
1

Dependency Schemes and Search-Based QBF Solving:
Theory and Practice

Florian Lonsing

Friday, 27th April, 2012

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



2

Overview

Quantified Boolean Formulae (QBF):
Extension of propositional logic.

PSPACE-completeness (propositional logic: NP-completeness).

Applications in verification and MC: compact encodings.

This Work:
QBF solving: variable dependencies.

Dependency schemes to improve QBF solvers.

DepQBF: search-based QBF solver, integrates dependency schemes.

QBFEVAL’10 (568 formulae) – without preprocessing
Solved Avg. Time

DepQBF 372 334.60
QuBE7.2-nopp 319 431.47

Nenofex 211 573.65
Quantor 3.0 203 590.15

squolem 2.02 124 708.80

QBFEVAL’10 score-based ranking
DepQBF 2896.68

DepQBF-pre 2508.96
aqme-10 2467.96
qmaiga 2117.55

AIGSolve 2037.22
quantor-3.1 1235.14
struqs-10 947.83

nenofex-qbfeval10 829.11

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



3

SAT and QBF

Propositional Logic (SAT):
Boolean variables V := {x1, . . . , xn}, literals l := v and l := v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ), CNF φ :=
∧m

i:=1 Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF F := Q1x1 . . .Qnxn. φ, where Qi ∈ {∃,∀}, no free variables.

Qixi ≤ Qi+1xi+1: variables are linearly ordered.

Applications: compact encodings, e.g. bounded model checking (BMC).

QBF Semantics: recursively based on formula structure.

∀xφ is satisfiable iff both φ[x/0] and φ[x/1] are satisfiable.

∃xφ is satisfiable iff φ[x/0] or φ[x/1] is satisfiable.

Related to search-based QDPLL algorithm (see later).

Problem: prefix ordering might limit the freedom in QBF solving.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



4

Variable Dependencies

Semantical Evaluation:
Q1x1 . . .Qnxn. φ: must assign variables in prefix ordering in general.

∃a∀x ,y∃b. φ: assigning b is possible as soon as x and y are assigned.

Example (Depending Variables)

∀x∃y . (x = y) is satisfiable: value of y depends on value of x .

∃y∀x . (x = y) is unsatisfiable: value of y is fixed for all values of x .

Breaking the prefix ordering might yield unsound results!

Example (Independent Variables)

∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ ¬y) is satisfiable: assign x , then y .

∃y∀x . (x ∨ ¬y) ∧ (¬x ∨ ¬y) is satisfiable: assign y , then x .

Breaking the prefix ordering might be sound and increase freedom!

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



5

Dependency Representation

Goal: identify independent variables in a given PCNF.

x and y are independent if they can be assigned in arbitrary order.

Can we go from linear prefix ordering to partial ordering on variables?

Dependency Schemes: relation D ⊆ (V × V ). [SS09, Bie04, BB07, Ben05]

General framework for expressing (in)dependence in a given PCNF.

(x , y) 6∈ D: y independent from x .

(x , y) ∈ D: conservatively regard y as depending on x .

Interpret D as a partial ordering on the variables in general.

Interesting cases: (x , y) 6∈ D and (y , x) 6∈ D.

Assignment Trees:
Theoretical foundation of dependency schemes.

Tree-like models of PCNFs.

Represent choice of values for ∃-variables.

Explain variable independence.

r

¬x

¬y

x

y

∀x∃y . (x∨¬y)∧(¬x∨y).

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



6

Constructing Dependency Schemes

Syntactic Approaches: tradeoff quality vs. efficiency of computation.

Trivial dependency scheme Dtriv: given quantifier prefix.

Quantifier trees Dtree: non-deterministic mini-scoping.

Standard dependency scheme Dstd: connections between variables.

Dstd ⊆ Dtree ⊆ Dtriv: apply Dstd in practice.

Example (Dtreevs. Dstd)

∃a,b∀x ,y∃c,d . (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ d) ∧ (y ∨ d).

∃a

∀x

∃c

∃b

∀y

∃d

∃b

∃a

∀x

∃c

∀y

∃d

∃a

∀x

∃c

∃b

∀y

∃d

Either (a, y) ∈ Dtree or (b, x) ∈ Dtree but (a, y) 6∈ Dstd and (b, x) 6∈ Dstd.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



7

Dependency Graphs

Dependency Scheme D as Directed-Acyclic Graph (DAG):
Explicit edges x → y iff (x , y) ∈ D.

Compressed Dependency Graphs: equivalence relations, aux. edges.
“Outgoing” edges: x ≈↓ y iff D(x) = D(y).
“Incoming” edges: x ≈↑ y iff D−1(x) = D−1(y).
Efficient algorithm to compute graph for Dstd (see later).

Example

a

x1 x2 x3

y1 y2 y3

z1 z2

[a]↑ = [a]↓

[x1, x2]↑ = [x1, x2]↓ [x3]↑ = [x3]↓

[y1, y2]↑ = [y1, y2]↓ [y3]↑ = [y3]↓

[z1]↑ = [z1]↓ [z2]↑ = [z2]↓

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



8

QDPLL

State qdpll ()
while (true)
State s = qbcp ();
if (s == UNDET)
// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;

else
backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Backtracking Search with Constraint Learning:
Classical QDPLL based on quantifier prefix, i.e. Dtriv.
qbcp: propagate implied (i.e. necessary) assignments.
select_dec_var: decision making.
analyze_leaf: add learned constraint produced by Q-resolution.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



9

QDPLL with Dependency Schemes

State qdpll ()
while (true)
State s = qbcp ();
if (s == UNDET)
// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;

else
backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Replacing Dtriv with Arbitrary Dependency Scheme D ⊆ Dtriv:
Same basic framework: considering D as a parameter of QDPLL.
Only change: D used for dependency checking and decision making.
Expecting more implications, shorter learned constraints.
Expecting more freedom for selecting decision variables.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



10

Example: Dynamic Effects of Dependency Schemes in QDPLL

Constraint Reduction (CR):

Definition

Let D be a dependency scheme. Given a clause C, constraint reduction on C
by D produces the clause

CRD(C) := C \ {l ∈ L∀(C) | ∀l ′ ∈ L∃(C) : (v(l), v(l ′)) 6∈ D}.

Part of QBCP and Q-resolution for constraint learning.

Deleting “largest” universal literals: shortens clauses.

If D ⊂ D′, then CR by D might produce shorter clauses than CR by D′.

Potentially more unit/empty clauses.

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since (a, y) ∈ Dtriv.

Given D ⊆ Dtriv where (a, y) 6∈ D: a is reducible in (x ∨a∨ y), yielding (x ∨ y).

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



11

Experiments (1/5)

Dependency Graph for Dstd: efficient incremental construction.
Statistics for QBFEVAL’08 set (3328 formulae).
Max. time 8.11s, avg. time 0.09s.
Compare: explicit computation times out (900s) on 135 formulae.
For x ∈ V∀, x ∈ V∃, avg. |Dstd(x)| = 19807 and |Dstd(x)| = 4.
Graph compactly represents sets of depending variables.
Dep. classes/dep. variables: 0.01 and 0.02 for x ∈ V∀, x ∈ V∃.
Graph is tightly integrated in QDPLL.

State qdpll ()
while (true)

State s = qbcp ();
if (s == UNDET)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_constraint (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
R’ = get_antecedent (p);
R = constraint_res (R, p, R’);

add_to_formula (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-directed clause and solution-directed cube learning.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



12

Experiments (2/5)

Dependency Schemes in QDPLL: implemented in our solver DepQBF.
Pays off despite overhead.
Expect performance increase from more powerful dependency schemes.

Table: Comparing different dependency schemes in QDPLL.

QBFEVAL’08 (3326 formulae)
Dtriv Dtree Dstd QuBE6.6-nopp QuBE6.6

Solved 1223 1221 1252 1106 2277
Avg. Time 579.94 580.64 572.31 608.97 302.49

Table: Dynamic effects of different dependency schemes in QDPLL.

QBFEVAL’08 (solved only)
Dtriv ∩ Dtree Dtriv ∩ Dstd Dtree ∩ Dstd

solved 1172 1196 1206
time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%
backtracks 32431 27938 34323 31085 25106 26136

learnt constr. size 157 99 150 96 102 95

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



13

Experiments (4/5)

Table: DepQBF and other solvers with and without preprocessing.

QBFEVAL’10 (568 formulae) – with preprocessing
Solved Avg. Time SAT UNSAT

Bloqqer + QxBF + DepQBF 468 197.31 (16.47) 224 244
Bloqqer + DepQBF 466 198.50 (7.69) 223 243

QuBE7.2 435 264.70 (–) 202 233
QxBF+ DepQBF 378 323.19 (7.21) 167 211

QBFEVAL’10 (568 formulae) – without preprocessing
DepQBF 372 334.60 166 206

QuBE7.2-nopp 319 431.47 144 175
Nenofex 211 573.65 103 108

Quantor 3.0 203 590.15 99 104
squolem 2.02 124 708.80 53 71

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



14

Experiments (5/5)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100  150  200  250  300  350  400  450  500

T
im

e
 (

s
e
c
o
n
d
s
)

Solved Formulae

Bloqqer+QxBF+DepQBF
Bloqqer+DepQBF

QuBE7.2
QxBF+DepQBF

DepQBF
QuBE7.2-nopp

Figure: Sorted run times of selected solvers from Table 3.
Florian Lonsing Dependency Schemes and Search-Based QBF Solving



15

Conclusions

Drawbacks of Prenex CNF:
Quantifier prefix limits freedom of QBF decision procedures.

Linear ordering of variables might often be relaxed.

Dependency Schemes:
Variable independence: quality vs. efficiency of computation.

Related to QBF semantics: inherent property.

From linear to partial orders on variables: increased freedom.

Relevant for arbitrary QBF solvers.

DepQBF: search-based, competitive, open-source.

Combining QDPLL with Dstd.

Improved overall performance despite overhead.

Fewer backtracks, shorter learnt constraints, more implications.

Open Problems and Future Work:
Theoretical results related to QDPLL with D ⊆ Dtriv.

Applying more powerful dependency schemes than Dstd.

Constraint learning in QDPLL.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



16

References

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



17

U. Bubeck and H. Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume 4501 of
LNCS, pages 244–257. Springer, 2007.

M. Benedetti.
Quantifier Trees for QBFs.
In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages
378–385. Springer, 2005.

A. Biere.
Resolve and Expand.
In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume
3542 of LNCS, pages 59–70. Springer, 2004.

H. Kleine Büning, M. Karpinski, and A. Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAI, pages 262–267, 1998.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving



18

In AAAI/IAAI, pages 649–654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas.
In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

M. Samer and S. Szeider.
Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77–97, 2009.

L. Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages
200–215. Springer, 2002.

Florian Lonsing Dependency Schemes and Search-Based QBF Solving


