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Introduction (1)

Quantified Boolean Formulas (QBF):
Existential (∃) / universal (∀) quantification of propositional variables.
Propositional CNF with linearly ordered quantifier prefix.
QBF satisfiability: PSPACE-completeness.
Potentially more succinct encodings than propositional logic.
Applications to presumably harder problems, e.g. NEXPTIME.

Example
CNF φ := (ū ∨ x) ∧ (u ∨ x̄).
Quantifier prefix Q̂ := ∀u∃x .
QBF ψ := Q̂.φ in prenex conjunctive normal form (PCNF).
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄).
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Introduction (2)
Recursive Semantics:

Assume that a QBF does not contain free variables.
The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.
The QBF ¬(ψ) is satisfiable iff the QBF ψ is unsatisfiable.
The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.
The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.
The QBF ∀x .(ψ) is satisfiable iff ψ[¬x ] and ψ[x ] are satisfiable.
The QBF ψ[¬x ] (ψ[x ]) results from ψ by replacing x in ψ by ⊥ (>).
The QBF ∃x .(ψ) is satisfiable iff ψ[¬x ] or ψ[x ] is satisfiable.

Example
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄) satisfiable iff

ψ[ū] = ∃x .(x̄) satisfiable and
ψ[u] = ∃x .(x) satisfiable.
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Introduction (3): Success Story of QBF Solving?

[MVB10] Hratch Mangassarian, Andreas G. Veneris, Marco Benedetti:
Robust QBF Encodings for Sequential Circuits with Applications to
Verification, Debug, and Test. IEEE Trans. Computers 59(7), 2010.

Admittedly, the theory and results of this paper emphasize the
need for further research in QBF solvers [. . . ] Since the first
complete QBF solver was presented decades after the first
complete engine to solve SAT, research in this field remains at its
infancy.

See e.g. [BM08] for references to further comparisons of SAT and QBF.
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Introduction (4)

The Beginning of QBF Solving:
1998: backtracking DPLL for QBF [CGS98].
2002: clause learning for QBF (proofs) [GNT02, Let02, ZM02a].
2002: expansion (elimination) of variables [AB02].

⇒ compared to SAT (1960s), QBF still is a young field of research!
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Introduction (5): Progress in QBF Research

Increased Interest in QBF:
QBF proof systems: theoretical frameworks of solving techniques.
CDCL (clause learning) and expansion: orthogonal solving approaches.
QBF solving by counterexample guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].
QBFEVAL’16: largest number of participants ever.
10 QBF-related papers at SAT 2016 conference (27%).

QBF Research Community:
QBFEVAL’16: http://www.qbflib.org/qbfeval16.php

QBF Workshop 2016: http://fmv.jku.at/qbf16/

Beyond NP Workshop: http://beyondnp.org/
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Introduction (6): Motivating QBF Applications

Synthesis and Realizability of Distributed Systems:

[GT14] A. Gascón, A. Tiwari: A Synthesized Algorithm for Interactive
Consistency. NASA Formal Methods 2014.

[FT15] B. Finkbeiner, L. Tentrup: Detecting Unrealizability of Distributed
Fault-tolerant Systems. Logical Methods in Computer Science 11(3) (2015).

Solving Dependency Quantified Boolean Formulas (NEXPTIME):

[FT14] B. Finkbeiner, L. Tentrup: Fast DQBF Refutation. SAT 2014.

Formal Verification and Synthesis:

[HSM+14] T. Heyman, D. Smith, Y. Mahajan, L. Leong, H. Abu-Haimed:
Dominant Controllability Check Using QBF-Solver and Netlist Optimizer.
SAT 2014.

[CHR16] C. Cheng, Y. Hamza, H. Ruess: Structural Synthesis for GXW
Specifications. CAV 2016.
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Outline

1 The beginning of QBF solving: QDPLL and variable expansion.
2 Modern approaches: QCDCL and CEGAR-based expansion.
3 Open problems and future research directions.

Florian Lonsing (TU Wien) QBF Reasoning 7 / 32



Part 1:
The Beginning of QBF Solving
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Expansion (1)

ψ0  ψ1  ψ2  . . . ψn = ⊥/>

Successively eliminate variables from a given PCNF ψ0.
Elimination produces satisfiability-equivalent PCNFs ψi ≡sat ψi+1.
Worst case exponential space procedure.
Redundancy elimination on ψi (depending on formula representation).
Stop if ψi reduces to truth constant > or ⊥.
Invoke a SAT solver if ψi contains only ∃-variables.
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Expansion (2)

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Eliminate y : ψ = ∃x∀u.
[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert to PCNF: ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)

Expansion of ∃-Variables: cf. [AB02, Bie04]
Eliminate rightmost variables by Shannon expansion [Sha49].
Replace Q̂∃x .φ by Q̂.(φ[x/⊥] ∨ φ[x/>]).
Based on CNF, NNF, and-inverter graphs [AB02, LB08, PS09].
If φ in CNF:

Similar to DP algorithm (add all possible resolvents of x).
Delete literals of innermost universal variables (“universal reduction”).
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Expansion (3)

Definition ([BKF95])
Given a clause C , universal reduction (UR) on C produces the clause

UR(C) := C \ {l ∈ C | q(l) = ∀ and ∀l ′ ∈ C with q(l ′) = ∃ : l ′ < l},

where < is the linear variable ordering given by the quantifier prefix.

UR shortens clauses by deleting “trailing” universal literals.
UR is central in QBF proof systems, cf. [BBC16].

Example (continued)
Eliminate y : ψ = ∃x∀u.

[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert to PCNF: ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)

Simplify and reduce u: ψ = ∃x . (x̄) ∧ (x)
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Expansion (4)

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh z in copy of CNF.
ψ = ∃x , y , z . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧ (x̄ ∨ z) ∧ (x ∨ z̄) ∧ (z)︸ ︷︷ ︸
u replaced by >, y replaced by z

Obtain (x̄) from (x̄ ∨ y) and (ȳ), (x) from (x ∨ z̄) and (z).

Expansion of ∀-Variables: cf. [AB02, Bie04]
Eliminate all universal variables by Shannon expansion.
Finally, apply propositional resolution (no universal reduction).
If x innermost: replace Q̂∀x .φ by Q̂.(φ[x/⊥] ∧ φ[x/>]).
Otherwise, duplicate existential variables inner to x [Bie04, BK07].
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Backtracking Search (1)

DPLL algorithm [DLL62] for QBF: QDPLL [CGS98, CSGG02].
Chronological backtracking (QBF semantics), nonrecursive in practice.

bool qdpll (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return qdpll (ψ′, A ∪ {¬x}) ||
qdpll (ψ′, A ∪ {x});

if (Q == ∀)
return qdpll (ψ′, A ∪ {¬x}) &&

qdpll (ψ′, A ∪ {x});
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Backtracking Search (2): Optimizations

Goal: avoid making assignments by decisions.
Decisions open branches in search tree.
Decisions have to be made in prefix order.

Universal reduction:
Detect unit and empty clauses earlier (implicitly in original QDPLL).

Unit literal detection (UL):
A clause C ′ = (l) with C ∈ ψ and q(l) = ∃ is unit.

Pure literal detection (PL):
A literal l is pure in ψ if l̄ does not occur in ψ. Assign var(l) wrt. ∀/∃.

Example
ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū)

ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄)

ψ[{ū}] := ∃x∃y .(y) ∧ (x ∨ ȳ) ∧ (x̄)

ψ[{ū, x̄ , y}] := ⊥
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Backtracking Search (3): Optimizations

Goal: close branches in search tree early and backtrack.
Use of SAT solving in QDPLL.
Trivial falsity:

Obtain CNF ψ′ from PCNF ψ by treating every variable as ∃.
If ψ′ is unsatisfiable then also ψ is unsatisfiable.

Trivial truth:
Obtain CNF ψ′ from PCNF ψ by deleting all ∀-literals.
If ψ′ is satisfiable then also ψ is satisfiable.

Example (continued)
ψ := ∃x∀u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū)

Trivial falsity test:
ψ′ := ∃x∃u∃y .(y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū) is satisfiable.

Trivial truth test:
ψ′ := ∃x∃y .(y) ∧ (x ∨ ȳ) ∧ (x̄) is unsatisfiable.
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Part 2:
Modern Approaches
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Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Let ψ := ∃X∀Y. φ be a one-alternation QBF, φ a non-CNF formula.
ψ is satisfiable iff ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]) is satisfiable.

Full expansion ψ′ of ∀Y by set B|Y | of all possible assignments y of Y .
Idea: consider a partial expansion of ∀Y as an abstraction of ψ′.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Subset U ⊆ B|Y | of set B|Y | of all possible assignments y of Y .
Partial expansion: given U, define Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Abstraction Abs(ψ): if Abs(ψ) unsatisfiable, then also ψ unsatisfiable.
Initially, set U := ∅ and Abs(ψ) := >.

Florian Lonsing (TU Wien) QBF Reasoning 15 / 32



Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Check satisfiability of Abs(ψ) using a SAT solver.
If Abs(ψ) unsatisfiable: also ψ unsatisfiable, terminate.
If Abs(ψ) satisfiable: let x ∈ B|X | be a model of Abs(ψ).
x ∈ B|X |: candidate solution of full exp. ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]).
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Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

If x is also a model of the full expansion ψ′, then ψ is satisfiable.
x is a model of full expansion ψ′ iff ∀Y .φ[X/x] is satisfiable.
∀Y .φ[X/x] is satisfiable iff ∃Y .¬φ[X/x] is unsatisfiable.
Check satisfiability of ∃Y .¬φ[X/x] using a SAT solver.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

If ∃Y .¬φ[X/x] unsatisfiable: ψ is satisfiable, return x and terminate.
If ∃Y .¬φ[X/x] satisfiable: let y ∈ B|Y | be a model of ∃Y .¬φ[X/x].
Note: y is an assignment to ∀-variables in ψ.
y is a counterexample to candidate solution x of full expansion ψ′.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y .φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤
Find
Candidate
Solution

Check
Candidate
Solution

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Refine abstraction Abs(ψ) by counterexample y.
Let U := U ∪ {y} and Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Adding y to Abs(ψ) prevents repetition of candidate solution x.
Used for 2QBF [RTM04, BJS+16], RAReQS (recursive) [JKMSC16].
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Q-Resolution (1)

Definition (Q-Resolution Calculus QRES, c.f. [BKF95])

Let ψ = Q̂.φ be a PCNF and C ,C1,C2 clauses.

C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ (init)

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃ (red)

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃ (res)

Axiom init, universal reduction red , resolution res.
PCNF ψ is unsatisfiable iff empty clause ∅ can be derived by QRES.
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Q-Resolution (2)

Example
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

∅

(x)

(x ∨u)

(x ∨u∨y)

(x ∨u∨y ∨v)

C1 C3

(x ∨u∨ȳ)

(x ∨u∨ȳ ∨v̄)

C2 C3

(x̄)

(x̄ ∨u)

(x̄ ∨u∨y)

(x̄ ∨u∨y ∨v)

C1 C4

(x̄ ∨u∨ȳ)

(x̄ ∨u∨ȳ ∨v̄)

C2 C4
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Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(v ∨ v̄ ∨ z)

C1 C2

Long-Distance Q-Resolution: [ZM02a, BJ12]
Like Q-resolution, but allow certain tautological resolvents.
Tautological resolvent C with {x , x̄} ⊆ C :

q(x) = ∀
Existential pivot p: p < x in prefix ordering.

Exponentially stronger than traditional Q-resolution.
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Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

QU-Resolution: [VG12]
Like Q-resolution but additionally allow universal variables as pivots.
Exponentially stronger than traditional Q-resolution.
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Q-Resolution (3)

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

Further Variants: [BWJ14]
Combinations of QU- and long-distance Q-resolution.
Existential and universal pivots, tautologies due to universal variables.

Florian Lonsing (TU Wien) QBF Reasoning 18 / 32



QCDCL (1)

Assignment
Generation

ψ[A] = ⊤/⊥?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅
YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

High-Level Workflow:
Assign decision variables starting at left end of prefix of ψ[A].
Propagation: simplify ψ under A and universal reduction.
Conflict: ψ[A] = ⊥: CNF φ contains a falsified clause.
Solution: ψ[A] = >: all clauses in CNF of ψ satisfied.
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QCDCL (1)

Assignment
Generation

ψ[A] = ⊤/⊥?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅
YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

High-Level Workflow:
Clause (cube) learning based on Q-resolution.
Asserting clause (cube) C : C [A′] unit for some A′ ⊆ A.
Empty clause (cube) C = ∅: formula proved UNSAT (SAT).
QCDCL solvers, e.g., [LB10, GMN10, KSGC10, ZM02b]
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QCDCL (2)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)

By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)

By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.

Conflict graph G :
x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)
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QCDCL (3)

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Start at ∅, select pivots in
reverse assignment ordering.
Resolve antecedents of x4, x3, x2.
Pivots obey order restriction of
LDQ-resolution.
Derivation of learned clause is
regular, size linear in |G |.

(x̄1)

(x̄1 ∨ x2) (ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)
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QCDCL (4): Satisfiable QBFs

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

with ψ[A] = >, i.e. every clause of PCNF ψ satisfied under A.

Cube learning: conjunctions, existential reduction, universal pivots.
PCNF ψ is satisfiable iff the empty cube can be derived from ψ.

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
Resolve (x̄ ∧ ū) and (x̄ ∧ u) on universal u.
Reduce (x̄) to derive ∅.
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QCDCL (5): QRES with Generalized Axioms

Definition (Generalized Clause Axiom [LES16])

C
Given a PCNF ψ = Π.φ and assignment A generated in QCDCL,
ψ[A] is unsatisfiable, and C = (

∨
l∈A l̄) is a clause.

Definition (Generalized Cube Axiom [LES16])

C
Given a PCNF ψ = Π.φ and assignment A generated in QCDCL,
ψ[A] is satisfiable, and C = (

∧
l∈A l) is a cube.

Close branches in search tree earlier, derive clause/cube, backtrack.
Generalizes trivial truth/falsity tests in QDPLL.
Clauses and cubes derived by axioms used in learning as usual.
Practice: interface to combining QRES with other proof systems.
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Part 3:
Future Directions and Open Problems
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Experiments (1)

Solver Solved UNSAT SAT Time (s)
DepQBF (SAT 2016) 457 255 202 689K
Quantor 439 228 211 710K
DepQBF 5.0 (LPAR 2015) 434 247 187 727K
DepQBF 4.01 380 219 161 822K
Nenofex 362 193 169 853K
RAReQS 341 211 130 891K
DepQBF 4.01 w/o learning 222 121 102 1101K

825 QBFEVAL’16 prenex CNF instances, no preprocessing.
Limits: 1800 seconds, 7 GB memory.
Expansion: Nenofex (NNF), Quantor (PCNF), RAReQS (CEGAR).
QCDCL: public DepQBF X.YZ, SAT 2016 version not yet released.
Diversity: RAReQS solves 42 instances not solved by DepQBF (SAT
2016), and vice versa 158 instances.
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Experiments (2)

Solver Solved UNSAT SAT Time (s)
RAReQS 631 329 302 385K
DepQBF (SAT 2016) 590 299 291 440K
DepQBF 4.01 589 294 295 449K
DepQBF 5.0 (LPAR 2015) 587 300 287 448K
Quantor 494 253 241 608K
Nenofex 487 244 243 623K
DepQBF 4.01 w/o learning 436 222 214 710K

825 QBFEVAL’16 prenex CNF instances, with preprocessing.
Preprocessing by Bloqqer: 344 instances solved (41%), 481 remaining.
Diversity: RAReQS solves 71 instances not solved by DepQBF (SAT
2016), and vice versa 30 instances.

⇒ expansion and QCDCL have orthogonal strengths.
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Experiments (3)

481 Instances not Solved by Preprocessing
No Prep. With Prep. Diff.

∃ min 38 10 -73%
∃ max 726K 572K -21%
∃ avg 16K 7K -56%
∃ med 4K 1K -75%
∀ min 1 0 -100%
∀ max 30K 30K -0%
∀ avg 846 808 -4%
∀ med 66 53 -19%
Qblocks min 2 1 -50%
Qblocks max 1K 179 -82%
Qblocks avg 15.7 6.8 -56%
Qblocks med 3 3 -0%

Min., max., average and median quantifier blocks and ∀/∃-variables.
Preprocessing makes instances “more propositional” (67 instances
become propositional).
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Experiments (4)

Compare RAReQS and DepQBF (SAT 2016).

Consider the 481 original (not preprocessed) instances:
RAReQS solved 177: avg qblocks 13.67.
DepQBF solved 206: avg qblocks 18.01.
RAReQS failed on 304: avg qblocks 16.88.
DepQBF failed on 275: avg qblocks 13.97.

Consider the 481 preprocessed instances:
RAReQS solved 287: avg qblocks 5.96.
DepQBF solved 246: avg qblocks 7.36.
RAReQS failed on 194: avg qblocks 8.15.
DepQBF failed on 235: avg qblocks 6.30.

⇒ expansion (QCDCL) tends to solve instances with few (many) qblocks.
⇒ expansion (QCDCL) tends to fail on instances with many (few) qblocks.

Florian Lonsing (TU Wien) QBF Reasoning 27 / 32



Experiments (5)

Consider the 481 original (not preprocessed) instances:
311 instances with ≤ 3 qblocks:

F RAReQS solves 121 (38%).
F DepQBF solves 112 (36%).

170 instances with ≥ 4 qblocks:
F RAReQS solves 56 (32%).
F DepQBF solves 94 (55%).

Consider the 481 preprocessed instances:
335 instances with ≤ 3 qblocks:

F RAReQS solves 211 (62%).
F DepQBF solves 155 (46%).

146 instances with ≥ 4 qblocks:
F RAReQS solves 76 (52%).
F DepQBF solves 91 (62%).

⇒ expansion outperforms QCDCL on instances with few qblocks.
⇒ QCDCL outperforms expansion on instances with many qblocks.
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Open Problems: Proof Systems in Theory and Practice

How to apply proof systems stronger than expansion or QRES in
solvers (e.g. variants of instantiation)?
How to effectively combine expansion and QRES in a single solver to
fully benefit from their individual strengths?
What about proof systems for satisfiable QBFs and related theory?
E.g. cube learning.
How to better understand the empirical hardness of instances? What
is the role of alternations? Cf. [Rin07].
How to harness the full power of Q-resolution in QCDCL [Jan16]?
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The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Choose an instance P of a problem to be solved.
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The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Encode P as (an incremental sequence of) QBFs.
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The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Simplify the QBF encoding (optional).
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The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Solve the QBF encoding (incrementally).
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The Need for an Integrated QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and
Certificates

Obtain a solution to P from a (counter-)model of the QBF.
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Open Problems: Application Workflows

How to equip QBF workflows with proof generation and/or extraction
of Skolem/Herbrand functions?
How to make the entire workflow incremental?
How to parallelize the entire workflow?
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Conclusion

QBF is still an emerging field with plenty of applications.
Assuming that NP 6= PSPACE, QBF is more difficult than SAT. . .
. . . but allows for exponentially more succinct encodings than SAT.
Computational hardness motivates exploring alternative approaches:
e.g. CEGAR-based expansion, computing Skolem functions [RS16].
QBF tools are not (yet) a push-button technology.
Expert and/or domain knowledge may be necessary for tuning.
Please document and publish your tools and benchmarks!

Florian Lonsing (TU Wien) QBF Reasoning 32 / 32



Appendix
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[Appendix] Expansion and Instantiation

Definition (∀Exp+RES [JM13, BCJ14, JM15a])

Axiom: C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ

Instantiation: C
{lAl | l ∈ C , q(l) = ∃}

Complete assignment A to universal variables s.t. literals in C
falsified, Al ⊆ A restricted to universal variables u with u < l .

Resolution: C1 ∪ {pA} C2 ∪ {p̄A}
C1 ∪ C2

for all x ∈ Q̂:
{x , x̄} 6⊆ (C1 ∪C2)

First, instantiate (i.e. replace) all universal variables by constants.
Existential literals in a clause are annotated by partial assignments.
Finally, resolve on existential literals with matching annotations.
Instantiation and annotation mimics universal expansion.
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[Appendix] Expansion and Instantiation

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Complete assignments: A = {ū} and A′ = {u}.
Instantiate: (x̄ ∨ y ū) ∧ (x ∨ ȳu) ∧ (yu) ∧ (ȳ ū)

Note: cannot resolve (yu) and (ȳ ū) due to mismatching annotations.
Obtain (x) from (x ∨ ȳu) and (yu), (x̄) from (x̄ ∨ y ū) and (ȳ ū).

Different Power of QBF Proof Systems:
Q-resolution and expansion/instantiation are incomparable [BCJ15].
Interpreting QBFs as first-order logic formulas [SLB12, Egl16].
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