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Motivation

HEX-programs

I extend ordinary ASP programs by external atoms &p

I allows to access external knowledge

HEX-
program Solver

Implementation
of &p
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Answer Set Computation

Issue: efficient computation of Answer Sets for HEX-programs

I Faber-Leone-Pfeifer (FLP) semantics [Faber et al., 2011]
(minimal models of FLP-reduct)

I issue of nonmonotonic external atoms with recursion

I reasoning from Horn-programs with poly external atoms is
Σp

2-hard

I thus: answer set checking needs special care
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Answer Set Computation

Issue: efficient computation of Answer Sets for HEX-programs

I simple search for smaller models does not scale

I Unfounded Sets (UFS): used to reduce FLP answer set checking
to a search for UFS (implemented as a SAT problem)
[Eiter et al., 2012b]

I Here: find syntactic criterions to avoid UFS checking
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HEX-Programs

Definition (HEX-programs)

A HEX-program consists of rules of form
a1 ∨ · · · ∨ an ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.

Definition (External Atoms)

An external atom is of the form
&p[q1, . . . , qk](t1, . . . , tl),

p . . . external predicate name
qi . . . predicate names or constants
tj . . . terms

Semantics: 1 + k + l-ary Boolean oracle function f&p:
&p[q1, . . . , qk](t1, . . . , tl) is true under assignment A iff
f&p(A, q1, . . . , qk, t1, . . . , tl) = 1.
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Examples

The &rdf External Atom
I Input: URL
I Output: Set of triplets from RDF file

External knowledge base is a set of RDF files on the web:
addr(http:// . . . /data1.rdf).
addr(http:// . . . /data2.rdf).

bel(X,Y)← addr(U),&rdf [U](X,Y,Z).

&diff [p, q](X): all elements X, which are in p but not in q:

dom(X) ← #int(X).

nsel(X) ← dom(X),&diff [dom, sel](X).

sel(X) ← dom(X),&diff [dom, nsel](X).

← sel(X1), sel(X2), sel(X3),X1 6= X2,X1 6= X3,X2 6= X3.
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Evaluation Method

Translation Approach
HEX-Program Π:

p(c1). dom(c1). dom(c2). dom(c3).

p(X)← dom(X),&empty[p](X).

Guessing program Π̂:
p(c1). dom(c1). dom(c2). dom(c3).

p(X)← dom(X), e&empty[p](X).

e&empty[p](X) ∨ ¬e&empty[p](X)← dom(X).

8 candidates, e.g.:
{Tp(c1),Tp(c2),Tdom(c1),Tdom(c2),Tdom(c3),

Fe&empty[p](c1),Te&empty[p](c2),Fe&empty[p](c3)}
Compatibility check: passed⇒ compatible set
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Minimality Criterion

Definition (FLP-Reduct [Faber et al., 2011])
For an interpretation A over a program Π, the FLP-reduct f ΠA of Π wrt.
A is the set {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose body is
satisfied under A.

Definition (Answer Set)

An interpretation A is an answer set of program Π iff it is a
subset-minimal model of the FLP reduct f ΠA.

Example
dom(a). dom(b). p(a)← dom(a),&g[p](a). p(b)← dom(b),&g[p](b).

where &g implements the following mapping:
∅ 7→ {b}; {a} 7→ {a}; {b} 7→ ∅; {a, b} 7→ {a, b}
A = {Tdom(a),Tdom(b),Tp(a),Fp(b)} is a model, but not
subset-minimal model of f ΠA : dom(a). dom(b). p(a)← dom(a),&g[p](a)
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Using Unfounded Sets

Definition (Unfounded Set [Faber, 2005])
A set of atoms X is an unfounded set of Π wrt. (partial) assignment A,
iff for all a ∈ X and all r ∈ Π with a ∈ H(r), at least one of (1)–(3) holds:

1. A 6|= B(r)

2. A
.
∪ ¬.X 6|= B(r)

3. A |= h for some h ∈ H(r) \ X

(where A
.
∪ ¬.X = {Ta ∈ A | a 6∈ X} ∪ {Fa ∈ A} ∪ {Fa | a ∈ X})

Definition (Unfounded-free Assignments)

An assignment A is unfounded-free wrt. program Π, iff there is no
unfounded set X of Π wrt. A such that Ta ∈ A for some a ∈ X.

Theorem (FLP Answer sets)

A model A of a program Π is is an answer set iff it is unfounded-free.
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Atom Dependency Graph

Definition (Atom Dependency)

For a ground program Π and ground atoms p(c), q(d), we say:
(i) p(c) depends on q(d) (p(c)→ q(d)) iff for some rule r ∈ Π we have

p(c) ∈ H(r) and q(d) ∈ B(r)

(ii) p(c) depends externally on q(d) (p(c)→e q(d)) iff for some rule
r ∈ Π we have p(c) ∈ H(r) and there is a
&g[q1, . . . , qn](d) ∈ B+(r) ∪ B−(r) with qi = q for some
i ∈ {1, . . . , n}.

Example
Π = {r ← &id[r](); p← &id[r](); p← q; q← p}

r p

q

e

e
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Cuts

Definition (Cut)

Let U be an UFS of Π wrt. A. A set of atoms C ⊆ U is a cut, if
(i) For all a ∈ C, b ∈ U: b 6→e a, and
(ii) For all a ∈ C, b ∈ U \ C: b 6→ a and a 6→ b.

Lemma (Unfounded Set Reduction Lemma)

Let U be an UFS of Π wrt. A and let C be a cut. Then Y = U \ C is an
unfounded set of Π wrt. A.

Example
Π = {r ← &id[r](); p← &id[r](); p← q; q← p}

r p

q

Cute

e

UFS U = {p, q, r} wrt. A = {Tp,Tq,Tr}
⇒ UFS U′ = {p, q, r} \ {p, q} = {r} wrt. A
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EA-Input Unfoundedness

Lemma (EA-Input Unfoundedness)

Let U be an unfounded set of Π wrt. A. If there are no x, y ∈ U s.t.
x→e y, then U is an unfounded set of Π̂ wrt. Â.

Example
Π = {r ← &id[r](); p← &id[r](); p← q; q← p}

r p

q

e

e

UFS U1 = {p, q} wrt. A′ = {Tp,Tq,Fr} is already detected when Π̂ =
{e&id[r]() ∨ ¬e&id[r]()←; r ← e&id[r](); p← e&id[r](); p← q; q← p}
is evaluated

UFS U2 = {p, q, r} wrt. A′′ = {Tp,Tq,Tr} is not detected during model
generation phase of the ordinary part as p, r ∈ U2 and p→e r
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E-Cycles

Definition (Cycle and E-Cycle)

A cycle under a binary relation ◦ is a sequence of elements C =
c0, . . . , cn+1 (n ≥ 0) s.t. (ci, ci+1) ∈ ◦ for all i ∈ {0, . . . , n} and c0 = cn+1.

Let→d=→ ∪ ← ∪ →e (← is the inverse of→).
A cycle c0, . . . , cn+1 in→d is called an e-cycle, iff it contains e-edges.

Proposition (Relevance of e-cycles)

Suppose U is an unfounded set of Π wrt. A which contains no e-cycle
under→d. Then there exists an unfounded set of Π̂ wrt. Â.

Corollary

If there is no e-cycle under→d and Π̂ has no unfounded set wrt. Â,
then A is unfounded-free for Π.
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E-Cycles

Example (Programs without E-Cycles)
Π1 = {out(X)← &diff [set1, set2](X)} ∪ F (F . . . set of facts)
Π2 = {str(Z)← dom(Z), str(X), str(Y), not &concat[X,Y](Z)}

Proposition (Unfoundedness of Cyclic Input Atoms)

If U is an unfounded set of Π wrt. A and U contains no cyclic input
atoms, then Π̂ has an unfounded set wrt. Â.
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Program Decomposition

Let C be a partitioning of the ordinary atoms A(Π) of Π into ⊆-maximal
strongly connected components under→ ∪ →e.

Definition (Associated Programs)

For each C ∈ C, the program associated with C is defined as
ΠC = {r ∈ Π | H(r) ∩ C 6= ∅} .

Proposition

Let U be a nonempty unfounded set of Π wrt. A. Then for some ΠC

with C ∈ C we have that U ∩ C is an unfounded set of ΠC wrt. A.

Proposition

Let U be a nonempty unfounded set of ΠC wrt. A such that U ⊆ C.
Then U is an unfounded set of Π wrt. A.
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Program Decomposition Example

Π = {r ← &id[r](); p← &id[r](); p← q; q← p}

r p

q

C1e

e

C2

C = {C1,C2} with C1 = {p, q} and C2 = {r}
ΠC1 = {p← &id[r](); p← q; q← p}
ΠC2 = {r ← &id[r]()}.

Let U = {p, q, r} be an UFS wrt. A = {Tp,Tq,Tr}
Then U ∩ {r} = {r} is also an unfounded set of ΠC2 wrt. A
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Experiments

Implementation: dlvhex [Eiter et al., 2012a]

Argumentation

#a
rg

s first answer set all answer sets

standard approach new approach standard approach new approach
timeouts avg timeouts avg gain timeouts avg timeouts avg gain

5 0 1,09 0 1,07 2,21% 0 1,70 0 1,56 9,21%
6 0 2,40 0 2,30 4,58% 0 4,58 0 3,74 22,58%
7 0 5,58 0 5,33 4,68% 0 15,66 0 11,28 38,78%
8 0 14,26 0 12,74 11,99% 3 71,06 2 39,32 80,71%
9 0 39,82 0 33,57 18,63% 16 174,99 8 106,34 64,55%

10 2 126,54 0 80,00 58,18% 40 278,98 16 214,81 29,87%
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Conclusion

Conclusion

I Decision criterion for avoiding the UFS check

I Based on concept of e-cycles

I Modular application via program decomposition

I Benchmark results are promising

Future Work

I Other syntactic criteria

I Use semantic information
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