Dependency Schemes and Search-Based QBF Solving:

Theory and Practice

Florian Lonsing

Friday, 27th April, 2012

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Overview

Quantified Boolean Formulae (QBF):
@ Extension of propositional logic.
@ PSPACE-completeness (propositional logic: NP-completeness).
@ Applications in verification and MC: compact encodings.

This Work:
@ QBF solving: variable dependencies.
@ Dependency schemes to improve QBF solvers.
@ DepQBF: search-based QBF solver, integrates dependency schemes.

[QBFEVAL10 score-based ranking |

[QBFEVAL'10 (568 formulae) — without preprocessing] DepQBF 2896.68
[[[Solved | Avg. Time | DepQBF-pre 2508.96
DepQBF 372 334.60 agme-10 2467.96
QuBE7.2-nopp 319 431.47 gmaiga 2117.55
Nenofex 211 573.65 AlGSolve 2037.22
Quantor 3.0 203 590.15 quantor-3.1 1235.14
squolem 2.02 124 708.80 strugs-10 947.83
nenofex-gbfeval10 829.11

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

SAT and QBF

Propositional Logic (SAT):
@ Boolean variables V := {xy,..., X}, literals | :==vand [:=vforv € V.
@ Clauses Ci:=(h V...V l),CNF ¢ := AT, Ci.

Quantified Boolean Formulae (QBF):
@ Prenex CNF: quantifier-free CNF over quantified Boolean variables.
@ PCNF F := Qi x1 ... Qnxn. ¢, Wwhere Q; € {3,V}, no free variables.
@ Qix; < Qip1Xi41: variables are linearly ordered.
@ Applications: compact encodings, e.g. bounded model checking (BMC).

QBF Semantics: recursively based on formula structure.
@ Vx¢ is satisfiable iff both ¢[x/0] and ¢[x/1] are satisfiable.
@ dx¢ is satisfiable iff ¢[x/0] or ¢[x/1] is satisfiable.
@ Related to search-based QDPLL algorithm (see later).

Problem: prefix ordering might limit the freedom in QBF solving.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Variable Dependencies

Semantical Evaluation:
@ Qix1...Qnxn. ¢: must assign variables in prefix ordering in general.
@ Javx,ydb. ¢: assigning b is possible as soon as x and y are assigned.

Example (Depending Variables)

@ Vx3y. (x = y) is satisfiable: value of y depends on value of x.
@ JyVx. (x = y) is unsatisfiable: value of y is fixed for all values of x.

Breaking the prefix ordering might yield unsound results!

Example (Independent Variables)

@ Vx3y. (x V—y) A (—x V —y) is satisfiable: assign x, then y.
@ Jyvx. (x V—y) A (—x V —y) is satisfiable: assign y, then x.

Breaking the prefix ordering might be sound and increase freedom!

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Dependency Representation

Goal: identify independent variables in a given PCNF.
@ x and y are independent if they can be assigned in arbitrary order.
@ Can we go from linear prefix ordering to partial ordering on variables?

Dependency Schemes: relation D C (V x V). [SS09, Bie04, BB07, Ben05]
@ General framework for expressing (in)dependence in a given PCNF,
@ (x,y) ¢ D: y independent from x.
@ (x,y) € D: conservatively regard y as depending on x.
@ Interpret D as a partial ordering on the variables in general.
@ Interesting cases: (x,y) ¢ Dand (y, x) ¢ D.

r

Assignment Trees: / \
@ Theoretical foundation of dependency schemes. u .
@ Tree-like models of PCNFs. | |
@ Represent choice of values for 3-variables. .y y
@ Explain variable independence. X3y, (XVy) A =XV Y).

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Constructing Dependency Schemes

Syntactic Approaches: tradeoff quality vs. efficiency of computation.
@ Trivial dependency scheme D"": given quantifier prefix.
@ Quantifier trees D'"®: non-deterministic mini-scoping.
@ Standard dependency scheme D connections between variables.
e DSY C D' C D': apply D% in practice.

Example (D"vs. D59)

da,bvx,y3de,d. (aVv xVe)A(avb)A(bvd)A(yVd).

/Ela\ /EI b\ . .

VX db Jda vy | |
| . oy
dc Yy VX 3d | |
| | 3 3d
3d dc

Either (a,y) € D" or (b, x) € D" but (a,y) ¢ D and (b, x) ¢ D*.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Dependency Graphs

Dependency Scheme D as Directed-Acyclic Graph (DAG):
@ Explicit edges x — y iff (x,y) € D.
Compressed Dependency Graphs: equivalence relations, aux. edges.
@ “Outgoing” edges: x =, y iff D(x) = D(y).
@ “Incoming” edges: x ~4 y iff D~'(x) = D~'(y).
o Efficient algorithm to compute graph for D (see later).

Example
[a]+ = [a]y

X X X3 [X1, X2l = [X1,%2]y [xaly = [xa]y

|
y 3 Y1, V2]t = [V1, y2ly lysl+ = [ysly I,
X | /

//

Z; 2 [z1]y = [za]y [22]y = [22]y

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

QDPLL

State qgdpll ()
while (true)

State s = gbcp (); DecLevel analyze_leaf (State s)
if (s == UNDET) R = get_initial_constraint (s);
// Make decision. // s == UNSAT: 'R’ is empty clause.
v = select_dec_var (); // s == SAT: 'R’ 1is sat. cube...
assign_dec_var (v); // ..or new cube from assignment.
else while (!stop_res (R))
// Conflict or solution. p = get_pivot (R);
// s == UNSAT or s == SAT. R’ = get_antecedent (p);
btlevel = analyze_leaf (s); R = constraint_res (R, p, R’);
if (btlevel == INVALID) add_to_formula (R);
return s; return get_asserting_level (R);
else

backtrack (btlevel);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Backtracking Search with Constraint Learning:
@ Classical QDPLL based on quantifier prefix, i.e. D'™.
@ gbcp: propagate implied (i.e. necessary) assignments.
@ select_dec_var: decision making.
@ analyze_leaf: add learned constraint produced by Q-resolution.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

QDPLL with Dependency Schemes

State qgdpll ()
while (true)

State s = gbecp (); DecLevel analyze_leaf (State s)
if (s == UNDET) R = get_initial_constraint (s);
// Make decision. // s == UNSAT: 'R’ is empty clause.
v = select_dec_var (); // s == SAT: 'R’ is sat. cube...
assign_dec_var (v); // ..or new cube from assignment.
else while (!stop_res (R))
// Conflict or solution. p = get_pivot (R);
// s == UNSAT or s == SAT. R’ = get_antecedent (p);
btlevel = analyze_leaf (s); R = constraint_res (R, p, R’);
if (btlevel == INVALID) add_to_formula (R);
return s; return get_asserting level (R);
else

backtrack (btlevel);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Replacing D" with Arbitrary Dependency Scheme D C D':
@ Same basic framework: considering D as a parameter of QDPLL.
@ Only change: D used for dependency checking and decision making.
@ Expecting more implications, shorter learned constraints.
@ Expecting more freedom for selecting decision variables.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Example: Dynamic Effects of Dependency Schemes in QDPLL

Constraint Reduction (CR):

Definition

Let D be a dependency scheme. Given a clause C, constraint reduction on C
by D produces the clause

CRo(C) := C\ {I € Ly(C) | ¥/ € L5(C) : (v(l), v(I')) & D}.

@ Part of QBCP and Q-resolution for constraint learning.

@ Deleting “largest” universal literals: shortens clauses.

e If D c D', then CR by D might produce shorter clauses than CR by D'.
@ Potentially more unit/empty clauses.

IxVady. ¢’ A(x Vv aVvy).
Given D' from prefix: a s irreducible in (x V aV y) since (a, y) € D"™.

Given D C D" where (a,y) ¢ D: ais reducible in (xVaV y), yielding (x V y).

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Experiments (1/5)

Dependency Graph for D%: efficient incremental construction.
Statistics for QBFEVALO08 set (3328 formulae).

Max. time 8.11s, avg. time 0.09s.

Compare: explicit computation times out (900s) on 135 formulae.
For x € Vi, x € V4, avg. |D¥%(x)| = 19807 and |DS(x)| = 4.
Graph compactly represents sets of depending variables.

Dep. classes/dep. variables: 0.01 and 0.02 for x € W, x € V3.
Graph is tightly integrated in QDPLL.

State gdpll ()
while (true)

State s = gbcp (); DecLevel analyze_leaf (State s)
if (s == UNDET) R = get_initial_constraint (s);
// Make decision. // s == UNSAT: 'R’ 1is empty clause.
v = select_dec_var (); // s == SAT: 'R’ is sat. cube...
assign_dec_var (v); // ..or new cube from assignment.
else while (!stop_res (R)
// Conflict or solution. p = get_pivot (R);
// s == UNSAT or s == SAT. R’ = get_antecedent (p);
btlevel = analyze_leaf (s); R = constraint_res (R, p, R’);
if (btlevel == INVALID) add_to_formula (R);
return s; return get_asserting level (R);
else

backtrack (btlevel);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Experiments (2/5)

Dependency Schemes in QDPLL: implemented in our solver DepQBF.
@ Pays off despite overhead.
@ Expect performance increase from more powerful dependency schemes.

Table: Comparing different dependency schemes in QDPLL.

| QBFEVAL08 (3326 formulae) |
| [D™ [D™ | D™] QuBE6.6-nopp | QUBE6.6 |

Solved 1223 1221 1252 1106 2277
Avg. Time || 579.94 | 580.64 | 572.31 608.97 302.49

Table: Dynamic effects of different dependency schemes in QDPLL.

| QBFEVALO08 (solved only) |

’ H Dtrlv n Dtree H Dtrlv n Dstd H Dtree n Dstd ‘
solved 1172 1196 1206
time 23.15 | 26.68 23.73 | 25.93 25.63 | 22.37
implied/assigned || 90.4% | 90.7% || 88.6% | 90.5% || 90.9% | 92.1%
backtracks 32431 | 27938 || 34323 | 31085 || 25106 | 26136
learnt constr. size 157 99 150 96 102 95

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Experiments (4/5)

Table: DepQBF and other solvers with and without preprocessing.

| QBFEVAL10 (568 formulae) — with preprocessing |

Solved Avg. Time SAT | UNSAT

Blogqger + QxBF + DepQBF || 468 | 197.31 (16.47) || 224 | 244

Blogger + DepQBF 466 198.50 (7.69) 223 243

QuBE7.2 435 264.70 (-) 202 233

QxBF+ DepQBF 378 | 323.19(7.21) || 167 | 211

| QBFEVAL10 (568 formulae) — without preprocessing |

DepQBF 372 334.60 166 206

QuBE7.2-nopp 319 431.47 144 175

Nenofex 211 573.65 103 108

Quantor 3.0 203 590.15 99 104
squolem 2.02 124 708.80 53 71

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Experiments (5/5)

1000 \ \ \
Blogger+QxBF+DepQBF +
L Blogger+DepQBF
900 QuBE7.2 x o ;f
QxBF+DepQBF = e

800 1 DepQBF = ° . ¥ 1
QuBE7.2-nopp ©

700 b

600
500

400

Time (seconds)

300

100 150 200 250 300 350 400 450 500
Solved Formulae

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

Conclusions

Drawbacks of Prenex CNF:
@ Quantifier prefix limits freedom of QBF decision procedures.
@ Linear ordering of variables might often be relaxed.

Dependency Schemes:
@ Variable independence: quality vs. efficiency of computation.
@ Related to QBF semantics: inherent property.
@ From linear to partial orders on variables: increased freedom.
@ Relevant for arbitrary QBF solvers.

DepQBF: search-based, competitive, open-source.
@ Combining QDPLL with Dt
@ Improved overall performance despite overhead.
@ Fewer backiracks, shorter learnt constraints, more implications.

Open Problems and Future Work:
@ Theoretical results related to QDPLL with D C D',
@ Applying more powerful dependency schemes than DS,
@ Constraint learning in QDPLL.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

References

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

[@ U. Bubeck and H. Kleine Biining.
Bounded Universal Expansion for Preprocessing QBF.
In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume 4501 of
LNCS, pages 244—-257. Springer, 2007.

ﬁ M. Benedetti.
Quantifier Trees for QBFs.
In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages
378-385. Springer, 2005.

ﬁ A. Biere.
Resolve and Expand.
In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume
3542 of LNCS, pages 59-70. Springer, 2004.

@ H. Kleine Buning, M. Karpinski, and A. Fldgel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12—18, 1995.

@ M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAL, pages 262—-267, 1998.

ﬁ E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

In AAAI/IAAI pages 649-654, 2002.

@ E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371-416, 2006.

@ R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas.
In U. Egly and C. G. Fermlller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160—175. Springer, 2002.

@ M. Samer and S. Szeider.
Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77-97, 2009.

[@ L.Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages
200-215. Springer, 2002.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving

