemented in a Java tool.
- Our focus: comparison of incremental and non-incremental QBF solving by DepQBF.
- Experiments: incremental use of DepQBF performs best.

Overview (2/2)

QBF-Based Approach to Conformant Planning:

- Generic QBF-based workflow to solve conformant planning problems.
- Precision: we always find the optimal solution (given sufficient time and memory). This is in contrast to heuristic approaches.
- Workflow implemented in a Java tool.
- Our focus: comparison of incremental and non-incremental QBF solving by DepQBF.
- Experiments: incremental use of DepQBF performs best.

DepQBF:

- General purpose, award-winning incremental QBF solver.
- Free software: http://lonsing.github.io/depqbf/
- Related work:
 - Lonsing, Egly: Incremental QBF Solving. In Proc. CP 2014.

Conformant Planning

- Variant of classical AI planning.
- Given: initial state s_0 defined as a set of variables with some unknown values.
- Given: a set of (nondeterministic) actions with preconditions and effects. An action, when executed on a state *s* under preconditions, produces a successor state *s'*.
- Given: a set of goal states.
- Find a sequence of actions (called a *plan*) from the initial state *s*₀ to a goal state which works out with respect to all possible values of the unknown variables.
- QBF-based approach: encodings by Rintanen (2007); can be competitive to other planning tools (c.f. Kronegger, Pfandler, Pichler (2013).

Conformant Planning

- Variant of classical AI planning.
- Given: initial state s_0 defined as a set of variables with some unknown values.
- Given: a set of (nondeterministic) actions with preconditions and effects. An action, when executed on a state *s* under preconditions, produces a successor state *s'*.
- Given: a set of goal states.
- Find a sequence of actions (called a *plan*) from the initial state *s*₀ to a goal state which works out with respect to all possible values of the unknown variables.
- QBF-based approach: encodings by Rintanen (2007); can be competitive to other planning tools (c.f. Kronegger, Pfandler, Pichler (2013).

Our Benchmark Problem: "Dungeon"

- Captures full hardness of conformant planning (Σ_2^P -complete).
- Search for plan can be encoded as a QBF with prefix $\exists \forall$.

Dungeon Benchmark

- Given: a dungeon with monsters a player wants to fight.
- Player needs certain items to defeat a particular monster.
- Before entering the dungeon, player can pick items from pools.
- Unknown: hidden pools of special items the player picks.
- Goal: defeat all monsters in the dungeon regardless of special items the player gets.
- Parameters: number of monsters, pools, items necessary to defeat a monster,...

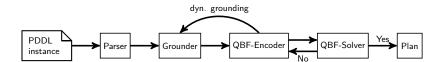
Dungeon Benchmark

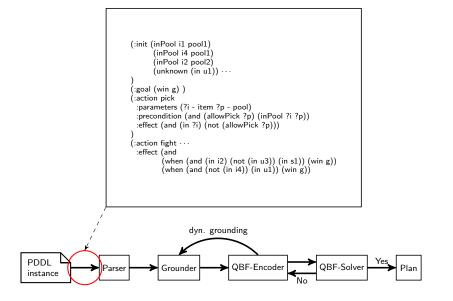
- Given: a dungeon with monsters a player wants to fight.
- Player needs certain items to defeat a particular monster.
- Before entering the dungeon, player can pick items from pools.
- Unknown: hidden pools of special items the player picks.
- Goal: defeat all monsters in the dungeon regardless of special items the player gets.
- Parameters: number of monsters, pools, items necessary to defeat a monster,...

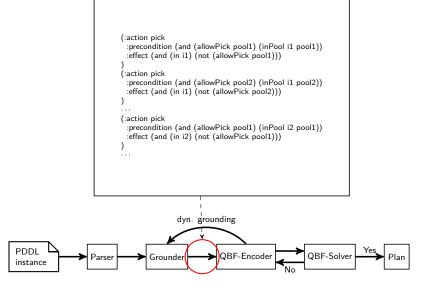
Our Approach:

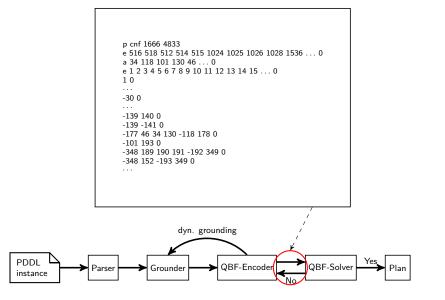
Encode the search for a plan as QBFs to be solved by a QBF solver.

QBF-Based Approach to Conformant Planning


- Idea: search for plans of increasing lengths i = 0, 1, ...
- **QBF** encoding ψ_i parametrized by plan length *i*: ψ_0, ψ_1, \ldots
- There exists a plan of length *i* if the QBF ψ_i is satisfiable.
- If ψ_i is unsatisfiable, then set i := i + 1 and tackle ψ_{i+1} .


QBF-Based Approach to Conformant Planning


- Idea: search for plans of increasing lengths i = 0, 1, ...
- **QBF** encoding ψ_i parametrized by plan length *i*: ψ_0, ψ_1, \ldots
- There exists a plan of length *i* if the QBF ψ_i is satisfiable.
- If ψ_i is unsatisfiable, then set i := i + 1 and tackle ψ_{i+1} .


Our Approach:

- QBF-based workflow including encoding and solving implemented in a Java tool.
- Our tool is generic and can solve arbitrary conformant planning problems.
- QBF-based approach to conformant planning always finds the optimal (shortest) plan, in contrast to heuristic search for plan.

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

 $\psi:=\exists \text{ actions }\forall \text{ unknowns }\exists \text{ helpers }\varphi$

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} \mathbf{v}^0 \land \bigwedge_{v \in \mathcal{NI}} \neg \mathbf{v}^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} \mathbf{v}^k \land \bigwedge_{v \in \mathcal{NG}} \neg \mathbf{v}^k}_{\text{goal}} \end{split}$$

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \land \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \land \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ \land \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \land \bigwedge_{p \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \end{split}$$

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \wedge \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \wedge \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \wedge \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ & \wedge \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \wedge \bigwedge_{p \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \end{split}$$

 \wedge one action at a time

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \land \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \land \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ \land \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \land \bigwedge_{p \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \end{split}$$

 \wedge one action at a time

 \land every change has a cause (framing axioms)

- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

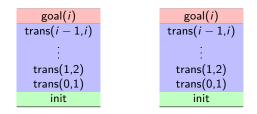
$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \land \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \land \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ \land \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \land \bigwedge_{p \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \end{split}$$

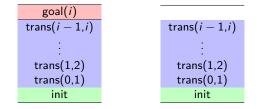
 \wedge one action at a time

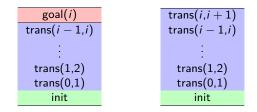
 \land every change has a cause (framing axioms)

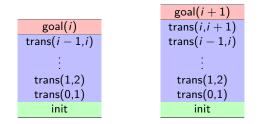
- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \land \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \land \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ \land \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \land \bigwedge_{\rho \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \end{split}$$

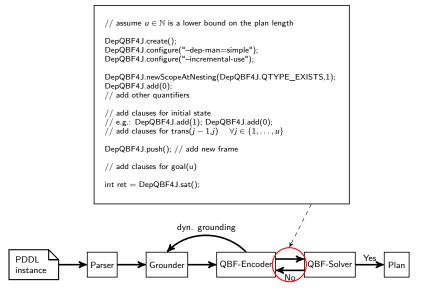

 \wedge one action at a time

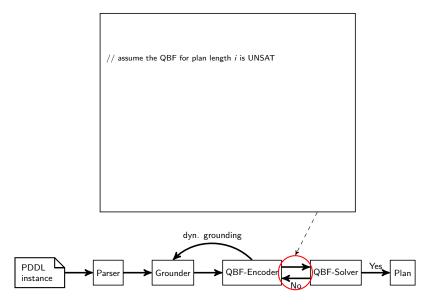

 \land every change has a cause (framing axioms)


- Without Optimization, based on Rintanen [2007].
- Goal: A quantified Boolean formula ψ that is true iff the corresponding planning problem has a plan of length k.

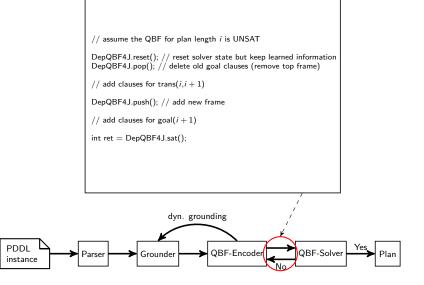

$$\begin{split} \psi &:= \exists \text{ actions } \forall \text{ unknowns } \exists \text{ helpers } \varphi \\ \varphi &:= \underbrace{\bigwedge_{v \in \mathcal{PI}} v^0 \land \bigwedge_{v \in \mathcal{NI}} \neg v^0}_{\text{initial state}} \land \underbrace{\bigwedge_{v \in \mathcal{PG}} v^k \land \bigwedge_{v \in \mathcal{NG}} \neg v^k}_{\text{goal}} \\ \land \bigwedge_{t \in [k]} \bigwedge_{a \in \mathcal{A}^{t-1}} \left[\left(a^{t-1} \land \bigwedge_{p \in \text{pre}(a)} p^{t-1} \right) \rightarrow \bigwedge_{e \in \text{eff}(a)} e^t \right] \\ \land \text{ one action at a time} \\ \land \text{ every change has a cause (framing axioms)} \end{split}$$

$$\begin{array}{c} \text{goal}(i)\\ \text{trans}(i-1,i)\\ \vdots\\ \text{trans}(1,2)\\ \text{trans}(0,1)\\ \text{init} \end{array}$$




QBFs ψ_i and ψ_{i+1} encoding plan lengths *i* and *i* + 1 share many clauses.

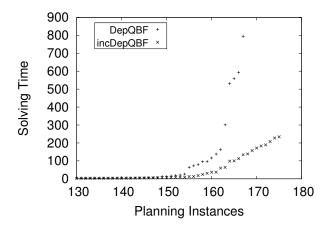
• Use an incremental QBF solver to exploit similarity between ψ_i and ψ_{i+1} .


QBF-Based Approach: Incremental QBF Solving by DepQBF

QBF-Based Approach: Incremental QBF Solving by DepQBF

QBF-Based Approach: Incremental QBF Solving by DepQBF

Experiments (1/3): Overall Statistics


Goal of the experimental evaluation

Compare incremental and non-incremental QBF solving for conformant planning.

288 Planning Instances (Dungeons Benchmark)								
	Time	Solved	Plan found	No plan	t	\overline{b}	ā	
DepQBF:	112,117	168	163	5	24.40	2210	501,706	
incDepQBF:	103,378	176	163	13	14.55	965	120,166	

Time (sec.), solved instances, solved instances where a plan was found and not found (with length \leq 200), average time (\overline{t}), number of backtracks (\overline{b}) and assignments (\overline{a}).

Experiments (2/3): Cactus Plot of Run Times

Experiments (3/3): Detailed Solving Statistics

Dungeon (81 solved planning instances)								
		DepQBF	incDepQBF	diff. (%)				
nce	ā:	2,114,146	1,509,049	-28.6				
	\overline{b} :	20,497	15,276	-25.4				
Ista	Per instance :q. e. :t. :q. ; 	15.47	7.88	-49.0				
r ii		1,388	1,391	+0.2				
Pe	Б:	13	11	-15.3				
	ĩ:	1.01	0.37	-63.8				

Average and median number of assignments (\overline{a} and \tilde{a} , respectively), backtracks (\overline{b} , \overline{b}), and workflow time (\overline{t} , \tilde{t}) for planning instances where both workflows using DepQBF and incDepQBF found the optimal plan.

Conclusions

Incremental QBF-Based Approach to Conformant Planning:

- Iterative stepwise refinement of plan length.
- Exploit information learned from previous steps.
- Precision: we always find the shortest plan (given sufficient time and memory).
- Certification that no plan of certain length exists.
- Incremental solving outperforms non-incremental solving in our tool.
- Incremental solving compares favourably to heuristic planning tools.

Future Work:

• Our tool currently supports preprocessing with non-incremental solving only.

Java Interface of DepQBF:

DepQBF4J, comes with DepQBF: http://lonsing.github.io/depqbf/