Submissions to QBFEVAL'16

Tomáš Balyo³ Uwe Egly¹ Charles Jordan⁴ Lukasz Kaiser⁵ Florian Lonsing¹ Johannes Oetsch¹ Martina Seidl²

¹Knowledge-Based Systems Group, Vienna University of Technology, Austria

²Institute for Formal Models and Verification, JKU Linz, Austria

³Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany

⁴Division of Computer Science, Hokkaido University, Japan

⁵LIAFA and CNRS, Université Paris Diderot, and Google Inc.

4th International Workshop on Quantified Boolean Formulas, 4 July 2016, Bordeaux, France (affiliated to SAT 2016)

Variants of DepQBF (1/2)

QCDCL with Generalized QRES Axioms: [LES16]

- Clause (cube) learning based on Q-resolution calculus (QRES).
- Traditional QCDCL: current assignment A either falsifies a clause or satisfies all clauses of PCNF ψ .
- Learning: QRES guided by assignment A.
- Idea: incomplete satisfiability testing of $\psi[A]$ to learn stronger clauses.
- Implementation in DepQBF, submitted three variants to QBFEVAL CNF track (heuristics, amount of preprocessing,...).
- Paper at SAT 2016.

\Rightarrow talk on Tuesday, session 11:00-12:30.

Variants of DepQBF (2/2)

Incremental Solving Track: [MMLB12, LE14, MMB15]

- Solve a sequence of PCNFs $\langle \psi_1, \ldots, \psi_n \rangle$.
- PCNF ψ_i is syntactically related to ψ_{i+1} .
- Reuse subset of clauses and cubes learned from ψ_i when solving ψ_{i+1} .
- Submitted DepQBF 5.0 (latest public version).

Certification Track:

- Tool suite QBFCert: extracting Herbrand (Skolem) functions from clause (cube) resolution proofs [NPL⁺12].
- For SAT/UNSAT: DepQBF 5.0 (without dynamic QBCE [LBB⁺15]).
- For UNSAT only: DepQBF 5.0 with dynamic QBCE (redundant clauses ignored for proof generation).

Parallel Solving of Primal/Dual Encodings

Solver "pd-par-depqbf":

- Idea: solve primal and dual encoding of non-CNF instance [VG13].
- Input: prenex non-CNF formula ψ .
- Encode ψ as prenex CNF ψ^+ via Tseitin translation, apply Bloqger.
- Encode $\neg \psi$ as prenex CNF ψ^- via Tseitin translation, apply Bloqger.
- Run two identical instances of DepQBF on ψ^+ and ψ^- in parallel.
- No communication between solver instances.
- Simple shell script controls solver instances, returns appropriate exit code after termination.

MPIDepQBF

Parallel QBF Solving Without Knowledge Sharing:

- MPI-based master-worker framework.
- Master splits search space into subproblems by assignments.
- Workers solve subproblems by solving input QBF under assumptions.
- Master combines results of subproblems.
- Workload balancing to avoid long idle times of workers.
- Integration of DepQBF in worker processes.
- Tool paper at SAT 2014 [JKLS14].

HordeQBF

Modular and Massively Parallel QBF Solving:

- Based on HordeSAT [BSS15].
- MPI-based parallel portfolio of arbitrary (Q)CDCL solvers.
- Parallel execution of identical (Q)CDCL solvers.
- Integration of DepQBF.
- No search-space partitioning.
- Solver instances are diversified by their parameters (heuristics,...).
- Frequent clause/cube sharing.
- Tool paper at SAT 2016: promising experiments, up to 1024 cores.

 \Rightarrow talk by Tomáš Balyo on Friday, session 11:00–12:40.

References I

Tomas Balyo, Peter Sanders, and Carsten Sinz.
HordeSat: A Massively Parallel Portfolio SAT Solver.
In SAT, volume 9340 of LNCS, pages 156–172. Springer, 2015.

Charles Jordan, Lukasz Kaiser, Florian Lonsing, and Martina Seidl. MPIDepQBF: Towards Parallel QBF Solving without Knowledge Sharing.

In SAT, volume 8561 of LNCS, pages 430–437. Springer, 2014.

Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl.

Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimination.

In LPAR, volume 9450 of LNCS, pages 418-433. Springer, 2015.

References II

Florian Lonsing and Uwe Egly. Incremental QBF Solving. In Barry O'Sullivan, editor, *CP*, volume 8656 of *LNCS*, pages 514–530. Springer, 2014.

Florian Lonsing, Uwe Egly, and Martina Seidl.
Q-Resolution with Generalized Axioms.
CoRR, abs/1604.05994, 2016.
Preprint of SAT 2016 proceedings version (to appear in LNCS, Springer) with appendix.

Christian Miller, Paolo Marin, and Bernd Becker. Verification of partial designs using incremental QBF. *Al Commun.*, 28(2):283–307, 2015.

References III

Paolo Marin, Christian Miller, Matthew D. T. Lewis, and Bernd Becker.

Verification of Partial Designs using Incremental QBF Solving. In Wolfgang Rosenstiel and Lothar Thiele, editors, *DATE*, pages 623–628. IEEE, 2012.

 Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere.
Resolution-Based Certificate Extraction for QBF - (Tool Presentation).
In Alessandro Cimatti and Roberto Sebastiani, editors, SAT, volume 7317 of LNCS, pages 430–435. Springer, 2012.

References IV

Allen Van Gelder.

Primal and Dual Encoding from Applications into Quantified Boolean Formulas. In Christian Schulte, editor, *CP*, volume 8124 of *LNCS*, pages

694–707. Springer, 2013.