
The Fourth Answer Set Programming Competition:
Preliminary Report?

Mario Alviano1, Francesco Calimeri1, Günther Charwat2, Minh Dao-Tran2,
Carmine Dodaro1, Giovambattista Ianni1, Thomas Krennwallner2,

Martin Kronegger2, Johannes Oetsch2, Andreas Pfandler2, Jörg Pührer2,
Christoph Redl2, Francesco Ricca1, Patrik Schneider2, Martin Schwengerer2,

Lara Katharina Spendier3, Johannes Peter Wallner2, and Guohui Xiao2

1 Dipartimento di Matematica e Informatica, Università della Calabria, Italy
2 Institute of Information Systems, Vienna University of Technology, Austria
3 Institute of Computer Languages, Vienna University of Technology, Austria

Abstract. Answer Set Programming is a well-established paradigm of declara-
tive programming in close relationship with other declarative formalisms such as
SAT Modulo Theories, Constraint Handling Rules, PDDL and many others. Since
its first informal editions, ASP systems are compared in the nowadays customary
ASP Competition. The fourth ASP Competition, held in 2012/2013, is the sequel
to previous editions and it was jointly organized by University of Calabria (Italy)
and the Vienna University of Technology (Austria). Participants competed on a
selected collection of benchmark problems, taken from a variety of research areas
and real world applications. The Competition featured two tracks: the Model&
Solve Track, held on an open problem encoding, on an open language basis, and
open to any kind of system based on a declarative specification paradigm; and the
System Track, held on the basis of fixed, public problem encodings, written in a
standard ASP language.

1 Introduction

Answer Set Programming is a declarative approach to knowledge representation and
programming proposed in the area of nonmonotonic reasoning and logic program-
ming [9, 11, 23–25, 35, 36, 43, 46]. Among the advantages of ASP are its declarative
nature combined with a comparatively high expressive power [19, 42]. After pioneering
work [10, 42, 49, 50], several systems supporting ASP and its variants are born from the
initial offspring [2, 3, 16, 18, 31, 33, 37, 39–42, 44, 45, 47, 49, 52].

Since the first informal editions (Dagstuhl 2002 and 2005), ASP systems are com-
pared in the nowadays customary ASP Competition series [20, 16, 34], which reached
now its fourth official edition. The Fourth ASP Competition featured two tracks: the
Model& Solve Track, held on an open problem encoding, open language basis, and
open to any system based on a declarative specification paradigm; and the System

? This research is supported by the Austrian Science Fund (FWF) projects P20841 and P24090.
Carmine Dodaro is partly supported by the European Commission, European Social Fund and
Regione Calabria.

System
S[T]

EP

IPi

WP
i or

INCONSISTENT

(a) System Track

System
S[T, P]IPi

WP
i or

INCONSISTENT

(b) Model& Solve Track

Fig. 1: Competition Setting

Track, held on the basis of fixed problem encodings, written in a standard ASP lan-
guage.

In this paper we illustrate the overall setting of the fourth ASP Competition, its
participants and the benchmark suite. A more detailed report, including a complete
description of the entire Competition, outcomes of non-participant systems, and com-
parisons with other state-of-the-art systems is under preparation. The competition had
23 participants which were evaluated on a suite of 27 benchmark domains, for each of
which about 30 instances were selected, for a total of about 50’000 separate benchmark
runs. Results of the competition were disclosed during the LPNMR 2013 conference.

The remainder of this paper is structured as follows. In Section 2 we illustrate the
competition format, especially discussing updates which were introduced with respect
to the previous editions. In section 3 we illustrate the new standard language ASP-
Core-2. Section 4 illustrates the benchmark problems used in this edition and Section 5
presents the participants to the Competition.

2 Format of the Fourth ASP Competition

We illustrate here the settings of the competition focusing on changes introduced with
respect to the Third Competition’s edition.

Competition format. The 4th ASP Competition retains the distinction between Model&
Solve and System Track. Both tracks run on a selected suite of benchmark domains,
which were chosen during an open Call for Problems stage.

The System Track was conceived with the aim of (i) fostering the standardization
of the ASP input language, and (ii) let the competitors compare each other in fixed,
predefined conditions, excluding e.g., domain-tailored evaluation heuristics and custom
problem encodings. The System Track is run as follows (Figure 1-a): for each problem
P a corresponding, fixed, declarative specification EP of P , and a number of instances
IP1 , . . . , I

P
n , are given. Each participant system S[T], for T a participating team, is fed

with all the couples 〈EP , IPi 〉, and challenged to produce a witness solution to 〈EP , IPi 〉
(denoted by WP

i) or to report that no witness exist, within a predefined amount of
allowed time. A score is awarded to each S[T] per each benchmark, as detailed later in
this Section. Importantly, problem encodings were fixed for all participants: specialized
solutions on a per-problem basis were not allowed, and problems were specified in the
recently-released ASP-Core-2 language. This setting has been introduced in order to
give a fair, objective measure of what one can expect when switching from a system to

another, while keeping all other conditions fixed, such as the problem encoding and the
default solver settings and heuristics.

Differently from the System Track, the Model& Solve Track has been instead left
open to any (bundle of) solver systems loosely based on a declarative specification
language. Thus no constraints were set on the declarative language used for encod-
ing solutions to be solved by participants’ systems. Indeed, the spirit of this Track is
to (i) encourage the development of new expressive declarative constructs and/or new
modeling paradigms; (ii) to foster the exchange of ideas between communities in close
relationships with ASP; (iii) and, to stimulate the development of new ad-hoc solv-
ing methods, refined problem specifications and solving heuristics, on a per benchmark
domain basis.

In more detail, each participant team T was allowed to present a version S[T, P]
of their system(s) possibly customized for each problem domain P in terms of solving
heuristics and declarative problem specification. Each system S[T, P], for T a partici-
pating team, is challenged to solve some instances of problem P . S[T, P] is expected
to produce, within a predefined amount of allowed time, a witness solution for each
instance in input (or to report that no witness exists). For both tracks, a total score is
awarded to each team T summing up the scores obtained by each S[T, P] (or by S[T])
on each benchmark, as detailed below.

Scoring system. The competition scoring system was inherited from the third edition
of the competition and improved in some specific aspects. In detail, each participant is
awarded of a score per each benchmark P proportional to: a) the percentage of instances
solved within time (Ssolve(P)); b) the evaluation time (Stime(P)); and c) the quality of
the computed solution in case of optimization problems (Sopt(P)).4

Comparing the scoring system with the one of the former edition, some adjustments
were introduced to the logarithmic time scoring quota Stime, which has been redefined
as follows:

Stime(P) =
100− α
Nγ

N∑
i=1

(
1−

(
log(max(1, ti) + s)

log(tout + s)

))
where P is the problem domain at hand; tout is the maximum allowed time; ti the time
spent by system S while solving instance i (ti is assumed to be lesser or equal to tout); s
is a factor which mildens the logarithmic behavior of Stime; γ is a normalization factor
(having an effect detailed below); and α is a percentage factor balancing the impact of
Stime(P) w.r.t. the Ssolve(P) quota. Indeed, Ssolve(P) assigns a score that is linearly
proportional to the percentage of solved instances for P as follows:

Ssolve(P) = α
NP
N

where NP is the number of instances of problem P solved by S within the timeout.
As in the third edition of the Competition, Stime(P) is specified in order to take into

account the “perceived” performance of a system according to a logarithmic scoring.

4 Solution quality is intended in terms of normalized percent distance from the optimal solution.

Moreover, the parameters of Stime(P) were set in order to obtain a reasonable behavior
that is expected to be stable w.r.t. minor fluctuations in measured execution times. In
particular, we set for this edition of the competition s = 10 (it was previously set to
1) to avoid excessive differences in scoring when solving time was below 10 seconds;
also, the correction max(1, ti) prevents any score difference at all when ti is below 1
second. In this way there is basically no difference in assigned score when execution
times are very low and close to the order of magnitude of measurement errors. As in
the previous competition, α was set to 0.5, so that the time and the instance quota are
evenly balanced; finally, γ was chosen in such a way that the time score quota awarded
for solving a single instance i within the timeout (i.e., 0 ≤ ti ≤ tout) is normalized in
the range [0, (100− α)/N], thus we set

γ = 1− log(1 + s)

log(tout + s)

Other improvements were made w.r.t. the scoring system employed in the 3rd edi-
tion, e.g., with the introduction of a formal averaging policy for coping with multiple
runs of the benchmark suite and other minor refinements. The scoring system of the 4th
ASP Competition is extensively described in [5].

Instance selection process. Concerning instance selection, we introduced in this edi-
tion an new method for the random selection of instances, by taking into account that
(i) the selection process should depend on a unique, not controllable by the organizer,
random seed value; (ii) instances should be roughly ordered by some difficulty crite-
rion provided by domain maintainers; (iii) hash values of instance files, and the fixed
ordering of instances should be known before the Competition run; (iv) the random
sequence used for selection should be unique and applied systematically to each bench-
mark domain, i.e. it must be impossible in practice, for organizers, to possibly forge the
selection of instances in one domain without altering, out of control, the selection of
instances in the other domains. (v) the selection method should approximately select a
set of instances with a good balance between “hard” and “easy” instances.

The above considerations led us to adopt a variant of the statistical systematic sam-
pling technique for the instance selection process. In detail, let S be the a random seed
value chosen from an objective random source, and R be the number of instances per
benchmark to be selected. LetD a benchmark domain, LD its list of available instances,
made available from benchmark domain maintainers roughly sorted by difficulty level,
with |LD| = ND. We denote as LD[i] the i-th instance. over the whole family LD,
as follows: let Start, Perturb1, . . . ,PerturbR be values systematically generated from S
where Start ranges from 0 to 1 and each Perturbi ranges from −1.5 to 1.5. Then, we
set Step = ND

R and StartD = Step ∗ Start. Then we select, for all i (1 ≤ i ≤ R), all the
instances

LD
[
round(max(0,min(ND, StartD + i ∗ Step + Perturbi)))

]
Here round(n) is n rounded to the nearest integer. When Step > Perturbi+1 − Perturbi
for some i, we conventionally selected LD[h + 1] as the (i + 1)-th instance, for h the
index of the i-th instance.

Software and Hardware settings. The Competition has been run using the purposely de-
veloped VCWC environment (Versioning Competition Workflow Compiler) [17]. This
tool takes as input the participating solvers and dedicated benchmark sets and generates
a workflow description for executing all necessary (sub-)tasks for generating the final
solver rankings and statistics. As jobs may fail during the execution, VCWC supports
a gradual refinement of the competition workflow and allows to add or update solvers,
instances, benchmarks, or further runs after the machinery has been brought up. Gener-
ated jobs where scheduled on the Competition hardware using the HTCondor [51] high
throughput computing platform.

Concerning hardware, the competition has been run on several Ubuntu Server 12.04
LTS x86-64 machines featuring two AMD Opteron Magny-Cours 6176 SE CPUs (total
of 24 cores) running at 2.3 GHz with 128GiB of physical RAM. To accommodate multi-
core evaluations, runs were classified into sequential and parallel. Sequential runs have
been evaluated in a single-core Linux control group, while parallel runs were limited to
a six-core control group; all of the six cores form one NUMA node to prevent memory
access overhead to remote NUMA nodes. For both kind of runs only memory with the
lowest distance to the corresponding NUMA node has been used. The memory reserved
to each control group was constrained to 6 GiB (1 GiB = 1 gibibyte = 230 bytes),
while the total CPU time available was 600 seconds. Competitors were instructed about
how to reproduce the software environment, in order to properly prepare and test their
systems.

Reproducibility of the results. The committee did not disclose any submitted material
until the end of the Competition; nonetheless, willingly participants were allowed to
share their own work at any moment. In order to guarantee transparency and repro-
ducibility of the Competition results, all participants were asked to agree that any kind
of submitted material (system binaries, scripts, problems encodings, etc.) was to be
made public after the Competition.

3 Competition Language Overview

Since the first Edition of the competition, standardization has always been one of the
main goals of the ASP Competition Series. The efforts to find a common language
basis, started with the LPNMR 2004 language draft [6], and prosecuted with the ASP-
Core [15] standard adopted in 3rd edition of the Competition. ASP-Core was published
along with the ASP-RfC proposal, which preceded the work of the ASP Standardiza-
tion Working Group, that produced the ASP-Core-2 standard, adopted for the System
Track in the 4th edition of the Competition. The ideas that guided the work are in the
trail of the latest version of the standard: to safeguard the original A-Prolog language
[36]; to include, as extensions, a number of features both desirable and mature; and,
eventually, to have a language with non-ambiguous semantics over which widespread
consensus has been reached. The basis of ASP-Core-2 is hence a rule language allowing
disjunctive heads and strong and negation-as-failure (NAF) negation, with no need for
domain predicates. Arithmetic and Herbrand-interpreted functional terms are explicitly
allowed, as well as aggregate literals and queries; choice atoms and weak constraints
complete the list of new features.

The semantics of non-ground ASP-Core-2 programs extends the traditional notion
of Herbrand interpretation. Concerning the semantics of propositional programs, it is
based on [36], extended to aggregates according to [26]; choice atoms [49] are treated in
terms of a proper translation. To promote declarative programming as well as practical
system implementations, a number of restrictions are imposed. For instance, semantics
is restricted to programs containing non-recursive aggregates; reasonable restrictions
are applied for ensuring that function symbols, integers and arithmetic built-in predi-
cates are finitely handled.

The ASP-Core-2 specification is rich in new features and is partially backward-
compatible with older common input formats. Participants were thus allowed to join the
System Track using slightly syntactically different problem encodings. Each statement
of alternative problem encodings was kept in strict one-to-one correspondence with the
reference ASP-Core-2 encoding.

The work on standardization is beyond the scope of the 4th ASP Competition, and
new features (such as maximize/minimize statements for optimization, and more) have
lately been incorporated into the standard. The detailed ASP-Core-2 language specifi-
cation used for this Competition can be found at [12], while the ongoing standardization
activity can be followed at [13].

4 Benchmark Suite

The benchmark suite has been constructed during a Call for problems stage, after which
26 benchmark domains were selected, 13 of which were confirmed from the previous
edition. The whole collection was suitable for a proper ASP-Core-2 [12] specification.
All 26 problems appeared in the System Track, while the Model& Solve Track featured
only 15 domains. The complete list of benchmarks, whose details are available at [4], is
reported in Table 1. Concerning legacy benchmark domains, problem maintainers were
asked to produce refined specifications and/or better instances sets whenever necessary.
The presence of a star (*) in the fourth column means that the corresponding problem
was changed in its specifications w.r.t. its third Competition version. The selection cri-
teria for problems aimed to collect a number of domains as balanced as possible in
terms of (i) academic vs applicative provenance, (ii) computational complexity, type of
domain and type of reasoning task, and (iii) research group provenance.

Problems belonged to a variety of areas, like general artificial intelligence, databases,
formal logics, graph theory, planning, natural sciences and scheduling; in addition, the
benchmark suite included a synthetic domain and some combinatorial and puzzle prob-
lems. Concerning the type of reasoning task to be executed in each domain, we kept the
categorization in term of of Search, Query and Optimization problems5.

Problems were further classified according to their computational complexity in
the categories P (polynomially solvable), NP (NP-Hard), Beyond-NP (more than NP-
Hard). Apart from this categorization, we classified in the Opt category (optimization
problems) all the problems in which the minimization/maximization of a numerical
goal function could be identified. The first three categories approximately reflect the

5 The reader is referred to [14] for details concerning the three categories.

Table 1. 4th ASP Competition – Benchmark List

ID Problem Name Category Domain 2011 M&S Track

N01 Permutation Pattern Matching NP Combinatorial NO YES

N02 Valves Location Opt Combinatorial NO YES

N04 Connected Maximum-density Still Life Opt AI NO YES

N05 Graceful Graphs NP Graph NO YES

N06 Bottle Filling NP Combinatorial NO YES

N07 Nomystery NP Planning NO YES

N08 Sokoban NP Planning YES∗ YES

N09 Ricochet Robot NP Puzzle NO YES

O10 Crossing Minimization Opt Graph YES YES

O11 Reachability P Graph YES∗ YES

O12 Strategic Companies ΣP
2 AI YES∗ YES

O13 Solitaire NP Puzzle YES YES

O14 Weighted Sequence NP Database YES YES

O15 Stable Marriage P∗ Graph YES YES

O16 Incremental Scheduling NP Scheduling YES YES

N17 Qualitative Spatial Temporal Reasoning NP Formal logic NO NO

N18 Chemical Classification P∗ Natural Sciences NO NO

N19 Abstract Dialectical Frameworks Well-founded Model Opt Formal logic NO NO

N20 Visit-all NP Planning NO NO

N21 Complex Optimization of Answer Sets ΣP
2 Synthetic NO NO

N22 Knight Tour with Holes NP Puzzle YES∗ NO

O23 Maximal Clique Opt Graph YES NO

O24 Labyrinth NP Puzzle YES NO

O25 Minimal Diagnosis ΣP
2 Diagnosis YES NO

O26 Hanoi Tower NP AI YES NO

O27 Graph Colouring NP Graph YES NO

data complexity [48] of the underlying decisional problem, with some exception. In
particular, STABLE MARRIAGE [27, 38], for which polynomial algorithms are known,
has been re-proposed in the System Track with a natural declarative encoding which
makes usage of the Guess & Check paradigm; also, the CHEMICAL CLASSIFICATION
benchmark featured sets of Horn rules as input instances, thus, strictly speaking, it is
to be considered a NP problem under combined complexity. It is worth noting that the
computational complexity of a problem has also impact on features of solvers which
were put under testing. Polynomial problems are mostly, but not exclusively, useful for
testing grounding modules, while the role of model generator modules is more promi-
nent when benchmarking is done in domains in the NP category.

5 Participants

In this Section we briefly present all participants; we refer the reader to the official
Competition website [14] for further details.

System Track Participants. The System Track of the Competition featured 16 systems;
these can be roughly grouped into two main classes: (i) “native” systems, which exploit
techniques purposely conceived/adapted for dealing with logic programs under the sta-
ble models semantics, and (ii) “translation-based” systems, which (roughly), at some
stage of the evaluation process, produce an intermediate specification in a different for-
malism; such specification is then fed to an external solver. The first category includes
clasp – and variants thereof – and DLV+wasp, while the second counts IDP3 (which is
FO(.)-based), LP2BV-1 and LP2BV-2 (relying on SMT solvers), LP2MIP and LP2MIP-MT

(relying on integer programming tools), and LPD2SAT, LP2SAT-MT and LP2SOLRED-MT

(relying on SAT solvers). Interestingly, several parallel (multi-threaded) solutions are
officially present in this edition of the Competition; such systems are denoted by means
of the “-mt” suffix.
• The group from University of Potsdam presented a number of solvers. clasp [33]

is an answer set solver for (extended) normal logic programs featuring state-of-
the-art techniques from the area of Boolean constraint solving. claspfolio [29]
chooses the best suited configuration of clasp to process the given input pro-
gram, according to machine-learning techniques. claspD-2 [31] is an extension
of clasp that allows for solving disjunctive logic programs using a new approach
to disjunctive ASP solving that aims at an equitable interplay between “generat-
ing” and “testing” solver units, and claspD-2 is a version supporting the ASP-
Core-2 standard [12]. Multi-threaded versions clasp-mt [30], claspfolio-mt
and claspD-2-mt were also present.
• The research group from Aalto University presented different solvers, all of them

working by means of translations. With LP2BV-1 and LP2BV-2 [47], a given ASP
program is grounded by Gringo, simplified by Smodels, normalized by getting rid
of extended rule types (e.g., choice rules), translated to bit vectors and finally solved
by BOOLECTOR for LP2BV-1 and Z3 for LP2BV-1. LP2SAT, LP2SAT-MT [39] and
LP2SOLRED-MT [39, 52] work similarly, but rely on translations to SAT rather than
bit vectors; PRECOSAT, PLINGELING and GLUCORED work under the hood for
LP2SAT, LP2SAT-MT, and LP2SOLRED-MT, respectively. LP2MIP [45] and LP2MIP-MT,
finally, translate to mixed integer programs, which are processed by CPLEX.
• The team from KU Leuven presented IDP3, using FO(ID,Agg) + Lua as input lan-

guage [53]. Model generation/optimization was achieved by lifted unit propagation
+ grounding with bounds (possibly using XSB for evaluating definitions) and ap-
plying MiniSat(ID) as search algorithm.
• wasp+DLV. wasp [2] is a native ASP solver built upon a number of techniques orig-

inally introduced in SAT, which were extended and properly combined with tech-
niques specifically defined for solving disjunctive ASP programs. Among them are
restarts, constraints learning and backjumping. Grounding is carried out by an en-
hanced version of the DLV grounder able to cope with the ASP-Core-2 features.
Team members were affiliated to the University of Calabria.

Model& Solve Track Participants. Seven teams participated to the Model& Solve
Track, each presenting a custom approach, often explicitly differentiated depending on
the domain problem at hand: short descriptions follow.
• B-Prolog [54] provides several tools for tackling combinatorial optimization prob-

lems, including tabling for dynamic programming problems, CLP(FD) for CSPs,
and a compiler that translates CSPs into SAT.

• Enfragmo [1] is a grounding-based solver. From a given input (expressed in multi-
sorted first order logic extended with arithmetic and aggregate operators) a propo-
sitional CNF formula is produced, representing the solutions to the instance, which
is processed by a SAT solver.

• EZCSP [7, 8] freely combines different ASP (such as Gringo/clasp, Clingo,
Clingcon, possibly extended for supporting non-Herbrand functions) and CP (such
as B-Prolog) solvers to be selected according to the features of the target domain.

• IDP3 [53] is the same system participating in the System Track, with proper custom
options depending on the benchmark problem; IDP2 [53] consists of the grounder
GidL and the search algorithm MiniSat(ID).

• inca [21, 22] implements Constraint Answer Set Programming (CASP) via Lazy
Nogood Generation (LNG) and a selection of translation techniques. It integrates
Gringo (for grounding CASP specifications), clasp, and a small collection of
constraint propagators enhanced with LNG capacities [22].

• The team of Potassco [32] used Gringo 3, clasp 2, and iClingo 3 (an incremen-
tal ASP system [28] implemented on top of Clingo, featuring a combined grounder
and solver that keep previous states while increasing an incremental parameter,
trying to avoid re-producing already computed knowledge). Search settings were
manually chosen (w.r.t. few instances) per problem class.

6 Acknowledgments

All of us feel honored of the appointment of TU Vienna and University of Calabria
as host institutions: we want to thank all the members of the Database and Artificial
Intelligence Group, the Knowledge-based Systems Group, and the Theory and Logic
Group of Vienna University of Technology (TU Vienna), as well as the Computer Sci-
ence Group at the Department of Mathematics and Computer Science of University of
Calabria (Unical) for their invaluable collaboration, which made this event possible. A
special thanks goes to all the members of the ASP Standardization Working Group and
to all the members of the scientific community which authored, reviewed and helped in
setting up all problem domains; and, of course, to the participating teams, whose feed-
back, once again, significantly helped at improving competition rules and benchmark
specifications. We also want to acknowledge Thomas Eiter as Head of the Institute for
Information Systems of the Vienna University of Technology, and Nicola Leone as the
Director of the Department of Mathematics and Computer Science of University of Cal-
abria, which provided us with human and technical resources. Eventually, we want to
give a special thank to Pedro Cabalar and Tran Cao Son for their support as LPNMR-
2013 conference chairs and proceedings editors.

References

1. Aavani, A., Wu, X.N., Tasharrofi, S., Ternovska, E., Mitchell, D.G.: Enfragmo: A system for
modelling and solving search problems with logic. In: Bjørner, N., Voronkov, A. (eds.) Logic
Programming and Automated Reasoning. Lecture Notes in Computer Science, vol. 7180, pp.
15–22. Springer (2012)

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: Wasp: A native asp solver based
on constraint learning. In: Logic Programming and Nonmonotonic Reasoning - 12th Inter-
national Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings.
Lecture Notes in Computer Science, Springer (2013), To appear

3. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to
Answer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) Logic for Programming, Artificial
Intelligence, and Reasoning, 12th International Conference (LPAR 2005). Lecture Notes in
Computer Science, vol. 3835, pp. 95–109. Springer (December 2005)

4. 4th ASP Competition Organizing Committee, T.: Official Problem Suite (2013),
https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

5. 4th ASP Competition Organizing Committee, T.: Rules and Scoring (2013),
https://www.mat.unical.it/aspcomp2013/ParticipationRules

6. Core language for ASP solver competitions (2004), minutes of the steering committee meet-
ing at LPNMR 2004. Available at
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf

7. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming.
In: ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP09) (Jul 2009)

8. Balduccini, M.: An Answer Set Solver for non-Herbrand Programs: Progress Report. In:
Costa, V.S., Dovier, A. (eds.) Technical Communications of the 28th International Confer-
ence on Logic Programming (ICLP’12). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2012)

9. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

10. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.: Mixed Integer Programming Methods for
Computing Nonmonotonic Deductive Databases. Journal of the ACM 41, 1178–1215 (1994)

11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing asp by functions: Decidable classes
and implementation techniques. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

12. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2: 4th ASP Competition Official Input Language Format
(2013),
http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

13. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP Standardization Activity (2013),
http://www.mat.unical.it/aspcomp2013/ASPStandardization/

14. Calimeri, F., Ianni, G., Krenwallner, T., Ricca, F., The 4th ASP Competition Organizing
Committee: The Fourth Answer Set Programming Competition homepage (2013),
http://www.mat.unical.it/aspcomp2013/

15. Calimeri, F., Ianni, G., Ricca, F.: Third ASP Competition, File and language formats (2011),
http://www.mat.unical.it/aspcomp2011/files/
LanguageSpecifications.pdf

16. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. The-
ory and Practice of Logic Programming FirstView, 1–19 (2012),
http://dx.doi.org/10.1017/S1471068412000105

17. Charwat, G., Ianni, G., Krennwallner, T., Kronegger, M., Pfandler, A., Redl, C., Schwen-
gerer, M., Spendier, L., Wallner, J.P., Xiao, G.: VCWC: A Versioning Competition Work-
flow Compiler. In: Cabalar, P., Son, T.C. (eds.) 12th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, Corunna, Spain, September 15-19, 2013. LNCS,
Springer (September 2013),
http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/
lpnmr2013-vcwc.pdf, to appear

18. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy
grounding. Fundamenta Informaticae 96(3), 297–322 (2009)

19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

20. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second Answer
Set Programming Competition. In: Logic Programming and Nonmonotonic Reasoning, Lec-
ture Notes in Computer Science, vol. 5753, pp. 637–654. Springer Berlin / Heidelberg (2009)

21. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10(4-6), 465–480 (2010)

22. Drescher, C., Walsh, T.: Answer set solving with lazy nogood generation. In: Dovier, A.,
Costa, V.S. (eds.) ICLP (Technical Communications). LIPIcs, vol. 17, pp. 188–200. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

23. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV Sys-
tem. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic
Publishers (2000)

24. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (September 1997)

25. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Reasoning
Web. Semantic Technologies for Information Systems, 5th International Summer School -
Tutorial Lectures. pp. 40–110. Brixen-Bressanone, Italy (August-September 2009)

26. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278–298 (2011)

27. Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configuration Prob-
lems. In: Proceedings of ECAI 2010 Workshop on Configuration. pp. 40–46. Lisbon, Portu-
gal (2010)

28. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) Proceedings of the
Twenty-fourth International Conference on Logic Programming (ICLP’08). Lecture Notes
in Computer Science, vol. 5366, pp. 190–205. Springer (2008)

29. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., Ziller, S.: A portfolio
solver for answer set programming: Preliminary report. In: Delgrande, J., Faber, W. (eds.)
Proceedings of the Eleventh International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’11). Lecture Notes in Artificial Intelligence, vol. 6645, pp. 352–
357. Springer (2011)

30. Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp. Theory and
Practice of Logic Programming 12(4-5), 525–545 (2012)

31. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solv-
ing. In: Rossi, F. (ed.) Proceedings of the Twenty-third International Joint Conference on
Artificial Intelligence (IJCAI’13). IJCAI/AAAI (2013), to appear

32. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 107–124
(2011)

33. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187–188, 52–89 (2012)

34. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
first answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) Logic Programming and Nonmonotonic Reasoning — 9th International Conference
(LPNMR 2007). Lecture Notes in Computer Science, vol. 4483, pp. 3–17. Springer, Tempe,
Arizona (May 2007)

35. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog
perspective . Artificial Intelligence 138(1–2), 3–38 (2002)

36. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

37. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

38. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT
Press, Cambridge, MA, USA (1989)

39. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Proceedings of the Symposium on Constructive Mathematics and
Computer Science in Honour of Michael Gelfonds 65th Anniversary. Lecture Notes in Com-
puter Science, vol. 6565, pp. 111–130. Springer (2011)

40. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM Transactions on Computational Logic 7(1), 1–37
(January 2006)

41. Lefèvre, C., Nicolas, P.: The first version of a new asp solver : Asperix. In: Erdem, E., Lin, F.,
Schaub, T. (eds.) Logic Programming and Nonmonotonic Reasoning — 10th International
Conference (LPNMR 2009). Lecture Notes in Computer Science, vol. 5753, pp. 522–527.
Springer (Sep 2009)

42. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (Jul 2006)

43. Lifschitz, V.: Answer Set Planning. In: Schreye, D.D. (ed.) Proceedings of the 16th Inter-
national Conference on Logic Programming (ICLP 1999). pp. 23–37. The MIT Press, Las
Cruces, New Mexico, USA (Nov 1999)

44. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
Artificial Intelligence 157(1–2), 115–137 (2004)

45. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.
In: 13th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2012). pp. 32–42 (2012)

46. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic
Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer (1999)

47. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.
CoRR abs/1108.5837 (2011)

48. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
49. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Artificial Intelligence 138, 181–234 (Jun 2002)
50. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

Transactions on Knowledge and Data Engineering 7(3), 362–377 (Jun 1995)
51. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor expe-

rience. Concurrency and Computation: Practice and Experience 17(2-4), 323–356 (2005)
52. Wieringa, S., Heljanko, K.: Concurrent clause strengthening. In: Proceedings of the 16th

International Conference on Theory and Applications of Satisfiability Testing (SAT 2013).
Lecture Notes in Computer Science (2013), to appear

53. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system for an
extension of classical logic. In: Denecker, M. (ed.) International Workshop on Logic and
Search (Lash). pp. 153–165 (2008)

54. Zhou, N.F.: The language features and architecture of B-Prolog. Theory and Practice of
Logic Programming 12(1-2), 189–218 (2012)

