Exploiting Unfounded Sets for HEX-Program Evaluation

Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, Peter Schüller
redl@kr.tuwien.ac.at

표
TECHNISCHE UNIVERSITÄT
WIEN
Vienna University of Technology

September 27, 2012

Motivation

HEX-Programs

- Extend ASP by external sources
- Scalability problems due to minimality checking

Contribution

- Exploit unfounded sets for minimality checking
- Search for unfounded sets encoded as separate search problem

■ Much better scalability

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

HEX-Programs

HEX-programs extend ordinary ASP programs by external sources

Definition (HEX-programs)

A HEX-program consists of rules of form

$$
a_{1} \vee \cdots \vee a_{n} \leftarrow b_{1}, \ldots, b_{m}, \text { not } b_{m+1}, \ldots, \text { not } b_{n},
$$

with classical literals a_{i}, and classical literals or an external atoms b_{j}.

Definition (External Atoms)

An external atom is of the form

$$
\&\left[q_{1}, \ldots, q_{k}\right]\left(t_{1}, \ldots, t_{l}\right)
$$

$p \ldots$ external predicate name
$q_{i} \ldots$ predicate names or constants
$t_{j} \ldots$ terms
Semantics:

$1+k+l$-ary Boolean oracle function $f_{\& p}$:
\& $\left[q_{1}, \ldots, q_{k}\right]\left(t_{1}, \ldots, t_{l}\right)$ is true under assignment \mathbf{A}
Implementation
of $\& p$
iff $f_{\& p}\left(\mathbf{A}, q_{1}, \ldots, q_{k}, t_{1}, \ldots, t_{l}\right)=1$.

Examples

\&rdf

The \&rdf External Atom
■ Input: URL
■ Output: Set of triplets from RDF file
External knowledge base is a set of RDF files on the web:

$$
\begin{gathered}
\operatorname{addr}(\mathrm{http}: / / \ldots / \text { data1.rdf }) . \\
\operatorname{addr}(\mathrm{http}: / / \ldots / \mathrm{data2} . \mathrm{rdf}) . \\
\operatorname{bel}(X, Y) \leftarrow \operatorname{addr}(U), \operatorname{drdf}[U](X, Y, Z) .
\end{gathered}
$$

Examples

$\& r d f$

The \&rdf External Atom
■ Input: URL
■ Output: Set of triplets from RDF file
External knowledge base is a set of RDF files on the web:

$$
\begin{gathered}
\operatorname{addr}(\mathrm{http}: / / \ldots / \text { data1.rdf }) . \\
\operatorname{addr}(\mathrm{http}: / / \ldots / \text { data2.rdf). } \\
\operatorname{bel}(X, Y) \leftarrow \operatorname{addr}(U), \operatorname{drdf}[U](X, Y, Z) .
\end{gathered}
$$

\&diff

$\& \operatorname{diff}[p, q](X)$: all elements X, which are in the extension of p but not of q :

$$
\begin{aligned}
\operatorname{dom}(X) & \leftarrow \# \operatorname{int}(X) \\
\operatorname{nsel}(X) & \leftarrow \operatorname{dom}(X), \& \operatorname{diff}[\operatorname{dom}, \operatorname{sel}](X) \\
\operatorname{sel}(X) & \leftarrow \operatorname{dom}(X), \& \operatorname{diff}[\operatorname{dom}, n \operatorname{sel}](X) \\
& \leftarrow \operatorname{sel}(X 1), \operatorname{sel}(X 2), \operatorname{sel}(X 3), X 1 \neq X 2, X 1 \neq X 3, X 2 \neq X 3
\end{aligned}
$$

Semantics of HEX-Programs

Definition (FLP-Reduct [Faber et al., 2004])

For an interpretation A over a program Π, the FLP-reduct $f \Pi^{\mathbf{A}}$ of Π wrt. \mathbf{A} is the set $\{r \in \Pi \mid \mathbf{A} \models b$, for all $b \in B(r)\}$ of all rules whose body is satisfied under \mathbf{A}.

Definition (Answer Set)

An interpretation \mathbf{A} is an answer set of program Π iff it is a subset-minimal model of the FLP reduct $f \Pi^{\mathbf{A}}$.

Example

Program ח: $\quad \operatorname{dom}(a) \cdot \operatorname{dom}(b)$.

$$
\begin{aligned}
& p(a) \leftarrow \operatorname{dom}(a), \& g[p](a) . \\
& p(b) \leftarrow \operatorname{dom}(b), \& g[p](b) .
\end{aligned}
$$

where $\& g$ implements the following mapping:

$$
\emptyset \mapsto\{b\} ;\{a\} \mapsto\{a\} ;\{b\} \mapsto \emptyset ;\{a, b\} \mapsto\{a, b\}
$$

$\mathbf{A}=\{\mathbf{T} \operatorname{dom}(a), \mathbf{T} \operatorname{dom}(b), \mathbf{T} p(a), \mathbf{F} p(b)\}$ is a model but no subset-minimal model of

$$
f \Pi^{\mathbf{A}}=\{\operatorname{dom}(a) ; \operatorname{dom}(b) ; p(a) \leftarrow \operatorname{dom}(a), \& g[p](a)\}
$$

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

Answer Set Computation 2-Step Algorithm

1 Compute a compatible set (=answer set candidate) [Eiter et al., 2012]
2 Check minimality

Answer Set Computation

2-Step Algorithm

1 Compute a compatible set (=answer set candidate) [Eiter et al., 2012]
$_$Check minimality

The Naive Minimality Check

1 Let A be a compatible set
2 Compute $f \Pi^{\mathbf{A}}$
3 Check if there is a smaller model than \mathbf{A}
Problem: Reduct has usually many models
Note: In practice, smaller models are rarely found

Answer Set Computation
 2-Step Algorithm

1 Compute a compatible set (=answer set candidate) [Eiter et al., 2012]
\simeq Check minimality

The Naive Minimality Check

1 Let \mathbf{A} be a compatible set
2 Compute $f \Pi^{\mathbf{A}}$
3 Check if there is a smaller model than \mathbf{A}
Problem: Reduct has usually many models
Note: In practice, smaller models are rarely found

Complexity

Minimality check is Co-NP-complete, lifting the overall answer set existence problem to Π_{2}^{P} (in presence of disjunctions and/or nonmonotonic external atoms)

Using Unfounded Sets [Faber, 2005]

Definition (Unfounded Set)

A set of atoms X is an unfounded set of Π wrt. (partial) assignment A, iff for all $a \in X$ and all $r \in \Pi$ with $a \in H(r)$ at least one of the following holds:
$1 \mathbf{A} \not \vDash B(r)$
$2 \mathbf{A} \cup \neg \cdot X \mid \vDash B(r)$
з $\mathbf{A} \models h$ for some $h \in H(r) \backslash X$
(where $\mathbf{A} \dot{\cup} \neg . X=\{\mathbf{T} a \in \mathbf{A} \mid a \notin X\} \cup\{\mathbf{F} a \in \mathbf{A}\} \cup\{\mathbf{F} a \mid a \in X\}$)

Definition (Unfounded-free Assignments)

An assignment \mathbf{A} is unfounded-free wrt. program Π, iff there is no unfounded set X of Π wrt. A such that $\mathbf{T} a \in \mathbf{A}$ for some $a \in X$.

Theorem

A model \mathbf{A} of a program Π is is an answer set iff it is unfounded-free.

Using Unfounded Sets

Encode the search for unfounded sets as SAT instance

Unfounded Set Search Problem

Nogood Set $\Gamma_{\Pi}^{\mathbf{A}}=N_{\Pi}^{\mathbf{A}} \cup O_{\Pi}^{\mathbf{A}}$ over atoms $A(\hat{\Pi}) \cup\left\{h_{r}, l_{r} \mid r \in \Pi\right\}$ consisting of a necessary part $N_{\Pi}^{\mathbf{A}}$ and an optimization part $O_{\Pi}^{\mathbf{A}}$

■ $N_{\Pi}^{\mathbf{A}}=\{\{\mathbf{F} a \mid \mathbf{T} a \in \mathbf{A}\}\} \cup\left(\bigcup_{r \in \Pi} R_{r}^{\mathbf{A}}\right)$

- $R_{r, \mathbf{A}}=H_{r, \mathbf{A}} \cup C_{r, \mathbf{A}}$, where
- $H_{r, \mathbf{A}}=\left\{\left\{\mathbf{T} h_{r}\right\} \cup\{\mathbf{F} h \mid h \in H(r)\}\right\} \cup\left\{\left\{\mathbf{F} h_{r}, \mathbf{T} h\right\} \mid h \in H(r)\right\}$

■ $C_{r, \mathbf{A}}= \begin{cases}\left\{\left\{\mathbf{T} h_{r}\right\} \cup\right. & \\ \quad\left\{\mathbf{F} a \mid a \in B_{o}^{+}(r), \mathbf{A} \models a\right\} \cup\left\{\mathbf{t} a \mid a \in B_{e}(\hat{r})\right\} \cup & \\ \{\mathbf{T} h \mid h \in H(r), \mathbf{A} \models h\}\} & \\ \{ \} & \text { if } \mathbf{A} \models B(r) \\ \text { otherwise }\end{cases}$
Intuition: Solutions of $\Gamma_{\Pi}^{\mathbf{A}}$ correspond to potential unfounded sets of Π wrt. A

Using Unfounded Sets

Each unfounded set corresponds to a solution of Γ_{Π}^{A}

Definition (Induced Assignment of an Unfounded Set)

Let U be an unfounded set of a program Π wrt. assignment \mathbf{A}. The assignment induced by U, denoted $I\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right)$, is

$$
\begin{aligned}
& I\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right)=I^{\prime}\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right) \cup\left\{\mathbf{F} a \mid a \in A\left(\Gamma_{\Pi}^{\mathbf{A}}\right), \mathbf{T} a \notin I^{\prime}\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right)\right\}, \text { where } \\
& I^{\prime}\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right)=\{\mathbf{T} a \mid a \in U\} \cup\left\{\mathbf{T} h_{r} \mid r \in \Pi, H(r) \cap U \neq \emptyset\right\} \cup \\
&\left\{\mathbf{T} e_{8_{g}[\vec{p}]}(\vec{c}) \mid e_{\text {\& }_{[}[\vec{p}]}(\vec{c}) \in A(\hat{\Pi}), \mathbf{A} \cup \neg \neg \cup U \models \mathcal{\& g}_{g}[\vec{p}](\vec{c})\right\} .
\end{aligned}
$$

Proposition

Let U be an unfounded set of a program Π wrt. assignment \mathbf{A} such that $\mathbf{A}^{\mathbf{T}} \cap U \neq \emptyset$. Then $I\left(U, \Gamma_{\Pi}^{\mathbf{A}}\right)$ is a solution to $\Gamma_{\Pi}^{\mathbf{A}}$.

Using Unfounded Sets

Not each solution of $\Gamma_{\Pi}^{\mathrm{A}}$ corresponds to an unfounded set, but ...

Proposition

Let S be a solution to Γ_{Π}^{A} such that
(a) $\mathbf{T} e_{\delta_{g}[\vec{p}]}(\vec{c}) \in S$ and $\mathbf{A} \not \models \& g[\vec{p}](\vec{c})$ implies $\mathbf{A} \dot{\cup} \neg . U \models \& g[\vec{p}](\vec{c})$; and
(b) $\mathbf{F} e_{\delta_{g}[\vec{p}]}(\vec{c}) \in S$ and $\mathbf{A} \models \& g[\vec{p}](\vec{c})$ implies $\mathbf{A} \dot{\cup} \neg . U \not \models \& g[\vec{p}](\vec{c})$
where $U=\{a \mid a \in A(\Pi), \mathbf{T} a \in S\}$. Then U is an unfounded set of Π wrt. \mathbf{A}.

Our Approach

1 Compute a solution S of $\Gamma_{\Pi}^{\mathrm{A}}$
2 Check if truth value of external atom replacement $e_{\&_{g}[\vec{p}]}(\vec{c})$ in S is equal to truth value of $\& g[\vec{p}](\vec{c})$ under $\mathbf{A} \cup \neg . U$
3 If yes: S represents an unfounded set
4 If no: continue with next solution of Γ_{Π}^{A}

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

Optimization and Learning

Optimization

Generate additional nogoods O_{Π}^{A} to prune search space
■ Restrict search to atoms which are true in \mathbf{A}

- Try to avoid changes of truth values of external atoms

Learning

■ Nogood exchange: Search for models \leftrightarrow UFS search

- Learn nogoods from detected unfounded sets

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

Implementation

Implementation

- Prototype implementation: DLVHEX
- Written in C++
- External sources loaded via plugin interface

Technology

■ Basis: Gringo and CLASP

- CLASP serves also as SAT solver for UFS search
- Alternatively: self-made grounder and solver built from scatch

Benchmark Results

	n	5	6	7	8	9	10	11	12	13	\ldots	20
¢	explicit	10.9	94.3	-	-	-	-	-	-	-	-	-
	+EBL	4.3	34.8	266.1	-	-	-	-	-	-	-	-
	UFS	0.2	0.3	0.8	1.8	4.5	11.9	32.4	92.1	273.9	-	-
	+EBL	0.1	0.1	0.2	0.2	0.3	0.4	0.6	0.8	1.2	\ldots	11.1
	explicit	0.7	4.3	26.1	163.1	-	-	-	-	-	-	-
	+EBL	0.8	4.9	31.1	192.0	-	-	-	-	-	-	-
	UFS	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	\ldots	0.5
	+EBL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	.	0.3

Figure: Set Partitioning

$\begin{aligned} & \text { o } \\ & \text { o } \\ & \text { in } \end{aligned}$	all answer sets		first answer set	
	Explicit	UFS	Explicit	UFS
5	1.47	1.13	0.70	0.62
6	4.57	2.90	1.52	1.27
7	19.99	10.50	3.64	2.77
8	80.63	39.01	9.46	6.94
9	142.95	80.66	30.12	20.97
10	240.46	122.81	107.14	63.50

Figure: Argumentation (plain)

Benchmark Results

000000	(no answer sets)				
	explicit check		UFS check		
	plain	+EBL	plain	+EBL	+UFL
3	8.61	4.68	7.31	2.44	0.50
4	86.55	48.53	80.31	25.98	1.89
5	188.05	142.61	188.10	94.45	4.62
6	209.34	155.81	207.14	152.32	14.39
7	263.98	227.99	264.00	218.94	49.42
8	293.64	209.41	286.38	189.86	124.23
9	-	281.98	-	260.01	190.56
10	-	274.76	-	247.67	219.83

Figure: Consistent MCSs

क्n区©0	enumerating all answer sets					finding first answer set				
	explicit check		UFS check			explicit check		UFS check		
	plain	+EBL	plain	+EBL	+UFL	plain	+EBL	plain	+EBL	+UFL
3	9.08	6.11	6.29	2.77	0.85	4.01	2.53	3.41	1.31	0.57
4	89.71	36.28	80.81	12.63	5.27	53.59	16.99	49.56	6.09	1.07
5	270.10	234.98	268.90	174.23	18.87	208.62	93.29	224.01	32.85	3.90
6	236.02	203.13	235.55	179.24	65.49	201.84	200.06	201.24	166.04	28.34
7	276.94	241.27	267.82	231.08	208.47	241.09	78.72	240.72	66.56	16.41
8	286.61	153.41	282.96	116.89	69.69	201.10	108.29	210.61	103.11	30.98
9	-	208.92	-	191.46	175.26	240.75	112.08	229.14	76.56	44.73
10	-	-	-	289.87	289.95	-	125.18	-	75.24	27.05

Figure: Inconsistent MCSs

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check

- Even if they have the same size the UFS check is mostly faster:

■ Less overhead (SAT vs. ASP instance)

- Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check
■ Even if they have the same size the UFS check is mostly faster:
■ Less overhead (SAT vs. ASP instance)

- Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check
■ Even if they have the same size the UFS check is mostly faster:
■ Less overhead (SAT vs. ASP instance)

- Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check
■ Even if they have the same size the UFS check is mostly faster:
■ Less overhead (SAT vs. ASP instance)

- Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check
■ Even if they have the same size the UFS check is mostly faster:
■ Less overhead (SAT vs. ASP instance)

- Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Benchmark Results

Interesting Observations

■ Search space for UFS check potentially smaller than for explicit check

- Even if they have the same size the UFS check is mostly faster:
- Less overhead (SAT vs. ASP instance)

■ Easier for the solver to jump from one candidate to the next one

candidate smaller models of the reduct

candidate unfounded sets

Outline

1 Introduction

2 Answer Set Computation

3 Optimization and Learning

4 Implementation and Evaluation

5 Conclusion

Conclusion

Evaluating HEX-Programs

- Compute a compatible set, then check if it is unfounded-free
- Encoded as nogood set consisting of a necessary and optimization part
- Unfounded sets allow for learning nogoods

Implementation and Evaluation

- Prototype implementation based on Gringo and CLASP

■ Experiments show significant improvements by UFS-based minimality check
■ Further speedup by optimization part and learning

Future Work

- Unfounded set check over partial interpretations
- Decision criterion for necessity of UFS-check
- Further restriction of search space to the relevant part

References

Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2012).
Conflict-driven ASP solving with external sources.
Theory and Practice of Logic Programming: Special Issue ICLP.
To appear.

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005).
A uniform integration of higher-order reasoning and external evaluations in answer-set programming.
In In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05, pages 90-96. Professional Book.
URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8944.
Faber, W. (2005).
Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In In Logic Programming and Nonmonotonic Reasoning, 8th International Conference (LPNMR'05), 2005, pages 40-52. Springer Verlag.

Faber, W., Leone, N., and Pfeifer, G. (2004).
Recursive aggregates in disjunctive logic programs: Semantics and complexity.
In In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA, pages 200-212. Springer.

