Incremental QBF Solving

Florian Lonsing and Uwe Egly

Institute of Information Systems Vienna University of Technology http://www.kr.tuwien.ac.at/ Vienna, Austria

20th International Conference on Principles and Practice of Constraint Programming, September 8 - 12, Lyon, France

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Overview (1/3)

Quantified Boolean Formulas (QBF):

- Propositional formulae with universally (\forall) and (\exists) existentially quantified variables.
- In terms of QCSP: all variables have Boolean domains, all constraints are clauses. E.g. $\exists x \forall y \exists z. \ C_1 \land C_2 \land \ldots \land C_n$.
- Solving a QBF: PSPACE-complete.
- Applications in model checking, formal verification, testing,...

Incremental Solving:

- In practice, often a sequence $\psi_0, \psi_1, \dots, \psi_n$ of related formulas must be solved.
- Try to exploit similarity between formulas in a sequence.
- Information gathered when solving ψ_i might help to solve ψ_j with j > i.

Overview (1/3)

Quantified Boolean Formulas (QBF):

- Propositional formulae with universally (\forall) and (\exists) existentially quantified variables.
- In terms of QCSP: all variables have Boolean domains, all constraints are clauses. E.g. $\exists x \forall y \exists z. \ C_1 \land C_2 \land \ldots \land C_n$.
- Solving a QBF: PSPACE-complete.
- Applications in model checking, formal verification, testing,...

Incremental Solving:

- In practice, often a sequence $\psi_0, \psi_1, \dots, \psi_n$ of related formulas must be solved.
- Try to exploit similarity between formulas in a sequence.
- Information gathered when solving ψ_i might help to solve ψ_j with j > i.

Overview (2/3): Non-Incremental QBF Solving

- Given: sequence $\psi_0, \psi_1, \ldots, \psi_n$ of PCNFs to be solved.
- Typical usage scenario: solver is called from the command line.
- Each ψ_i is parsed from scratch (might incur non-negligible overhead).
- Syntactic similarity between ψ_i and ψ_j with i < j is not exploited.
- All information gathered when solving ψ_i is lost.
- Potential repetition of work when solving ψ_{i+1} .

Overview (3/3)

Incremental QBF Solving:

- Overview of general-purpose incremental QBF solving.
- Backtracking search procedure based on DPLL algorithm for QBF.
- Proof system: derivation of learned constraints by resolution.
- Challenge: which constraints can be reused in incremental solving?
- Promising experimental results.

DepQBF:

- Incremental QBF solver.
- Free software: http://lonsing.github.io/depqbf/
- Related work:
 - Incremental SAT solving by MiniSAT,... [ES03, NRS14].
 - Incremental QBF solving by QuBE: bounded model checking of partial designs [MMLB12].

Overview (3/3)

Incremental QBF Solving:

- Overview of general-purpose incremental QBF solving.
- Backtracking search procedure based on DPLL algorithm for QBF.
- Proof system: derivation of learned constraints by resolution.
- Challenge: which constraints can be reused in incremental solving?
- Promising experimental results.

DepQBF:

- Incremental QBF solver.
- Free software: http://lonsing.github.io/depqbf/
- Related work:
 - Incremental SAT solving by MiniSAT,... [ES03, NRS14].
 - Incremental QBF solving by QuBE: bounded model checking of partial designs [MMLB12].

QBF Syntax

QBF in Prenex Conjunctive Normal Form:

- Given a Boolean formula $\phi(x_1, \ldots, x_m)$ in CNF.
- Quantifier prefix $\hat{Q} := Q_1 B_1 Q_2 B_2 \dots Q_m B_m$.
- Quantifiers $Q_i \in \{\forall, \exists\}$.
- Quantifier block $B_i \subseteq \{x_1, \ldots, x_m\}$ containing variables.
- QBF in prenex CNF (PCNF): $Q_1B_1Q_2B_2...Q_mB_m.\phi(x_1,...,x_m)$.
- $B_i \leq B_{i+1}$: quantifier blocks are linearly ordered (extended to variables, literals).

Example

- Given the CNF $\phi := (x \lor \neg y) \land (\neg x \lor y).$
- Given the quantifier prefix $\hat{Q} := \forall x \exists y$.
- Prenex CNF: $\psi := \hat{Q} \cdot \phi = \forall x \exists y \cdot (x \lor \neg y) \land (\neg x \lor y).$

QBF Semantics (1/2)

Recursive Definition:

- Given a PCNF $\psi := Q_1 B_1 \dots Q_m B_m$. ϕ .
- Prerequisite: every variable is quantified in the prefix (no free variables).
- Recursively assign the variables in prefix order (from left to right).
- Base cases: the QBF \top (\perp) is satisfiable (unsatisfiable).
- $\psi = \forall x \dots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.
- $\psi = \exists x \dots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
- In $\psi[x]$ ($\psi[\neg x]$), every occurrence of x in ψ is replaced by \top (\bot).
- Assignment $A = \{l_1, \ldots, l_n\}$: if $l_i \in A$ is a positive (negative) literal, then $var(l_i)$ is assigned to true (false).

Example (continued)

The PCNF
$$\psi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$$
 is satisfiable if

(1)
$$\psi[x] = \exists y.(y)$$
 and
(2) $\psi[\neg x] = \exists y.(\neg y)$ are satisfiable

(1) ψ[x] = ∃y.(y) is satisfiable since ψ[x, y] = ⊤ is satisfiable.
(2) ψ[¬x] = ∃y.(¬y) is satisfiable since ψ[¬x, ¬y] = ⊤ is satisfiable.

Search-Based QBF Solving with Constraint Learning

- QBF-specific variant of DPLL algorithm [DLL62, CGS98].
- Basic idea: backtracking-based implementation of semantics by enumeration of assignments.
- Constraint learning as a proof system, based on enumerated assignments A.
- $\psi[A] = \bot$: derive a new *clause*.
- ψ[A] = ⊤: derive a new cube,
 i.e. conjunction of literals.
- Derivation relation \vdash .

Very high-level view, omitting crucial details:

```
bool bt search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true:
   /* 3. Assignment generation, backtracking,
             constraint learning */
        if (Q == \exists)
           return bt_search (\psi', A \cup \{\neg x\})
                    bt_search (\psi', A \cup \{x\});
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                    bt search (\psi', A \cup \{x\});
```

Constraint Learning by Example (1/2): Clause Derivations

Example

$$\psi := \exists x \forall u \exists y. \ (x \lor u \lor \neg y) \land (x \lor u \lor y) \land (\neg x \lor \neg u \lor \neg y) \land (\neg x \lor \neg u \lor y).$$

$$(x \lor u \lor \neg y) \qquad (x \lor u \lor y) \qquad (\neg x \lor \neg u \lor \neg y) \qquad (\neg x \lor \neg u \lor y)$$

Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.

Constraint Learning by Example (1/2): Clause Derivations

- Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.
- Resolution of clauses (informally): for C_1, C_2 with $\psi \vdash C_1, \psi \vdash C_2$ and $x \in C_1$ and $\neg x \in C_2$, it holds that $\psi \vdash C$ where $C = C_1 \otimes C_2$ is the resolvent of C_1 and C_2 .

Constraint Learning by Example (1/2): Clause Derivations

- Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.
- Resolution of clauses (informally): for C_1, C_2 with $\psi \vdash C_1, \psi \vdash C_2$ and $x \in C_1$ and $\neg x \in C_2$, it holds that $\psi \vdash C$ where $C = C_1 \otimes C_2$ is the resolvent of C_1 and C_2 .
- Reduction of clauses: for C_1 with $\psi \vdash C_1$, it holds that $\psi \vdash C$ where C is obtained by removing trailing universal literals from C by prefix ordering.

Constraint Learning by Example (2/2): Cube Derivations

Example

 $\psi := \forall x \exists y. \ (x \lor \neg y) \land (\neg x \lor y).$ $\psi[x, y] = \top \qquad \psi[\neg x, \neg y] = \top$ $| \qquad | \qquad |$ $(x \land y) \qquad (\neg x \land \neg y)$

• Model generation: for an assignment A with $\psi[A] = \top$, it holds that $\psi \vdash C$ where $C = \bigwedge_{I \in A} I$.

Constraint Learning by Example (2/2): Cube Derivations

Example

$\psi := \forall x \exists y. (x \lor \neg y) \land (\neg x)$	$x \lor y$).		
	$\psi[x, y] = \top$ $ $ $(x \land y)$ $ $ (x)	$\psi[\neg x, \neg y] = \top$ $ $ $(\neg x \land \neg y)$ $ $ $(\neg x)$	

- Model generation: for an assignment A with $\psi[A] = \top$, it holds that $\psi \vdash C$ where $C = \bigwedge_{I \in A} I$.
- Reduction of cubes: for C_1 with $\psi \vdash C_1$, it holds that $\psi \vdash C$ where C is obtained by removing trailing existential literals from C by prefix ordering.

Constraint Learning by Example (2/2): Cube Derivations

Example

- Model generation: for an assignment A with $\psi[A] = \top$, it holds that $\psi \vdash C$ where $C = \bigwedge_{I \in A} I$.
- Reduction of cubes: for C_1 with $\psi \vdash C_1$, it holds that $\psi \vdash C$ where C is obtained by removing trailing existential literals from C by prefix ordering.
- Resolution of cubes (informally): for C_1, C_2 with $\psi \vdash C_1, \psi \vdash C_2$ and $x \in C_1$ and $\neg x \in C_2$, it holds that $\psi \vdash C$ where $C = C_1 \otimes C_2$ is the resolvent of C_1 and C_2 .

Constraint Learning as a Proof System

Satisfiability:

- Soundness of a learned cube C with $\psi \vdash C$: $\hat{Q}.\phi \equiv_{sat} \hat{Q}.(\phi \lor C)$.
- Derivation of empty cube: $\psi \vdash \emptyset$ if and only if ψ satisfiable.

Unsatisfiability:

- Soundness of a learned clause C with $\psi \vdash C$: $\hat{Q}.\phi \equiv_{sat} \hat{Q}.(\phi \land C)$.
- Derivation of empty clause: $\psi \vdash \emptyset$ if and only if ψ unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:

- If ψ is modified to obtain ψ' , then if $\psi \vdash C$ for a constraint C we might have $\psi' \nvDash C$.
- E.g.: if $\psi' \nvDash C$ for a clause C then in general $\psi' \not\equiv_{sat} \psi' \wedge C$.
- Soundness: non-derivable (potentially invalid) constraints must be discarded.

Constraint Learning as a Proof System

Satisfiability:

- Soundness of a learned cube C with $\psi \vdash C$: $\hat{Q}.\phi \equiv_{sat} \hat{Q}.(\phi \lor C)$.
- Derivation of empty cube: $\psi \vdash \emptyset$ if and only if ψ satisfiable.

Unsatisfiability:

- Soundness of a learned clause C with $\psi \vdash C$: $\hat{Q}.\phi \equiv_{sat} \hat{Q}.(\phi \land C)$.
- Derivation of empty clause: $\psi \vdash \emptyset$ if and only if ψ unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:

- If ψ is modified to obtain ψ' , then if $\psi \vdash C$ for a constraint C we might have $\psi' \nvDash C$.
- E.g.: if $\psi' \nvDash C$ for a clause C then in general $\psi' \not\equiv_{sat} \psi' \wedge C$.
- Soundness: non-derivable (potentially invalid) constraints must be discarded.

Incremental Solving

 $\begin{array}{ccc} \psi_{0} & \longrightarrow & \fbox{Solver} & \longrightarrow & \texttt{SAT/UNSAT} \\ & \downarrow LC'_{0} \\ \psi_{1} \colon & \stackrel{\phi_{1}^{del}, \phi_{1}^{add}}{\longrightarrow} & \fbox{SAT/UNSAT} \\ & & \vdots \\ & & \downarrow LC'_{n-1} \\ & & \psi_{n} \colon & \stackrel{\phi_{n}^{del}, \phi_{n}^{add}}{\longrightarrow} & \fbox{SAT/UNSAT} \end{array}$

- Typical usage scenario: solver is called as a library from an external program via API.
- Reduced hard disk I/O overhead: only new parts are parsed.
- LC'_i : subset of the constraints learned when solving ψ_j with $j \leq i$.
- Parts of the constraints learned when solving previous formulas can be reused.
- Reused clause (cube) C: $\psi_{i+1} \equiv_{sat} \psi_{i+1} \wedge C$ ($\psi_{i+1} \equiv_{sat} \psi_{i+1} \vee C$) must still hold.
- Potential speed up compared to non-incremental solving.

- Deleting clauses from ψ_i to obtain ψ_{i+1} : for a learned clause C with $\psi_i \vdash C$ we might have $\psi_{i+1} \nvDash C$ and $\psi_{i+1} \neq s_{ait} \psi_{i+1} \land C$.
- From ψ_i to ψ_{i+1} : the set of learned clauses must be maintained.
- How to detect efficiently if $\psi_{i+1} \vdash C$?
- In practice: solvers do not keep the derivations of the learned constraints.

- Deleting clauses from ψ_i to obtain ψ_{i+1}: for a learned clause C with ψ_i ⊢ C we might have ψ_{i+1} ⊬ C and ψ_{i+1} ≢_{sat} ψ_{i+1} ∧ C.
- From ψ_i to ψ_{i+1} : the set of learned clauses must be maintained.
- How to detect efficiently if $\psi_{i+1} \vdash C$?
- In practice: solvers do not keep the derivations of the learned constraints.

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

$$\psi := \exists x \forall u \exists y.$$

$$(x \lor u \lor \neg y) \land (x \lor u \lor y) \land (\neg x \lor \neg u \lor \neg y) \land (\neg x \lor \neg u \lor y).$$

$$(x \lor u \lor \neg y) \qquad (x \lor u \lor y) \qquad (\neg x \lor \neg u \lor \neg y) \qquad (\neg x \lor \neg u \lor y)$$

$$(\neg x \lor \neg u) \qquad (\neg x \lor \neg u \lor y) \qquad (\neg x \lor \neg u \lor y)$$

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

- Selector variables: fresh, leftmost existential variables added to each input clause.
- Solving under predefined assignments to selector variables (called *assumptions*).
- Setting selector variables to false (true): clauses are enabled (disabled).
- "Empty clause" contains only selector variables, all of which are assigned false.

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued) $\psi := \exists s_1, s_2, s_3, s_4, x \forall u \exists y.$ $(\mathbf{s}_1 \lor x \lor u \lor \neg y) \land (\mathbf{s}_2 \lor x \lor u \lor y) \land (\mathbf{s}_3 \lor \neg x \lor \neg u \lor \neg y) \land (\top \lor \neg x \lor \neg u \lor y).$ $(\mathbf{s_1} \lor x \lor u \lor \neg y) \qquad (\mathbf{s_2} \lor x \lor u \lor y) \qquad (\mathbf{s_3} \lor \neg x \lor \neg u \lor \neg y) \qquad (\top \lor \neg x \lor \neg u \lor y)$ $(\overbrace{s_3} \lor \top \lor \neg x \lor \neg u)$ \smallsetminus \checkmark $(\mathbf{s}_1 \lor \mathbf{s}_2 \lor x \lor u)$ $(s_3 \lor \top \lor \neg x)$ $(\mathbf{s}_1 \lor \mathbf{s}_2 \lor x)$ $(\mathbf{s}_1 \lor \mathbf{s}_2 \lor \mathbf{s}_3 \lor \top)$

- Setting selector variables to true disables (effectively deletes) input clauses...
- ... and also depending derived clauses.
- Selector variables are common in incremental SAT solving.

Incremental Solving: Adding Clauses to the Input Formula

• Adding clauses to ψ_i to obtain ψ_{i+1} : for a learned cube C with $\psi_i \vdash C$ we might have $\psi_{i+1} \nvDash C$ and $\psi_{i+1} \not\equiv_{sat} \psi_{i+1} \lor C$.

- From ψ_i to ψ_{i+1} : the set of learned cubes must be maintained.
- Problem: assignments in model generation rule might no longer be satisfying.
- Selector variables not directly applicable (initial cubes are derived on-the-fly).
- In DepQBF: only derivable *initial* cubes are kept.

- Adding clauses to ψ_i to obtain ψ_{i+1} : for a learned cube C with $\psi_i \vdash C$ we might have $\psi_{i+1} \nvDash C$ and $\psi_{i+1} \not\equiv_{sat} \psi_{i+1} \lor C$.
- From ψ_i to ψ_{i+1} : the set of learned cubes must be maintained.
- Problem: assignments in model generation rule might no longer be satisfying.
- Selector variables not directly applicable (initial cubes are derived on-the-fly).
- In DepQBF: only derivable *initial* cubes are kept.

Experiments

QBFEVAL'12-SR-Bloqqer			QBFEVAL'12-SR-Blogger				
	discard LC	keep LC	diff.(%)		discard LC	keep LC	
a:	$39.75 imes10^6$	$34.03 imes10^6$	-14.40	a:	$5.88 imes10^{6}$	$1.29 imes10^{6}$	-77.94
ã:	$1.71 imes10^{6}$	$1.65 imes10^{6}$	-3.62	ã:	103,330	8,199	
b:	117,019	91,737	-21.61	b:	31,489		
β:	10,322	8,959	-13.19	Б:	827	5	-99.39
\overline{t} :	100.15	95.36	-4.64	t:	30.29		-67.40
Ĩ:	4.18	2.83	-32.29	ť:		0.12	

Average and median number of assignments (\bar{a} and \tilde{a} , respectively), backtracks (\bar{b} , \tilde{b}), and wall clock time (\bar{t} , \tilde{t}) in seconds on fully solved *sequences* of PCNFs.

Left:

- Solving sequences $S = \psi_0, \ldots, \psi_{10}$ of PCNFs, where clauses are only added to ψ_i to obtain ψ_{i+1} .
- Learned constraints are discarded (*discard LC*) and correct ones are kept (*keep LC*).

Right:

Solving the reversed sequences $S' = \psi_9, \ldots, \psi_0$ of PCNFs after the original sequence $S = \psi_0, \ldots, \psi_9, \psi_{10}$ has been solved, where clauses are only deleted from ψ_{i+1} to obtain ψ_i .

Experiments

QBFEVAL'12-SR-Blogger]	QBFEVAL'12-SR-Blogger				
	discard LC	keep LC	diff.(%)			discard LC	keep LC	diff.(%)
a:	$39.75 imes10^{6}$	$34.03 imes10^6$	-14.40		a:	$5.88 imes10^{6}$	$1.29 imes10^{6}$	-77.94
ã:	$1.71 imes10^{6}$	$1.65 imes10^{6}$	-3.62		ã:	103,330	8,199	-92.06
b:	117,019	91,737	-21.61		b:	31,489	3,350	-89.37
β.	10,322	8,959	-13.19		Б:	827	5	-99.39
\overline{t} :	100.15	95.36	-4.64	1	\overline{t} :	30.29	9.78	-67.40
ĩ:	4.18	2.83	-32.29		ĩ:	0.50	0.12	-76.00

Average and median number of assignments (\overline{a} and \tilde{a} , respectively), backtracks (\overline{b} , \tilde{b}), and wall clock time (\overline{t} , \widetilde{t}) in seconds on fully solved *sequences* of PCNFs.

Left:

- Solving sequences $S = \psi_0, \ldots, \psi_{10}$ of PCNFs, where clauses are only added to ψ_i to obtain ψ_{i+1} .
- Learned constraints are discarded (*discard LC*) and correct ones are kept (*keep LC*).

Right:

Solving the reversed sequences S' = ψ₉,..., ψ₀ of PCNFs after the original sequence S = ψ₀,..., ψ₉, ψ₁₀ has been solved, where clauses are only deleted from ψ_{i+1} to obtain ψ_i.

Conclusions

Incremental QBF Solving:

- Useful for solving sequences of related formulas.
- Benefits from similarity between formulas.
- Tight integration into tool frameworks: library API, reduced I/O overhead.
- Challenge: keeping learned constraints.
- Further incremental QBF applications and case studies needed.

DepQBF:

- Open source incremental QBF solver implemented in C.
- API to add sets of clauses in a stack-based way (push/pop).
- Related papers:
 - AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
 - ICMS 2014: API example, further experiments [LE14].

DepQBF Source Code: http://lonsing.github.io/depqbf/

Conclusions

Incremental QBF Solving:

- Useful for solving sequences of related formulas.
- Benefits from similarity between formulas.
- Tight integration into tool frameworks: library API, reduced I/O overhead.
- Challenge: keeping learned constraints.
- Further incremental QBF applications and case studies needed.

DepQBF:

- Open source incremental QBF solver implemented in C.
- API to add sets of clauses in a stack-based way (push/pop).
- Related papers:
 - AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
 - ICMS 2014: API example, further experiments [LE14].

DepQBF Source Code: http://lonsing.github.io/depqbf/

M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In *AAAI/IAAI*, pages 262–267, 1998.

M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-proving. *Commun. ACM*, 5(7):394–397, 1962.

Niklas Eén and Niklas Sörensson. Temporal Induction by Incremental SAT Solving. *Electr. Notes Theor. Comput. Sci.*, 89(4):543–560, 2003.

Florian Lonsing and Uwe Egly.
 Incremental QBF Solving by DepQBF.
 In Hoon Hong and Chee Yap, editors, *ICMS*, volume 8592 of *Lecture Notes in Computer Science*, pages 307–314. Springer, 2014.

Paolo Marin, Christian Miller, Matthew D. T. Lewis, and Bernd Becker.
Verification of Partial Designs using Incremental QBF Solving.
In Wolfgang Rosenstiel and Lothar Thiele, editors, *DATE*, pages 623–628. IEEE, 2012.

Alexander Nadel, Vadim Ryvchin, and Ofer Strichman.

Ultimately incremental sat.

In Carsten Sinz and Uwe Egly, editors, *SAT*, volume 8561 of *Lecture Notes in Computer Science*, pages 206–218. Springer, 2014.

Lonsing and Egly (TU Wien)