Declarative Merging of and Reasoning about Decision Diagrams

Thomas Eiter Thomas Krennwallner
Christoph Redl

\{eiter,tkren,redl\}@kr.tuwien.ac.at

표
TECHNISCHE UNIVERSITÄT WIEN
Vienna University of Technology

September 12, 2011

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

6 Conclusion

Outline

1 Motivation

Motivation

Decision Diagrams

- Important means for decision making
- Intuitively understandable

■ Not only for knowledge engineers

Examples

- Severity ratings (e.g. TNM system)
- Diagnosis of personality disorders
- DNA classification

Multiple Diagrams

Reasons

- Different opinions

■ Randomized machine-learning algorithms

- Statistical impreciseness

Question: How to combine them?

Multiple Diagram Integration

The DDM System

- Integration process declaratively described
- Ingredients:

1 input decision diagrams
2 merging algorithms (predefined or user-defined)

■ Focus:

- process formalization

■ experimenting with different (combinations of) merging algorithms

- declarative reasoning for controlling the merging process

■ We do not focus:

- concrete merging strategies

■ accuracy improvement

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

6 Conclusion

MELD

Task

- Collection of knowledge bases: $K B=K B_{1}, \ldots, K B_{n}$
- Associated collections of belief sets: $B S\left(K B_{1}\right), \ldots, B S\left(K B_{n}\right) \in \mathbb{B}_{\Sigma}$
- Goal: Integrate them into a single set of belief sets

Method: Merging Operators

$$
\circ^{n, m}: \underbrace{\left(2^{\mathbb{B}_{\Sigma}}\right)^{n}}_{\text {collections of belief sets }} \times \underbrace{\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{m}}_{\text {operator arguments }} \rightarrow 2^{\mathbb{B}_{\Sigma}}
$$

Example

Operator definition:

$$
\circ_{\cup}^{2,0}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)=\left\{B_{1} \cup B_{2} \mid B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}, \nexists A:\{A, \neg A\} \subseteq\left(B_{1} \cup B_{2}\right)\right\},
$$

Application:

- $\mathcal{B}_{1}=\{\{a, b, c\},\{\neg a, c\}\}, \mathcal{B}_{2}=\{\{\neg a, d\},\{c, d\}\}$
$\circ_{\cup}^{2,0}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)=\{\{a, b, c, d\},\{\neg a, c, d\}\}$

MELD

Merging Plan

■ Hierarchical arrangement of merging operators

Example

MELD

Merging Tasks

■ User provides
■ belief bases with associated collections of belief sets

- merging plan
- optional: user-defined merging operators

■ MELD: automated evaluation

Advantages

- Reuse of operators
- Quick restructuring of merging plan

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

6 Conclusion

Decision Diagrams

Definition (Decision Diagram)

A decision diagram over \mathcal{D} and \mathcal{C} is a labelled rooted directed acyclic graph

$$
D=\left\langle V, E, \ell_{C}, \ell_{E}\right\rangle
$$

■ V...nonempty set of nodes with unique root node $r_{D} \in V$
■ $E \subseteq V \times V \ldots$ set of directed edges
■ $\ell_{C}: V \rightarrow \mathcal{C} \ldots$ partial function assigning a class to all leafs
$■ \ell_{E}: E \rightarrow \mathcal{Q} \ldots$ assign queries $Q(z): \mathcal{D} \rightarrow\{$ true, false $\}$ to edges
Query language: $O_{1} \circ O_{2}$ with operands O_{1}, O_{2} and $\circ \in\{<, \leq,=, \neq, \geq,>\}$ or "else"

Example

$\mathcal{D}=\{1,2,3,4,5\}$
$\mathcal{C}=\left\{c_{1}, c_{2}\right\}$

Decision Diagrams

Definition (Decision Diagram)

A decision diagram over \mathcal{D} and \mathcal{C} is a labelled rooted directed acyclic graph

$$
D=\left\langle V, E, \ell_{C}, \ell_{E}\right\rangle
$$

■ V...nonempty set of nodes with unique root node $r_{D} \in V$
■ $E \subseteq V \times V \ldots$ set of directed edges
■ $\ell_{C}: V \rightarrow \mathcal{C} \ldots$ partial function assigning a class to all leafs
$■ \ell_{E}: E \rightarrow \mathcal{Q} \ldots$ assign queries $Q(z): \mathcal{D} \rightarrow\{$ true, false $\}$ to edges
Query language: $O_{1} \circ O_{2}$ with operands O_{1}, O_{2} and $\circ \in\{<, \leq,=, \neq, \geq,>\}$ or "else"

Example

$\mathcal{D}=\{1,2,3,4,5\}$
$\mathcal{C}=\left\{c_{1}, c_{2}\right\}$
Classify: 4

Decision Diagrams

Definition (Decision Diagram)

A decision diagram over \mathcal{D} and \mathcal{C} is a labelled rooted directed acyclic graph

$$
D=\left\langle V, E, \ell_{C}, \ell_{E}\right\rangle
$$

■ V...nonempty set of nodes with unique root node $r_{D} \in V$
■ $E \subseteq V \times V \ldots$ set of directed edges
■ $\ell_{C}: V \rightarrow \mathcal{C} \ldots$ partial function assigning a class to all leafs
$■ \ell_{E}: E \rightarrow \mathcal{Q} \ldots$ assign queries $Q(z): \mathcal{D} \rightarrow\{$ true, false $\}$ to edges
Query language: $O_{1} \circ O_{2}$ with operands O_{1}, O_{2} and $\circ \in\{<, \leq,=, \neq, \geq,>\}$ or "else"

Example

$\mathcal{D}=\{1,2,3,4,5\}$
$\mathcal{C}=\left\{c_{1}, c_{2}\right\}$
Classify: 4

Decision Diagrams

Definition (Decision Diagram)

A decision diagram over \mathcal{D} and \mathcal{C} is a labelled rooted directed acyclic graph

$$
D=\left\langle V, E, \ell_{C}, \ell_{E}\right\rangle
$$

■ V...nonempty set of nodes with unique root node $r_{D} \in V$
■ $E \subseteq V \times V \ldots$ set of directed edges
■ $\ell_{C}: V \rightarrow \mathcal{C} \ldots$ partial function assigning a class to all leafs
$■ \ell_{E}: E \rightarrow \mathcal{Q} \ldots$ assign queries $Q(z): \mathcal{D} \rightarrow\{$ true, false $\}$ to edges
Query language: $O_{1} \circ O_{2}$ with operands O_{1}, O_{2} and $\circ \in\{<, \leq,=, \neq, \geq,>\}$ or "else"

Example

$\mathcal{D}=\{1,2,3,4,5\}$
$\mathcal{C}=\left\{c_{1}, c_{2}\right\}$
Classify: $4 \Rightarrow c_{2}$

Decision Diagrams

Definition (Decision Diagram)

A decision diagram over \mathcal{D} and \mathcal{C} is a labelled rooted directed acyclic graph

$$
D=\left\langle V, E, \ell_{C}, \ell_{E}\right\rangle
$$

■ V...nonempty set of nodes with unique root node $r_{D} \in V$
■ $E \subseteq V \times V \ldots$ set of directed edges
■ $\ell_{C}: V \rightarrow \mathcal{C} \ldots$ partial function assigning a class to all leafs
$■ \ell_{E}: E \rightarrow \mathcal{Q} \ldots$ assign queries $Q(z): \mathcal{D} \rightarrow\{$ true, false $\}$ to edges
Query language: $O_{1} \circ O_{2}$ with operands O_{1}, O_{2} and $\circ \in\{<, \leq,=, \neq, \geq,>\}$ or "else"

Example

$\mathcal{D}=\{1,2,3,4,5\}$
$\mathcal{C}=\left\{c_{1}, c_{2}\right\}$
Classify: $4 \Rightarrow c_{2}$

Note: \mathcal{D} may consist of composed objects, e.g. $Q(z)=z . T S H>4.5 \mathrm{mU} / l$

Decision Diagram Merging

Instantiation of MELD

■ How to use MELD for decision diagram merging?

Decision Diagram Merging

Instantiation of MELD

- How to use MELD for decision diagram merging?

1 Encode decision diagrams as belief sets
2 Merging by special operators

Decision Diagram Merging

Instantiation of MELD

- How to use MELD for decision diagram merging?

1 Encode decision diagrams as belief sets
2 Merging by special operators

1. Encoding

- Define nodes
root $(n), \operatorname{inner}(n), \operatorname{leaf}(n, l)$
- Arcs between nodes, labelled with conditions
$\operatorname{cond}\left(n_{1}, n_{2}, o_{1}, c, o_{2}\right)$, else $\left(n_{1}, n_{2}\right)$

1. Encoding of Decision Diagrams

Example

Decision Diagram D :

$$
\begin{aligned}
E(D)=\{ & \operatorname{root}\left(r_{D}\right) ; \operatorname{inner}\left(r_{D}\right) ; \operatorname{inner}\left(v_{1}\right) ; \text { inner }\left(v_{2}\right) ; \\
& \operatorname{leaf}\left(v_{3}, c_{1}\right) ; \operatorname{leaf}\left(v_{4}, c_{2}\right) ; \\
& \operatorname{cond}\left(r_{D}, v_{1}, z,<, 3\right) ; \operatorname{else}\left(r_{D}, v_{2}\right) \\
& \operatorname{cond}\left(v_{1}, v_{3}, z,<, 2\right) ; \operatorname{else}\left(v_{1}, v_{4}\right) \\
& \left.\operatorname{cond}\left(v_{2}, v_{3}, z,<, 4\right) ; \operatorname{else}\left(v_{2}, v_{4}\right)\right\}
\end{aligned}
$$

2. Merging of Decision Diagrams

Merging

Belief sets = encoded diagrams

2. Merging of Decision Diagrams

Merging

Belief sets = encoded diagrams

2. Merging of Decision Diagrams

Merging

Belief sets = encoded diagrams

Special merging operators $\circ_{W}, \circ_{X}, \circ_{Y}, o_{Z}$ required!

2. Merging of Decision Diagrams

Some Examples of Predefined Operators

■ User Preferences
Give some class label preference over another

2. Merging of Decision Diagrams

Some Examples of Predefined Operators

■ User Preferences
Give some class label preference over another

2. Merging of Decision Diagrams

Some Examples of Predefined Operators

■ User Preferences
Give some class label preference over another
■ Majority Voting
Majority of input diagrams decides upon an element's class

- Simplification

Decrease redundancy
■ MORGAN merging strategy
see later

Note: Operators may produce multiple results!
Example: Majority voting for classes with equal number of votes

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

Reasoning about Decision Diagrams

Goal

- Compute diagram properties
e.g. height, variable occurrences, redundancy
- Properties may control the merging process by filtering

Reasoning about Decision Diagrams

Goal

- Compute diagram properties
e.g. height, variable occurrences, redundancy
- Properties may control the merging process by filtering

Realization

- Special unary operator

$$
\circ_{a s p}(\Delta, P)
$$

$\Delta \ldots$ set of decision diagrams
P... ASP program

- $P^{\prime}:=P \cup \bigcup_{D \in \Delta} \hat{E}(D)$

Extended Encoding \hat{E} :
Multiple diagrams within one set of facts: leaf $(L, C) \Rightarrow$ leaf $_{\text {in }}(I, L, C)$

- Evaluate P^{\prime} under ASP semantics

Reasoning about Decision Diagrams

Example: Node Count Minimization

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

6 Conclusion

DNA Classification

Motivation

- Given: Sequence over $\{A, C, G, T\}$

■ Question: Is it coding or junk DNA?

Usual Approach

Training
1 Annotated training set
2 Compute statistical features
3 Machine-learning algorithms
Classification
1 Compute the same features
2 Apply decision diagram

DNA Classification

Advanced Approach [Salzberg et al., 1998]

- Train multiple diagrams varying training sets, algorithms, features, etc.
■ Merge them afterwards

Benefits

- Parallelization

■ Increase accuracy (cf. genetic algorithms)

- Smaller training set suffices

Hardcoded implementation: MORGAN system

DNA Classification

MORGAN's strategy in MELD

■ MORGAN's strategy plugged into MELD as merging operator \circ_{M}

- Benefits identified in [5] confirmed

MORGAN vs. MELD-based system

■ Not hardcoded but modular

- Clear separation: merging operation / other system components
- reuse / exchange of the merging operator
- Experiment with different merging strategies
- Produce multiple diagrams and reason about them

Outline

1 Motivation

2 Preliminaries: MELD

3 Merging of Decision Diagrams

4 Reasoning about Decision Diagrams

5 Application: DNA Classification

6 Conclusion

Conclusion

Summary

- MELD: Integration of multiple collections of belief sets
- Instantiation for decision diagram merging:

1 Encoding of decision diagrams as belief sets
2 Special merging operators for decision diagrams

Conclusion

Summary

- MELD: Integration of multiple collections of belief sets
- Instantiation for decision diagram merging:

1 Encoding of decision diagrams as belief sets
2 Special merging operators for decision diagrams

Advantages

- Reuse of operators

■ Evaluate different operators empirically

- Automatic recomputation of result
- Release user from routine tasks

Download

URL: http://www.kr.tuwien.ac.at/research/dlvhex/ddm.html

References

Dov M. Gabbay, Odinaldo Rodrigues, Gabriella Pigozzi
Connections between Belief Revision, Belief Merging and Social Choice In: Journal of Logic and Computation 19(3) (2009)

R Konieczny, S., Pérez, R.P.:
On the logic of merging.
In: KR'98. (1998) 488-498
圊 Redl, C.:
Merging of Biomedical Decision Diagrams
Master's thesis, Vienna University of Technology (October 2010)
http://www.ub.tuwien.ac.at/dipl/2010/AC07808795.pdf
Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.:
dlvhex: A system for integrating multiple semantics in an answer-set programming framework.
In: WLP'06. (2006) 206-210
Ralzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.:
A decision tree system for finding genes in DNA.
Journal of Computational Biology 5(4) (1998) 667-680

