Declarative Merging of and **Reasoning about Decision Diagrams**

Thomas Eiter Thomas Krennwallner

Christoph Redl

{eiter,tkren,redl}@kr.tuwien.ac.at

TECHNISCHE UNIVERSITÄT WIFN Vienna University of Technology

September 12, 2011

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

Motivation

Decision Diagrams

- Important means for decision making
- Intuitively understandable
- Not only for knowledge engineers

- Severity ratings (e.g. TNM system)
- Diagnosis of personality disorders
- DNA classification

Multiple Diagrams

Reasons

- Different opinions
- Randomized machine-learning algorithms
- Statistical impreciseness

Question: How to combine them?

Multiple Diagram Integration

The DDM System

- Integration process declaratively described
- Ingredients:
 - 1 input decision diagrams
 - merging algorithms (predefined or user-defined)
- Focus:
 - process formalization
 - experimenting with different (combinations of) merging algorithms
 - declarative reasoning for controlling the merging process
- We do not focus:
 - concrete merging strategies
 - accuracy improvement

Outline

1 Motivation

2 Preliminaries: MELD

- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

MELD

Task

- Collection of knowledge bases: $KB = KB_1, \ldots, KB_n$
- Associated collections of belief sets: $BS(KB_1), \ldots, BS(KB_n) \in \mathbb{B}_{\Sigma}$
- Goal: Integrate them into a single set of belief sets

Method: Merging Operators $\circ^{n,m}: \underbrace{(2^{\mathbb{B}_{\Sigma}})^{n}}_{collections of belief sets}} \times \underbrace{\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{m}}_{operator arguments} \rightarrow 2^{\mathbb{B}_{\Sigma}}$ Example Operator definition: $\circ^{2,0}_{-1}(\mathcal{B}_{1}, \mathcal{B}_{2}) = \{B_{1} \cup B_{2} \mid B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}, \nexists A : \{A, \neg A\} \subseteq (B_{1} \cup B_{2})\},$

Application:

 $B_1 = \{\{a, b, c\}, \{\neg a, c\}\}, B_2 = \{\{\neg a, d\}, \{c, d\}\}$ $\circ^{2,0}_{\sqcup}(B_1, B_2) = \{\{a, b, c, d\}, \{\neg a, c, d\}\}$

MELD

Merging Plan

Hierarchical arrangement of merging operators

MELD

Merging Tasks

User provides

- belief bases with associated collections of belief sets
- merging plan
- optional: user-defined merging operators
- MELD: automated evaluation

Advantages

- Reuse of operators
- Quick restructuring of merging plan

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification
- 6 Conclusion

Definition (Decision Diagram)

A decision diagram over D and C is a labelled rooted directed acyclic graph $D = \langle V, E, \ell_C, \ell_E \rangle$

- $V \dots$ nonempty set of nodes with unique root node $r_D \in V$
- $E \subseteq V \times V \dots$ set of directed edges
- $\ell_C: V \to \mathcal{C} \dots$ partial function assigning a class to all leafs
- $\ell_E : E \to \mathcal{Q}$... assign queries $Q(z) : \mathcal{D} \to \{true, false\}$ to edges Query language: $O_1 \circ O_2$ with operands O_1, O_2 and $\circ \in \{<, \leq, =, \neq, \geq, >\}$ or "else"

Definition (Decision Diagram)

A decision diagram over D and C is a labelled rooted directed acyclic graph $D = \langle V, E, \ell_C, \ell_E \rangle$

- $V \dots$ nonempty set of nodes with unique root node $r_D \in V$
- $E \subseteq V \times V \dots$ set of directed edges
- $\ell_C: V \to \mathcal{C} \dots$ partial function assigning a class to all leafs
- $\ell_E : E \to \mathcal{Q} \dots$ assign queries $Q(z) : \mathcal{D} \to \{true, false\}$ to edges Query language: $O_1 \circ O_2$ with operands O_1, O_2 and $\circ \in \{<, \leq, =, \neq, \geq, >\}$ or "else"

Definition (Decision Diagram)

A decision diagram over D and C is a labelled rooted directed acyclic graph $D = \langle V, E, \ell_C, \ell_E \rangle$

- $V \dots$ nonempty set of nodes with unique root node $r_D \in V$
- $E \subseteq V \times V \dots$ set of directed edges
- $\ell_C: V \to \mathcal{C} \dots$ partial function assigning a class to all leafs
- $\ell_E : E \to \mathcal{Q}$... assign queries $Q(z) : \mathcal{D} \to \{true, false\}$ to edges Query language: $O_1 \circ O_2$ with operands O_1, O_2 and $\circ \in \{<, \leq, =, \neq, \geq, >\}$ or "else"

rD

else

else

else

Definition (Decision Diagram)

A decision diagram over D and C is a labelled rooted directed acyclic graph $D = \langle V, E, \ell_C, \ell_E \rangle$

- $V \dots$ nonempty set of nodes with unique root node $r_D \in V$
- $E \subseteq V \times V \dots$ set of directed edges
- $\ell_C: V \to \mathcal{C} \dots$ partial function assigning a class to all leafs
- $\ell_E : E \to \mathcal{Q}$... assign queries $Q(z) : \mathcal{D} \to \{true, false\}$ to edges Query language: $O_1 \circ O_2$ with operands O_1, O_2 and $\circ \in \{<, \leq, =, \neq, \geq, >\}$ or "else"

Definition (Decision Diagram)

A decision diagram over D and C is a labelled rooted directed acyclic graph $D = \langle V, E, \ell_C, \ell_E \rangle$

- $V \dots$ nonempty set of nodes with unique root node $r_D \in V$
- $E \subseteq V \times V \dots$ set of directed edges
- $\ell_C: V \to \mathcal{C} \dots$ partial function assigning a class to all leafs
- $\ell_E : E \to \mathcal{Q}$... assign queries $Q(z) : \mathcal{D} \to \{true, false\}$ to edges Query language: $O_1 \circ O_2$ with operands O_1, O_2 and $\circ \in \{<, \leq, =, \neq, \geq, >\}$ or "else"

Decision Diagram Merging

Instantiation of MELD

How to use MELD for decision diagram merging?

Decision Diagram Merging

Instantiation of MELD

- How to use MELD for decision diagram merging?
 - 1 Encode decision diagrams as belief sets
 - 2 Merging by special operators

Decision Diagram Merging

Instantiation of MELD

- How to use MELD for decision diagram merging?
 - 1 Encode decision diagrams as belief sets
 - 2 Merging by special operators

1. Encoding

- Define nodes root(n), inner(n), leaf(n, l)
- Arcs between nodes, labelled with conditions $cond(n_1, n_2, o_1, c, o_2)$, $else(n_1, n_2)$

1. Encoding of Decision Diagrams

$$E(D) = \{ root(r_D); inner(r_D); inner(v_1); inner(v_2); \\ leaf(v_3, c_1); leaf(v_4, c_2); \\ cond(r_D, v_1, z, <, 3); else(r_D, v_2); \\ cond(v_1, v_3, z, <, 2); else(v_1, v_4); \\ cond(v_2, v_3, z, <, 4); else(v_2, v_4) \}$$

Merging

Merging

Special merging operators $\circ_W, \circ_X, \circ_Y, \circ_Z$ required!

2. Merging of Decision Diagrams Some Examples of Predefined Operators

User Preferences

Give some class label preference over another

2. Merging of Decision Diagrams Some Examples of Predefined Operators

User Preferences

Give some class label preference over another

Some Examples of Predefined Operators

User Preferences

Give some class label preference over another

Majority Voting

Majority of input diagrams decides upon an element's class

Simplification

Decrease redundancy

MORGAN merging strategy see later

...

Note: Operators may produce multiple results! Example: Majority voting for classes with equal number of votes

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

Reasoning about Decision Diagrams

Goal

- Compute diagram properties
 e.g. height, variable occurrences, redundancy
- Properties may control the merging process by filtering

Reasoning about Decision Diagrams

Goal

- Compute diagram properties
 e.g. height, variable occurrences, redundancy
- Properties may control the merging process by filtering

Realization

Special unary operator

$$\circ_{\operatorname{asp}}(\Delta, P),$$

- $\Delta \dots$ set of decision diagrams $P \dots$ ASP program
- $\square P' := P \cup \bigcup_{D \in \Lambda} \hat{E}(D)$

Extended Encoding \hat{E} : Multiple diagrams within one set of facts: $leaf(L, C) \Rightarrow leaf_{in}(I, L, C)$

Evaluate P' under ASP semantics

Reasoning about Decision Diagrams

Example: Node Count Minimization

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

DNA Classification

Motivation

- Given: Sequence over $\{A, C, G, T\}$
- Question: Is it coding or junk DNA?

Usual Approach

Training

- Annotated training set
- 2 Compute statistical features
- 3 Machine-learning algorithms

Classification

- Compute the same features
- 2 Apply decision diagram

DNA Classification

Advanced Approach [Salzberg et al., 1998]

- Train multiple diagrams varying training sets, algorithms, features, etc.
- Merge them afterwards

Benefits

- Parallelization
- Increase accuracy (cf. genetic algorithms)
- Smaller training set suffices

Hardcoded implementation: MORGAN system

DNA Classification

MORGAN's strategy in MELD

- MORGAN's strategy plugged into MELD as merging operator o_M
- Benefits identified in [5] confirmed

MORGAN vs. MELD-based system

- Not hardcoded but modular
- Clear separation: merging operation / other system components
- reuse / exchange of the merging operator
- Experiment with different merging strategies
- Produce multiple diagrams and reason about them

Outline

1 Motivation

- 2 Preliminaries: MELD
- 3 Merging of Decision Diagrams
- 4 Reasoning about Decision Diagrams
- 5 Application: DNA Classification

6 Conclusion

Conclusion

Summary

- MELD: Integration of multiple collections of belief sets
- Instantiation for decision diagram merging:
 - **1** Encoding of decision diagrams as belief sets
 - 2 Special merging operators for decision diagrams

Conclusion

Summary

- MELD: Integration of multiple collections of belief sets
- Instantiation for decision diagram merging:
 - **1** Encoding of decision diagrams as belief sets
 - 2 Special merging operators for decision diagrams

Advantages

- Reuse of operators
- Evaluate different operators empirically
- Automatic recomputation of result
- Release user from routine tasks

Download

URL: http://www.kr.tuwien.ac.at/research/dlvhex/ddm.html

References

Dov M. Gabbay, Odinaldo Rodrigues, Gabriella Pigozzi Connections between Belief Revision, Belief Merging and Social Choice

In: Journal of Logic and Computation **19**(3) (2009)

Konieczny, S., Pérez, R.P.: On the logic of merging.

In: KR'98. (1998) 488–498

Redl, C.:

Merging of Biomedical Decision Diagrams Master's thesis, Vienna University of Technology (October 2010) http://www.ub.tuwien.ac.at/dipl/2010/AC07808795.pdf

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.:

dlvhex: A system for integrating multiple semantics in an answer-set programming framework.

In: WLP'06. (2006) 206-210

Salzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding genes in DNA.

Journal of Computational Biology 5(4) (1998) 667–680