Incremental QBF Solving

Florian Lonsing and Uwe Egly

Institute of Information Systems
Vienna University of Technology
http://www.kr.tuwien.ac.at/
Vienna, Austria

20th International Conference on Principles and Practice of Constraint Programming, September 8-12, Lyon, France

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Overview (1/3)

Quantified Boolean Formulas (QBF):

■ Propositional formulae with universally (\forall) and (\exists) existentially quantified variables.
■ In terms of QCSP: all variables have Boolean domains, all constraints are clauses.
E.g. $\exists x \forall y \exists z . C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$.

- Solving a QBF: PSPACE-complete.
- Applications in model checking, formal verification, testing,...

Incremental Solving:

- In practice, often a sequence $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$ of related formulas must be solved
- Try to exploit similarity between formulas in a sequence.
- Information gathered when solving ψ_{i} might help to solve ψ_{j} with $j>i$

Overview (1/3)

Quantified Boolean Formulas (QBF):

■ Propositional formulae with universally (\forall) and (\exists) existentially quantified variables.
■ In terms of QCSP: all variables have Boolean domains, all constraints are clauses.
E.g. $\exists x \forall y \exists z . C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$.

- Solving a QBF: PSPACE-complete.

■ Applications in model checking, formal verification, testing,...

Incremental Solving:

■ In practice, often a sequence $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$ of related formulas must be solved.

- Try to exploit similarity between formulas in a sequence.

■ Information gathered when solving ψ_{i} might help to solve ψ_{j} with $j>i$.

Overview (2/3): Non-Incremental QBF Solving

$$
\begin{gathered}
\psi_{0} \longrightarrow \text { Solver } \longrightarrow \text { SAT/UNSAT } \\
\psi_{1} \longrightarrow \text { Solver } \longrightarrow \text { SAT/UNSAT } \\
\vdots \\
\psi_{n} \longrightarrow \text { Solver } \longrightarrow \text { SAT/UNSAT }
\end{gathered}
$$

■ Given: sequence $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$ of PCNFs to be solved.

- Typical usage scenario: solver is called from the command line.

■ Each ψ_{i} is parsed from scratch (might incur non-negligible overhead).
■ Syntactic similarity between ψ_{i} and ψ_{j} with $i<j$ is not exploited.

- All information gathered when solving ψ_{i} is lost.

■ Potential repetition of work when solving ψ_{i+1}.

Overview (3/3)

Incremental QBF Solving:

■ Overview of general-purpose incremental QBF solving.
■ Backtracking search procedure based on DPLL algorithm for QBF.
■ Proof system: derivation of learned constraints by resolution.
■ Challenge: which constraints can be reused in incremental solving?
■ Promising experimental results.

DepQBF:

- Incremental QBF solver
- Free software: http://lonsing.github.io/depqbf/
- Related work
- Incremental SAT solving by MiniSAT.... [ES03, NRS14]
- Incremental QBF solving by QuBE: bounded model checking of partial designs [MMLB12].

Overview (3/3)

Incremental QBF Solving:

■ Overview of general-purpose incremental QBF solving.

- Backtracking search procedure based on DPLL algorithm for QBF.

■ Proof system: derivation of learned constraints by resolution.
■ Challenge: which constraints can be reused in incremental solving?
■ Promising experimental results.

DepQBF:

■ Incremental QBF solver.
■ Free software: http://lonsing.github.io/depqbf/

- Related work:

■ Incremental SAT solving by MiniSAT,... [ES03, NRS14].

- Incremental QBF solving by QuBE: bounded model checking of partial designs [MMLB12].

QBF Syntax

QBF in Prenex Conjunctive Normal Form:

- Given a Boolean formula $\phi\left(x_{1}, \ldots, x_{m}\right)$ in CNF.

■ Quantifier prefix $\hat{Q}:=Q_{1} B_{1} Q_{2} B_{2} \ldots Q_{m} B_{m}$.

- Quantifiers $Q_{i} \in\{\forall, \exists\}$.

■ Quantifier block $B_{i} \subseteq\left\{x_{1}, \ldots, x_{m}\right\}$ containing variables.
■ QBF in prenex CNF (PCNF): $Q_{1} B_{1} Q_{2} B_{2} \ldots Q_{m} B_{m} \cdot \phi\left(x_{1}, \ldots, x_{m}\right)$.

- $B_{i} \leq B_{i+1}$: quantifier blocks are linearly ordered (extended to variables, literals).

Example

- Given the CNF $\phi:=(x \vee \neg y) \wedge(\neg x \vee y)$.
- Given the quantifier prefix $\hat{Q}:=\forall x \exists y$.
- Prenex CNF: $\psi:=\hat{Q} \cdot \phi=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$.

QBF Semantics (1/2)

Recursive Definition:

- Given a PCNF $\psi:=Q_{1} B_{1} \ldots Q_{m} B_{m} . \phi$.

■ Prerequisite: every variable is quantified in the prefix (no free variables).
■ Recursively assign the variables in prefix order (from left to right).

- Base cases: the QBF $\top(\perp)$ is satisfiable (unsatisfiable).
- $\psi=\forall x \ldots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.

■ $\psi=\exists x \ldots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
■ In $\psi[x](\psi[\neg x])$, every occurrence of x in ψ is replaced by $\top(\perp)$.

- Assignment $A=\left\{I_{1}, \ldots, I_{n}\right\}$: if $I_{i} \in A$ is a positive (negative) literal, then $\operatorname{var}\left(I_{i}\right)$ is assigned to true (false).

QBF Semantics (2/2)

Example (continued)

The PCNF $\psi=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$ is satisfiable if
(1) $\psi[x]=\exists y .(y)$ and
(2) $\psi[\neg x]=\exists y \cdot(\neg y)$ are satisfiable.
(1) $\psi[x]=\exists y .(y)$ is satisfiable since $\psi[x, y]=\top$ is satisfiable.
(2) $\psi[\neg x]=\exists y .(\neg y)$ is satisfiable since $\psi[\neg x, \neg y]=\top$ is satisfiable.

Search-Based QBF Solving with Constraint Learning

- QBF-specific variant of DPLL algorithm [DLL62, CGS98].
■ Basic idea: backtracking-based implementation of semantics by enumeration of assignments.
- Constraint learning as a proof system, based on enumerated assignments A.
- $\psi[A]=\perp$: derive a new clause.
- $\psi[A]=T$: derive a new cube, i.e. conjunction of literals.
- Derivation relation \vdash.

Very high-level view, omitting crucial details:

```
bool bt_search (PCNF Qx\psi, Assignment A)
    /* 1. Simplify under given assignment. */
        \psi' := simplify (Qx\psi[A]);
    /* 2. Check base cases. */
        if ( }\mp@subsup{\psi}{}{\prime}== \perp
        return false;
        if ( }\mp@subsup{\psi}{}{\prime}== 丁
            return true;
    /* 3. Assignment generation, backtracking,
            constraint learning */
        if (Q == \exists)
```



```
        if (Q == }\forall\mathrm{ )
        return bt_search ( }\mp@subsup{\psi}{}{\prime},A\cup{\mp@code{\negx}) &&
        bt_search ( }\mp@subsup{\psi}{}{\prime},A\cup{x})
```


Constraint Learning by Example (1/2): Clause Derivations

Example

$$
\psi:=\exists x \forall u \exists y .(x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \neg u \vee y) .
$$

$$
(x \vee u \vee \neg y) \quad(x \vee u \vee y) \quad(\neg x \vee \neg u \vee \neg y) \quad(\neg x \vee \neg u \vee y)
$$

- Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.

Constraint Learning by Example (1/2): Clause Derivations

Example

$$
\psi:=\exists x \forall u \exists y .(x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \neg u \vee y)
$$

$$
(x \vee u \vee \neg y) \quad(x \vee u \vee y) \quad(\neg x \vee \neg u \vee \neg y) \quad(\neg x \vee \neg u \vee y)
$$

■ Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.

- Resolution of clauses (informally): for C_{1}, C_{2} with $\psi \vdash C_{1}, \psi \vdash C_{2}$ and $x \in C_{1}$ and $\neg x \in C_{2}$, it holds that $\psi \vdash C$ where $C=C_{1} \otimes C_{2}$ is the resolvent of C_{1} and C_{2}.

Constraint Learning by Example (1/2): Clause Derivations

Example

$\psi:=\exists x \forall u \exists y .(x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \neg u \vee y)$.

■ Input clauses: $\forall C \in \psi$, by definition it holds that $\psi \vdash C$.

- Resolution of clauses (informally): for C_{1}, C_{2} with $\psi \vdash C_{1}, \psi \vdash C_{2}$ and $x \in C_{1}$ and $\neg x \in C_{2}$, it holds that $\psi \vdash C$ where $C=C_{1} \otimes C_{2}$ is the resolvent of C_{1} and C_{2}.
■ Reduction of clauses: for C_{1} with $\psi \vdash C_{1}$, it holds that $\psi \vdash C$ where C is obtained by removing trailing universal literals from C by prefix ordering.

Constraint Learning by Example (2/2): Cube Derivations

Example

$\psi:=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$.

■ Model generation: for an assignment A with $\psi[A]=\top$, it holds that $\psi \vdash C$ where $C=\bigwedge_{I \in A} I$.

Constraint Learning by Example (2/2): Cube Derivations

Example

$\psi:=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$.

- Model generation: for an assignment A with $\psi[A]=T$, it holds that $\psi \vdash C$ where $C=\bigwedge_{I \in A} I$.
- Reduction of cubes: for C_{1} with $\psi \vdash C_{1}$, it holds that $\psi \vdash C$ where C is obtained by removing trailing existential literals from C by prefix ordering.

Constraint Learning by Example (2/2): Cube Derivations

Example

$\psi:=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$.

- Model generation: for an assignment A with $\psi[A]=\mathrm{T}$, it holds that $\psi \vdash \mathrm{C}$ where $C=\bigwedge_{I \in A} I$.
- Reduction of cubes: for C_{1} with $\psi \vdash C_{1}$, it holds that $\psi \vdash C$ where C is obtained by removing trailing existential literals from C by prefix ordering.
■ Resolution of cubes (informally): for C_{1}, C_{2} with $\psi \vdash C_{1}, \psi \vdash C_{2}$ and $x \in C_{1}$ and $\neg x \in C_{2}$, it holds that $\psi \vdash C$ where $C=C_{1} \otimes C_{2}$ is the resolvent of C_{1} and C_{2}.

Constraint Learning as a Proof System

Satisfiability:

- Soundness of a learned cube C with $\psi \vdash C: \widehat{Q} \cdot \phi \equiv_{\text {sat }} \hat{Q} .(\phi \vee C)$.
- Derivation of empty cube: $\psi \vdash \emptyset$ if and only if ψ satisfiable.

Unsatisfiability:

- Soundness of a learned clause C with $\psi \vdash C: \hat{Q} . \phi \equiv_{\text {sat }} \hat{Q} .(\phi \wedge C)$.
- Derivation of empty clause: $\psi \vdash \emptyset$ if and only if ψ unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

- Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:

- If ψ is modified to obtain ψ^{\prime}, then if $\psi \vdash \mathrm{C}$ for a constraint C we might have $\psi^{\prime} \nvdash \mathrm{C}$.
- E.g.: if $\psi^{\prime} \nvdash C$ for a clause C then in general $\psi^{\prime} \not \equiv_{\text {sat }} \psi^{\prime} \wedge C$
- Soundness: non-derivable (potentially invalid) constraints must be discarded.

Constraint Learning as a Proof System

Satisfiability:

- Soundness of a learned cube C with $\psi \vdash C: \widehat{Q} . \phi \equiv_{\text {sat }} \hat{Q} .(\phi \vee C)$.
- Derivation of empty cube: $\psi \vdash \emptyset$ if and only if ψ satisfiable.

Unsatisfiability:

- Soundness of a learned clause C with $\psi \vdash C: \hat{Q} . \phi \equiv_{\text {sat }} \hat{Q} .(\phi \wedge C)$.
- Derivation of empty clause: $\psi \vdash \emptyset$ if and only if ψ unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

- Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:

- If ψ is modified to obtain ψ^{\prime}, then if $\psi \vdash C$ for a constraint C we might have $\psi^{\prime} \nvdash C$.
- E.g.: if $\psi^{\prime} \nvdash C$ for a clause C then in general $\psi^{\prime} \not \equiv_{\text {sat }} \psi^{\prime} \wedge C$.
- Soundness: non-derivable (potentially invalid) constraints must be discarded.

Incremental Solving

■ Typical usage scenario: solver is called as a library from an external program via API.
■ Reduced hard disk I/O overhead: only new parts are parsed.

- $L C_{i}^{\prime}$: subset of the constraints learned when solving ψ_{j} with $j \leq i$.

■ Parts of the constraints learned when solving previous formulas can be reused.
■ Reused clause (cube) C: $\psi_{i+1} \equiv_{\text {sat }} \psi_{i+1} \wedge C\left(\psi_{i+1} \equiv_{\text {sat }} \psi_{i+1} \vee C\right)$ must still hold.
■ Potential speed up compared to non-incremental solving.

Incremental Solving: Deleting Clauses from the Input Formula (1/2)

Example (continued)

$$
\psi:=\exists x \forall u \exists y .(x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \neg u \vee y) .
$$

- Deleting clauses from ψ_{i} to obtain ψ_{i+1} : for a learned clause C with $\psi_{i} \vdash C$ we might have $\psi_{i+1} \nvdash C$ and $\psi_{i+1} \not \equiv \equiv_{\text {sat }} \psi_{i+1} \wedge C$.
- From ψ_{i} to ψ_{i+1} : the set of learned clauses must be maintained
- How to detect efficiently if $\psi_{i+1} \vdash C$?
- In practice: solvers do not keep the derivations of the learned constraints

Incremental Solving: Deleting Clauses from the Input Formula (1/2)

Example (continued)

$$
\psi:=\exists x \forall u \exists y .(x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \vee y) .
$$

- Deleting clauses from ψ_{i} to obtain ψ_{i+1} : for a learned clause C with $\psi_{i} \vdash C$ we might have $\psi_{i+1} \nvdash C$ and $\psi_{i+1} \not \equiv_{\text {sat }} \psi_{i+1} \wedge C$.
- From ψ_{i} to ψ_{i+1} : the set of learned clauses must be maintained.
- How to detect efficiently if $\psi_{i+1} \vdash C$?
- In practice: solvers do not keep the derivations of the learned constraints.

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

$$
\begin{aligned}
& \psi:=\exists x \forall u \exists y . \\
& (x \vee u \vee \neg y) \wedge(x \vee u \vee y) \wedge(\neg x \vee \neg u \vee \neg y) \wedge(\neg x \vee \neg u \vee y) .
\end{aligned}
$$

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

$$
\begin{aligned}
& \psi:=\exists s_{1}, s_{2}, s_{3}, s_{4}, x \forall u \exists y . \\
& \left(s_{1} \vee x \vee u \vee \neg y\right) \wedge\left(s_{2} \vee x \vee u \vee y\right) \wedge\left(s_{3} \vee \neg x \vee \neg u \vee \neg y\right) \wedge\left(s_{4} \vee \neg x \vee \neg u \vee y\right) .
\end{aligned}
$$

■ Selector variables: fresh, leftmost existential variables added to each input clause.
■ Solving under predefined assignments to selector variables (called assumptions).

- Setting selector variables to false (true): clauses are enabled (disabled).

■ "Empty clause" contains only selector variables, all of which are assigned false.

Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

```
\psi := \exists\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},\mp@subsup{s}{4}{},x\forallu\existsy.
(s 的\veex\veeu\vee\negy)\wedge( s2\veex\veeu\veey)^( s3\vee\negx\vee\negu\vee\negy)^(T\vee\negx\vee\negu\veey).
```


■ Setting selector variables to true disables (effectively deletes) input clauses...

- ... and also depending derived clauses.

■ Selector variables are common in incremental SAT solving.

Incremental Solving: Adding Clauses to the Input Formula

Example (continued)

$$
\psi:=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y) .
$$

- Adding clauses to ψ_{i} to obtain ψ_{i+1} : for a learned cube C with $\psi_{i} \vdash C$ we might have $\psi_{i+1} \nvdash C$ and $\psi_{i+1} \not \equiv$ sat $\psi_{i+1} \vee C$.
- From ψ_{i} to ψ_{i+1} : the set of learned cubes must be maintained.
- Problem: assignments in model generation rule might no longer be satisfying.
- Selector variables not directly anplicable (initial cubes are derived on-the-fly).
- In DepQBF: only derivable initial cubes are kept.

Incremental Solving: Adding Clauses to the Input Formula

Example (continued)

$\psi:=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y) \wedge(x \vee y)$.

Adding the clause $(x \vee y)$ produces an unsatisfiable formula.

■ Adding clauses to ψ_{i} to obtain ψ_{i+1} : for a learned cube C with $\psi_{i} \vdash C$ we might have $\psi_{i+1} \nvdash C$ and $\psi_{i+1} \not \equiv_{\text {sat }} \psi_{i+1} \vee C$.
■ From ψ_{i} to ψ_{i+1} : the set of learned cubes must be maintained.
■ Problem: assignments in model generation rule might no longer be satisfying.
■ Selector variables not directly applicable (initial cubes are derived on-the-fly).
■ In DepQBF: only derivable initial cubes are kept.

Experiments

QBFEVAL'12-SR-Bloqqer			
	discard $L C$	keep LC	diff.(\%)
$\bar{a}:$	39.75×10^{6}	34.03×10^{6}	-14.40
$\tilde{a}:$	1.71×10^{6}	1.65×10^{6}	-3.62
$\bar{b}:$	117,019	91,737	-21.61
$\tilde{b}:$	10,322	8,959	-13.19
$\bar{t}:$	100.15	95.36	-4.64
$\tilde{t}:$	4.18	2.83	-32.29

QBFEVAL'12-SR-Bloqqer			
discard LC	keep $L C$	diff.(\%)	
$\bar{a}:$	5.88×10^{6}	1.29×10^{6}	-77.94
$\tilde{a}:$	103,330	8,199	-92.06
$\bar{b}:$	31,489	3,350	-89.37
$\tilde{b}:$	827	5	-99.39
$\bar{t}:$	30.29	9.78	-67.40
$\tilde{t}:$	0.50	0.12	-76.00

Average and median number of assignments (\bar{a} and \tilde{a}, respectively), backtracks (\bar{b}, \tilde{b}), and wall clock time (\bar{t}, \tilde{t}) in seconds on fully solved sequences of PCNFs.

Left:

■ Solving sequences $S=\psi_{0}, \ldots, \psi_{10}$ of PCNFs, where clauses are only added to ψ_{i} to obtain ψ_{i+1}.
■ Learned constraints are discarded (discard $L C$) and correct ones are kept (keep $L C$).

- Solving the reversed sequences $S^{\prime}=\psi_{9}, \ldots, \psi_{0}$ of PCNFs after the original sequence $S=\psi_{0}, \ldots, \psi_{9}, \psi_{10}$ has been solved, where clauses are only deleted from ψ_{i+1} to
obtain

Experiments

QBFEVAL'12-SR-Bloqqer			
	discard LC	keep LC	diff.(\%)
$\bar{a}:$	39.75×10^{6}	34.03×10^{6}	-14.40
$\tilde{a}:$	1.71×10^{6}	1.65×10^{6}	-3.62
$\bar{b}:$	117,019	91,737	-21.61
$\tilde{b}:$	10,322	8,959	-13.19
$\bar{t}:$	100.15	95.36	-4.64
$\tilde{t}:$	4.18	2.83	-32.29

QBFEVAL'12-SR-Bloqqer			
	discard LC	keep LC	diff.(\%)
$\overline{\mathrm{a}}:$	5.88×10^{6}	1.29×10^{6}	-77.94
$\tilde{\mathrm{a}}:$	103,330	8,199	-92.06
$\bar{b}:$	31,489	3,350	-89.37
$\tilde{b}:$	827	5	-99.39
$\bar{t}:$	30.29	9.78	-67.40
$\tilde{t}:$	0.50	0.12	-76.00

Average and median number of assignments (\bar{a} and \tilde{a}, respectively), backtracks (\bar{b}, \tilde{b}), and wall clock time (\bar{t}, \tilde{t}) in seconds on fully solved sequences of PCNFs.

Left:

■ Solving sequences $S=\psi_{0}, \ldots, \psi_{10}$ of PCNFs, where clauses are only added to ψ_{i} to obtain ψ_{i+1}.
■ Learned constraints are discarded (discard LC) and correct ones are kept (keep LC).

Right:

■ Solving the reversed sequences $S^{\prime}=\psi_{9}, \ldots, \psi_{0}$ of PCNFs after the original sequence $S=\psi_{0}, \ldots, \psi_{9}, \psi_{10}$ has been solved, where clauses are only deleted from ψ_{i+1} to obtain ψ_{i}.

Conclusions

Incremental QBF Solving:

■ Useful for solving sequences of related formulas.

- Benefits from similarity between formulas.
- Tight integration into tool frameworks: library API, reduced I/O overhead.

■ Challenge: keeping learned constraints.
■ Further incremental QBF applications and case studies needed.

DepQBF:
■ Open source incremental QBF solver implemented in C.

- API to add sets of clauses in a stack-based way (push/pop)
- Related papers:
- AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
- ICMS 2014: API example, further experiments [LE14]

DepQBF Source Code: http://lonsing.github.io/depqbf/

Conclusions

Incremental QBF Solving:

■ Useful for solving sequences of related formulas.

- Benefits from similarity between formulas.
- Tight integration into tool frameworks: library API, reduced I/O overhead.

■ Challenge: keeping learned constraints.
■ Further incremental QBF applications and case studies needed.

DepQBF:

■ Open source incremental QBF solver implemented in C.
■ API to add sets of clauses in a stack-based way (push/pop).

- Related papers:
- AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
- ICMS 2014: API example, further experiments [LE14].

DepQBF Source Code: http://lonsing.github.io/depqbf/
M. Cadoli, A. Giovanardi, and M. Schaerf.

An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAI, pages 262-267, 1998.
M. Davis, G. Logemann, and D. Loveland.

A Machine Program for Theorem-proving. Commun. ACM, 5(7):394-397, 1962.
Niklas Eén and Niklas Sörensson.
Temporal Induction by Incremental SAT Solving.
Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.
Florian Lonsing and Uwe Egly.
Incremental QBF Solving by DepQBF.
In Hoon Hong and Chee Yap, editors, ICMS, volume 8592 of Lecture Notes in Computer Science, pages 307-314. Springer, 2014.

Paolo Marin, Christian Miller, Matthew D. T. Lewis, and Bernd Becker.
Verification of Partial Designs using Incremental QBF Solving.
In Wolfgang Rosenstiel and Lothar Thiele, editors, DATE, pages 623-628. IEEE, 2012.

R- Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Ultimately incremental sat.
In Carsten Sinz and Uwe Egly, editors, SAT, volume 8561 of Lecture Notes in Computer Science, pages 206-218. Springer, 2014.

