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Overview

Quantified Boolean Formulae (QBF):
Extension of propositional logic.

PSPACE-completeness (propositional logic: NP-completeness).

Applications in verification and MC: compact encodings.

This Work:
QBF solving: variable dependencies.

Dependency schemes to improve QBF solvers.

DepQBF: search-based QBF solver, integrates dependency schemes.

QBFEVAL’10 (568 formulae) – without preprocessing
Solved Avg. Time

DepQBF 372 334.60
QuBE7.2-nopp 319 431.47

Nenofex 211 573.65
Quantor 3.0 203 590.15

squolem 2.02 124 708.80

QBFEVAL’10 score-based ranking
DepQBF 2896.68

DepQBF-pre 2508.96
aqme-10 2467.96
qmaiga 2117.55

AIGSolve 2037.22
quantor-3.1 1235.14
struqs-10 947.83

nenofex-qbfeval10 829.11
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SAT and QBF

Propositional Logic (SAT):
Boolean variables V := {x1, . . . , xn}, literals l := v and l := v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ), CNF φ :=
∧m

i:=1 Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF F := Q1x1 . . .Qnxn. φ, where Qi ∈ {∃,∀}, no free variables.

Qixi ≤ Qi+1xi+1: variables are linearly ordered.

Applications: compact encodings, e.g. bounded model checking (BMC).

QBF Semantics: recursively based on formula structure.

∀xφ is satisfiable iff both φ[x/0] and φ[x/1] are satisfiable.

∃xφ is satisfiable iff φ[x/0] or φ[x/1] is satisfiable.

Related to search-based QDPLL algorithm (see later).

Problem: prefix ordering might limit the freedom in QBF solving.
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Variable Dependencies

Semantical Evaluation:
Q1x1 . . .Qnxn. φ: must assign variables in prefix ordering in general.

∃a∀x ,y∃b. φ: assigning b is possible as soon as x and y are assigned.

Example (Depending Variables)

∀x∃y . (x = y) is satisfiable: value of y depends on value of x .

∃y∀x . (x = y) is unsatisfiable: value of y is fixed for all values of x .

Breaking the prefix ordering might yield unsound results!

Example (Independent Variables)

∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ ¬y) is satisfiable: assign x , then y .

∃y∀x . (x ∨ ¬y) ∧ (¬x ∨ ¬y) is satisfiable: assign y , then x .

Breaking the prefix ordering might be sound and increase freedom!
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Dependency Representation

Goal: identify independent variables in a given PCNF.

x and y are independent if they can be assigned in arbitrary order.

Can we go from linear prefix ordering to partial ordering on variables?

Dependency Schemes: relation D ⊆ (V × V ). [SS09, Bie04, BB07, Ben05]

General framework for expressing (in)dependence in a given PCNF.

(x , y) 6∈ D: y independent from x .

(x , y) ∈ D: conservatively regard y as depending on x .

Interpret D as a partial ordering on the variables in general.

Interesting cases: (x , y) 6∈ D and (y , x) 6∈ D.

Assignment Trees:
Theoretical foundation of dependency schemes.

Tree-like models of PCNFs.

Represent choice of values for ∃-variables.

Explain variable independence.

r

¬x

¬y

x

y

∀x∃y . (x∨¬y)∧(¬x∨y).
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Constructing Dependency Schemes

Syntactic Approaches: tradeoff quality vs. efficiency of computation.

Trivial dependency scheme Dtriv: given quantifier prefix.

Quantifier trees Dtree: non-deterministic mini-scoping.

Standard dependency scheme Dstd: connections between variables.

Dstd ⊆ Dtree ⊆ Dtriv: apply Dstd in practice.

Example (Dtreevs. Dstd)

∃a,b∀x ,y∃c,d . (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ d) ∧ (y ∨ d).

∃a

∀x

∃c

∃b

∀y

∃d

∃b

∃a

∀x

∃c

∀y

∃d

∃a

∀x

∃c

∃b

∀y

∃d

Either (a, y) ∈ Dtree or (b, x) ∈ Dtree but (a, y) 6∈ Dstd and (b, x) 6∈ Dstd.
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Dependency Graphs

Dependency Scheme D as Directed-Acyclic Graph (DAG):
Explicit edges x → y iff (x , y) ∈ D.

Compressed Dependency Graphs: equivalence relations, aux. edges.
“Outgoing” edges: x ≈↓ y iff D(x) = D(y).
“Incoming” edges: x ≈↑ y iff D−1(x) = D−1(y).
Efficient algorithm to compute graph for Dstd (see later).

Example

a

x1 x2 x3

y1 y2 y3

z1 z2

[a]↑ = [a]↓

[x1, x2]↑ = [x1, x2]↓ [x3]↑ = [x3]↓

[y1, y2]↑ = [y1, y2]↓ [y3]↑ = [y3]↓

[z1]↑ = [z1]↓ [z2]↑ = [z2]↓
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QDPLL

State qdpll ()
while (true)
State s = qbcp ();
if (s == UNDET)
// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;

else
backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Backtracking Search with Constraint Learning:
Classical QDPLL based on quantifier prefix, i.e. Dtriv.
qbcp: propagate implied (i.e. necessary) assignments.
select_dec_var: decision making.
analyze_leaf: add learned constraint produced by Q-resolution.
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QDPLL with Dependency Schemes

State qdpll ()
while (true)
State s = qbcp ();
if (s == UNDET)
// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;

else
backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Replacing Dtriv with Arbitrary Dependency Scheme D ⊆ Dtriv:
Same basic framework: considering D as a parameter of QDPLL.
Only change: D used for dependency checking and decision making.
Expecting more implications, shorter learned constraints.
Expecting more freedom for selecting decision variables.
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Example: Dynamic Effects of Dependency Schemes in QDPLL

Constraint Reduction (CR):

Definition

Let D be a dependency scheme. Given a clause C, constraint reduction on C
by D produces the clause

CRD(C) := C \ {l ∈ L∀(C) | ∀l ′ ∈ L∃(C) : (v(l), v(l ′)) 6∈ D}.

Part of QBCP and Q-resolution for constraint learning.

Deleting “largest” universal literals: shortens clauses.

If D ⊂ D′, then CR by D might produce shorter clauses than CR by D′.

Potentially more unit/empty clauses.

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since (a, y) ∈ Dtriv.

Given D ⊆ Dtriv where (a, y) 6∈ D: a is reducible in (x ∨a∨ y), yielding (x ∨ y).
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Experiments (1/5)

Dependency Graph for Dstd: efficient incremental construction.
Statistics for QBFEVAL’08 set (3328 formulae).
Max. time 8.11s, avg. time 0.09s.
Compare: explicit computation times out (900s) on 135 formulae.
For x ∈ V∀, x ∈ V∃, avg. |Dstd(x)| = 19807 and |Dstd(x)| = 4.
Graph compactly represents sets of depending variables.
Dep. classes/dep. variables: 0.01 and 0.02 for x ∈ V∀, x ∈ V∃.
Graph is tightly integrated in QDPLL.

State qdpll ()
while (true)

State s = qbcp ();
if (s == UNDET)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.
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Experiments (2/5)

Dependency Schemes in QDPLL: implemented in our solver DepQBF.
Pays off despite overhead.
Expect performance increase from more powerful dependency schemes.

Table: Comparing different dependency schemes in QDPLL.

QBFEVAL’08 (3326 formulae)
Dtriv Dtree Dstd QuBE6.6-nopp QuBE6.6

Solved 1223 1221 1252 1106 2277
Avg. Time 579.94 580.64 572.31 608.97 302.49

Table: Dynamic effects of different dependency schemes in QDPLL.

QBFEVAL’08 (solved only)
Dtriv ∩ Dtree Dtriv ∩ Dstd Dtree ∩ Dstd

solved 1172 1196 1206
time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%
backtracks 32431 27938 34323 31085 25106 26136

learnt constr. size 157 99 150 96 102 95
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Experiments (4/5)

Table: DepQBF and other solvers with and without preprocessing.

QBFEVAL’10 (568 formulae) – with preprocessing
Solved Avg. Time SAT UNSAT

Bloqqer + QxBF + DepQBF 468 197.31 (16.47) 224 244
Bloqqer + DepQBF 466 198.50 (7.69) 223 243

QuBE7.2 435 264.70 (–) 202 233
QxBF+ DepQBF 378 323.19 (7.21) 167 211

QBFEVAL’10 (568 formulae) – without preprocessing
DepQBF 372 334.60 166 206

QuBE7.2-nopp 319 431.47 144 175
Nenofex 211 573.65 103 108

Quantor 3.0 203 590.15 99 104
squolem 2.02 124 708.80 53 71
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Experiments (5/5)
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Figure: Sorted run times of selected solvers from Table 3.
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Conclusions

Drawbacks of Prenex CNF:
Quantifier prefix limits freedom of QBF decision procedures.

Linear ordering of variables might often be relaxed.

Dependency Schemes:
Variable independence: quality vs. efficiency of computation.

Related to QBF semantics: inherent property.

From linear to partial orders on variables: increased freedom.

Relevant for arbitrary QBF solvers.

DepQBF: search-based, competitive, open-source.

Combining QDPLL with Dstd.

Improved overall performance despite overhead.

Fewer backtracks, shorter learnt constraints, more implications.

Open Problems and Future Work:
Theoretical results related to QDPLL with D ⊆ Dtriv.

Applying more powerful dependency schemes than Dstd.

Constraint learning in QDPLL.
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