
1

Integrating Dependency Schemes in
Search-Based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

http://fmv.jku.at

SAT’10
July 11 - July 14, 2010

Edinburgh, Scotland, United Kingdom

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

http://fmv.jku.at

2

Overview

Search-based QBF Solving for Prenex-CNF (PCNF): QDPLL
Classical approach relies on linear quantifier prefix: Q1Q2 . . .Qn. φ.

Analyzing variable dependencies: can prefix order be relaxed?

Example (Dependencies: quantifier ordering matters)

∀x∃y . (x = y) is satisfiable: value of y depends on value of x .

∃y∀x . (x = y) is unsatisfiable: value of y is fixed for all values of x .

This Talk:

Making QDPLL aware of dependencies.

Identifying independence.

Search-based QBF solving +
dependency analysis.

Implementation: DepQBF.

Solver Score
DepQBF 2896.68

DepQBF-pre 2508.96
aqme-10 2467.96
qmaiga 2117.55

AIGSolve 2037.22
quantor-3.1 1235.14
struqs-10 947.83

nenofex-qbfeval10 829.11

QBFEVAL’10: score-based ranking.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

3

Dependency Representation

[SS09, Bie04, BB07, Ben05]

Dependency Schemes: D ⊆ (V∃ × V∀) ∪ (V∀ × V∃).

General framework for expressing (in)dependence in PCNFs.

(x , y) 6∈ D: y independent from x .

(x , y) ∈ D: conservatively regard y as depending on x .

D as Directed-Acyclic Graph (Dependency-DAG):
Edges x → y iff (x , y) ∈ D.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

4

Constructing Dependency Schemes

Syntactic Approaches:
Trivial dependency scheme Dtriv (given prefix).

Quantifier trees Dtree.

Standard dependency scheme Dstd.

Theory: Dstd ⊆ Dtree ⊆ Dtriv.

Example

∃a,b∀x ,y∃c,d . (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ d) ∧ (y ∨ d).

∃a

∀x

∃c

∃b

∀y

∃d

∃a

∃d

∃b

∀y∀x

∃c

∃a ∃b

∀y∀x

∃c ∃d

Dtree DtrivDstd

Goal: dependency-DAG for Dstd in QDPLL⇒ expecting more freedom.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

5

Dependency-Aware QDPLL

[CGS98, GNT07, LB09, LB10]

Related Work:
Classical result: description of QDPLL with Dtriv.

First generalization: QDPLL with Dtree.

Our Results:
Description of QDPLL for arbitrary dependency schemes.

Solver DepQBF: implementation of QDPLL with Dstd.

Previous work: compact dependency-DAG representation for Dstd.

Experimental evaluation.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

6

QDPLL

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

7

QDPLL with Dependency Schemes

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))
p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Parts to be Generalized from Dtriv to Arbitrary D ⊆ Dtriv:
Unit literal detection: expecting more units.
Learning: expecting shorter constraints and “enabled” resolution steps.
Stop criterion/asserting level: expecting longer backjumps.
Selection of decision variables: expecting more freedom.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

8

Focus: Decision Making

Decisions and Dependency-Order:
Out-of-order decisions: generally unsound⇒ must branch in “D-order”.

Example

∃a∀x ,y∃b. φ: branching on b possible by Dtriv only if x , y assigned.

Decision Candidates (DC):
Def.: unassigned variables x where all y ∈ D(x) are assigned.

Candidate has all “preconditions” wrt. D assigned, i.e. is enabled.

Example

∃a∀x ,y∃b. φ: assigning a enables x and y by Dtriv.

Lazy DC-Maintenance:
DCs needed exactly before making a decision and not e.g. during BCP.

Defer updating set of DCs as long as possible.

Exploit DAG structure for incremental updates.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

9

Decision Making: Compact Dependency-DAG for Dstd

[LB09]

∃y1, y2

∀x5

∃y3, y4 ∃y5

∃y6

∀x3, x4

∀x1, x2

=⇒

For simplicity: ignoring dependencies of the form ∃x → ∀y .

DAG: edges x → y iff (x , y) ∈ D.

Construct dependency-DAG over equivalence classes of variables.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

10

Decision Making: Compact Dependency-DAG for Dstd

[LB09]

∃y1, y2

∀x5

∃y3, y4 ∃y5

∃y6

∀x3, x4

∀x1, x2

=⇒

∃y1, y2

[∀x5]

∃y3, y4 ∃y5

∃y6

[∀x3, x4]

[∀x1, x2]

Merge ∀x and ∀y if have same outgoing pointers, i.e. D(x) = D(y).

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

11

Decision Making: Compact Dependency-DAG for Dstd

[LB09]

∃y1, y2

[∀x5]

∃y3, y4 ∃y5

∃y6

[∀x3, x4]

[∀x1, x2]

=⇒

[∃y1, y2]

[∀x5]

[∃y3, y4] [∃y5]

[∀x3, x4]

[∀x1, x2]

[∃y6]

Merge ∃x and ∃y if have same incoming pointers, i.e. D(x) = D(y).

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

12

Decision Making: Compact Dependency-DAG for Dstd

[LB09]

[∃y1, y2]

[∀x5]

[∃y3, y4] [∃y5]

[∀x3, x4]

[∀x1, x2]

[∃y6]

=⇒

[∃y1, y2]

[∀x5]

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]

[∀x1, x2]

⊆

⊆ ⊆

Add non-transitive edges [∃x]→ [∃y] if D(x) ⊆ D(y).

Delete redundant ∀ → ∃ edges.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

13

Decision Making: Compact Dependency-DAG for Dstd

[LB09]

∃y1, y2

∀x5

∃y3, y4 ∃y5

∃y6

∀x3, x4

∀x1, x2

=⇒

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=2

[∀x1, x2]c=2

Only fully assigned classes possibly enable new candidates.

Counters c in ∀-classes: number of unassigned variables in class.

Relevant cases: c = 1→ c = 0 and c = 0→ c = 1.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

14

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=2

[∀x1, x2]c=2

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

15

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀ 6x3, x4]c=1

[∀x1, x2]c=2

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

16

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=0

[∀x1, x2]c=2

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

17

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=0

[∀ 6x1, x2]c=1

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

18

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2]

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

19

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2] DC

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

20

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2] DC

[∀x5]c=1

[∃y3, y4] [∃y5]

[∃y6]

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

21

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6]

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

DC [∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

22

Decision Making: Example

Assign x3: c = 2→ c = 1.
No change, x4 still unassigned.

Assign x4: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
Parent [∃y1, y2] of [∃y3, y4] not DC.
[∃y1, y2] has unassigned [∀]-refs.
[∃y3, y4] also ref’d by [∀x1, x2].
⇒ [∃y3, y4] not DC.

Assign x1: c = 2→ c = 1.
No change, x2 still unassigned.

Assign x2: c = 1→ c = 0.
Follow [∀]→ [∃]→∗ [∃] edges.
[∃y1, y2] new DC: no unassigned [∀]-refs.
[∃y5] not DC, has unassigned [∀]-refs.
[∃y3, y4] new DC: parent [∃y1, y2] DC and
no unassigned [∀]-refs.
[∃y6] new DC: parent [∃y3, y4] DC and no
unassigned [∀]-refs.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6] DC

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

DC [∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

23

Decision Making: Backtracking Example

Unassign x3: c = 0→ c = 1.
Follow [∀]→ [∃]→∗ [∃] edges.
Disabling [∃y3, y4], ref’d by [∀x3, x4].
Disabling [∃y6], ref’d by [∃y3, y4].

Unassign x4: c = 1→ c = 2.
No additional work done.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6] DC

[∀x3, x4]c=0

[∀x1, x2]c=0

DC DC

DC

DC [∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

24

Decision Making: Backtracking Example

Unassign x3: c = 0→ c = 1.
Follow [∀]→ [∃]→∗ [∃] edges.
Disabling [∃y3, y4], ref’d by [∀x3, x4].
Disabling [∃y6], ref’d by [∃y3, y4].

Unassign x4: c = 1→ c = 2.
No additional work done.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6] DC

[∀x3, 6x4]c=1

[∀x1, x2]c=0

DC DC

DC

DC [∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

25

Decision Making: Backtracking Example

Unassign x3: c = 0→ c = 1.
Follow [∀]→ [∃]→∗ [∃] edges.
Disabling [∃y3, y4], ref’d by [∀x3, x4].
Disabling [∃y6], ref’d by [∃y3, y4].

Unassign x4: c = 1→ c = 2.
No additional work done.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6] DC

[∀x3, 6x4]c=1

[∀x1, x2]c=0

DC DC

DC

[∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

26

Decision Making: Backtracking Example

Unassign x3: c = 0→ c = 1.
Follow [∀]→ [∃]→∗ [∃] edges.
Disabling [∃y3, y4], ref’d by [∀x3, x4].
Disabling [∃y6], ref’d by [∃y3, y4].

Unassign x4: c = 1→ c = 2.
No additional work done.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6]

[∀x3, 6x4]c=1

[∀x1, x2]c=0

DC DC

DC

[∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

27

Decision Making: Backtracking Example

Unassign x3: c = 0→ c = 1.
Follow [∀]→ [∃]→∗ [∃] edges.
Disabling [∃y3, y4], ref’d by [∀x3, x4].
Disabling [∃y6], ref’d by [∃y3, y4].

Unassign x4: c = 1→ c = 2.
No additional work done.

[∃y1, y2] DC

[∀x5]c=1

[∃y5]

[∃y6]

[∀x3, x4]c=2

[∀x1, x2]c=0

DC DC

DC

[∃y3, y4]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

28

Experimental Results 1/5

QBFEVAL’08 (3326 formulae)

Dtriv Dtree Dstd QuBE6.6-np QuBE6.6
solved 1223 1221 1252 1106 2277

avg. time 579.94 580.64 572.31 608.97 302.49
QBFEVAL’07 (1136 formulae)

solved 533 548 567 458 734
avg. time 497.12 484.69 469.97 549.29 348.05

Table: Comparison of DepQBF with Dstd ⊆ Dtree ⊆ Dtriv and QuBE6.6.

DepQBF:
QDPLL for PCNF with with clause- and cube-learning.

Dependency-DAG for Dstd (primary), and Dtree, Dtriv (experimentally).

No preprocessing.

Dstd pays off despite DAG-overhead.

More solved instances in less time.

But: preprocessing is important.

Reference: QuBE6.6 with(out) preprocessing (QuBE6.6-np) [GNT01].

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

29

Experimental Results 2/5: QBFEVAL’10

QBFEVAL’10 main track (568 formulae)
Solved+Unsolved Solved SAT Solved UNSAT

solved avg.time solved avg.time solved avg.time
QuBE7.0-pre⇒DepQBF 424 254.23 197 48.17 227 23.42

QuBE7 414 310.29 187 130.52 227 58.33
QuBE6.6 387 341.91 168 98.97 219 67.03

without preprocessing
DepQBF 370 337.10 165 54.58 205 20.82

QuBE7.0-np 332 425.44 135 147.71 197 47.27
QuBE6.6-np 301 468.51 113 136.48 188 55.27

Table: Comparison of DepQBF with Dstd and state-of-the-art QBF solvers. Ranking by
number of solved formulae. Statistics include time for preprocessing.

Preprocessing:
DepQBF with Dstd: best both with and without preprocessing.

QuBE7.0-pre: preprocessor integrated in QuBE7.0 [GMN10].

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

30

Experimental Results 3/5: QBFEVAL’10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400 450

tim
e

(s
ec

on
ds

)

solved formulae

 DepQBF
QuBE7.0-np
QuBE6.6-np

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

31

Experimental Results 4/5: QBFEVAL’10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400 450

tim
e

(s
ec

on
ds

)

solved formulae

QuBE7.0-pre->DepQBF
QuBE7

QuBE6.6

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

32

Experimental Results 5/5: QBFEVAL’10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400 450

tim
e

(s
ec

on
ds

)

solved formulae

QuBE7.0-pre->DepQBF
QuBE7

QuBE6.6
DepQBF

QuBE7.0-np
QuBE6.6-np

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

33

Conclusion

QDPLL with Dependency Schemes:
D ⊆ Dtriv relaxes prefix order to allow more freedom in QDPLL.

Implementation: QDPLL-based solver DepQBF.

Compact dependency-DAG for Dstd over equivalence classes.

Top-ranked solver in QBFEVAL’10: Dstd pays off despite DAG-overhead.

See also Pragmatics of SAT 2010 (POS’10) workshop:
“DepQBF: A Dependency-Aware QBF Solver (System Description)”.

Future Work:
Preprocessing,. . .

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

http://fmv.jku.at/depqbf/

34

[APPENDIX] – QDPLL 1/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

35

[APPENDIX] – QDPLL 2/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Boolean Constraint Propagation (BCP):
Assigning unit and pure literals.
Augmented CNF: φ := φOCL ∧ φLCL ∨ φOCU .
Original clauses φOCL, learnt clauses φLCL and learnt cubes φLCU .

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

36

[APPENDIX] – QDPLL 3/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Decision Making:
BCP saturated without detecting conflict/solution.
Select and assign one decision candidate.
Candidates: according to dependency scheme and partial assignment.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

37

[APPENDIX] – QDPLL 4/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Result Analysis:
BCP detected conflict/solution.
Conflict: empty clause.
Solution: satisfying assignment or satisfied learnt cube.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

38

[APPENDIX] – QDPLL 5/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Constraint Learning:
Init. from conflict: empty clause.
Init. from solution: sat. cube or new cube from satisfying assignment.
Resolution/consensus: antecedents of units in current clause/cube.
First-UIP: generalized stop criterion.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

39

[APPENDIX] – QDPLL 6/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_dec_var ();
assign_dec_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtrack:
Assumption: learning always produces asserting constraints.
Backtrack to asserting level.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

40

[APPENDIX] – Unit Literal Detection

[CGS98, GNT02, ZM02, GNT07]

Given dependency scheme D for PCNF. Write x ≺ v if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C is unit iff (Dual definition for cubes.)

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

Example: ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z (because ∀a before ∃z).

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effects:
Expecting more units when using D ⊆ Dtriv.

Combining two-literal watching with dependency checking.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

41

[APPENDIX] – Constraint Reduction

[BKF95, GNT02, ZM02]

Constraint Reduction: universal/existential reduction of clauses/cubes.

Definition (Universal Reduction of Clauses)

A universal literal lu ∈ L∀(C) can be deleted from a clause C iff

there is no le ∈ L∃(C) with lu ≺ le.

The result of saturated universal reduction is denoted by CR(C).

(Dual definition of existential reduction for cubes.)

Example: ∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since a ≺ y .

Given D ⊆ Dtriv where a 6≺ y : a is reducible in (x ∨ a ∨ y), yielding (x ∨ y).

Practical Effects:
Expecting shorter learnt constraints when using D ⊆ Dtriv.

Combining constraint reduction with dependency checks.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

42

[APPENDIX] – Constraint Resolution

[BKF95, GNT02, ZM02, Let02, GNT06]

Constraint Resolution: Q-resolution/consensus of clauses/cubes.

Definition (Q-resolution for Clauses)
Clarifies Def. 7 in paper.

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If C contains complementary literals then no resolvent exists.
3 Otherwise, resolvent C′ := CR(C) of C1 and C2 on v : {C1,C2} `v C′.

(Dual definition of consensus for cubes.)

Example: ∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y : {C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effects:
Possible reductions of “resolution-blocking” literals when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

43

[APPENDIX] – Stop Criterion

[ZM02, GNT06]

Definition (Asserting Clause/Level)
Clarifies Def. 8 from paper. See also function get_reason_asserting_level in DepQBF 0.1 source code.

Let R be a resolvent i.e. {. . .} `∗ R. Let d := max({dl(l) | l ∈ L∃(R)}). R is
asserting at a := max({dl(l) < d | l ∈ L∃(R) or l ∈ L∀(R) with l ≺ d}) iff

1 the decision variable at level d is existential,
2 there is exactly one l ∈ L∃(R) with dl(l) = d ,
3 for all lu ∈ L∀(R) where lu ≺ l : lu must be assigned false with dl(lu) < d .

(Dual definition for asserting cubes.)

Example: . . . ∃x . . . ∀a . . . ∃y ,z . . . φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: in (
@1
x ∨

@3
a ∨

@2
y ∨

@4
z), z is unit at level 3.

Given D ⊆ Dtriv where a 6≺ z: in (
@1
x ∨

@3
a ∨

@2
y ∨

@4
z), z is unit at level 2.

Practical Effects:
Possibly longer backjumps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

44

U. Bubeck and H. Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume 4501 of
LNCS, pages 244–257. Springer, 2007.

M. Benedetti.
Quantifier Trees for QBFs.
In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages
378–385. Springer, 2005.

A. Biere.
Resolve and Expand.
In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume
3542 of LNCS, pages 59–70. Springer, 2004.

H. Kleine Büning, M. Karpinski, and A. Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAI, pages 262–267, 1998.

E. Giunchiglia, P. Marin, and M. Narizzano.
sQueezeBF: An Effective Preprocessor for QBFs.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

45

In O. Strichman and S. Szeider, editors, SAT (accepted for publication),
LNCS. Springer, 2010.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
QUBE: A System for Deciding Quantified Boolean Formulas
Satisfiability.
In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of
LNCS, pages 364–369. Springer, 2001.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.
In AAAI/IAAI, pages 649–654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Quantifier Structure in Search-Based Procedures for QBFs.
TCAD, 26(3):497–507, 2007.

F. Lonsing and A. Biere.
A Compact Representation for Syntactic Dependencies in QBFs.
In O. Kullmann, editor, SAT, volume 5584 of LNCS, pages 398–411.
Springer, 2009.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

46

F. Lonsing and A. Biere.
DepQBF: A Dependency-Aware QBF Solver (System Description).
In A. Van Gelder and D. Le Berre, editors, Pragmatics of SAT Workshop
(POS), accepted for publication, 2010.

R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas.
In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

M. Samer and S. Szeider.
Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77–97, 2009.

L. Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages
200–215. Springer, 2002.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

