
An Overview of QBF Reasoning Techniques

Florian Lonsing

Knowledge-Based Systems Group, Vienna University of Technology, Austria
http://www.kr.tuwien.ac.at/staff/lonsing/

Dagstuhl Seminar 16381: SAT and Interactions
September 18-23 2016, Schloss Dagstuhl, Leibniz-Zentrum für

Informatik

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Florian Lonsing (TU Wien) QBF Reasoning 1 / 32

http://www.kr.tuwien.ac.at/staff/lonsing/

Introduction (1)

Quantified Boolean Formulas (QBF):
Existential (∃) / universal (∀) quantification of propositional variables.
Propositional CNF with linearly ordered quantifier prefix.
QBF satisfiability: PSPACE-completeness.
Potentially more succinct encodings than propositional logic.
Applications to presumably harder problems, e.g. NEXPTIME.

Example
CNF φ := (ū ∨ x) ∧ (u ∨ x̄).
Quantifier prefix Q̂ := ∀u∃x .
QBF ψ := Q̂.φ in prenex conjunctive normal form (PCNF).
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄).

Florian Lonsing (TU Wien) QBF Reasoning 1 / 32

Introduction (2)
Recursive Semantics:

Assume that a QBF does not contain free variables.
The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.
The QBF ¬(ψ) is satisfiable iff the QBF ψ is unsatisfiable.
The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.
The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.
The QBF ∀x .(ψ) is satisfiable iff ψ[¬x] and ψ[x] are satisfiable.
The QBF ψ[¬x] (ψ[x]) results from ψ by replacing x in ψ by ⊥ (>).
The QBF ∃x .(ψ) is satisfiable iff ψ[¬x] or ψ[x] is satisfiable.

Example
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄) satisfiable iff

ψ[ū] = ∃x .(x̄) satisfiable and
ψ[u] = ∃x .(x) satisfiable.

Florian Lonsing (TU Wien) QBF Reasoning 2 / 32

Introduction (3): Success Story of QBF Solving?

[MVB10] Hratch Mangassarian, Andreas G. Veneris, Marco Benedetti:
Robust QBF Encodings for Sequential Circuits with Applications to
Verification, Debug, and Test. IEEE Trans. Computers 59(7), 2010.

Admittedly, the theory and results of this paper emphasize the
need for further research in QBF solvers [. . .] Since the first
complete QBF solver was presented decades after the first
complete engine to solve SAT, research in this field remains at its
infancy.

See e.g. [BM08] for references to further comparisons of SAT and QBF.

Florian Lonsing (TU Wien) QBF Reasoning 3 / 32

Introduction (4)

The Beginning of QBF Solving:
1998: backtracking DPLL for QBF [CGS98].
2002: clause learning for QBF (proofs) [GNT02, Let02, ZM02a].
2002: expansion (elimination) of variables [AB02].

⇒ compared to SAT (1960s), QBF still is a young field of research!

Florian Lonsing (TU Wien) QBF Reasoning 4 / 32

Introduction (5): Progress in QBF Research

Increased Interest in QBF:
QBF proof systems: theoretical frameworks of solving techniques.
CDCL (clause learning) and expansion: orthogonal solving approaches.
QBF solving by counterexample guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].
QBFEVAL’16: largest number of participants ever.
10 QBF-related papers at SAT 2016 conference (27%).

QBF Research Community:
QBFEVAL’16: http://www.qbflib.org/qbfeval16.php

QBF Workshop 2016: http://fmv.jku.at/qbf16/

Beyond NP Workshop: http://beyondnp.org/

Florian Lonsing (TU Wien) QBF Reasoning 5 / 32

http://www.qbflib.org/qbfeval16.php
http://fmv.jku.at/qbf16/
http://beyondnp.org/

Introduction (6): Motivating QBF Applications

Synthesis and Realizability of Distributed Systems:

[GT14] A. Gascón, A. Tiwari: A Synthesized Algorithm for Interactive
Consistency. NASA Formal Methods 2014.

[FT15] B. Finkbeiner, L. Tentrup: Detecting Unrealizability of Distributed
Fault-tolerant Systems. Logical Methods in Computer Science 11(3) (2015).

Solving Dependency Quantified Boolean Formulas (NEXPTIME):

[FT14] B. Finkbeiner, L. Tentrup: Fast DQBF Refutation. SAT 2014.

Formal Verification and Synthesis:

[HSM+14] T. Heyman, D. Smith, Y. Mahajan, L. Leong, H. Abu-Haimed:
Dominant Controllability Check Using QBF-Solver and Netlist Optimizer.
SAT 2014.

[CHR16] C. Cheng, Y. Hamza, H. Ruess: Structural Synthesis for GXW
Specifications. CAV 2016.

Florian Lonsing (TU Wien) QBF Reasoning 6 / 32

Outline

1 The beginning of QBF solving: QDPLL and variable expansion.
2 Modern approaches: QCDCL and CEGAR-based expansion.
3 Open problems and future research directions.

Florian Lonsing (TU Wien) QBF Reasoning 7 / 32

Part 1:
The Beginning of QBF Solving

Florian Lonsing (TU Wien) QBF Reasoning 8 / 32

Expansion (1)

ψ0 ψ1 ψ2 . . . ψn = ⊥/>

Successively eliminate variables from a given PCNF ψ0.
Elimination produces satisfiability-equivalent PCNFs ψi ≡sat ψi+1.
Worst case exponential space procedure.
Redundancy elimination on ψi (depending on formula representation).
Stop if ψi reduces to truth constant > or ⊥.
Invoke a SAT solver if ψi contains only ∃-variables.

Florian Lonsing (TU Wien) QBF Reasoning 8 / 32

Expansion (2)

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Eliminate y : ψ = ∃x∀u.
[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert to PCNF: ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)

Expansion of ∃-Variables: cf. [AB02, Bie04]
Eliminate rightmost variables by Shannon expansion [Sha49].
Replace Q̂∃x .φ by Q̂.(φ[x/⊥] ∨ φ[x/>]).
Based on CNF, NNF, and-inverter graphs [AB02, LB08, PS09].
If φ in CNF:

Similar to DP algorithm (add all possible resolvents of x).
Delete literals of innermost universal variables (“universal reduction”).

Florian Lonsing (TU Wien) QBF Reasoning 9 / 32

Expansion (3)

Definition ([BKF95])
Given a clause C , universal reduction (UR) on C produces the clause

UR(C) := C \ {l ∈ C | q(l) = ∀ and ∀l ′ ∈ C with q(l ′) = ∃ : l ′ < l},

where < is the linear variable ordering given by the quantifier prefix.

UR shortens clauses by deleting “trailing” universal literals.
UR is central in QBF proof systems, cf. [BBC16].

Example (continued)
Eliminate y : ψ = ∃x∀u.

[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert to PCNF: ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)

Simplify and reduce u: ψ = ∃x . (x̄) ∧ (x)

Florian Lonsing (TU Wien) QBF Reasoning 10 / 32

Expansion (4)

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh z in copy of CNF.
ψ = ∃x , y , z . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧ (x̄ ∨ z) ∧ (x ∨ z̄) ∧ (z)︸ ︷︷ ︸
u replaced by >, y replaced by z

Obtain (x̄) from (x̄ ∨ y) and (ȳ), (x) from (x ∨ z̄) and (z).

Expansion of ∀-Variables: cf. [AB02, Bie04]
Eliminate all universal variables by Shannon expansion.
Finally, apply propositional resolution (no universal reduction).
If x innermost: replace Q̂∀x .φ by Q̂.(φ[x/⊥] ∧ φ[x/>]).
Otherwise, duplicate existential variables inner to x [Bie04, BK07].

Florian Lonsing (TU Wien) QBF Reasoning 11 / 32

Backtracking Search (1)

DPLL algorithm [DLL62] for QBF: QDPLL [CGS98, CSGG02].
Chronological backtracking (QBF semantics), nonrecursive in practice.

bool qdpll (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return qdpll (ψ′, A ∪ {¬x}) ||
qdpll (ψ′, A ∪ {x});

if (Q == ∀)
return qdpll (ψ′, A ∪ {¬x}) &&

qdpll (ψ′, A ∪ {x});
Florian Lonsing (TU Wien) QBF Reasoning 12 / 32

Backtracking Search (2): Optimizations

Goal: avoid making assignments by decisions.
Decisions open branches in search tree.
Decisions have to be made in prefix order.

Universal reduction:
Detect unit and empty clauses earlier (implicitly in original QDPLL).

Unit literal detection (UL):
A clause C ′ = (l) with C ∈ ψ and q(l) = ∃ is unit.

Pure literal detection (PL):
A literal l is pure in ψ if l̄ does not occur in ψ. Assign var(l) wrt. ∀/∃.

Example
ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū)

ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄)

ψ[{ū}] := ∃x∃y .(y) ∧ (x ∨ ȳ) ∧ (x̄)

ψ[{ū, x̄ , y}] := ⊥

Florian Lonsing (TU Wien) QBF Reasoning 13 / 32

Backtracking Search (3): Optimizations

Goal: close branches in search tree early and backtrack.
Use of SAT solving in QDPLL.
Trivial falsity:

Obtain CNF ψ′ from PCNF ψ by treating every variable as ∃.
If ψ′ is unsatisfiable then also ψ is unsatisfiable.

Trivial truth:
Obtain CNF ψ′ from PCNF ψ by deleting all ∀-literals.
If ψ′ is satisfiable then also ψ is satisfiable.

Example (continued)
ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū)

Trivial falsity test:
ψ′ := ∃x∃u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū) is satisfiable.

Trivial truth test:
ψ′ := ∃x∃y .(y) ∧ (x ∨ ȳ) ∧ (x̄) is unsatisfiable.

Florian Lonsing (TU Wien) QBF Reasoning 14 / 32

Part 2:
Modern Approaches

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Let ψ := ∃X∀Y. φ be a one-alternation QBF, φ a non-CNF formula.
ψ is satisfiable iff ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]) is satisfiable.

Full expansion ψ′ of ∀Y by set B|Y | of all possible assignments y of Y .
Idea: consider a partial expansion of ∀Y as an abstraction of ψ′.

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Subset U ⊆ B|Y | of set B|Y | of all possible assignments y of Y .
Partial expansion: given U, define Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Abstraction Abs(ψ): if Abs(ψ) unsatisfiable, then also ψ unsatisfiable.
Initially, set U := ∅ and Abs(ψ) := >.

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Check satisfiability of Abs(ψ) using a SAT solver.
If Abs(ψ) unsatisfiable: also ψ unsatisfiable, terminate.
If Abs(ψ) satisfiable: let x ∈ B|X | be a model of Abs(ψ).
x ∈ B|X |: candidate solution of full exp. ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]).

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

If x is also a model of the full expansion ψ′, then ψ is satisfiable.
x is a model of full expansion ψ′ iff ∀Y .φ[X/x] is satisfiable.
∀Y .φ[X/x] is satisfiable iff ∃Y .¬φ[X/x] is unsatisfiable.
Check satisfiability of ∃Y .¬φ[X/x] using a SAT solver.

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

If ∃Y .¬φ[X/x] unsatisfiable: ψ is satisfiable, return x and terminate.
If ∃Y .¬φ[X/x] satisfiable: let y ∈ B|Y | be a model of ∃Y .¬φ[X/x].
Note: y is an assignment to ∀-variables in ψ.
y is a counterexample to candidate solution x of full expansion ψ′.

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Refine abstraction Abs(ψ) by counterexample y.
Let U := U ∪ {y} and Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Adding y to Abs(ψ) prevents repetition of candidate solution x.
Used for 2QBF [RTM04, BJS+16], RAReQS (recursive) [JKMSC16].

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32

Q-Resolution (1)

Definition (Q-Resolution Calculus QRES, c.f. [BKF95])

Let ψ = Q̂.φ be a PCNF and C ,C1,C2 clauses.

C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ (init)

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃ (red)

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃ (res)

Axiom init, universal reduction red , resolution res.
PCNF ψ is unsatisfiable iff empty clause ∅ can be derived by QRES.

Florian Lonsing (TU Wien) QBF Reasoning 16 / 32

Q-Resolution (2)

Example
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

∅

(x)

(x ∨u)

(x ∨u∨y)

(x ∨u∨y ∨v)

C1 C3

(x ∨u∨ȳ)

(x ∨u∨ȳ ∨v̄)

C2 C3

(x̄)

(x̄ ∨u)

(x̄ ∨u∨y)

(x̄ ∨u∨y ∨v)

C1 C4

(x̄ ∨u∨ȳ)

(x̄ ∨u∨ȳ ∨v̄)

C2 C4

Florian Lonsing (TU Wien) QBF Reasoning 17 / 32

Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(v ∨ v̄ ∨ z)

C1 C2

Long-Distance Q-Resolution: [ZM02a, BJ12]
Like Q-resolution, but allow certain tautological resolvents.
Tautological resolvent C with {x , x̄} ⊆ C :

q(x) = ∀
Existential pivot p: p < x in prefix ordering.

Exponentially stronger than traditional Q-resolution.

Florian Lonsing (TU Wien) QBF Reasoning 18 / 32

Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

QU-Resolution: [VG12]
Like Q-resolution but additionally allow universal variables as pivots.
Exponentially stronger than traditional Q-resolution.

Florian Lonsing (TU Wien) QBF Reasoning 18 / 32

Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

Further Variants: [BWJ14]
Combinations of QU- and long-distance Q-resolution.
Existential and universal pivots, tautologies due to universal variables.

Florian Lonsing (TU Wien) QBF Reasoning 18 / 32

QCDCL (1)

Assignment
Generation

ψ[A] = ⊤/⊥?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅
YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

High-Level Workflow:
Assign decision variables starting at left end of prefix of ψ[A].
Propagation: simplify ψ under A and universal reduction.
Conflict: ψ[A] = ⊥: CNF φ contains a falsified clause.
Solution: ψ[A] = >: all clauses in CNF of ψ satisfied.

Florian Lonsing (TU Wien) QBF Reasoning 19 / 32

QCDCL (1)

Assignment
Generation

ψ[A] = ⊤/⊥?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅
YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

High-Level Workflow:
Clause (cube) learning based on Q-resolution.
Asserting clause (cube) C : C [A′] unit for some A′ ⊆ A.
Empty clause (cube) C = ∅: formula proved UNSAT (SAT).
QCDCL solvers, e.g., [LB10, GMN10, KSGC10, ZM02b]

Florian Lonsing (TU Wien) QBF Reasoning 19 / 32

QCDCL (2)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)

By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)

By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.

Conflict graph G :
x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Florian Lonsing (TU Wien) QBF Reasoning 20 / 32

QCDCL (3)

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Start at ∅, select pivots in
reverse assignment ordering.
Resolve antecedents of x4, x3, x2.
Pivots obey order restriction of
LDQ-resolution.
Derivation of learned clause is
regular, size linear in |G |.

(x̄1)

(x̄1 ∨ x2) (ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)

Florian Lonsing (TU Wien) QBF Reasoning 21 / 32

QCDCL (4): Satisfiable QBFs

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

with ψ[A] = >, i.e. every clause of PCNF ψ satisfied under A.

Cube learning: conjunctions, existential reduction, universal pivots.
PCNF ψ is satisfiable iff the empty cube can be derived from ψ.

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
Resolve (x̄ ∧ ū) and (x̄ ∧ u) on universal u.
Reduce (x̄) to derive ∅.

Florian Lonsing (TU Wien) QBF Reasoning 22 / 32

QCDCL (5): QRES with Generalized Axioms

Definition (Generalized Clause Axiom [LES16])

C
Given a PCNF ψ = Π.φ and assignment A generated in QCDCL,
ψ[A] is unsatisfiable, and C = (

∨
l∈A l̄) is a clause.

Definition (Generalized Cube Axiom [LES16])

C
Given a PCNF ψ = Π.φ and assignment A generated in QCDCL,
ψ[A] is satisfiable, and C = (

∧
l∈A l) is a cube.

Close branches in search tree earlier, derive clause/cube, backtrack.
Generalizes trivial truth/falsity tests in QDPLL.
Clauses and cubes derived by axioms used in learning as usual.
Practice: interface to combining QRES with other proof systems.

Florian Lonsing (TU Wien) QBF Reasoning 23 / 32

Part 3:
Future Directions and Open Problems

Florian Lonsing (TU Wien) QBF Reasoning 24 / 32

Experiments (1)

Solver Solved UNSAT SAT Time (s)
DepQBF (SAT 2016) 457 255 202 689K
Quantor 439 228 211 710K
DepQBF 5.0 (LPAR 2015) 434 247 187 727K
DepQBF 4.01 380 219 161 822K
Nenofex 362 193 169 853K
RAReQS 341 211 130 891K
DepQBF 4.01 w/o learning 222 121 102 1101K

825 QBFEVAL’16 prenex CNF instances, no preprocessing.
Limits: 1800 seconds, 7 GB memory.
Expansion: Nenofex (NNF), Quantor (PCNF), RAReQS (CEGAR).
QCDCL: public DepQBF X.YZ, SAT 2016 version not yet released.
Diversity: RAReQS solves 42 instances not solved by DepQBF (SAT
2016), and vice versa 158 instances.

Florian Lonsing (TU Wien) QBF Reasoning 24 / 32

Experiments (2)

Solver Solved UNSAT SAT Time (s)
RAReQS 631 329 302 385K
DepQBF (SAT 2016) 590 299 291 440K
DepQBF 4.01 589 294 295 449K
DepQBF 5.0 (LPAR 2015) 587 300 287 448K
Quantor 494 253 241 608K
Nenofex 487 244 243 623K
DepQBF 4.01 w/o learning 436 222 214 710K

825 QBFEVAL’16 prenex CNF instances, with preprocessing.
Preprocessing by Bloqqer: 344 instances solved (41%), 481 remaining.
Diversity: RAReQS solves 71 instances not solved by DepQBF (SAT
2016), and vice versa 30 instances.

⇒ expansion and QCDCL have orthogonal strengths.
Florian Lonsing (TU Wien) QBF Reasoning 25 / 32

Experiments (3)

481 Instances not Solved by Preprocessing
No Prep. With Prep. Diff.

∃ min 38 10 -73%
∃ max 726K 572K -21%
∃ avg 16K 7K -56%
∃ med 4K 1K -75%
∀ min 1 0 -100%
∀ max 30K 30K -0%
∀ avg 846 808 -4%
∀ med 66 53 -19%
Qblocks min 2 1 -50%
Qblocks max 1K 179 -82%
Qblocks avg 15.7 6.8 -56%
Qblocks med 3 3 -0%

Min., max., average and median quantifier blocks and ∀/∃-variables.
Preprocessing makes instances “more propositional” (67 instances
become propositional).

Florian Lonsing (TU Wien) QBF Reasoning 26 / 32

Experiments (4)

Compare RAReQS and DepQBF (SAT 2016).

Consider the 481 original (not preprocessed) instances:
RAReQS solved 177: avg qblocks 13.67.
DepQBF solved 206: avg qblocks 18.01.
RAReQS failed on 304: avg qblocks 16.88.
DepQBF failed on 275: avg qblocks 13.97.

Consider the 481 preprocessed instances:
RAReQS solved 287: avg qblocks 5.96.
DepQBF solved 246: avg qblocks 7.36.
RAReQS failed on 194: avg qblocks 8.15.
DepQBF failed on 235: avg qblocks 6.30.

⇒ expansion (QCDCL) tends to solve instances with few (many) qblocks.
⇒ expansion (QCDCL) tends to fail on instances with many (few) qblocks.

Florian Lonsing (TU Wien) QBF Reasoning 27 / 32

Experiments (5)

Consider the 481 original (not preprocessed) instances:
311 instances with ≤ 3 qblocks:

F RAReQS solves 121 (38%).
F DepQBF solves 112 (36%).

170 instances with ≥ 4 qblocks:
F RAReQS solves 56 (32%).
F DepQBF solves 94 (55%).

Consider the 481 preprocessed instances:
335 instances with ≤ 3 qblocks:

F RAReQS solves 211 (62%).
F DepQBF solves 155 (46%).

146 instances with ≥ 4 qblocks:
F RAReQS solves 76 (52%).
F DepQBF solves 91 (62%).

⇒ expansion outperforms QCDCL on instances with few qblocks.
⇒ QCDCL outperforms expansion on instances with many qblocks.
Florian Lonsing (TU Wien) QBF Reasoning 28 / 32

Open Problems: Proof Systems in Theory and Practice

How to apply proof systems stronger than expansion or QRES in
solvers (e.g. variants of instantiation)?
How to effectively combine expansion and QRES in a single solver to
fully benefit from their individual strengths?
What about proof systems for satisfiable QBFs and related theory?
E.g. cube learning.
How to better understand the empirical hardness of instances? What
is the role of alternations? Cf. [Rin07].
How to harness the full power of Q-resolution in QCDCL [Jan16]?

Florian Lonsing (TU Wien) QBF Reasoning 29 / 32

The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Choose an instance P of a problem to be solved.

Florian Lonsing (TU Wien) QBF Reasoning 30 / 32

The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Encode P as (an incremental sequence of) QBFs.

Florian Lonsing (TU Wien) QBF Reasoning 30 / 32

The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Simplify the QBF encoding (optional).

Florian Lonsing (TU Wien) QBF Reasoning 30 / 32

The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Solve the QBF encoding (incrementally).

Florian Lonsing (TU Wien) QBF Reasoning 30 / 32

The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Obtain a solution to P from a (counter-)model of the QBF.

Florian Lonsing (TU Wien) QBF Reasoning 30 / 32

Open Problems: Application Workflows

How to equip QBF workflows with proof generation and/or extraction
of Skolem/Herbrand functions?
How to make the entire workflow incremental?
How to parallelize the entire workflow?

Florian Lonsing (TU Wien) QBF Reasoning 31 / 32

Conclusion

QBF is still an emerging field with plenty of applications.
Assuming that NP 6= PSPACE, QBF is more difficult than SAT. . .
. . . but allows for exponentially more succinct encodings than SAT.
Computational hardness motivates exploring alternative approaches:
e.g. CEGAR-based expansion, computing Skolem functions [RS16].
QBF tools are not (yet) a push-button technology.
Expert and/or domain knowledge may be necessary for tuning.
Please document and publish your tools and benchmarks!

Florian Lonsing (TU Wien) QBF Reasoning 32 / 32

Appendix

Florian Lonsing (TU Wien) QBF Reasoning 33 / 32

[Appendix] Expansion and Instantiation

Definition (∀Exp+RES [JM13, BCJ14, JM15a])

Axiom: C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ

Instantiation: C
{lAl | l ∈ C , q(l) = ∃}

Complete assignment A to universal variables s.t. literals in C
falsified, Al ⊆ A restricted to universal variables u with u < l .

Resolution: C1 ∪ {pA} C2 ∪ {p̄A}
C1 ∪ C2

for all x ∈ Q̂:
{x , x̄} 6⊆ (C1 ∪C2)

First, instantiate (i.e. replace) all universal variables by constants.
Existential literals in a clause are annotated by partial assignments.
Finally, resolve on existential literals with matching annotations.
Instantiation and annotation mimics universal expansion.

Florian Lonsing (TU Wien) QBF Reasoning 33 / 32

[Appendix] Expansion and Instantiation

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Complete assignments: A = {ū} and A′ = {u}.
Instantiate: (x̄ ∨ y ū) ∧ (x ∨ ȳu) ∧ (yu) ∧ (ȳ ū)

Note: cannot resolve (yu) and (ȳ ū) due to mismatching annotations.
Obtain (x) from (x ∨ ȳu) and (yu), (x̄) from (x̄ ∨ y ū) and (ȳ ū).

Different Power of QBF Proof Systems:
Q-resolution and expansion/instantiation are incomparable [BCJ15].
Interpreting QBFs as first-order logic formulas [SLB12, Egl16].

Florian Lonsing (TU Wien) QBF Reasoning 34 / 32

References

Florian Lonsing (TU Wien) QBF Reasoning 35 / 32

References I

Please note: since the duration of this talk is limited, the list of references below is incomplete
and does not reflect the history and state of the art in QBF research in full accuracy.

[AB02] Abdelwaheb Ayari and David A. Basin.
QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability
Solvers.
In FMCAD, volume 2517 of LNCS, pages 187–201. Springer, 2002.

[BBC16] Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew.
Lower Bounds: From Circuits to QBF Proof Systems.
In ITCS, pages 249–260. ACM, 2016.

[BCJ14] Olaf Beyersdorff, Leroy Chew, and Mikolas Janota.
On unification of QBF resolution-based calculi.
In MFCS, volume 8635 of LNCS, pages 81–93. Springer, 2014.

[BCJ15] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota.
Proof Complexity of Resolution-based QBF Calculi.
In STACS, volume 30 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 76–89. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

Florian Lonsing (TU Wien) QBF Reasoning 35 / 32

References II

[Bie04] Armin Biere.
Resolve and Expand.
In SAT, volume 3542 of LNCS, pages 59–70. Springer, 2004.

[BJ12] Valeriy Balabanov and Jie-Hong R. Jiang.
Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45–65, 2012.

[BJS+16] Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan Mishchenko, and
Robert K. Brayton.
2QBF: Challenges and Solutions.
In SAT, volume 9710 of LNCS, pages 453–469. Springer, 2016.

[BK07] Uwe Bubeck and Hans Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In SAT, volume 4501 of LNCS, pages 244–257. Springer, 2007.

[BKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

[BM08] Marco Benedetti and Hratch Mangassarian.
QBF-Based Formal Verification: Experience and Perspectives.
JSAT, 5(1-4):133–191, 2008.

Florian Lonsing (TU Wien) QBF Reasoning 36 / 32

References III

[BWJ14] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang.
QBF Resolution Systems and Their Proof Complexities.
In SAT, volume 8561 of LNCS, pages 154–169. Springer, 2014.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM, 50(5):752–794, 2003.

[CGS98] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI, pages 262–267. AAAI Press / The MIT Press, 1998.

[CHR16] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess.
Structural Synthesis for GXW Specifications.
In CAV, volume 9779 of LNCS, pages 95–117. Springer, 2016.

[CSGG02] Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giovanardi.
An Algorithm to Evaluate Quantified Boolean Formulae and Its Experimental
Evaluation.
JAIR, 28(2):101–142, 2002.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.
A Machine Program for Theorem-Proving.
Commun. ACM, 5(7):394–397, 1962.

Florian Lonsing (TU Wien) QBF Reasoning 37 / 32

References IV

[Egl16] Uwe Egly.
On Stronger Calculi for QBFs.
In SAT, volume 9710 of LNCS, pages 419–434. Springer, 2016.

[FT14] Bernd Finkbeiner and Leander Tentrup.
Fast DQBF Refutation.
In SAT, volume 8561 of LNCS, pages 243–251. Springer, 2014.

[FT15] Bernd Finkbeiner and Leander Tentrup.
Detecting Unrealizability of Distributed Fault-tolerant Systems.
Logical Methods in Computer Science, 11(3), 2015.

[GMN10] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano.
QuBE7.0.
JSAT, 7(2-3):83–88, 2010.

[GNT02] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Learning for Quantified Boolean Logic Satisfiability.
In AAAI, pages 649–654. AAAI Press / The MIT Press, 2002.

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean
Formulas.
JAIR, 26:371–416, 2006.

Florian Lonsing (TU Wien) QBF Reasoning 38 / 32

References V

[GT14] Adria Gascón and Ashish Tiwari.
A Synthesized Algorithm for Interactive Consistency.
In NASA Formal Methods, volume 8430 of LNCS, pages 270–284. Springer, 2014.

[HSM+14] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong, and Husam
Abu-Haimed.
Dominant Controllability Check Using QBF-Solver and Netlist Optimizer.
In SAT, volume 8561 of LNCS, pages 227–242. Springer, 2014.

[Jan16] Mikolás Janota.
On Q-Resolution and CDCL QBF Solving.
In SAT, volume 9710 of LNCS, pages 402–418. Springer, 2016.

[JKMSC16] Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke.
Solving QBF with counterexample guided refinement.
Artificial Intelligence, 234:1–25, 2016.

[JM13] Mikolás Janota and João Marques-Silva.
On Propositional QBF Expansions and Q-Resolution.
In SAT, volume 7962 of LNCS, pages 67–82. Springer, 2013.

[JM15a] Mikolás Janota and Joao Marques-Silva.
Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

Florian Lonsing (TU Wien) QBF Reasoning 39 / 32

References VI

[JM15b] Mikolás Janota and Joao Marques-Silva.
Solving QBF by Clause Selection.
In IJCAI, pages 325–331. AAAI Press, 2015.

[KSGC10] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke.
A Non-prenex, Non-clausal QBF Solver with Game-State Learning.
In SAT, volume 6175 of LNCS, pages 128–142. Springer, 2010.

[LB08] Florian Lonsing and Armin Biere.
Nenofex: Expanding NNF for QBF Solving.
In SAT, volume 4996 of LNCS, pages 196–210. Springer, 2008.

[LB10] Florian Lonsing and Armin Biere.
DepQBF: A Dependency-Aware QBF Solver.
JSAT, 7(2-3):71–76, 2010.

[LES16] Florian Lonsing, Uwe Egly, and Martina Seidl.
Q-Resolution with Generalized Axioms.
In SAT, volume 9710 of LNCS, pages 435–452. Springer, 2016.

[Let02] Reinhold Letz.
Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas.
In TABLEAUX, volume 2381 of LNCS, pages 160–175. Springer, 2002.

Florian Lonsing (TU Wien) QBF Reasoning 40 / 32

References VII

[MVB10] Hratch Mangassarian, Andreas G. Veneris, and Marco Benedetti.
Robust QBF Encodings for Sequential Circuits with Applications to Verification,
Debug, and Test.
IEEE Trans. Computers, 59(7):981–994, 2010.

[PS09] Florian Pigorsch and Christoph Scholl.
Exploiting structure in an AIG based QBF solver.
In DATE, pages 1596–1601. IEEE, 2009.

[Rin07] Jussi Rintanen.
Asymptotically Optimal Encodings of Conformant Planning in QBF.
In AAAI, pages 1045–1050. AAAI Press, 2007.

[RS16] Markus N. Rabe and Sanjit A. Seshia.
Incremental Determinization.
In SAT, volume 9710 of LNCS, pages 375–392. Springer, 2016.

[RT15] Markus N. Rabe and Leander Tentrup.
CAQE: A Certifying QBF Solver.
In FMCAD, pages 136–143. IEEE, 2015.

[RTM04] Darsh P. Ranjan, Daijue Tang, and Sharad Malik.
A Comparative Study of 2QBF Algorithms.
In SAT, 2004.

Florian Lonsing (TU Wien) QBF Reasoning 41 / 32

References VIII

[Sha49] Claude Elwood Shannon.
The Synthesis of Two-Terminal Switching Circuits.
Bell System Technical Journal, 28(1):59–98, 1949.

[SLB12] Martina Seidl, Florian Lonsing, and Armin Biere.
qbf2epr: A Tool for Generating EPR Formulas from QBF.
In PAAR Workshop, volume 21 of EPiC Series, pages 139–148. EasyChair, 2012.

[VG12] Allen Van Gelder.
Contributions to the Theory of Practical Quantified Boolean Formula Solving.
In CP, volume 7514 of LNCS, pages 647–663. Springer, 2012.

[ZM02a] Lintao Zhang and Sharad Malik.
Conflict Driven Learning in a Quantified Boolean Satisfiability Solver.
In ICCAD, pages 442–449. ACM / IEEE Computer Society, 2002.

[ZM02b] Lintao Zhang and Sharad Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified
Boolean Formula Evaluation.
In CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

Florian Lonsing (TU Wien) QBF Reasoning 42 / 32

