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Introduction (1/4)

Q-Resolution Calculus (QRES): [KBKF95]
Prenex CNF ¢ = Q.gb unsatisfiable iff empty clause derivable from .

Completeness: resolution on 3 pivots and universal reduction.

Resolution on V pivots (QU-resolution) [VG12], long-distance
resolution [ZM02a, BJ12], combinations thereof [BWJ14].

QRES-based calculi vs. expansion/instantiation [BCJ15, JM15].
Traditional QRES used for clause learning in QCDCL.
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Introduction (1/4)

Problem:

m Problem (cf. previous talk [Jan16]): current implementations of
QCDCL do not harness the full power of QRES in clause learning.

m Resolution in QCDCL guided by assignments.
m Prefix ordering restricts assignment generation in QCDCL.

m Axioms of QRES are weak.
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

< Given a PCNF ¢ = Q.¢, C € ¢ and for all x € Q: {x,X} Z C.

Example
(RVuVy) (RVuVy) 1 = IxVudyVviz.
m Traditional Q-resolution N 7 (x) A
(xVu) -
[KBKF95]. | (XVuVvy) A
m Only 3 pivots. (X)\ /(>_<) (XVuVvy) A
m No tautologies. 0 (xVoVvz)
(xVuVvz)
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

< Given a PCNF ¢ = Q.¢, C € ¢ and for all x € Q: {x,X} Z C.

Example

m Long distance ¢ = IxVudyVviz.

Q-resolution (x) A

[ZM02a, BJ12]. (xVuvy) (xvVivz)  (xvuVy)A
m Only d pivots. (u\/\DV)'//\/E) (XVuVvy) A
m Tautologies over V (xvivz)

variables (pivot levell). (xVuVz)
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Introduction (2/4): QRES Clause Derivations

Definition (Clause Axiom of QRES)

o Given a PCNF ¢ = Q¢ Cegandforall xe Q: {x,x} Z C.

Example

m QU-resolution [VG12].
m V/3 pivots.
m No tautologies.

m LQUT-Res: V/3 pivots
and tautologies [BWJ14].

Y = IxVudyVviz.
)

A
VuVy) N
xVuVv

X1
=
NI <

(x
(xvuvy)
( )
( )
(xvuvz)

VZz

m QRES variants: different power but same clause axiom.
m Clause axiom derives only input clauses (falsified in QCDCL).
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Introduction (3/4)

QRES for Satisfiable QBFs: [GNTO06, Let02, ZMO02b]
m Operates on cubes (conjunctions of literals).
m Dual to QRES for clauses: cube resolution and existential reduction.
m Prenex CNF ¢ = Q.gb satisfiable iff empty cube derivable from .
m Traditional QRES used for cube learning in QCDCL.

Lonsing, Egly, and Seidl (TUW, JKU) Q-Resolution with Generalized Axioms 3/14



Introduction (4/4): QRES Cube Derivations

Definition (Cube Axiom of QRES [GNT06, Let02, ZM02b])

~ Given a PCNF ¢ = Q.¢ and an assignment A with {x,x} Z A
C and Y[A] =T, C = (Ajca) is a cube.

Example

m Axiom: model generation. (XAuAy) (XATAy) ¥ =IXVudy.

m Cubes at leaves are part of ()-(/l\ %) & /l\ 7) (XVuVvy)An

DNF of ¢. < S (xVvaVvy)A
m Existential reduction. (T) (xVuVy)A
m Cube resolution. 0 (xvuVvy)

m Cube axiom allows to derive only CNF models of .
m Trivial formulas with exponential cube proofs: [RBM97, Let02]
\U(n) =VYuidxq ... Vus3x,. /\?:1 [(U,’ V )_(,') A (L_l,' V X,')}
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Contributions

Generalized axioms: stronger clauses/cubes at leaves of derivations.
Idea: check satisfiability of PCNF 1 under assignment A in QCDCL.
Integration of arbitrary QBF proof system in QRES via axioms.
Stronger QRES variants by integrating orthogonal proof systems.
Tight integration in QCDCL by learning asserting clauses/cubes.

Implementation in DepQBF, experimental study.

Formula class CR,, from previous talk [Jan16]: short QRES proofs by
QCDCL based on stronger axiom.
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QCDCL (1/2)

PCNF

NO

A=A
Backtrack

Assignment/}l
EEE—— Al=T/17?
A=( |Generation & /

Propagate A
YES

Clause/Cube

ing

Traditional Axioms:

C+0 Learning

SAT/
UNSAT

m QCDCL assignments: select decision variables from left end of prefix

of [A], unit and pure literal detection out of prefix order.

m [A] = L: CNF ¢ contains a falsified clause.
m [A] = T: all clauses in CNF ¢ satisfied.
m Asserting clause (cube) C: C[A'] unit for some A’ C A.
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QCDCL (2/2)

NO

_—

PCNF ¢

Assignment
A=( [Generation
A=A
Backtracking

Propagate A

WY[A] (un)sat.?

Generalized Axioms:

C#0

YES
Clause/Cube c=90 SAT/
Learning UNSAT

m Check satisfiability of 1)[A] in QBCP by incomplete approaches.

m QBF is hard: spend more time on reasoning before assigning decision
variables (similar argument as in, e.g., [SB06]).

m ¢[A] (un)sat.: derive asserting clause (cube) C from a start clause
(cube) generated based on A.
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Generalized Axioms: Theory

Definition (Generalized Clause Axiom)

___ Given a PCNF ¢ = @.(;5 and a QCDC_L assignment A,
C  ¢[A] is unsatisfiable, and C = (\/,ca ) is a clause.

Definition (Generalized Cube Axiom)

__ Given a PCNF ¢ = Q.6 and a QCDCL assignment A,
C  o[A] is satisfiable, and C = (Ajca!) is a cube.

Proposition (Soundness)

For a clause (cube) C derived by the generalized clause (cube) axiom:
Q-0 =sat Q.(& N C), respectively Q.9 =sar Q.(¢ V C).
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Generalized Axioms: Practice

Axiom Applications in QCDCL:
m Any QBF proof system can be used to check satisfiability of 1[A].
m Combinations of proof systems within QRES via generalized axioms.
m Clauses (cubes) by generalized axioms used as usual in learning.
m Checking satisfiability of PCNF t[A] is PSPACE-complete.

Incomplete QBF Satisfiability Checks:

m E.g. bounded variable expansion [Bie04, BB07]: QBF preprocessing.
m E.g. SAT-based techniques in early QDPLL [CGS98]:

m Trivial truth: check 1)’ obtained by discarding all V literals in ).
m Trivial falsity: check v’ obtained by treating every variable in v as 3.

m If unsuccessful: extend A to A’ by decisions and QBCP, check 9[A].
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Formalizing the Use of SAT Solving

Definition (Abstraction-Based Clause Axiom)
For PCNF ¢ = Q.¢, Abss(¢) := I(XL U... U X,).0.

~ ForaPCNF ¢ = (A?.qﬁ, and a (non—)QCDCL_assignment A,
C  Abs3(¥)[A] is unsatisfiable, and C = (\/,ca /) is a clause.

Proposition (cf. appendix of [LES16])

QRES with the abstraction-based clause axiom p-simulates QU-resolution.

Example

C'"U{p} C"u{p} Let g(p) =V and clause C = C' U C” be
cuc’ derived by QU-resolution.

m For A= {/| /€ C}, Abs3(1))[A] unsatisfiable: (p),(p) € Abs3(1))[A].
m Hence C derivable by QRES with the abstraction-based clause axiom.

v
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Short Proof of CR, by QCDCL

Definition ([Jan16])

Fori,j e {1,...,n}, B
CR, = ElX,'J'\V/ZE]a,', b,'.(X,'j VzV a,-) VAN ()_<,J VZzV bJ) VAN (V 5,’) VAN (\/ b,)

@ We assume a “perfect” restart and assignment strategy in QCDCL.

@ By QCDCL, derive (x1,j V-V Xp;) and (xj1 V-V xj,) for all i, j by
QCDCL assignments A= {)_(Lj s )_(nJ}, A= {)_(,"1 . -)_(,'7”}.

© By abstraction-based axiom, derive clauses (x;; V a;) and (x;; V b;) by
non-QCDCL assignments A := {X;;,3;} and A := {X;}, b},
respectively. (The SAT solver needs the clauses derived in step 2).

@ Derive unit clauses (x;) in QCDCL using QCDCL assignments
A = {X;}. (By clauses from step 3, we get propagations on aj, b;).

@ Get 0 by unit resolution with (x;) clauses, resolution on (\/ b;).

All resolution derivations above are polynomial, also inside the SAT solver.
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Implementing Generalized Axioms in QCDCL

QBF Preprocessing;:
m Incomplete solving.
QBF preprocessors may have considerable solving power [LSVG16].
Integration of Blogqer: http://fmv. jku.at/blogqger/.
Clause and cube learning wrt. SAT /UNSAT result.

u
u
u
m Nonincremental, ¥)[A] added to Bloqgqer always from scratch.
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http://fmv.jku.at/bloqqer/

Implementing Generalized Axioms in QCDCL

SAT Solving:
m Integration of PicoSAT: abstraction-based axiom, trivial truth.
m Incremental solving under QCDCL assignment A (assumptions).
m Failed assumptions A’ C A: already Abs3(1))[A’] unsatisfiable.

m Clauses learned based on possible non-QCDCL assignments A’.
m Effects of QU-resolution in QCDCL.
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Implementing Generalized Axioms in QCDCL

Dynamic Blocked Clause Elimination (QBCE): [LBBT15]
m Apply QBCE incrementally in QBCP by watched data structures.
m Empty formula: cube learning by generalized axiom.

Example ([LBB*15])

3z,Z2'Vudy.

(uVvYIN(@VY)AN(EzVuVY)ANEZVaVy)AN(zVaVy)A(ZVuVy)
m Initially A =0 and no clause blocked in ¥[A] = .
m For A= {z,Z'} all clauses blocked in ¥[A] =Vuly.(uVy)A(TVy).
m Derive C = (Z A Z’) by generalized cube axiom and immediately (.

m Exponential cube proofs with traditional axiom:
®(n) = 321,20V 3y, - . ., 3202,V UpTyn. A]=1 [Co(i) A C1(i) A Ca(i)],

Co(i) = (ui v yi) A (@i V yi),
Cl(f) = (Z,' V u; V )_/,) A (Z,/ V u; vV y,-),
Cg(i) = (2,' ViV )_/,) VAN (2,/ V u; V y,-).
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Experiments

Solver #T #U #S Time

DQ-BAT 466 236 230 553K

Variants of DepQBF: DQ-AT 461 234 227 555K

. . DQ-A 459 237 222 561K

= DQ: only dy_”_am'c QBCE. DQ-B 449 222 227 563K

m DQ-T: + trivial truth. DQ-T 441 220 221 571K

m DQ-A: + abs. clause axiom. BQLL 441 224 217 575&
ELL-nc 434 302 132 563

= DQ-B: + Bloqger. RAReQS 414 272 142 611K

m DQ-BAT: all listed above. CAQE 370 192 178 708K

GhostQ 347 166 181 752K

QESTO 331 188 143 767K
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QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S5).
No preprocessing by Bloqqger.
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Experiments

Solver #T #U #S Time

QELL-nc 483 306 177 480K

Variants of DepQBF: DQ-AT 483 260 223 509K

. . DQ-A 481 262 219 528K

= DQ: only dynamic QBCE. - o pat 480 257 223 516K

m DQ-T: + trivial truth. RAReQS 471 272 199 509K

m DQ-A: + abs. clause axiom. ggQE 465 248 217 534&
-T 464 243 221 526

= DQ-B: + Blogqer. DQ 456 242 214 542K

m DQ-BAT: all listed above. DQ-B 450 245 205 550K

QESTO 401 212 189 662K

GhostQ 306 148 158 823K

Lonsing, Egly, and Seidl (TUW, JKU)

Q-Resolution with Generalized Axioms

QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S5).
Restricted preprocessing by Blogger (only QBCE and V expansion).
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Experiments

Solver #T #U #S Time

RAReQS 547 314 233 379K

Variants of DepQBF: QELL-nc 501 301 200 445K

. . QESTO 463 248 215 558K

= DQ: only dynamic QBCE. po'ar 434 200 225 579K

m DQ-T: + trivial truth. DQ-BAT 432 209 223 585K

m DQ-A: + abs. clause axiom. 88'1 426 200 226 586E
- 418 207 211 623

= DQ-B: + Blogqer. DQ-B 4090 201 208 622K

m DQ-BAT: all listed above. DQ 407 200 207 623K

CAQE 401 193 208 640K

GhostQ 350 176 174 739K

Lonsing, Egly, and Seidl (TUW, JKU)

Q-Resolution with Generalized Axioms

QBF Gallery 2014 application benchmark set (735 formulas).
Total solved (#T), solved unsatisfiable (#U), and satisfiable (#S5).
Full preprocessing by Bloqqer.
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Experiments

Solver rankings: no (n), re-
stricted (r), full preprocessing (f)

Solver n r f
CAQE 9 6 10
DQ 6 8 9
DQ-A 3 3 7
DQ-AT 2 2 4
DQ-B 4 9 8
DQ-BAT 1 4 5
DQ-T 5 7 6
GhostQ 10 11 11
QELL-nc 7 1 2
QESTO 11 10 3
RAReQS 8 5 1

m Three different winning solvers/approaches.

m Preprocessing may be harmful to the performance of certain solvers.
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Conclusion and Outlook

Generalized Axioms in QRES:
m Derive clauses (cubes) other than input clauses (CNF models).
m Interface to combining QRES with orthogonal QBF proof systems.
m In QCDCL: incomplete QBF satisfiability check of 1[A].
m Applicable to any variant of QRES (long-distance, QU-, ...).

m Proof search more complex due to additional proof rules (CR,, class).

Proof Generation:

m A clause (cube) C obtained by generalized axioms has a proof P
(perhaps) in a proof system other than QRES.

m P is part of the final proof P’ produced by QRES e.g. in QCDCL.

m Checking P’ requires to check subproofs P in different proof systems.
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