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Introduction (1/4)

Q-Resolution Calculus (QRES): [KBKF95]
Prenex CNF ψ = Q̂.φ unsatisfiable iff empty clause derivable from ψ.
Completeness: resolution on ∃ pivots and universal reduction.
Resolution on ∀ pivots (QU-resolution) [VG12], long-distance
resolution [ZM02a, BJ12], combinations thereof [BWJ14].
QRES-based calculi vs. expansion/instantiation [BCJ15, JM15].
Traditional QRES used for clause learning in QCDCL.
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Introduction (1/4)

Problem:
Problem (cf. previous talk [Jan16]): current implementations of
QCDCL do not harness the full power of QRES in clause learning.
Resolution in QCDCL guided by assignments.
Prefix ordering restricts assignment generation in QCDCL.
Axioms of QRES are weak.
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

C Given a PCNF ψ = Q̂.φ, C ∈ φ and for all x ∈ Q̂ : {x , x̄} 6⊆ C .

Example

Traditional Q-resolution
[KBKF95].
Only ∃ pivots.
No tautologies. ∅

(x) (x̄)

(x̄ ∨u)

(x̄ ∨u∨y) (x̄ ∨u∨ȳ) ψ = ∃x∀u∃y∀v∃z .
(x) ∧
(x̄∨u∨y) ∧
(x̄∨u∨ȳ) ∧
(x∨ū∨z̄)

(x∨u∨z̄)

QRES variants: different power but same clause axiom.
Clause axiom derives only input clauses (falsified in QCDCL).
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

C Given a PCNF ψ = Q̂.φ, C ∈ φ and for all x ∈ Q̂ : {x , x̄} 6⊆ C .

Example

Long distance
Q-resolution
[ZM02a, BJ12].
Only ∃ pivots.
Tautologies over ∀
variables (pivot level!).

(u∨ū∨ȳ ∨z̄)

(x̄ ∨u∨ȳ) (x ∨ū∨z̄)

ψ = ∃x∀u∃y∀v∃z .
(x) ∧
(x̄∨u∨y) ∧
(x̄∨u∨ȳ) ∧
(x∨ū∨z̄)

(x∨u∨z̄)

QRES variants: different power but same clause axiom.
Clause axiom derives only input clauses (falsified in QCDCL).
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

C Given a PCNF ψ = Q̂.φ, C ∈ φ and for all x ∈ Q̂ : {x , x̄} 6⊆ C .

Example

QU-resolution [VG12].
∀/∃ pivots.
No tautologies.
LQU+-Res: ∀/∃ pivots
and tautologies [BWJ14].

(x ∨z̄)

(x ∨ū∨z̄) (x ∨u∨z̄)

ψ = ∃x∀u∃y∀v∃z .
(x) ∧
(x̄∨u∨y) ∧
(x̄∨u∨ȳ) ∧
(x∨ū∨z̄)

(x∨u∨z̄)

QRES variants: different power but same clause axiom.
Clause axiom derives only input clauses (falsified in QCDCL).
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Introduction (3/4)

QRES for Satisfiable QBFs: [GNT06, Let02, ZM02b]
Operates on cubes (conjunctions of literals).
Dual to QRES for clauses: cube resolution and existential reduction.
Prenex CNF ψ = Q̂.φ satisfiable iff empty cube derivable from ψ.
Traditional QRES used for cube learning in QCDCL.
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Introduction (4/4): QRES Cube Derivations

Definition (Cube Axiom of QRES [GNT06, Let02, ZM02b])

C
Given a PCNF ψ = Q̂.φ and an assignment A with {x , x̄} 6⊆ A
and ψ[A] = >, C = (

∧
l∈A) is a cube.

Example

Axiom: model generation.
Cubes at leaves are part of
DNF of φ.
Existential reduction.
Cube resolution. ∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) ψ = ∃x∀u∃y .
(x̄ ∨ u ∨ ȳ) ∧
(x̄ ∨ ū ∨ y) ∧
(x ∨ u ∨ y) ∧
(x ∨ ū ∨ ȳ)

Cube axiom allows to derive only CNF models of ψ.
Trivial formulas with exponential cube proofs: [RBM97, Let02]
Ψ(n) = ∀u1∃x1 . . . ∀un∃xn.

∧n
i=1

[
(ui ∨ x̄i ) ∧ (ūi ∨ xi )

]
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Contributions

Generalized axioms: stronger clauses/cubes at leaves of derivations.
Idea: check satisfiability of PCNF ψ under assignment A in QCDCL.
Integration of arbitrary QBF proof system in QRES via axioms.
Stronger QRES variants by integrating orthogonal proof systems.
Tight integration in QCDCL by learning asserting clauses/cubes.
Implementation in DepQBF, experimental study.
Formula class CRn from previous talk [Jan16]: short QRES proofs by
QCDCL based on stronger axiom.
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QCDCL (1/2)

Assignment
Generation

ψ[A] = ⊤/⊥?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅
YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

Traditional Axioms:
QCDCL assignments: select decision variables from left end of prefix
of ψ[A], unit and pure literal detection out of prefix order.
ψ[A] = ⊥: CNF φ contains a falsified clause.
ψ[A] = >: all clauses in CNF φ satisfied.
Asserting clause (cube) C : C [A′] unit for some A′ ⊆ A.
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QCDCL (2/2)

Assignment
Generation

ψ[A] (un)sat.?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF ψ

A = ∅

YES

C 6= ∅

C = ∅
A := A′

NO

Propagate A

Generalized Axioms:
Check satisfiability of ψ[A] in QBCP by incomplete approaches.
QBF is hard: spend more time on reasoning before assigning decision
variables (similar argument as in, e.g., [SB06]).
ψ[A] (un)sat.: derive asserting clause (cube) C from a start clause
(cube) generated based on A.
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Generalized Axioms: Theory

Definition (Generalized Clause Axiom)

C
Given a PCNF ψ = Q̂.φ and a QCDCL assignment A,
ψ[A] is unsatisfiable, and C = (

∨
l∈A l̄) is a clause.

Definition (Generalized Cube Axiom)

C
Given a PCNF ψ = Q̂.φ and a QCDCL assignment A,
ψ[A] is satisfiable, and C = (

∧
l∈A l) is a cube.

Proposition (Soundness)
For a clause (cube) C derived by the generalized clause (cube) axiom:
Q̂.φ ≡sat Q̂.(φ ∧ C), respectively Q̂.φ ≡sat Q̂.(φ ∨ C).
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Generalized Axioms: Practice

Axiom Applications in QCDCL:
Any QBF proof system can be used to check satisfiability of ψ[A].
Combinations of proof systems within QRES via generalized axioms.
Clauses (cubes) by generalized axioms used as usual in learning.
Checking satisfiability of PCNF ψ[A] is PSPACE-complete.

Incomplete QBF Satisfiability Checks:
E.g. bounded variable expansion [Bie04, BB07]: QBF preprocessing.
E.g. SAT-based techniques in early QDPLL [CGS98]:

Trivial truth: check ψ′ obtained by discarding all ∀ literals in ψ.
Trivial falsity: check ψ′ obtained by treating every variable in ψ as ∃.

If unsuccessful: extend A to A′ by decisions and QBCP, check ψ[A′].
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Formalizing the Use of SAT Solving

Definition (Abstraction-Based Clause Axiom)
For PCNF ψ = Q̂.φ, Abs∃(ψ) := ∃(X1 ∪ . . . ∪ Xn).φ.

C
For a PCNF ψ = Q̂.φ, and a (non-)QCDCL assignment A,
Abs∃(ψ)[A] is unsatisfiable, and C = (

∨
l∈A l̄) is a clause.

Proposition (cf. appendix of [LES16])
QRES with the abstraction-based clause axiom p-simulates QU-resolution.

Example
C ′ ∪ {p} C ′′ ∪ {p̄}

C ′ ∪ C ′′
Let q(p) = ∀ and clause C = C ′ ∪ C ′′ be
derived by QU-resolution.

For A = {̄l | l ∈ C}, Abs∃(ψ)[A] unsatisfiable: (p), (p̄) ∈ Abs∃(ψ)[A].
Hence C derivable by QRES with the abstraction-based clause axiom.
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Short Proof of CRn by QCDCL

Definition ([Jan16])
For i , j ∈ {1, . . . , n},
CRn := ∃xij∀z∃ai , bi .(xij ∨ z ∨ ai ) ∧ (x̄ij ∨ z̄ ∨ bj) ∧ (

∨
āi ) ∧ (

∨
b̄i )

1 We assume a “perfect” restart and assignment strategy in QCDCL.
2 By QCDCL, derive (x1,j ∨ · · · ∨ xn,j) and (xi ,1 ∨ · · · ∨ xi ,n) for all i , j by

QCDCL assignments A := {x̄1,j · · · x̄n,j}, A = {x̄i ,1 · · · x̄i ,n}.
3 By abstraction-based axiom, derive clauses (xi ,j ∨ ai ) and (xi ,j ∨ bj) by

non-QCDCL assignments A := {x̄i ,j , āi} and A := {x̄i ,j , b̄j},
respectively. (The SAT solver needs the clauses derived in step 2).

4 Derive unit clauses (xij) in QCDCL using QCDCL assignments
A := {x̄ij}. (By clauses from step 3, we get propagations on ai , bi).

5 Get ∅ by unit resolution with (xij) clauses, resolution on (
∨
b̄i ).

All resolution derivations above are polynomial, also inside the SAT solver.
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Implementing Generalized Axioms in QCDCL

QBF Preprocessing:
Incomplete solving.
QBF preprocessors may have considerable solving power [LSVG16].
Integration of Bloqqer: http://fmv.jku.at/bloqqer/.
Clause and cube learning wrt. SAT/UNSAT result.
Nonincremental, ψ[A] added to Bloqqer always from scratch.
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Implementing Generalized Axioms in QCDCL

SAT Solving:
Integration of PicoSAT: abstraction-based axiom, trivial truth.
Incremental solving under QCDCL assignment A (assumptions).
Failed assumptions A′ ⊆ A: already Abs∃(ψ)[A′] unsatisfiable.
Clauses learned based on possible non-QCDCL assignments A′.
Effects of QU-resolution in QCDCL.
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Implementing Generalized Axioms in QCDCL
Dynamic Blocked Clause Elimination (QBCE): [LBB+15]

Apply QBCE incrementally in QBCP by watched data structures.
Empty formula: cube learning by generalized axiom.

Example ([LBB+15])
∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Initially A = ∅ and no clause blocked in ψ[A] = ψ.
For A = {z̄ , z̄ ′} all clauses blocked in ψ[A] = ∀u∃y .(u ∨ ȳ) ∧ (ū ∨ y).
Derive C = (z̄ ∧ z̄ ′) by generalized cube axiom and immediately ∅.
Exponential cube proofs with traditional axiom:
Φ(n) = ∃z1,z ′

1∀u1∃y1, . . . ,∃zn,z ′
n∀un∃yn.

∧n
i=1

[
C0(i) ∧ C1(i) ∧ C2(i)

]
,

C0(i) = (ui ∨ ȳi ) ∧ (ūi ∨ yi ),
C1(i) = (zi ∨ ui ∨ ȳi ) ∧ (z ′

i ∨ ūi ∨ yi ),
C2(i) = (z̄i ∨ ūi ∨ ȳi ) ∧ (z̄ ′

i ∨ ui ∨ yi ).
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Experiments

Variants of DepQBF:
DQ: only dynamic QBCE.
DQ-T: + trivial truth.
DQ-A: + abs. clause axiom.
DQ-B: + Bloqqer.
DQ-BAT: all listed above.

Solver #T #U #S Time
DQ-BAT 466 236 230 553K
DQ-AT 461 234 227 555K
DQ-A 459 237 222 561K
DQ-B 449 222 227 563K
DQ-T 441 220 221 571K
DQ 441 224 217 575K
QELL-nc 434 302 132 563K
RAReQS 414 272 142 611K
CAQE 370 192 178 708K
GhostQ 347 166 181 752K
QESTO 331 188 143 767K

QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S).
No preprocessing by Bloqqer.
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Experiments

Variants of DepQBF:
DQ: only dynamic QBCE.
DQ-T: + trivial truth.
DQ-A: + abs. clause axiom.
DQ-B: + Bloqqer.
DQ-BAT: all listed above.

Solver #T #U #S Time
QELL-nc 483 306 177 480K
DQ-AT 483 260 223 509K
DQ-A 481 262 219 528K
DQ-BAT 480 257 223 516K
RAReQS 471 272 199 509K
CAQE 465 248 217 534K
DQ-T 464 243 221 526K
DQ 456 242 214 542K
DQ-B 450 245 205 550K
QESTO 401 212 189 662K
GhostQ 306 148 158 823K

QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S).
Restricted preprocessing by Bloqqer (only QBCE and ∀ expansion).
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Experiments

Variants of DepQBF:
DQ: only dynamic QBCE.
DQ-T: + trivial truth.
DQ-A: + abs. clause axiom.
DQ-B: + Bloqqer.
DQ-BAT: all listed above.

Solver #T #U #S Time
RAReQS 547 314 233 379K
QELL-nc 501 301 200 445K
QESTO 463 248 215 558K
DQ-AT 434 209 225 579K
DQ-BAT 432 209 223 585K
DQ-T 426 200 226 586K
DQ-A 418 207 211 623K
DQ-B 409 201 208 622K
DQ 407 200 207 623K
CAQE 401 193 208 640K
GhostQ 350 176 174 739K

QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S).
Full preprocessing by Bloqqer.
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Experiments
Solver rankings: no (n), re-
stricted (r), full preprocessing (f)
Solver n r f
CAQE 9 6 10
DQ 6 8 9
DQ-A 3 3 7
DQ-AT 2 2 4
DQ-B 4 9 8
DQ-BAT 1 4 5
DQ-T 5 7 6
GhostQ 10 11 11
QELL-nc 7 1 2
QESTO 11 10 3
RAReQS 8 5 1

Three different winning solvers/approaches.
Preprocessing may be harmful to the performance of certain solvers.
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Conclusion and Outlook

Generalized Axioms in QRES:
Derive clauses (cubes) other than input clauses (CNF models).
Interface to combining QRES with orthogonal QBF proof systems.
In QCDCL: incomplete QBF satisfiability check of ψ[A].
Applicable to any variant of QRES (long-distance, QU-, . . . ).
Proof search more complex due to additional proof rules (CRn class).

Proof Generation:
A clause (cube) C obtained by generalized axioms has a proof P
(perhaps) in a proof system other than QRES.
P is part of the final proof P ′ produced by QRES e.g. in QCDCL.
Checking P ′ requires to check subproofs P in different proof systems.
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