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Introduction (1)

Propositional Logic (SAT):
Modelling NP-complete problems in formal verification, AI, . . .
Success story of SAT solving.

Quantified Boolean Formulas (QBF):
Existential and universal quantification of propositional variables.
Q1x1, . . . ,Qnxn. φ, where Qi ∈ {∀,∃} and φ a CNF.
PSPACE-complete: potentially more succinct encodings than SAT.

Practice:
Despite intractability, solvers often work well on structured problems.
Applications to presumably harder problems, e.g. NEXPTIME.
SAT/QBF solvers are tightly integrated in application workflows.
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Introduction (2): QBF-Related Quotes from the Literature

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan
Zhu: Symbolic Model Checking without BDDs. TACAS 1999: 193-207.

Unfortunately, we do not know of an efficient decision procedure
for QBF.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 2 / 46



Introduction (2): QBF-Related Quotes from the Literature

[DHK05] Nachum Dershowitz, Ziyad Hanna, Jacob Katz: Bounded Model
Checking with QBF. SAT 2005: 408-414.

We found that modern state-of-the-art general-purpose QBF
solvers are still unable to handle the real-life instances of BMC
problems in an efficient manner.
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Introduction (2): QBF-Related Quotes from the Literature

[Rin07] Jussi Rintanen: Asymptotically Optimal Encodings of Conformant
Planning in QBF. AAAI 2007: 1045-1050.

We believe that the future successes of QBF in many
applications is strongly dependent on the development of better
algorithms for evaluating QBF.
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Introduction (2): QBF-Related Quotes from the Literature

[MVB10] Hratch Mangassarian, Andreas G. Veneris, Marco Benedetti:
Robust QBF Encodings for Sequential Circuits with Applications to
Verification, Debug, and Test. IEEE Trans. Computers 59(7): 981-994
(2010).

Admittedly, the theory and results of this paper emphasize the
need for further research in QBF solvers [. . . ] Since the first
complete QBF solver was presented decades after the first
complete engine to solve SAT, research in this field remains at its
infancy.
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Introduction (3): Progress in QBF Research

The Beginning of QBF Solving:
1998: DPLL for QBF [CGS98].
2002: CDCL for QBF [GNT02, Let02, ZM02a].
2002: expansion of variables [AB02].

⇒ compared to SAT, QBF still is a young field of research!

Increased Interest in QBF:
QBF proof systems: theoretical frameworks of solving techniques.
CDCL and expansion as orthogonal approaches to QBF solving.
QBF solving by counterexample guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].
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Introduction (4): Motivating QBF Applications

Synthesis and Realizability of Distributed Systems:

[GT14] Adria Gascón, Ashish Tiwari: A Synthesized Algorithm for
Interactive Consistency. NASA Formal Methods 2014: 270-284.

[FT15] Bernd Finkbeiner, Leander Tentrup: Detecting Unrealizability of
Distributed Fault-tolerant Systems. Logical Methods in Computer Science
11(3) (2015).
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Introduction (4): Motivating QBF Applications

Solving dependency quantified boolean formulas (NEXPTIME):

[FT14] Bernd Finkbeiner, Leander Tentrup: Fast DQBF Refutation. SAT
2014: 243-251.
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Introduction (4): Motivating QBF Applications

Formal verification and synthesis:

[HSM+14] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong,
Husam Abu-Haimed: Dominant Controllability Check Using QBF-Solver
and Netlist Optimizer. SAT 2014: 227-242.

[CHR16] Chih-Hong Cheng, Yassine Hamza, Harald Ruess: Structural
Synthesis for GXW Specifications. To appear in the proceedings of CAV
2016.
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Outline

Preliminaries:
QBF syntax and semantics.

QBF Proof Systems:
Results in QBF proof complexity.
Understanding and analyzing techniques implemented in QBF solvers.

A Typical QBF Workflow:
How to encode problems as a QBF?
How to simplify and solve a QBF?
How to obtain the solution to a problem from a solved QBF?

Outlook and Future Work:
Open problems and possible research directions.
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Preliminaries
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Syntax (1)

QBFs as Quantified Circuits:
> and ⊥ are QBFs.
For propositional variables Vars, (x) where x ∈ Vars is a QBF.
If ψ is a QBF then ¬(ψ) is a QBF.
If ψ1 and ψ2 are QBFs then (ψ1 ◦ ψ2) is a QBF, ◦ ∈ {∧,∨,→,↔}.
If ψ is a QBF and x ∈ Vars(ψ), then ∀x .(ψ) and ∃x .(ψ) are QBFs.
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Syntax (1)

QBFs in Prenex CNF: ψ := Q̂.φ
Quantifier prefix Q̂ = Q1B1 . . .QnBn, Qi ∈ {∀, ∃}, Qi 6= Qj ,
Bi ⊆ Vars, (Bi ∩ Bj) = ∅.
Linear ordering of variables: xi < xj iff xi ∈ Bi , xj ∈ Bj , and i < j .
Quantifier-free CNF φ over propositional variables xi .
Assume: φ does not contain free variables, all xi in Q̂ appear in φ.
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Syntax (2)

Example (QDIMACS Format)
∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Extension of DIMACS format used in SAT solving.
Literals of variables encoded as signed integers.
One quantifier block per line, terminated by zero.
“a” labels ∀, “e” labels ∃.
One clause per line, terminated by zero.

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

QDIMACS format: http://www.qbflib.org/qdimacs.html
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Semantics (1)

Recursive Definition:
Assume that a QBF does not contain free variables.
The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.
The QBF ¬(ψ) is satisfiable iff the QBF ψ is unsatisfiable.
The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.
The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.
The QBF ∀x .(ψ) is satisfiable iff ψ[¬x ] and ψ[x ] are satisfiable.
The QBF ψ[¬x ] (ψ[x ]) results from ψ by replacing x in ψ by ⊥ (>).
The QBF ∃x .(ψ) is satisfiable iff ψ[¬x ] or ψ[x ] is satisfiable.
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Semantics (1)

Game-Based View:
Player P∃ (P∀) assigns existential (universal) variables.
Goal: P∃ (P∀) wants to satisfy (falsify) the formula.
Players pick variables from left to right wrt. quantifier ordering.
QBF ψ is satisfiable (unsatisfiable) iff P∃ (P∀) has a winning strategy.
Winning strategy: P∃ (P∀) can satisfy (falsify) the formula regardless
of opponent’s choice of assignments.
Close relation between winning strategies and QBF certificates.

Example
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄).

P∃ wins by setting x to the same value as u.
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Semantics (2)

Definition (Skolem/Herbrand Function)
Let ψ be a PCNF, x (y) a universal (existential) variable.

Let Dψ(v) := {w ∈ ψ | q(v) 6= q(w) and w < v}, q(v) ∈ {∀, ∃}.
Skolem function fy (x1, . . . , xk) of y : Dψ(y) = {x1, . . . , xk}.
Herbrand function fx (y1, . . . , yk) of x : Dψ(x) = {y1, . . . , yk}.

Definition (Skolem Function Model)
A PCNF ψ with existential variables y1, . . . , ym is satisfiable iff
ψ[y1/fy1(Dψ(y1)), . . . , ym/fym(Dψ(ym))] is satisfiable.

Definition (Herbrand Function Countermodel)
A PCNF ψ with universal variables x1, . . . , xm is unsatisfiable iff
ψ[x1/fx1(Dψ(x1)), . . . , xm/fxm(Dψ(xm))] is unsatisfiable.
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Semantics (3)

Example (Skolem Function Model)
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

Skolem function fx = ⊥ of x with Dψ(x) = ∅.
Skolem function fy (u) = ū of y with Dψ(y) = {u}.
ψ[x/fx , y/fy (u)] = ∀u.(⊥ ∨ u ∨ ū) ∧ (⊥ ∨ ū ∨ u)

Satisfiable: ψ[x/fx , y/fy (u)] = >

Example (Herbrand Function Countermodel)
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

Herbrand function fu(x) = (x) of u with Dψ(u) = {x}.
ψ[u/fu(x)] = ∃x , y .(x ∨ x ∨ y)∧ (x ∨ x ∨ ȳ)∧ (x̄ ∨ x̄ ∨ y)∧ (x̄ ∨ x̄ ∨ ȳ)

Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)
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QBF Proof Systems
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Proof Systems (1): QBF Resolution

Definition (Q-Resolution Calculus QRES, c.f. [BKF95])

Let ψ = Q̂.φ be a PCNF and C ,C1,C2 clauses.

C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ (init)

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃ (red)

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃ (res)

Axiom init, universal reduction red , resolution res.
PCNF ψ is unsatisfiable iff empty clause ∅ can be derived by QRES.
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Proof Systems (2): QBF Resolution

Example
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

∅

(x)

(x ∨u)

(x ∨u∨y)

(x ∨u∨y ∨v)

C1 C3

(x ∨u∨ȳ)

(x ∨u∨ȳ ∨v̄)

C2 C3

(x̄)

(x̄ ∨u)

(x̄ ∨u∨y)

(x̄ ∨u∨y ∨v)

C1 C4

(x̄ ∨u∨ȳ)

(x̄ ∨u∨ȳ ∨v̄)

C2 C4
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Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(v ∨ v̄ ∨ z)

C1 C2

Long-Distance Q-Resolution: [ZM02a, BJ12]
Like Q-resolution, but allow certain tautological resolvents.
Tautological resolvent C with {x , x̄} ⊆ C :

q(x) = ∀
Existential pivot p: p < x .

Exponentially stronger than traditional Q-resolution.
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Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

QU-Resolution: [VG12]
Like Q-resolution but additionally allow universal variables as pivots.
Exponentially stronger than traditional Q-resolution.
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Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

Further Variants: [BWJ14]
Combinations of QU- and long-distance Q-resolution.
Existential and universal pivots, tautologies due to universal variables.
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Proof Systems (4): Expansion and Instantiation

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh z in copy of CNF.
ψ = ∃x , y , z . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧ (x̄ ∨ z) ∧ (x ∨ z̄) ∧ (z)︸ ︷︷ ︸
u replaced by >, y replaced by z

Obtain (x̄) from (x̄ ∨ y) and (ȳ), (x) from (x ∨ z̄) and (z).

Universal Expansion: cf. [AB02, Bie04, JKMSC16]
Idea: eliminate all universal variables, cf. Shannon expansion [Sha49].
Finally, apply propositional resolution (no universal reduction).
If x innermost: replace Q̂∀x .φ by Q̂.(φ[x/>] ∧ φ[x/>]).
Otherwise, duplicate existential variables inner to x [Bie04, BK07].
Based on CNF, NNF, and-inverter graphs [AB02, LB08, PS09].
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Proof Systems (5): Expansion and Instantiation

Definition (∀Exp+RES [JM13, BCJ14, JM15a])

Axiom: C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ

Instantiation: C
{lAl | l ∈ C , q(l) = ∃}

Complete assignment A to universal variables s.t. literals in C
falsified, Al ⊆ A restricted to universal variables u with u < l .

Resolution: C1 ∪ {pA} C2 ∪ {p̄A}
C1 ∪ C2

for all x ∈ Q̂:
{x , x̄} 6⊆ (C1 ∪C2)

First, instantiate (i.e. replace) all universal variables by constants.
Existential literals in a clause are annotated by partial assignments.
Finally, resolve on existential literals with matching annotations.
Instantiation and annotation mimics universal expansion.
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Proof Systems (6): Expansion and Instantiation

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Complete assignments: A = {ū} and A′ = {u}.
Instantiate: (x̄ ∨ y ū) ∧ (x ∨ ȳu) ∧ (yu) ∧ (ȳ ū)

Note: cannot resolve (yu) and (ȳ ū) due to mismatching annotations.
Obtain (x) from (x ∨ ȳu) and (yu), (x̄) from (x̄ ∨ y ū) and (ȳ ū).

Different Power of QBF Proof Systems:
Q-resolution and expansion/instantiation are incomparable [BCJ15].
Interpreting QBFs as first-order logic formulas [SLB12, Egl16].
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Typical QBF Workflow
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Workflow Overview
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Certificates

Which problems can be modelled as a QBF?
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Workflow Overview
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Workflow Overview
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Workflow Overview
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Workflow Overview
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How to obtain the solution to a problem from a solved QBF?
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Problems (1)

Definition (Polynomial-Time Hierarchy, cf. [BB09, MS72])

For k ≥ 0: ΣP
0 := ΠP

0 := P, ΣP
k+1 := NPΣP

k , ΠP
k+1 := coΣP

k+1

ΣP
k+1: problems decidable in non-det. poly-time with ΣP

k oracle.
ΠP
k+1: class of problems whose complement is in ΣP

k+1.
ΣP
1 = NP, ΠP

1 = coNP, every ΣP
i , ΠP

i contained in PSPACE [Sto76].

Definition (Prefix Type [BB09])
A propositional formula φ has prefix type Σ0 = Π0. Given a QBF with
prefix type Σn (Πn), the QBF ∀B.φ (∃B.φ) has prefix type Πn+1 (Σn+1).

Proposition (cf. [BB09])
For k ≥ 1, the satisfiability problem of a QBF ψ with prefix type Σk (Πk)
is ΣP

k -complete (ΠP
k -complete).
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Problems (2)

Class Prefix Problems (e.g.)
ΣP
1 = NP ∃B1.φ SAT, checking Herbrand function

countermodels of QBFs [BJ12]

ΣP
2 ∃B1∀B2.φ MUS membership testing [JS11b,

Lib05], encodings of conformant
planning [Rin07], ASP-related
problems [FR05], abstract argu-
mentation [CDG+15]

ΠP
1 = co-NP ∀B1.φ Checking Skolem function models

of QBFs [BJ12]

PSPACE Q1B1 . . .QnBn.φ
(n depending on
problem instance)

LTL model checking [SC85], NFA
language inclusion, games [Sch78]
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Problems (3): Using Universal Quantifiers

Example (Bounded Model Checking (BMC) [BCCZ99])
System S, states of S as a state graph, invariant P.
Goal: search for a counterexample of P of bounded length.

SAT Encoding:
Initial state predicate I(s), transition relation T (s, s ′).
“Bad state” predicate B(s): s is a state where P is violated.
Error trace of length k: I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ B(sk).

QBF Encoding: [BM08, JB07]
∃s0, . . . , sk∀x , x ′.
I(s0) ∧ B(sk) ∧ ([

∨k−1
i=0 ((x = si) ∧ (x ′ = si+1))]→ T (x , x ′)).

Only one copy of T in contrast to k copies in SAT encoding.
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Encodings (1)

QCIR: Quantified CIRcuit
Format for QBFs in non-prenex non-CNF.
Conversion tools, e.g., part of GhostQ solver [Gho16, KSGC10].

1 Introduction

This document defines the input format QCIRfor tools processing or producing
quantified Boolean formulas (QBF). The QCIRformat is based on the ISCAS-89
format. QCIRallows the representation of quantified circuits in prenex as well
as in non-prenex form. The QCIRformat is designed for being easy to use in
applications on the one hand and for being easy to be implemented in solvers
and related tools on the other hand. In order to satisfy both requirements, the
standard defines a general version providing much freedom to the user and a
version defining cleansed formulas which are easier to process. This document
first gives a concise definition of the structure of a QCIRformula followed by a
textual description of implementation details which cannot be covered in terms
of a grammar. Then restrictions to the cleansed format are introduced and
examples are provided. Finally, this document concludes with a list of features
to be included in the future.

2 Format Specification

2.1 Syntax

The following BNF grammar specifies the structure of a formula represented in
QCIR (Quantified CIRcuit).

qcir-file ::= format-id qblock-stmt output-stmt (gate-stmt nl)
∗

format-id ::= #QCIR-G14 [integer] nl

qblock-stmt ::= [free(var-list)nl ] qblock-quant∗

qblock-quant ::= quant(var-list)nl

var-list ::= (var,)∗ var

lit-list ::= (lit,)∗ lit | ε
output-stmt ::= output(lit)nl

gate-stmt ::= gvar = ngate type(lit-list)

| gvar = xor(lit, lit)

| gvar = ite(lit, lit, lit)

| gvar = quant(var-list; lit)

quant ::= exists | forall
var ::= (A string of ASCII letters, digits, and underscores)

gvar ::= (A string of ASCII letters, digits, and underscores)

nl ::= newline

lit ::= var | -var | gvar | -gvar

ngate type ::= and | or

2

#QCIR-G14

forall(v1)

exists(v2, v3)

output(g3)

g1 = and(v1, v2)

g2 = and(-v1, -v2, v3)

g3 = or(g1, g2)

∀v1.∃v2.∃v3. (v1 ∧ v2)︸ ︷︷ ︸
g1

∨ (¬v1 ∧ ¬v2 ∧ v3)︸ ︷︷ ︸
g2︸ ︷︷ ︸

g3

As seen above, a file in QCIR format consists of four parts: (1) format identi-
fication, (2) a quantifier prefix, (3) identification of the circuit output, and (4)
gate definitions. In general, a formula in QCIR format has the following form:

3.2 Formula in Non-Prenex Form

A formula in non-prenex form looks as follows:

#QCIR-G14

forall(z)

output(g3)

g1 = and(x1, x2, z)

g2 = exists(x1, x2; g1)

g3 = or(z, g2)

∀z.

g3︷ ︸︸ ︷
z ∨ ∃x1.∃x2. (x1 ∧ x2 ∧ z)︸ ︷︷ ︸

g1︸ ︷︷ ︸
g2

3.3 Formula in Cleansed Form

The formula from the previous section has the following cleansed form:
#QCIR-G14 6

forall(3)

output(4)

5 = and(1, 2, 3)

6 = exists(1, 2; 5)

4 = or(3, 6)

4 Beyond this Standard

This is a collection of topics to be handled in later versions of this document.

5

From [QCI14]: http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
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Encodings (2)

Definition (Prenexing, cf. [AB02, Egl94, EST+03, ETW02, GNT07])
(Qx . φ) ◦ ψ ≡ Qx . (φ ◦ ψ), ψ a QBF, Q ∈ {∀,∃}, ◦ ∈ {∧,∨}, x 6∈ Var(ψ).

Definition (CNF transformation, cf. [Tse68, NW01, PG86])
Given a prenex QBF ψ := Q̂.φ, subformulas ψi of ψ.
ψi = (ψi ,l ◦ ψi ,r ), ◦ ∈ {∨,∧,→,↔,⊗}.
Add equivalences ti ↔ (ψi ,l ◦ ψi ,r ), fresh variable ti .
Convert each ti ↔ (ψi ,l ◦ ψi ,r ) to CNF depending on ◦.
Resulting PCNF ψ′: satisfiability-equivalent to ψ, size linear in |ψ|.
Safe: quantify each ti innermost [GMN09]: ψ := Q̂∃ti .φ.
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Encodings (3)

Definition (QBF Extension Rule, cf. [Tse68, JBS+07, BCJ16])
Let ψ := Q1x1 . . .Qixi . . .Qjxj . . .Qnxn.φ be a PCNF.
Consider variables xi , xj with xi ≤ xj in ψ, fresh existential variable v .
Add definition v ↔ (x̄i ∨ x̄j) in CNF: (v̄ ∨ x̄i ∨ x̄j)∧ (v ∨ xi)∧ (v ∨ xj).
Strong variant: quantify v after xj , Q1x1 . . .Qixi . . .Qjxj∃v . . .Qnxn.
Weak variant: quantify v innermost, Q1x1 . . .Qixi . . .Qjxj . . .Qnxn∃v .

Proposition (cf. [JBS+07, BCJ16])
Q-resolution with the strong extension rule is exponentially more powerful
than with the weak extension rule with respect to lengths of refutations.

⇒ “bad” placement of Tseitin variables in encoding phase may have
negative impact on solving in a later stage.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 23 / 46



Encodings (4): QParity

Definition (QParity Function [BCJ15])
QParityn := ∃x1, . . . , xn∀y . XOR(XOR(. . .XOR(x1, x2), . . . , xn), y).

CNF φ of QParityn by
Tseitin translation:

(t1 ↔ XOR(x1, x2)) ∧∧
1<i<n

(ti ↔ XOR(ti−1, xi+1)) ∧

(tn ↔ XOR(tn−1, y)) ∧ (tn)

Prefix by weak extension rule : Q̂W := ∃x1, . . . , xn∀y∃t1, . . . , tn
Prefix by strong extension rule: Q̂S := ∃x1, . . . , xn∃t1, . . . , tn−1∀y∃tn

Proposition ([BCJ15, BCJ16])
The PCNF Q̂W .φ has only exponential Q-resolution refutations.
The PCNF Q̂S .φ has polynomial Q-resolution refutations.
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Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How can QBF encodings be simplified?
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Preprocessing (1)

Preprocessing as Incomplete Solving:
Apply Q-resolution and expansion in restricted and bounded fashion.
E.g. Bloqqer [BLS11, HJL+15] and sQueezeBF[GMN10b].
Failed literal detection [LB11, VGWL12]: find necessary assignments.

Reconstructing Structure:
Recover non-CNF structure from Tseitin encodings [GB13, KSGC10].
Move definition variables in prefix outwards, e.g. QParity function.

Effect on Solver Performance: [LSVG16]
Iterative and incremental preprocessing may be powerful.
Preprocessing may blur formula structure and thus be harmful.
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Preprocessing (2)

Number Solved
Category/ Best Worst
Solvers Foot Foot
NO Bloqqer (solvers perform better without Bloqqer)
bGhostQ-CEGAR 142 93
GhostQ-CEGAR 142 93
GhostQ 122 84
sDual_Ooq 118 99
sDual_Ooq 105 89
WANT Bloqqer (solvers perform better with Bloqqer)
RAReQS 132 79
DepQBF-lazy-qpup 128 88
DepQBF 125 86
Hiqqer3 117 113
Qoq 93 65
QuBE 91 90
Nenofex 68 50

QBF Gallery 2013 [LSVG16]: QBFLIB set (276 formulas).
Solver performance with and without preprocessing by Bloqqer.
Preprocessing may be harmful to the performance of some solvers.
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Preprocessing (3): Prefix Ordering Matters

Definition (Blocking Literal, Blocked Clause [Kul99, BLS11, HJL+15])

Let ψ = Q̂.φ be a PCNF and C ∈ φ a clause.
blocking literal l : l ∈ C with q(l) = ∃ such that for all C ′ ∈ φ with
l̄ ∈ C ′, there exists l ′ with l ′ ≤ l such that {l ′, l̄ ′} ⊆ (C ∪ (C ′ \ {̄l})).
A clause C is blocked if it contains a blocking literal.
Removing blocked clauses preserves satisfiability.

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

No clause in ψ is blocked.
Informally, inspect all resolvents on potential blocking literals.
Prefix ordering has to be taken into account in QBF preprocessing.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 27 / 46



Solving (1)

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How can a QBF be solved?
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Solving (2): QCDCL

Result qcdcl (PCNF ψ)
Result R = UNDEF;
Assignment A = ∅;
while (true)

/* Simplify under A. */
(R,A) = qbcp(ψ,A);
if (R == UNDEF)

/* Decision making. */
A = assign_dec_var(ψ,A);

else
/* Backtracking. */
/* R == UNSAT/SAT */
B = analyze(R,A);
if (B == INVALID)

return R;
else

A = backtrack(B);

High-level flow similar to CDCL
for SAT.
Generate assignments A by
decision making and QBF-
specific BCP.
Decisions in prefix ordering.
Interpret formula ψ under A and
universal reduction.
A is conflicting: clause learning.
A is a CNF model: cube learning.
Asserting clauses and cubes for
backjumping.
QCDCL solvers, e.g., [LB10a,
GMN10a, KSGC10, ZM02b]
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Solving (3): QCDCL

Definition (Unit Literal Detection [CGS98])
Given a QBF ψ, a clause C ∈ ψ is unit if C = (l) and q(l) = ∃.
Unit literal detection (UL) assigns var(l) to satisfy the unit clause
C = (l).
(If q(l) = ∀ then C is effectively empty by universal reduction.)

Definition (Pure Literal Detection [CGS98])
A literal l is pure in a QBF ψ if there are clauses which contain l but
no clauses which contain l̄ .
Pure literal detection (PL) assigns var(l) of an existential (universal)
pure literal l so that clauses are satisfied (not satisfied, i.e. shortened).
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Solving (4): QCDCL

Definition (Boolean Constraint Propagation for QBF (QBCP))
Given a PCNF ψ and the empty assignment A = {}, i.e. ψ[A] = ψ.
1. Apply universal reduction (UR) to ψ[A].
2. Apply UL to ψ[A], record antecedent clauses C ∈ ψ like in CDCL.
3. Apply PL to ψ[A].
Add assignments found by UL and PL to A, repeat steps 1-3.
Stop if A does not change anymore or if ψ[A] = > or ψ[A] = ⊥.

Properties of QBCP:
Result: extended assignment A′ and simplified PCNF ψ′ = ψ[A′] by
UL, PL, and UR such that ψ ≡sat ψ

′.
QBCP can assign variables out of prefix ordering.
Construct implication graph like in BCP for SAT.
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Solving (5): QCDCL

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)

By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)

By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.

Conflict graph G :
x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)
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Solving (6): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Idea: start at ∅, select pivots in
reverse assignment ordering.
Resolve antecedents of x4, x3.
Q-resolution [BKF95] disallows
tautologies like (ȳ5 ∨ y5 ∨ x̄2)!
Pivot selection more complex
than in CDCL for SAT.

(ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)
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Solving (7): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Avoid tautologies: resolve on
UR-blocking existentials.
Select pivots: x4, x2, x3, x2.
Q-resolution derivation of a
learned clause (x̄1) is not
regular, i.e. resolve on
variables more than once. (x̄1)

(x̄1 ∨ y5 ∨ x̄2)

(x̄1 ∨ x̄3)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x̄1 ∨ x2)

(x3 ∨ y5 ∨ x̄2)

(x̄1 ∨ x2)
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Solving (8): QCDCL

Clause Learning by Traditional Q-Resolution [BKF95]:
Avoid tautologies by appropriate pivot selection [GNT06].
Derivation of a learned clause may be exponential [VG12].
Annotate nodes in conflict graph with intermediate resolvents,
resulting in tree-like (instead of linear) Q-resolution derivations of
learned clauses [LEG13].

Clause Learning by Long Distance Q-Resolution [ZM02a, BJ12]:
First implementation in quaffle:
https://www.princeton.edu/~chaff/quaffle.html.
Select pivots in strict reverse assignment ordering.
Every resolution step is a valid LDQ-resolution step [ZM02a, ELW13].
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Solving (9): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Start at ∅, always select pivots
in reverse assignment ordering.
Resolve antecedents of x4, x3, x2.
Pivots obey order restriction of
LDQ-resolution.
Derivation of learned clause is
regular, size linear in |G |.

(x̄1)

(x̄1 ∨ x2) (ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 35 / 46



Solving (10): QCDCL for Satisfiable QBFs

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])
Let ψ = Q̂.φ be a PCNF.

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

with ψ[A] = >, i.e. every clause of ψ satisfied under A.

Cube Learning Dual to Clause Learning:
Cube C by model generation: v ∈ C (v̄ ∈ C) if v assigned to > (⊥).
C (also called cover set): implicant of CNF φ, i.e. C ⇒ φ.
Model generation is an axiom of QRES.
Q-resolution and existential reduction on cubes.
Learn asserting cubes similar to asserting clauses.
PCNF ψ is satisfiable iff the empty cube can be derived from ψ.
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Solving (11): QCDCL for Satisfiable QBFs

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
Resolve (x̄ ∧ ū) and (x̄ ∧ u) on universal u.
Reduce (x̄) to derive ∅.
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Solving (12): QCDCL for Satisfiable QBFs

QCDCL and Cube Learning in Practice:
PCNF ψ := Q̂. φ with quantifier prefix Q̂ and CNF φ.
Original clauses φ, learned clauses θ and cubes γ.
Properties: Q̂. φ ≡sat Q̂. (φ ∧ θ) and Q̂. φ ≡sat Q̂. (φ ∨ γ).

Problem: [RBM97, Let02]
Easy formula with exponential DNF (and exponential cube proofs):
ψ = ∀u1∃x1 . . . ∀un∃xn.

∧n
i=1[(ui ∨ x̄i) ∧ (ūi ∨ xi)]

Generalized Axioms: [LBB+15, LES16]
Generalize model generation (axiom) to derive shorter cubes C from
assignments A in QCDCL where ψ[A] is satisfiable.
In general, C 6⇒ φ.
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Solving (13): Lazy Expansion by CEGAR

Example ([CGJ+03, JS11a, JKMC12, JKMSC16])
Let ψ := ∃X∀Y. φ be a one-alternation QBF, φ a non-CNF formula.

ψ is satisfiable iff ψ′ :=
∧
y∈B|Y | φ[Y /y] is satisfiable.

ψ′: full expansion of ∀Y over all possible assignments y of Y .
Let U ⊆ B|Y | and Abs(ψ) :=

∧
y∈U φ[Y /y] be a partial expansion.

If abstraction Abs(ψ) is unsatisfiable, then ψ is unsatisfiable.
Otherwise, consider a model (candidate solution) x ∈ B|X | of Abs(ψ).
If x is also a model of the full expansion ψ′, then ψ is satisfiable.

x is a model of ψ′ iff ∀Y .φ[X/x] is satisfiable.
∀Y .φ[X/x] is satisfiable iff ∃Y .¬φ[X/x] is unsatisfiable.
Let y be a model of ∃Y .¬φ[X/x], if one exists (counterexample to x).

Otherwise, refine Abs(ψ) by U := U ∪ {y}.

Used in 2QBF solving [RTM04, BJS+16], RAReQS solver (recursive).
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Solving (14): The Use of SAT Technology

Proposition
Given a PCNF ψ := Q̂.φ. If a clause C can be derived from φ by a SAT
solver, then C can be derived from ψ by QU-resolution.

Coupling QCDCL with SAT Solving:
Clauses learned from φ by CDCL are shared with QCDCL [SB05].
Models of φ found by SAT solver guide search process in QCDCL.
SAT-based generalizations of Q-resolution axioms in QCDCL [LES16].

Nested and Levelized SAT Solving:
Solve ∃B1.φ1 ∧ (∀B2.φ2) by solving ∃B1.φ1 ∧ (∃B2.¬φ2) with nested
SAT solvers, applicable to arbitrary nestings [BJT16, JTT16].
Invoke two SAT solvers S∀ and S∃ with respect to quantifier blocks,
prefix processed from left to right [THJ15].
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Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to obtain the solution to a problem from a solved QBF?
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Proofs and Certificates (1)

Q-Resolution Proofs:
QCDCL solvers produce derivations P of the empty clause/cube.
Proof P can be filtered out of derivations of all learned clauses/cubes.

Extracting Skolem/Herbrand Functions from Proofs:
By inspection of P, run time linear in |P| (|P| can be exponential).
Extraction from long-distance Q-resolution proofs [BJJW15].
Approaches to compute winning strategies from P [GGB11, ELW13].
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Proofs and Certificates (1)

Definition (Extracting Herbrand functions [BJ11, BJ12])
Let P be a proof (Q-resolution DAG) of the empty clause ∅.

Visit clauses in P in topological ordering.
Inspect universal reduction steps C ′ = UR(C).
Update Herbrand functions of variables u reduced from C by C ′.
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Proofs and Certificates (2)

Example (Extracting Herbrand Functions [BJ11, BJ12])
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

∅

P1

(x)

(x ∨ u)

(x ∨ u ∨ y) (x ∨ u ∨ ȳ)

(x̄)

(x̄ ∨ ū)

(x̄ ∨ ū ∨ y) (x̄ ∨ ū ∨ ȳ)

Literal u reduced from (x ∨ u), update: fu(x) := (x).
Literal ū reduced from (x̄ ∨ ū), update: fu(x) := fu(x) ∨ ¬(x̄) = (x).
Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)
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Proofs and Certificates (3): Special Case

Example
Let ψ := ∃X∀Y. φ and ψ′ := ∀Y ∃X. φ be one-alternation QBFs.

If ψ satisfiable: all Skolem functions are constant.
If ψ′ unsatisfiable: all Herbrand functions are constant.
No need to produce derivations of the empty clause/cube.
QBF solvers can directly output values of Skolem/Herbrand functions.
Useful for modelling and solving problems in ΣP

2 and ΠP
2 .

QDIMACS output format specification.
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Outlook and Future Work
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Outlook and Future Work (1)

QBF in Practice:
QBF tools are not (yet) a push-button technology.
Pitfalls: Tseitin encodings, premature preprocessing.
Goal: integrated workflow without the need for manual intervention.

Challenges:
Extracting proofs and certificates in workflows including preprocessing
[HSB14a, HSB14b] and incremental solving [MMLB12, LE14].
Integrating dependency schemes [SS09, LB10b, VG11, PSS16] in
workflows to relax the linear quantifier ordering.
Implementations of QCDCL do not harness the full power of
Q-resolution [Jan16].
Combining strengths of orthogonal solving approaches.
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Outlook and Future Work (2)
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QBF Gallery 2013 application benchmarks [LSVG16].
6 sets, 150 formulas each, 900 sec timeout, 7 GB memory limit.
Diverse solver performance depending on implemented approaches.
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Outlook and Future Work (3)

Take Home Messages:
Assuming that NP 6= PSPACE, QBF is more difficult than SAT. . .
. . . which is reflected in the complexity of solver implementations. . .
. . . but allows for exponentially more succinct encodings than SAT.
The computational hardness of QBF motivates exploring alternative
approaches (e.g. CEGAR, expansion) in addition to QCDCL.
Number of quantifier alternations vs. observed hardness.
Document and publish your tools and benchmarks!
Upcoming QBFEVAL: http://www.qbflib.org/qbfeval16.php
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[Appendix] Syntax

Definition (QBFs as First-Order Logic Formulas [SLB12])
Mapping J·K : QBF → FOL with respect to unary FOL predicate p:

J∃x .φK = ∃x .JφK
Jφ ∨ ψK = JφK ∨ JψK

JxK = p(x)

J>K = p(true)

J∀x .φK = ∀x .JφK
Jφ ∧ ψK = JφK ∧ JψK

J¬ψK = ¬JψK
J⊥K = p(false)

It holds that p(true) (p(false)) is true (false) in every FOL interpretation.

Proposition ([SLB12])
The QBF ψ is satisfiable iff JψK ∧ p(true) ∧ ¬p(false) is satisfiable.
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[Appendix] Encodings: QParity

Q̂W .φ := ∃x1, x2, x3∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings: QParity

Q̂W .φ := ∃x1, x2, x3∀y∃t1, t2, t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings: QParity

Q̂S .φ := ∃x1, x2, x3 ∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings: QParity

Q̂S .φ := ∃x1, x2, x3, t1, t2∀y∃t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Solving: The Use of SAT Technology

Example (Clause Selection and Clausal Abstraction [JM15b, RT15])
Let ψ := ∀X∃Y. φ be a one-alternation QBF, φ a CNF.

ψ unsatisfiable iff, for some x ∈ B|X |, ∃Y. φ[X/x] unsatisfiable.
Think of x ∈ B|X | as a selection φxS ⊆ φ of clauses.
Clause C ∈ φxS iff C not satisfied by x, i.e. C [X/x] 6= >.
If ∃Y. φxS [X/x] unsatisfiable then ∃Y. φ[X/x] and ψ unsatisfiable.
Otherwise, consider model y ∈ B|Y | of ∃Y. φxS [X/x].
Find new x′ ∈ B|X | such that there exists C ∈ φx′

S with C [Y /y] 6= >.
If no such x′ exists then ψ is satisfiable.
CEGAR: find candidate solutions x and counterexamples y by SAT
solving, refinement step blocks unsuccessful selections φxS .
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