Integrating Dependency Schemes in

Search-Based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria
http://fmv. jku.at

SAT’'10
July 11 - July 14, 2010
Edinburgh, Scotland, United Kingdom

ANES eI | IKU .

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

http://fmv.jku.at

Overview

Search-based QBF Solving for Prenex-CNF (PCNF): QDPLL
@ Classical approach relies on linear quantifier prefix: Q1 Qs ... Qn. ¢.
@ Analyzing variable dependencies: can prefix order be relaxed?

Example (Dependencies: quantifier ordering matters)

@ Vx3y. (x = y) is satisfiable: value of y depends on value of x.
@ JyVvx. (x = y) is unsatisfiable: value of y is fixed for all values of x.

This Talk:

[Solver [Score]

@ Making QDPLL aware of dependencies. DepQBF 2896.68

e . DepQBF-pre 2508.96

@ Identifying independence. agme-10 5467.96

° _ i gmaiga 2117.55

Search-based QBF.soIvmg + A A

dependency analysis. quantor-3.1 153514

@ Implementation: DepQBF. strugs-10 947.83

plementatio epQ nenofex-gbfeval10 829.11

QBFEVAL10: score-based ranking.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Dependency Representation

[SS09, Bie04, BB07, Ben05]

Dependency Schemes: D C (V3 x W)U (Ve x V3).
@ General framework for expressing (in)dependence in PCNFs.
@ (x,y) ¢ D: y independent from x.
@ (x,y) € D: conservatively regard y as depending on x.

D as Directed-Acyclic Graph (Dependency-DAG):
@ Edges x — yiff (x,y) € D.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Constructing Dependency Schemes

Syntactic Approaches:
e Trivial dependency scheme D' (given prefix).
@ Quantifier trees D"®.
@ Standard dependency scheme D™,
@ Theory: DY C piee C piv,

Example
Ja,bvx,y3c,d. (avVxVve)A(avb)A(bvd)A(yVd).
da b Ja = =
| ' /\ 3 =
Yz Yy ¥ Vz vy
} ! oo =
Je 3d o o Je 3d
Dstd Dtree Dtriv

Goal: dependency-DAG for D*“ in QDPLL = expecting more freedom.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Dependency-Aware QDPLL

[CGS98, GNT07, LB09, LB10]

Related Work:
@ Classical result: description of QDPLL with D',
@ First generalization: QDPLL with D",

Our Results:
@ Description of QDPLL for arbitrary dependency schemes.
@ Solver DepQBF: implementation of QDPLL with D,
@ Previous work: compact dependency-DAG representation for D,
@ Experimental evaluation.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

DPLL

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bep ();
if (s == UNDEF)
// Make decision.
v = select_dec_var ();
assign_dec_var (v);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s UNSAT: 'R’ is empty clause.
// s SAT: 'R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

else
= R);
// Conflict or solution. i _ gztigizzzed(eljc (o)
// s == UNSAT or s == SAT. get— phi
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) P A
assign_forced_lit (R);
return s; .
else return get_asserting_level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

nsing and Armin Biere Integrating Dependency Schemes in Searcl

QDPLL with Dependency Schemes

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bep ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);

s // s == UNSAT: 'R’ is empty clause.
// Make decision. // s == SAT: 'R’ is sat. cube...
v = select dec var (); // ..or new cube from assignment.

assign_dec_var (v); while (!stop_res (R))

else -
// Conflict or solution. g _ g:éﬁ;z:zeézllé (o)
// s == UNSAT or s == SAT. get_ante bl
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) T o
return ss assign_forced_lit (R);
else ! return get_asserting level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Parts to be Generalized from D'V to Arbitrary D C D'":
@ Unit literal detection: expecting more units.
@ Learning: expecting shorter constraints and “enabled” resolution steps.
@ Stop criterion/asserting level: expecting longer backjumps.
@ Selection of decision variables: expecting more freedom.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Focus: Decision Making

Decisions and Dependency-Order:
@ Out-of-order decisions: generally unsound = must branch in “D-order”.

Javx,y3b. ¢: branching on b possible by D only if x, y assigned.

Decision Candidates (DC):
@ Def.: unassigned variables x where all y € D(x) are assigned.
@ Candidate has all “preconditions” wrt. D assigned, i.e. is enabled.

Javx,y3b. ¢: assigning a enables x and y by D'". j

Lazy DC-Maintenance:

@ DCs needed exactly before making a decision and not e.g. during BCP.
@ Defer updating set of DCs as long as possible.
@ Exploit DAG structure for incremental updates.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Compact Dependency-DAG for DSt

[LBO9]

Jye

@ For simplicity: ignoring dependencies of the form Ix — Vy.
@ DAG: edges x — y iff (x,y) € D.
@ Construct dependency-DAG over equivalence classes of variables.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Compact Dependency-DAG for DS

[LBO9]

[va], .TQ]

Jy1, vo

[Vl 5]

Jys Jys

@ Merge Vx and Vy if have same outgoing pointers, i.e. D(x) = D(y).

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Compact Dependency-DAG for DS

[LB0O9]
[V, 2 [Vy, zo]

[Vl 5]

(Fys,va] [Bysl

Jys B

@ Merge 3x and 3y if have same incoming pointers, i.e. D(x) = D(y).

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Compact Dependency-DAG for DS

[LB0O9]
[Va1, 2o] [sz 2
EZ/l«,Zh]
N/
(Fys,ya] [Fys] (Fys.va] [Bys]
7
[3.7/6] [3?/6}

@ Add non-transitive edges [3x] — [3y] if D(x) C D(y).
@ Delete redundant V — 3 edges.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Compact Dependency-DAG for DS

[LBO09]
[Vl’ 15 $2}c:2

[Fy1,v2]

—— [VI37 -Tdc:? [V«Ts}c—l

NV

Bys,ya] [Bys]

Jys BT

@ Only fully assigned classes possibly enable new candidates.
@ Counters c in V-classes: number of unassigned variables in class.
@ Relevantcases:c=1—c=0andc=0—c=1.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

DC
[V-Th 352]6:2
[Fy1, 2
DC DC
[szs, 1’4]6:2 [Vl's]c:1

/

[3113, Z/4] [3.7/5]

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
e No change, x; still unassigned. V1, 22)e=

[By1, v2]

DC DC
[V%‘, 1'4]6:1 [Vl's]c:1

/

[3113, Z/4] [3.7/5]

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
e No change, x; still unassigned. V1, 22)e=
@ Assign xs:c=1—c=0.

e Follow [V] — [3] —* [J] edges.
e Parent [Jyy, yo] of [3}’&}’4] not DC. By, s
@ [3yy, yo| has unassigned [V]-refs. 72
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [Jys, y4] not DC.
[Bys, yal bo b
37 T a]c=l [V'TS]C:I

[3113, Z/4] [3.7/5]

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC

@ No change, x4 still unassigned. (Y91, wale=a
@ Assign xs:c=1—c=0.
Follow [V] — [3] —* [3J] edges.
Parent [3y;, yo] of [3ys, y4] not DC.
@ [3y1, yo| has unassigned [V]-refs.
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assignxi:c=2—c=1.

[By1, v2]

DC DC
3y v a]c=l [V'TS]C:I

@ No change, x, still unassigned.
“u /

[3113, Z/4] [3.7/5]

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2 —c=1. DC

@ No change, x4 still unassigned. E 1 E2e=
@ Assign xs:c=1—c=0.
Follow [V] — [3] —* [3J] edges.
Parent [3y;, yo] of [3ys, y4] not DC.
@ [3y1, yo| has unassigned [V]-refs.
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assign x;:c=2—c=1.

@ No change, x, still unassigned.
@ Assign x.: c=1—c=0.

e Follow [V] — [J] —* [J] edges.

[By1, v2]

DC DC
37 T a]c=l [V'TS]C:I

o
[3113, Z/4] [3.7/5]

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
@ No change, x4 still unassigned. FITZIeS
@ Assign xs:c=1—c=0. j
Follow [V] — [J] —* [J] edges. V
Parent [3y;, yo] of [3ys, y4] not DC.
e [Jy1, yo| has unassigned [V]-refs. By, y2] DO
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assignx;:c=2—-c=1. DC“ VDC
@ No change, x, still unassigned. o Va5l
@ Assignxo:c=1—c¢c=0.
e Follow [v] — [3] —* [3] edges. N
@ [3y1, ¥o] new DC: no unassigned [V]-refs. EEEA
(Fys]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
@ No change, x4 still unassigned. FITZIeS
@ Assign xs:c=1—c=0. j
Follow [V] — [J] —* [J] edges. V
Parent [3y;, yo] of [3ys, y4] not DC.
e [Jy1, yo| has unassigned [V]-refs. By, 42] DO
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assign x;:c=2—c=1. DC“ [vaC]
o No change, x» still unassigned. e et
@ Assign xo: c=1—¢c=0.
e Follow [v] — [3] —* [3] edges. N
@ [3y1, y=] new DC: no unassigned [V]-refs. [Fys,a] [Bus)
e [Jys] not DC, has unassigned [V]-refs. ;o ’
(Fys]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
@ No change, x4 still unassigned. FITZIeS
@ Assign xs:c=1—c=0. j
Follow [V] — [J] —* [J] edges. V
Parent [3y;, yo] of [3ys, y4] not DC.
e [Jy1, yo| has unassigned [V]-refs. By, y2] DO
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assignxi:c=2—c=1.

DC DC
3y v a]c=l [V'TS]C:I

@ No change, x, still unassigned.
@ Assign x: c=1—c=0.
Follow [v] — [3] —* [3] edges. h

A
[3y1, y2] new DC: no unassigned [V]-refs. DC [Fys,ya] [Fys)
[3ys] not DC, has unassigned [V]-refs. i
[3ys, ya] new DC: parent [3yq, y»] DC and
no unassigned [V]-refs.

B

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Example

@ Assignxzg:c=2—c=1. DC
@ No change, x4 still unassigned. TS
@ Assign xs:c=1—c=0. j
Follow [V] — [J] —* [J] edges. V
Parent [3y;, yo] of [3ys, y4] not DC.
e [Jy1, yo| has unassigned [V]-refs. By, 42] DO
o [Jys, y4] also ref'd by [Vxq, Xo].
@ = [3ys, y4] not DC.

@ Assignxi:c=2—c=1.

DC DC
37 v a]c=l [V'TS]C:I

@ No change, x, still unassigned.
@ Assign x: c=1—c=0.
Follow [v] — [3] —* [3] edges. h

A
[3y1, y2] new DC: no unassigned [V]-refs. DC [Fys,yd] [Fys)
[3ys] not DC, has unassigned [V]-refs. i
[3ys, ya] new DC: parent [3yq, y»] DC and
no unassigned [V]-refs.
[3y6] new DC: parent [3ys, y4] DC and no
unassigned [V]-refs.

[3ys] DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Backtracking Example

DC

[31/1 ?/z] DC

%—l—ﬂ—n/\ Vls

3% U4 3%

[Elys] DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Backtracking Example

DC

\J
[3111;?/2] DC
@ Unassign x3:c=0—c=1.

Foll 3] —-* [3 .
e Follow [V] — [3] —* [3] edges DC DC

[vxlia '1/4](::1 [v.l‘s](::l

NV

DC [Jys,ya] [Fys)

[3ys] DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Backtracking Example

DC

\j
[3111;?/2] DC
@ Unassign x3:c=0—c=1.
e Follow [V] — [J] —* [J] edges. e e
o Disabling [Jys, y4], ref'd by [Vxs, X4]-
[VIzi,%]aﬂ [Vl's]czl

NV

[3113, Z/4] [3.7/5]

[3ys] DC

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Backtracking Example

DC

\
[3y1,42) DC
@ Unassign x3:c=0—c=1.
e Follow [V] — [J] —* [J] edges.
o Disabling [Jys, y4], ref'd by [Vxs, X4]- DC DC
o Disabling [Jyg], ref'd by [3ys, ya]. Va3, %) e=1 [Vs]e=1

NV

[3113, Z/4] [3.7/5]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Decision Making: Backtracking Example

DC

\
[3y1,42) DC
@ Unassign x3:c=0—c=1.
e Follow [V] — [J] —* [J] edges.
o Disabling [Jys, y4], ref'd by [Vxs, X4]- DC DC
o Disabling [Jyg], ref'd by [3ys, ya]. V3, T4]e=n [Vs]e=1

@ Unassignxs:c=1—c=2.
o No additional work done.

[3113, Z/4] [3.7/5]

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Experimental Results 1/5

QBFEVAL08 (3326 formulae)

l l
[[0™ T D™ T D T QuBE6.6-np | QuBE6.6]
[solved || 1223 | 1221 | 1252 || 1106 | 2277 |
[avg. fime || 579.94 | 580.64 | 572.31 || 60897 | 30249 |
[QBFEVAL07 (1136 formulae) |
[solved || 533 | 548 | 567 [458 | 734 |
[_avg. time || 497.12 | 484.69 | 469.97 || 54929 | 348.05 |

Table: Comparison of DepQBF with Ds'd C ptree C DtV and QUBES6.6.

DepQBF:
@ QDPLL for PCNF with with clause- and cube-learning.
@ Dependency-DAG for D* (primary), and D¢, D' (experimentally).
@ No preprocessing.
@ D pays off despite DAG-overhead.
@ More solved instances in less time.
@ But: preprocessing is important.
@ Reference: QuBEB6.6 with(out) preprocessing (QuBEG6.6-np) [GNTO1].

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Experimental Results 2/5: QBFEVAL10

[QBFEVALT0 main track (568 formulae) |
[[[Solved+Unsolved | Solved SAT [[Solved UNSAT |

solved | avg.time solved | avg.time solved | avg.time

QuBE7.0-pre=-DepQBF 424 254.23 197 48.17 227 23.42
QuBE7 414 310.29 187 130.52 227 58.33
QuBE6.6 387 341.91 168 98.97 219 67.03

[without preprocessing |
DepQBF 370 337.10 165 54.58 205 20.82
QuBE7.0-np 332 425.44 135 147.71 197 47.27
QuBEB6.6-np 301 468.51 113 136.48 188 55.27

Table: Comparison of DepQBF with D! and state-of-the-art QBF solvers. Ranking by
number of solved formulae. Statistics include time for preprocessing.

Preprocessing:
@ DepQBF with D*%: best both with and without preprocessing.
@ QuBE7.0-pre: preprocessor integrated in QUBE7.0 [GMN10].

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Experimental Results

900 T T
DepQBF ©

QUuBE7.0-np

800 | QuBE6.6-np ©

700 |-) ! .

600 | f v -
8

500 |- .
o

400 | . i

time (seconds)
o]

300 -

200 -

100 |

0 50 100 150 200 250 300 350 400 450
solved formulae

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

time (seconds)

Experimenta

| Results 4/5: QBFEVAL

900

800 -

700 -

600 -

500 -

400

QuBE‘7.0-pre->E‘)epQBF Ty
QuBE7
QuBE6.6 *

300 -

200 -

100 |

0 50 100 150

Florian Lonsing and Armin Biere

Integrating Dependency Schemes in Search-Based QBF Solvers

Experimental Results 5/5: QBFEVAL

900 T T T
QUuBE7.0-pre->DepQBF
QuBE7
800 QUuBEG6.6 i
DepQBF
QUuBE7.0-np
700 QuBEG6.6-np i
600 B
v
2
§ 500 R
(8]
@
2
o 400 | B
£
300 R
200 b
100 | b
0 n n ..l -
0 50 100 150 200 250 300 350 400 450

solved formulae

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

Conclusion

QDPLL with Dependency Schemes:
@ D C D" relaxes prefix order to allow more freedom in QDPLL.

Implementation: QDPLL-based solver DepQBF.
@ Compact dependency-DAG for D* over equivalence classes.
@ Top-ranked solver in QBFEVAL10: D* pays off despite DAG-overhead.

@ See also Pragmatics of SAT 2010 (POS’10) workshop:
“DepQBF: A Dependency-Aware QBF Solver (System Description)”.

Future Work:
@ Preprocessing,. ..

DepQBF 0.1 is open source: http://fmv.jku.at/depgbf/

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

http://fmv.jku.at/depqbf/

[APPENDIX] DPLL 1

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);

UNSAT: 'R’ i ty cl .
// Make decision. /] s : R’ is empty clause
// s SAT: 'R’ is sat. cube...
v = select_dec_var (); N
assign_dec var (v): // ..or new cube from assignment.
gn_dec_ ’ while (!stop_res (R))
else = get_pivot (R);
// Conflict or solution. i _ getianteceden"c (®);
// s == UNSAT or s == SAT. get— Bl
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) T A
assign_forced_lit (R);
return s; .
else return get_asserting_level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

sing and Armin Biere Integrating Dependency Schemes in Search-Bas

[APPENDIX] — QDPLL 2

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bep ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);

. // s == UNSAT: 'R’ is empty clause.
// Make decision. // s == SAT: 'R’ is sat. cube...
v = select_dec var (); // ..or new cube from assignment.

assign_dec_var (v);

hil ! R
olse while (!stop_res (R))

= R) ;
// Conflict or solution. i _ g:tigizzzed(eljc (o)
// s == UNSAT or s == SAT. get— phi
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) P A
assign_forced_lit (R);
return s; .
else return get_asserting_level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.
Boolean Constraint Propagation (BCP):
@ Assigning unit and pure literals.

@ Augmented CNF: ¢ := ¢ocL A drer V docu-
@ Original clauses ¢oct, learnt clauses ¢, ¢, and learnt cubes ¢, cy.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — QDPLL 3/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);

== UNSAT: 'R’ i t 1 .
// Make decision. /] s : R’ is empty clause
// s == SAT: 'R’ is sat. cube...
v = select_dec_var (); N
assign dec var (v); // ..or new cube from assignment.
gn_dec_ 4 while (!stop_res (R))
else = get_pivot (R);
// Conflict or solution. i _ getianteceden"c (®);
// s == UNSAT or s == SAT. get— Bl
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) T S
assign_forced_lit (R);
return s; .
else return get_asserting_level (R);

backtrack (btlevel);
Figure: QDPLL with conflict-driven clause and solution-driven cube learning.
Decision Making:
@ BCP saturated without detecting conflict/solution.

@ Select and assign one decision candidate.
@ Candidates: according to dependency scheme and partial assignment.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — QDPLL 4/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)

State s = bep () ; DecLevel analyze_leaf (State s)

if (s —- UNDEF) R = get_initial_reason (s);
b L // s == UNSAT: 'R’ is empty clause.
// Make decision. // s == SAT: 'R’ is sat. cube
v = select_dec_var (); . C
. 4 -); // ..or new cube from assignment.
elZZSIgrL ec_var (v); while (!stop_res (R))
. p = get_pivot (R);
// Conflict or solution. A = get_antecedent (p);
== == - — ’
// s == UNSAT or s SAT. R = constraint_res (R, p, A);
btlevel = analyze leaf (s); add_to_formula (R);
if (btlevel == INVALID) T f

assign_forced_lit (R);
return s; .
oloe return get_asserting_level (R);

backtrack (btlevel);
Figure: QDPLL with conflict-driven clause and solution-driven cube learning.
Result Analysis:
@ BCP detected conflict/solution.

@ Conflict: empty clause.
@ Solution: satisfying assignment or satisfied learnt cube.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — QDPLL

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial reason (s);

. // s == UNSAT: 'R’ is empty clause.
// Make decision. // s == SAT: 'R’ is sat. cube...
v = select_dec var (); // ..or new cube from assignment.

assign_dec_var (v); while (!stop_res (R))

else :
. = get_pivot (R);
// Conflict or solution. p =9 (R);
A = get_antecedent (p);
// s == UNSAT or s == SAT. ;
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s); add_to_formula (R);
if (btlevel == INVALID) T A
assign_forced_lit (R);
return s; .
else return get_asserting_level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Constraint Learning:
@ Init. from conflict: empty clause.
@ Init. from solution: sat. cube or new cube from satisfying assignment.
@ Resolution/consensus: antecedents of units in current clause/cube.
@ First-UIP: generalized stop criterion.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — QDPLL 6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

State gdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);

s // s == UNSAT: 'R’ is empty clause.
// Make decision. P Pty
// s == SAT: 'R’ is sat. cube...
v = select_dec_var (); ;
. // ..or new cube from assignment.
assign_dec_var (v); .
else while (!stop_res (R))
. = get_pivot (R);
// Conflict or solution. g _ get anteceée;é)
// s == UNSAT or s == SAT. ger_ante phi
R = constraint_res (R, p, A);
btlevel = analyze_leaf (s);
. add_to_formula (R);
if (btlevel == INVALID) :
assign_forced lit (R);
return s;
else return get_asserting level (R);

backtrack (btlevel);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtrack:
@ Assumption: learning always produces asserting constraints.
@ Backtrack to asserting level.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — Unit Literal Detection

[CGS98, GNTO02, ZM02, GNTO07]

Given dependency scheme D for PCNF. Write x < v if (x,y) € D.

Definition (Unit Clause Rule)

A clause C is unit iff (Dual definition for cubes.)
@ no literal | € C is assigned true,
@ exactly one existential literal /o € L5(C) is unassigned,
@ for all unassigned universal literals I, € Ly(C): Iy £ le.

Example: 3xvady,z. ¢/ A(xVavyV z).

AssignX,y: xXVa y,z. ¢’ A(xVavyVz).

Given D' from prefix: (¥ V aV y Vv z) not unit since a < z (because Va before 3z).
Given D C D" where a £ z: (¥ vV aV y V z) unit.

Practical Effects:
@ Expecting more units when using D C D',
@ Combining two-literal watching with dependency checking.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — Constraint Reduction

[BKF95, GNT02, ZM02]

Constraint Reduction: universal/existential reduction of clauses/cubes.

Definition (Universal Reduction of Clauses)

A universal literal I, € Ly(C) can be deleted from a clause C iff

@ thereis no lp € L3(C) with Iy < e.

@ The result of saturated universal reduction is denoted by CR(C).
(Dual definition of existential reduction for cubes.)

Example: 3xvady. ¢’ A (x Vv aVvy).
Given D'V from prefix: a is irreducible in (x V aV y) since a < y.
Given D C D"V where a £ y: ais reducible in (x v aV y), yielding (x V y).

Practical Effects:
@ Expecting shorter learnt constraints when using D C D'V,
@ Combining constraint reduction with dependency checks.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — Constraint Resolution

[BKF95, GNT02, ZM02, Let02, GNT06]

Constraint Resolution: Q-resolution/consensus of clauses/cubes.

Definition (Q-resolution for Clauses)

Clarifies Def. 7 in paper.

Let C1, C> be clauses with v € L3(Cy),V € L3(Cy).

@ C:=(CR(Ci)UCR(C))\{v,Vv}.

@ If C contains complementary literals then no resolvent exists.

© Otherwise, resolvent C' := CR(C) of Cy and C, on v: {Cy, Co} v C'.
(Dual definition of consensus for cubes.)

Gy G Cs
Example: 3xvady,z. ¢’A (xVavyvz)A(xvaVvyVZ)A(xvavyVz).

Given D'V from prefix: {Cy, Co} Fz (x VaVvy), but {(x vV avy), Cs} .
Given D C D"V where a £ y: {Cy,Co} 2 (x Vy),and {(x V y),C3} Fy (x VaV 2).

Practical Effects:
@ Possible reductions of “resolution-blocking” literals when using D C D',

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[APPENDIX] — Stop Criterion

[ZM02, GNTO6]

Definition (Asserting Clause/Level)

Clarifies Def. 8 from paper. See also function get_reason_asserting_level in DepQBF 0.1 source code.

Let Rbe aresolventi.e. {...} F* R. Let d := max({di(/) | | € L5(R)}). Ris
asserting at a := max({dl(/) < d | I € Ls(R) or | € Ly(R) with | < d}) iff

@ the decision variable at level d is existential,

@ there is exactly one / € L5(R) with dI(/) = d,

@ for all I, € Ly(R) where I, < I: [, must be assigned false with dl(/,) < d.
(Dual definition for asserting cubes.)

Example: ...3x...va...3y,z... ¢’ A(xVavyVz).

@3 ©2 @4
z

. @1
Given D'V from prefix: in (x V @ vV y V z), zis unit at level 3.

. i . @1 @ © @4 .
Given D C D" wherea A z:in(x V a Vv y VvV z), zis unit at level 2.

Practical Effects:
@ Possibly longer backjumps when using D € D',

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

[@ U. Bubeck and H. Kleine Biining.
Bounded Universal Expansion for Preprocessing QBF.
In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume 4501 of
LNCS, pages 244—-257. Springer, 2007.

ﬁ M. Benedetti.
Quantifier Trees for QBFs.
In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages
378-385. Springer, 2005.

ﬁ A. Biere.
Resolve and Expand.
In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume
3542 of LNCS, pages 59-70. Springer, 2004.

@ H. Kleine Buning, M. Karpinski, and A. Fldgel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12—18, 1995.

@ M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAL, pages 262—-267, 1998.

ﬁ E. Giunchiglia, P. Marin, and M. Narizzano.
sQueezeBF: An Effective Preprocessor for QBFs.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

In O. Strichman and S. Szeider, editors, SAT (accepted for publication),
LNCS. Springer, 2010.

@ E. Giunchiglia, M. Narizzano, and A. Tacchella.
QUBE: A System for Deciding Quantified Boolean Formulas
Satisfiability.
In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of
LNCS, pages 364—369. Springer, 2001.

@ E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.
In AAAI/IAAL, pages 649-654, 2002.

@ E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371-416, 2006.

@ E. Giunchiglia, M. Narizzano, and A. Tacchella.
Quantifier Structure in Search-Based Procedures for QBFs.
TCAD, 26(3):497-507, 2007.

@ F. Lonsing and A. Biere.
A Compact Representation for Syntactic Dependencies in QBFs.
In O. Kullmann, editor, SAT, volume 5584 of LNCS, pages 398-411.
Springer, 2009.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

@ F. Lonsing and A. Biere.
DepQBF: A Dependency-Aware QBF Solver (System Description).
In A. Van Gelder and D. Le Berre, editors, Pragmatics of SAT Workshop
(POS), accepted for publication, 2010.

@ R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas.
In U. Egly and C. G. Fermlller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160—175. Springer, 2002.

@ M. Samer and S. Szeider.
Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77-97, 2009.

[3 L.Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages
200—-215. Springer, 2002.

Florian Lonsing and Armin Biere Integrating Dependency Schemes in Search-Based QBF Solvers

