
Answer Set Programming
with External Source Access

Reasoning Web Summer School 2017

dlvhex

Thomas Eiter, Tobias Kaminski, Christoph Redl,
Peter Schüller, Antonius Weinzierl

{eiter,kaminski,redl,aweinz}@kr.tuwien.ac.at, peter.schuller@marmara.edu.tr

London, UK, July 11, 2017

1/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

2/102

Introduction
I Answer Set Programming (ASP): recent problem solving approach

I Term coined by DBLP:conf/iclp/Lifschitz99
[DBLP:conf/iclp/Lifschitz99,lifs-2002], proposed by others at about
the same time, e.g. [Marek and Truszczyński, 1999], [Niemelä, 1999]

I It has roots in KR, logic programming, and nonmonotonic reasoning

I At an abstract level, relates to Satisfiability (SAT) solving and
Constraint Programming (CP)

I Books: [Baral, 2003], [Gebser et al., 2012], compact survey:
[Brewka et al., 2011]

Fall 2016

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

3/102

Logic Programming – Prolog

1960s/70s: Logic as a programming language (??)

I Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL
I Knowledge for problem solving (LOGIC)
I “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

Example: Dilbert
man(dilbert).

person(X)← man(X).

query ?− person(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

3/102

Logic Programming – Prolog

1960s/70s: Logic as a programming language (??)

I Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL
I Knowledge for problem solving (LOGIC)
I “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

Example: Dilbert
man(dilbert).

person(X)← man(X).

query ?− person(X)

answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

3/102

Logic Programming – Prolog

1960s/70s: Logic as a programming language (??)

I Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL
I Knowledge for problem solving (LOGIC)
I “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

Example: Dilbert
man(dilbert).

person(X)← man(X).

query ?− person(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

4/102

The key: techniques to search for proofs

I Proofs provide answers, based on SLD resolution
I Understanding the resolution mechanism is important
I It may make a difference which logically equivalent form is used

(e.g., termination).

Example: reverse lists
reverse([X|Y],Z)← append(U, [X],Z), reverse(Y,U). (1)

vs
reverse([X|Y],Z)← reverse(Y,U), append(U, [X],Z). (2)

query: ?− reverse([a|X], [b, c, d, b])

I (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

4/102

The key: techniques to search for proofs

I Proofs provide answers, based on SLD resolution
I Understanding the resolution mechanism is important
I It may make a difference which logically equivalent form is used

(e.g., termination).

Example: reverse lists
reverse([X|Y],Z)← append(U, [X],Z), reverse(Y,U). (1)

vs
reverse([X|Y],Z)← reverse(Y,U), append(U, [X],Z). (2)

query: ?− reverse([a|X], [b, c, d, b])

I (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

4/102

The key: techniques to search for proofs

I Proofs provide answers, based on SLD resolution
I Understanding the resolution mechanism is important
I It may make a difference which logically equivalent form is used

(e.g., termination).

Example: reverse lists
reverse([X|Y],Z)← append(U, [X],Z), reverse(Y,U). (1)

vs
reverse([X|Y],Z)← reverse(Y,U), append(U, [X],Z). (2)

query: ?− reverse([a|X], [b, c, d, b])

I (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

4/102

The key: techniques to search for proofs

I Proofs provide answers, based on SLD resolution
I Understanding the resolution mechanism is important
I It may make a difference which logically equivalent form is used

(e.g., termination).

Example: reverse lists
reverse([X|Y],Z)← append(U, [X],Z), reverse(Y,U). (1)

vs
reverse([X|Y],Z)← reverse(Y,U), append(U, [X],Z). (2)

query: ?− reverse([a|X], [b, c, d, b])

I (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

5/102

Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

5/102

Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

5/102

Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

5/102

Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)

answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

5/102

Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

6/102

Cyclic Negation

(cont’d)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← man(X), not single(X).

query ?− single(X)

answer in Prolog ????

Problem: not a single intuitive model!

Two intuitive models:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

6/102

Cyclic Negation

(cont’d)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← man(X), not single(X).

query ?− single(X)

answer in Prolog ????

Problem: not a single intuitive model!

Two intuitive models:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

6/102

Cyclic Negation

(cont’d)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← man(X), not single(X).

query ?− single(X)

answer in Prolog ????

Problem: not a single intuitive model!

Two intuitive models:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)} .

Which one to choose?

Answer set semantics: both!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

6/102

Cyclic Negation

(cont’d)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← man(X), not single(X).

query ?− single(X)

answer in Prolog ????

Problem: not a single intuitive model!

Two intuitive models:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

7/102

LP Desiderata

Relieve the programmer from several concerns:

I the order of program rules does not matter;

I the order of subgoals in a rule does not matter;

I termination is not subject to such order.

“Pure” declarative programming

I Prolog does not satisfy these desiderata

I Satisfied by the answer set semantics of logic programs

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

7/102

LP Desiderata

Relieve the programmer from several concerns:

I the order of program rules does not matter;

I the order of subgoals in a rule does not matter;

I termination is not subject to such order.

“Pure” declarative programming

I Prolog does not satisfy these desiderata

I Satisfied by the answer set semantics of logic programs

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

8/102

Outline

Background

Answer Set Programs
Syntax
Semantics
Basic Properties
Extensions of ASP

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

9/102

Answer Set Programs: Syntax

Starting point: relational signature S = (C,P,X) of pairwise disjoint sets
I C of constants,
I P of predicate symbols p/n (arity n ≥ 0), and
I X of variables

Basic building blocks:
I terms are elements of C ∪ X
I atoms are formulas p(t1, . . . , tn), where p/n ∈ P
I literals are formulas a or not a, where a is an atom

Example
Typically, S is not stated explicitly if it is clear from the context;
variables start with upper case letter

I terms X, bob, 123
I atoms day(), written as day, firstname(bob), reachable(a,Y)

I literals firstname(bob), day, not day

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

9/102

Answer Set Programs: Syntax

Starting point: relational signature S = (C,P,X) of pairwise disjoint sets
I C of constants,
I P of predicate symbols p/n (arity n ≥ 0), and
I X of variables

Basic building blocks:
I terms are elements of C ∪ X
I atoms are formulas p(t1, . . . , tn), where p/n ∈ P
I literals are formulas a or not a, where a is an atom

Example
Typically, S is not stated explicitly if it is clear from the context;
variables start with upper case letter

I terms X, bob, 123
I atoms day(), written as day, firstname(bob), reachable(a,Y)

I literals firstname(bob), day, not day

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

10/102

Answer Set Programs: Syntax (cont’d)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form

A1 ∨ . . . ∨ Am ← L1 . . . ,Ln, m, n ≥ 0
where all Ai are atoms and all Lj are literals.

I head(r) = {A1, . . . ,Am} is the head (conclusion)
I body(r) = {L1, . . . ,Ln} is the body (premise)

Rules r with body(r) = ∅ are facts, and with head(r) = ∅ are constraints

Example
day ∨ night.

← sunshine, raining.

sunshine← day, not raining.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

10/102

Answer Set Programs: Syntax (cont’d)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form

A1 ∨ . . . ∨ Am ← L1 . . . ,Ln, m, n ≥ 0
where all Ai are atoms and all Lj are literals.

I head(r) = {A1, . . . ,Am} is the head (conclusion)
I body(r) = {L1, . . . ,Ln} is the body (premise)

Rules r with body(r) = ∅ are facts, and with head(r) = ∅ are constraints

Example
day ∨ night.

← sunshine, raining.

sunshine← day, not raining.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

11/102

Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example
r1 : p(X)← q(X,Y), at, not r(X). safe X

r2 : p(X)← not t(Z). unsafe ×

Example: Reachability/Unreachability

r1 : reachable(X,Y)← connection(X,Y).

r2 : reachable(X,Z)← reachable(X,Y), reachable(Y,Z).

r3 : not reachable(X,Y)← location(X), location(Y), not reachable(X,Y).

I Rules r1 and r2 express reachability (recursion)
I Rule r3 expresses unreachability on top – not expressible in

first-order logic!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

11/102

Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example
r1 : p(X)← q(X,Y), at, not r(X). safe X

r2 : p(X)← not t(Z). unsafe ×

Example: Reachability/Unreachability

r1 : reachable(X,Y)← connection(X,Y).

r2 : reachable(X,Z)← reachable(X,Y), reachable(Y,Z).

r3 : not reachable(X,Y)← location(X), location(Y), not reachable(X,Y).

I Rules r1 and r2 express reachability (recursion)
I Rule r3 expresses unreachability on top – not expressible in

first-order logic!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

12/102

Outline

Background

Answer Set Programs
Syntax
Semantics
Basic Properties
Extensions of ASP

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

13/102

Semantics
I Consider ground (i.e. variable-free) rules and programs
I This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C,P,X),

I the Herbrand universe HU are all ground terms (i.e. C),
I the Herbrand base HB is the set of all ground atoms wrt. S,
I a (Herbrand) interpretation is any set I ⊆ HB.

Intuitively, a ∈ I means a is true in I, and false otherwise.

Example
P = { friend(X, Y)← friend(Y,X); happy(X)← friend(bob,X); friend(joy, bob)}

I HU = { joy, bob}
I HB = { friend(bob, bob), friend(bob, joy),

friend(joy, bob), friend(joy, joy), happy(bob), happy(joy)}
I I = { friend(joy, bob), friend(bob, joy), happy(joy)}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

13/102

Semantics
I Consider ground (i.e. variable-free) rules and programs
I This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C,P,X),

I the Herbrand universe HU are all ground terms (i.e. C),
I the Herbrand base HB is the set of all ground atoms wrt. S,
I a (Herbrand) interpretation is any set I ⊆ HB.

Intuitively, a ∈ I means a is true in I, and false otherwise.

Example
P = { friend(X, Y)← friend(Y,X); happy(X)← friend(bob,X); friend(joy, bob)}

I HU = { joy, bob}
I HB = { friend(bob, bob), friend(bob, joy),

friend(joy, bob), friend(joy, joy), happy(bob), happy(joy)}
I I = { friend(joy, bob), friend(bob, joy), happy(joy)}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

14/102

Semantics (cont’d)
Satisfaction of formulas, programs etc α in interpretation I, denoted
I |= α, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

I a ground atom a, if a ∈ I;
I a literal not a, if I 6|= a;
I a conj. L1, . . . ,Ln of ground literals, I |= Li for i = 1, . . . , n;
I a disj. A1 ∨ . . . ∨ Am of ground atoms if I |= Ak for some 1≤ k≤m;
I a ground rule r, if I |= body(r) implies that I |= head(r);
I a ground program P, if I |= r for each rule r ∈ P.

Example (cont’d)
I = {friend(joy, bob), friend(bob, joy), happy(joy)}

I I |= happy(joy); I 6|= happy(bob)

I I |= friend(bob, joy)← friend(joy, bob)

I I |= happy(joy) ∨ happy(bob)← friend(bob, joy), not friend(joy, bob)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

14/102

Semantics (cont’d)
Satisfaction of formulas, programs etc α in interpretation I, denoted
I |= α, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

I a ground atom a, if a ∈ I;
I a literal not a, if I 6|= a;
I a conj. L1, . . . ,Ln of ground literals, I |= Li for i = 1, . . . , n;
I a disj. A1 ∨ . . . ∨ Am of ground atoms if I |= Ak for some 1≤ k≤m;
I a ground rule r, if I |= body(r) implies that I |= head(r);
I a ground program P, if I |= r for each rule r ∈ P.

Example (cont’d)
I = {friend(joy, bob), friend(bob, joy), happy(joy)}

I I |= happy(joy); I 6|= happy(bob)

I I |= friend(bob, joy)← friend(joy, bob)

I I |= happy(joy) ∨ happy(bob)← friend(bob, joy), not friend(joy, bob)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

15/102

Semantics (cont’d)
Example

P =
{

b. a← b. c← d.
}

I I1 = {b, a} is a model of P
I I2 = {b, a, c} is a model of P as well

why should c being true in I2 be accepted?

CWA Rationale
I Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is

not derivable, assume it is false
I Semantically, prefer minimal models: a model I of P is minimal, if no

model J ⊆ I of P exists.

Example: CWA on mutual recursion
P =

{
a← b. b← a.

}
,

I I = HB = {a, b} is a model (if P has no constraints)
I the minimal model is I = ∅

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

15/102

Semantics (cont’d)
Example

P =
{

b. a← b. c← d.
}

I I1 = {b, a} is a model of P
I I2 = {b, a, c} is a model of P as well

why should c being true in I2 be accepted?

CWA Rationale
I Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is

not derivable, assume it is false
I Semantically, prefer minimal models: a model I of P is minimal, if no

model J ⊆ I of P exists.

Example: CWA on mutual recursion
P =

{
a← b. b← a.

}
,

I I = HB = {a, b} is a model (if P has no constraints)
I the minimal model is I = ∅

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

15/102

Semantics (cont’d)
Example

P =
{

b. a← b. c← d.
}

I I1 = {b, a} is a model of P
I I2 = {b, a, c} is a model of P as well

why should c being true in I2 be accepted?

CWA Rationale
I Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is

not derivable, assume it is false
I Semantically, prefer minimal models: a model I of P is minimal, if no

model J ⊆ I of P exists.

Example: CWA on mutual recursion
P =

{
a← b. b← a.

}
,

I I = HB = {a, b} is a model (if P has no constraints)
I the minimal model is I = ∅

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

16/102

Answer Sets

Guiding Idea

I rules must be obeyed (= model)
I model must be generated by firing rules
I incorporate CWA (minimality)

FLP-Reduct
The FLP-reduct PI of a ground program P wrt. an interpretation I is
obtained as follows: delete from P all rules r with false bodies:

PI = {r ∈ grnd(P) | I |= body(r)}.

Answer sets of a program P are then defined as follows:

Answer Set
An interpretation I is an answer set of P, if I is a minimal model of PI .

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

16/102

Answer Sets

Guiding Idea

I rules must be obeyed (= model)
I model must be generated by firing rules
I incorporate CWA (minimality)

FLP-Reduct
The FLP-reduct PI of a ground program P wrt. an interpretation I is
obtained as follows: delete from P all rules r with false bodies:

PI = {r ∈ grnd(P) | I |= body(r)}.

Answer sets of a program P are then defined as follows:

Answer Set
An interpretation I is an answer set of P, if I is a minimal model of PI .

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

17/102

Answer Sets (cont’d)

Example: Restaurant

program P:
r1 : restaurant(osteria).

r2 : indoor(osteria)← restaurant(osteria), not outdoor(osteria).

I I1 = {restaurant(osteria), indoor(osteria)}: answer set X

reduct PI = {r1, r2} = P

I I2 = {restaurant(osteria), outdoor(osteria)}: no answer set ×

reduct PI = {r1}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

17/102

Answer Sets (cont’d)

Example: Restaurant

program P:
r1 : restaurant(osteria).

r2 : indoor(osteria)← restaurant(osteria), not outdoor(osteria).

I I1 = {restaurant(osteria), indoor(osteria)}: answer set X

reduct PI = {r1, r2} = P

I I2 = {restaurant(osteria), outdoor(osteria)}: no answer set ×

reduct PI = {r1}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

17/102

Answer Sets (cont’d)

Example: Restaurant

program P:
r1 : restaurant(osteria).

r2 : indoor(osteria)← restaurant(osteria), not outdoor(osteria).

I I1 = {restaurant(osteria), indoor(osteria)}: answer set X

reduct PI = {r1, r2} = P

I I2 = {restaurant(osteria), outdoor(osteria)}: no answer set ×

reduct PI = {r1}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

18/102

Answer Sets (cont’d)

Example: Restaurant with Decision Making

r1 restaurant(osteria).

r2 indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

r3 eat(osteria)← indoor(osteria), raining.

r4 eat(osteria)← outdoor(osteria), not raining.

answer sets:
I I1 = {restaurant(osteria), indoor(osteria)} X

reduct PI1 = {r1, r2}
I I2 = {restaurant(osteria), outdoor(osteria), eat(osteria)} X

reduct PI2 = {r1, r2, r4}
I I3 = {restaurant(osteria), indoor(osteria), raining} ×

reduct PI3 = {r1, r2, r3}
I all other I: ×

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

18/102

Answer Sets (cont’d)

Example: Restaurant with Decision Making

r1 restaurant(osteria).

r2 indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

r3 eat(osteria)← indoor(osteria), raining.

r4 eat(osteria)← outdoor(osteria), not raining.

answer sets:
I I1 = {restaurant(osteria), indoor(osteria)} X

reduct PI1 = {r1, r2}
I I2 = {restaurant(osteria), outdoor(osteria), eat(osteria)} X

reduct PI2 = {r1, r2, r4}
I I3 = {restaurant(osteria), indoor(osteria), raining} ×

reduct PI3 = {r1, r2, r3}
I all other I: ×

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

19/102

Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping σ : X ∪ C → C s.t. σ(c) = c for any c ∈ C

The grounding of (i) a rule r is grnd(r) = {rσ | σ is a substitution};
(ii) a program P is grnd(P) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example

I P reach(X, Y)← conn(X, Y).

reach(X, Z)← reach(X, Y), reach(Y, Z).

grnd(P) = ∅ as P has no constants (in theory, let then C = {c})
I P′ = P ∪ { conn(a, b). conn(b, c). }

reach(a, b)← conn(a, b).
reach(b, a)← conn(b, a).
reach(b, c)← conn(b, c).
reach(c, b)← conn(c, b).
reach(c, a)← conn(c, a).
reach(a, c)← conn(a, c).

reach(a, b)← reach(a, b), reach(a, b).
reach(b, a)← reach(b, a), reach(b, a).
reach(b, c)← reach(b, c), reach(b, c).
reach(c, b)← reach(c, b), reach(c, b).
reach(c, a)← reach(c, a), reach(c, a).
reach(a, c)← reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

19/102

Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping σ : X ∪ C → C s.t. σ(c) = c for any c ∈ C

The grounding of (i) a rule r is grnd(r) = {rσ | σ is a substitution};
(ii) a program P is grnd(P) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example

I P reach(X, Y)← conn(X, Y).

reach(X, Z)← reach(X, Y), reach(Y, Z).

grnd(P) = ∅ as P has no constants (in theory, let then C = {c})

I P′ = P ∪ { conn(a, b). conn(b, c). }
reach(a, b)← conn(a, b).
reach(b, a)← conn(b, a).
reach(b, c)← conn(b, c).
reach(c, b)← conn(c, b).
reach(c, a)← conn(c, a).
reach(a, c)← conn(a, c).

reach(a, b)← reach(a, b), reach(a, b).
reach(b, a)← reach(b, a), reach(b, a).
reach(b, c)← reach(b, c), reach(b, c).
reach(c, b)← reach(c, b), reach(c, b).
reach(c, a)← reach(c, a), reach(c, a).
reach(a, c)← reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

19/102

Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping σ : X ∪ C → C s.t. σ(c) = c for any c ∈ C

The grounding of (i) a rule r is grnd(r) = {rσ | σ is a substitution};
(ii) a program P is grnd(P) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example

I P reach(X, Y)← conn(X, Y).

reach(X, Z)← reach(X, Y), reach(Y, Z).

grnd(P) = ∅ as P has no constants (in theory, let then C = {c})
I P′ = P ∪ { conn(a, b). conn(b, c). }

reach(a, b)← conn(a, b).
reach(b, a)← conn(b, a).
reach(b, c)← conn(b, c).
reach(c, b)← conn(c, b).
reach(c, a)← conn(c, a).
reach(a, c)← conn(a, c).

reach(a, b)← reach(a, b), reach(a, b).
reach(b, a)← reach(b, a), reach(b, a).
reach(b, c)← reach(b, c), reach(b, c).
reach(c, b)← reach(c, b), reach(c, b).
reach(c, a)← reach(c, a), reach(c, a).
reach(a, c)← reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}
Answer Set Programming with External Source Access Reasoning Web Summer School 2017

20/102

ASP Paradigm

General idea: answer sets are solutions!

Reduce solving a problem instance I to computing answer sets of an LP

Problem

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

I Method:
1. encode I as a (non-monotonic) logic program P, such that solutions of

I are represented by models of P
2. compute some model M of P, using an ASP solver
3. extract a solution for I from M.

variant: compute multiple/all models (for multiple/all solutions)

I Often: decompose I into problem specification and data
I Use a guess and check approach

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

21/102

Outline

Background

Answer Set Programs
Syntax
Semantics
Basic Properties
Extensions of ASP

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

22/102

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P = { p← not p. }

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).

shaves(X,Y)← barber(X),man(Y), not shaves(Y,Y).

I Adding p← q1, . . . , qm, not r1, . . . , not rn, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
q1, . . . , qm, and (ii) do not contain r1, . . . , rn.

I This is equivalent to the constraint ← q1, . . . , qm, not r1, . . . , not rn.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

22/102

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P = { p← not p. }

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).

shaves(X,Y)← barber(X),man(Y), not shaves(Y,Y).

I Adding p← q1, . . . , qm, not r1, . . . , not rn, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
q1, . . . , qm, and (ii) do not contain r1, . . . , rn.

I This is equivalent to the constraint ← q1, . . . , qm, not r1, . . . , not rn.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

22/102

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P = { p← not p. }

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).

shaves(X,Y)← barber(X),man(Y), not shaves(Y,Y).

I Adding p← q1, . . . , qm, not r1, . . . , not rn, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
q1, . . . , qm, and (ii) do not contain r1, . . . , rn.

I This is equivalent to the constraint ← q1, . . . , qm, not r1, . . . , not rn.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

23/102

Incomparability and Minimality

I Answer sets are minimal models of PI .
I What about P itself?

Proposition (Incomparability)
If I is an answer set I of a program P, then I |= P and no answer set
I′ ⊂ I of P exists (i.e., with I′ ⊆ I s.t. I′ 6= I).

Example

I P = {a← not b}, answer set I = {a}
I P = {a← not b; b← not a; }, answer sets I1 = {a}, I2 = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

23/102

Incomparability and Minimality

I Answer sets are minimal models of PI .
I What about P itself?

Proposition (Incomparability)
If I is an answer set I of a program P, then I |= P and no answer set
I′ ⊂ I of P exists (i.e., with I′ ⊆ I s.t. I′ 6= I).

Example

I P = {a← not b}, answer set I = {a}
I P = {a← not b; b← not a; }, answer sets I1 = {a}, I2 = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

23/102

Incomparability and Minimality

I Answer sets are minimal models of PI .
I What about P itself?

Proposition (Incomparability)
If I is an answer set I of a program P, then I |= P and no answer set
I′ ⊂ I of P exists (i.e., with I′ ⊆ I s.t. I′ 6= I).

Example

I P = {a← not b}, answer set I = {a}
I P = {a← not b; b← not a; }, answer sets I1 = {a}, I2 = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

24/102

Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)
Given some programs P,P′ and an atom a, that I |= a for every answer
set of P does not imply that I |= a for every answer set of P ∪ P′.

Example: Plain Restaurant

I restaurant program P:
restaurant(osteria).

indoor(osteria)← restaurant(osteria), not outdoor(osteria).

answer set
I = {restaurant(osteria), indoor(osteria)} |= indoor(osteria)

I P ∪ {outdoor(osteria)} has the answer set
I = {restaurant(osteria), outdoor(osteria)} 6|= indoor(osteria)

Can be exploited to declare default behaviour!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

24/102

Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)
Given some programs P,P′ and an atom a, that I |= a for every answer
set of P does not imply that I |= a for every answer set of P ∪ P′.

Example: Plain Restaurant

I restaurant program P:
restaurant(osteria).

indoor(osteria)← restaurant(osteria), not outdoor(osteria).

answer set
I = {restaurant(osteria), indoor(osteria)} |= indoor(osteria)

I P ∪ {outdoor(osteria)} has the answer set
I = {restaurant(osteria), outdoor(osteria)} 6|= indoor(osteria)

Can be exploited to declare default behaviour!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

25/102

Supportedness

Presence of atoms in answer sets must be supported by rules

Example

I rule r : a← b, not c, model I = {a, b}
I a is supported by the “firing” rule r

Proposition (Supportedness)
Any answer set I of a program P is a supported model, i.e., for each a∈ I
some rule r∈ grnd(P) exists s.t. I |= body(r) and I ∩ head(r) = {a}.

Example (cont’d)

I For P = {b; a← b, not c}, I = {a, b} is an answer set
I For P = {a← b, not c}, I = {a, b} is no answer set (b lacks support)

But: stable 6= minimal + supported!

Example
P = {a← a; a← not a}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

25/102

Supportedness

Presence of atoms in answer sets must be supported by rules

Example

I rule r : a← b, not c, model I = {a, b}
I a is supported by the “firing” rule r

Proposition (Supportedness)
Any answer set I of a program P is a supported model, i.e., for each a∈ I
some rule r∈ grnd(P) exists s.t. I |= body(r) and I ∩ head(r) = {a}.

Example (cont’d)

I For P = {b; a← b, not c}, I = {a, b} is an answer set
I For P = {a← b, not c}, I = {a, b} is no answer set (b lacks support)

But: stable 6= minimal + supported!

Example
P = {a← a; a← not a}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

25/102

Supportedness

Presence of atoms in answer sets must be supported by rules

Example

I rule r : a← b, not c, model I = {a, b}
I a is supported by the “firing” rule r

Proposition (Supportedness)
Any answer set I of a program P is a supported model, i.e., for each a∈ I
some rule r∈ grnd(P) exists s.t. I |= body(r) and I ∩ head(r) = {a}.

Example (cont’d)

I For P = {b; a← b, not c}, I = {a, b} is an answer set
I For P = {a← b, not c}, I = {a, b} is no answer set (b lacks support)

But: stable 6= minimal + supported!

Example
P = {a← a; a← not a}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

26/102

Computational Complexity

An answer set program P is normal, if each rule r ∈ P is normal, defined
as |head(r)| ≤ 1.

Theorem
Deciding whether a normal program P has some answer set is

I NP-complete in the ground (propositional) case;
I NEXPTIME-complete in the non-ground case.

Theorem
Deciding whether an answer set program P has some answer set is

I Σp
2-complete in the propositional case (Σp

2 = NPNP);

I NEXPTIMENP-complete in the non-ground case.

Note: the relational (i.e., function-free) non-ground case as considered
here is also called datalog case

More on complexity: [Dantsin et al., 2001]

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

27/102

Outline

Background

Answer Set Programs
Syntax
Semantics
Basic Properties
Extensions of ASP

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

28/102

Extensions of ASP

Language extensions like aggregates, complex formula syntax are within
same semantic / computational framework

Need
I interoperability with other logics, e.g. Description Logics

I interfacing with programming languages, e.g. C++, Python

I access to general external sources of information, e.g. WordNet

Approaches

I embedded ASP: akin to embedded SQL
I bilateral interaction: e.g. JASP
I ASP + concrete theories: constraint ASP, ASP + ontologies
I ASP + abstract theories: clingo, HEX/ DLVHEX

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

29/102

External Information Access

Examples

I import external RDF triples into the program

triple(S,P,O)← &rdf [”http://〈Nick〉.livejournal.com/data/foaf”](S,P,O).

I access external graph

reachable(X)← &reachable[conn, a](X).

I perform auxiliary / data structure computations

fullname(Z)← &concat[X,Y](Z), firstname(X), lastname(Y).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

30/102

External Information Access (cont’d)

Issues

I Formal Model of External Atoms
I predicate input
I allow arbitrary external code

⇒ “impedance mismatch”

I Semantics
I e.g. cyclic reference (web graphs!)
I non-monotonic external sources

⇒ no simple fixpoint computation

I Value Invention
I new ground terms might appear

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

30/102

External Information Access (cont’d)

Issues

I Formal Model of External Atoms
I predicate input
I allow arbitrary external code

⇒ “impedance mismatch”

I Semantics
I e.g. cyclic reference (web graphs!)
I non-monotonic external sources

⇒ no simple fixpoint computation

I Value Invention
I new ground terms might appear

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

30/102

External Information Access (cont’d)

Issues

I Formal Model of External Atoms
I predicate input
I allow arbitrary external code

⇒ “impedance mismatch”

I Semantics
I e.g. cyclic reference (web graphs!)
I non-monotonic external sources

⇒ no simple fixpoint computation

I Value Invention
I new ground terms might appear

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

30/102

External Information Access (cont’d)

Issues

I Formal Model of External Atoms
I predicate input
I allow arbitrary external code

⇒ “impedance mismatch”

I Semantics
I e.g. cyclic reference (web graphs!)
I non-monotonic external sources

⇒ no simple fixpoint computation

I Value Invention
I new ground terms might appear

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

31/102

Outline

Background

Answer Set Programs

HEX Programs
Syntax
Semantics
Basic Properties

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

32/102

Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C,P,X ,G) is of the form

&g[Y1, . . . ,Yn](X1, . . . ,Xm)
where

I Y1, . . . ,Yn are terms and predicate names from C ∪ X ∪ P (input list)
I X1, . . . ,Xm are terms from C ∪ X (output list)
I &g ∈ G is an external predicate name with in(&g) = n, out(&g) = m

Examples

I &rdf [U](S,P,O): intuitively, from a given concrete “input” URL U (a
constant), retrieve (one by one) all “output” triples (S,P,O)

I &reachable[connection, a](X): intuitively, all nodes X reachable from
node a in a graph represented by atoms of form connection(u, v).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

32/102

Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C,P,X ,G) is of the form

&g[Y1, . . . ,Yn](X1, . . . ,Xm)
where

I Y1, . . . ,Yn are terms and predicate names from C ∪ X ∪ P (input list)
I X1, . . . ,Xm are terms from C ∪ X (output list)
I &g ∈ G is an external predicate name with in(&g) = n, out(&g) = m

Examples

I &rdf [U](S,P,O): intuitively, from a given concrete “input” URL U (a
constant), retrieve (one by one) all “output” triples (S,P,O)

I &reachable[connection, a](X): intuitively, all nodes X reachable from
node a in a graph represented by atoms of form connection(u, v).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

33/102

External Atoms
Examples (cont’d)

I &concat[X,Y](Z): intuitively, concatenate two strings
I &concat[bob, dylan](bobdylan) is true
I &concat[bob, dylan](Z) is true for Z = bobdylan
I &concat[bob, Y](bobdylan) is true for Y = dylan

External atoms can be of any nature (non-logical) nature

Example
&weatherreport[dateLocationPredicate](WeatherConditions)

query a web-based weather report
I input dateLocationPredicate is a binary predicate with tuples (d, l) of

dates d and locations l (facts dateLocationPredicate(d, l))
I output WeatherConditions are (one by one) all weather conditions

that occur at some input date & location

&weatherreport[goto](W) where goto = {(1, paris), (1, london), (2, paris),
(2, london)} returns all weather conditions on dates 1/2 for London/Paris

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

33/102

External Atoms
Examples (cont’d)

I &concat[X,Y](Z): intuitively, concatenate two strings
I &concat[bob, dylan](bobdylan) is true
I &concat[bob, dylan](Z) is true for Z = bobdylan
I &concat[bob, Y](bobdylan) is true for Y = dylan

External atoms can be of any nature (non-logical) nature

Example
&weatherreport[dateLocationPredicate](WeatherConditions)

query a web-based weather report
I input dateLocationPredicate is a binary predicate with tuples (d, l) of

dates d and locations l (facts dateLocationPredicate(d, l))
I output WeatherConditions are (one by one) all weather conditions

that occur at some input date & location

&weatherreport[goto](W) where goto = {(1, paris), (1, london), (2, paris),
(2, london)} returns all weather conditions on dates 1/2 for London/Paris

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

34/102

HEX Programs

HEX rule and program
A HEX program is a set P of (HEX) rules r of the form

A1 ∨ . . . ∨ Am ← L1 . . . ,Ln, m, n ≥ 0,
where all Ai are atoms, and all Lj are either literals or HEX-literals, i.e.
either

I an ordinary literal,
I an external atom,
I or a default-negated external atom.

That is, like ordinary ASP rules/programs but external atoms can occur in
rule bodies

Examples

I reachable(X)← &reachable[connection, a](X).

I fullname(Z)← &concat[X,Y](Z), firstname(X), lastname(Y).

I ← & weatherreport[goto](W), badweather(W).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

35/102

HEX Programs (cont’d)

Example: City Trip

Plan to visit Paris and London, under the condition the weather isn’t bad

Program Πgoto:
r1 badweather(rain). badweather(snow).

r2 goto(1, paris) ∨ goto(1, london).

r3 goto(2, paris) ∨ goto(2, london).

r4 ← & weatherreport[goto](W), badweather(W).

I state what bad weather means (r1)

I decide on what day to go to which city (r2, r3)
I exclude trips where the (external) weather report indicates bad

weather during the trip (r4)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

36/102

Outline

Background

Answer Set Programs

HEX Programs
Syntax
Semantics
Basic Properties

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

37/102

Semantics
Analogous to ordinary ASP:

I the Herbrand base HB for HEX program P
I the grounding of a rule r, grnd(r), and of P, grnd(P) =

⋃
r∈P grnd(r).

I interpretations are subsets I⊆HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Oracle Function
Every &g ∈ G, has an associated decidable oracle function

f&g : 2HBP × (C ∪ P)n × Cm → {T,F}, n = in(&g), m = out(&g)

that maps each (I,~y,~x), where I ⊆ HB is an interpretation, ~y = y1, . . . , yn

on C ∪ P is “input”, and ~x = x1, . . . , xm on C is “output”, to T or F.

Pragmatic assumptions:
I for any I,~y, only finitely many ~x yield f&g(I,~y,~x) = T
I output ~x is independent of the extensions of the predicates that do

not occur in the input ~y

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

37/102

Semantics
Analogous to ordinary ASP:

I the Herbrand base HB for HEX program P
I the grounding of a rule r, grnd(r), and of P, grnd(P) =

⋃
r∈P grnd(r).

I interpretations are subsets I⊆HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Oracle Function
Every &g ∈ G, has an associated decidable oracle function

f&g : 2HBP × (C ∪ P)n × Cm → {T,F}, n = in(&g), m = out(&g)

that maps each (I,~y,~x), where I ⊆ HB is an interpretation, ~y = y1, . . . , yn

on C ∪ P is “input”, and ~x = x1, . . . , xm on C is “output”, to T or F.

Pragmatic assumptions:
I for any I,~y, only finitely many ~x yield f&g(I,~y,~x) = T
I output ~x is independent of the extensions of the predicates that do

not occur in the input ~y

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

38/102

Oracle Functions

Example: String Concatenation
for the external predicate &concat, the associated function is

f&concat(I,X,Y,Z) =

{
T, if XY = Z;
F, otherwise

(where XY is concatenation of X and Y)

Example: City Trip (cont’d)

I weather forecast Paris: sun on day 1 and day 2
I weather forecast London: rain on day 1 and day 2

the corresponding oracle function is (wr = weatherreport)

f&wr(I, goto,W) =

T, if {goto(1, london), goto(2, london)} ⊆ I and W = rain,
T, if {goto(1, london), goto(2, paris)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, london)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, paris)} ⊆ I and W = sun,
F, otherwise.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

38/102

Oracle Functions

Example: String Concatenation
for the external predicate &concat, the associated function is

f&concat(I,X,Y,Z) =

{
T, if XY = Z;
F, otherwise

(where XY is concatenation of X and Y)

Example: City Trip (cont’d)

I weather forecast Paris: sun on day 1 and day 2
I weather forecast London: rain on day 1 and day 2

the corresponding oracle function is (wr = weatherreport)

f&wr(I, goto,W) =

T, if {goto(1, london), goto(2, london)} ⊆ I and W = rain,
T, if {goto(1, london), goto(2, paris)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, london)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, paris)} ⊆ I and W = sun,
F, otherwise.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

39/102

Satisfaction and Models

Satisfaction of External Atom
An interpretation I ⊆ HB satisfies (is a model of) a ground external atom
a = &g[~y](~x), denoted I |= a, if f&g(I,~y,~x) = T.

Example: String Concatenation
I plays no role for concatenation:

I I |= &concat[bob, dylan](bobdylan) holds for every interpretation I
I I 6|= &concat[bob, dylan](bobbydylan) for every interpretation I

Example: City Trip (cont’d)
For weather forecast as above:

I I |= &weatherreport[goto](sun) holds if I |= goto(1, paris), or if
I |= goto(2, paris).

I I |= &weatherreport[goto](rain) if I |= goto(1, london) or if
I |= goto(2, london),

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

39/102

Satisfaction and Models

Satisfaction of External Atom
An interpretation I ⊆ HB satisfies (is a model of) a ground external atom
a = &g[~y](~x), denoted I |= a, if f&g(I,~y,~x) = T.

Example: String Concatenation
I plays no role for concatenation:

I I |= &concat[bob, dylan](bobdylan) holds for every interpretation I
I I 6|= &concat[bob, dylan](bobbydylan) for every interpretation I

Example: City Trip (cont’d)
For weather forecast as above:

I I |= &weatherreport[goto](sun) holds if I |= goto(1, paris), or if
I |= goto(2, paris).

I I |= &weatherreport[goto](rain) if I |= goto(1, london) or if
I |= goto(2, london),

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

39/102

Satisfaction and Models

Satisfaction of External Atom
An interpretation I ⊆ HB satisfies (is a model of) a ground external atom
a = &g[~y](~x), denoted I |= a, if f&g(I,~y,~x) = T.

Example: String Concatenation
I plays no role for concatenation:

I I |= &concat[bob, dylan](bobdylan) holds for every interpretation I
I I 6|= &concat[bob, dylan](bobbydylan) for every interpretation I

Example: City Trip (cont’d)
For weather forecast as above:

I I |= &weatherreport[goto](sun) holds if I |= goto(1, paris), or if
I |= goto(2, paris).

I I |= &weatherreport[goto](rain) if I |= goto(1, london) or if
I |= goto(2, london),

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

40/102

Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I ⊆ HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

PI = {r ∈ grnd(P) | I |= body(r)}.

AS(P) = the set of all answer sets of P

Remarks:
I For ordinary P (no external atoms), the answer sets are as usual
I For aggregates modeled as external atoms (e.g. &count[goto](N)),

the answer sets coincide with FLP-answer sets [Faber et al., 2011]
I Alternative (more restrictive) notions of answer sets exist

[Shen et al., 2014]

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

40/102

Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I ⊆ HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

PI = {r ∈ grnd(P) | I |= body(r)}.

AS(P) = the set of all answer sets of P

Remarks:
I For ordinary P (no external atoms), the answer sets are as usual
I For aggregates modeled as external atoms (e.g. &count[goto](N)),

the answer sets coincide with FLP-answer sets [Faber et al., 2011]
I Alternative (more restrictive) notions of answer sets exist

[Shen et al., 2014]

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

41/102

Answer Sets for HEX Programs

Example: City Trip (cont’d)
Πgoto badweather(rain). badweather(snow).

goto(1, paris) ∨ goto(1, london).

goto(2, paris) ∨ goto(2, london).

← & weatherreport[goto](W), badweather(W).

I For the above weather report, Πgoto has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain)}

I For a different weather report saying it’s always sunny, 3 more
answer sets exist:

I {goto(1, paris), goto(2, london), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, paris), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, london), badweather(snow), badweather(rain)}

I Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

41/102

Answer Sets for HEX Programs

Example: City Trip (cont’d)
Πgoto badweather(rain). badweather(snow).

goto(1, paris) ∨ goto(1, london).

goto(2, paris) ∨ goto(2, london).

← & weatherreport[goto](W), badweather(W).

I For the above weather report, Πgoto has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain)}

I For a different weather report saying it’s always sunny, 3 more
answer sets exist:

I {goto(1, paris), goto(2, london), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, paris), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, london), badweather(snow), badweather(rain)}

I Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

41/102

Answer Sets for HEX Programs

Example: City Trip (cont’d)
Πgoto badweather(rain). badweather(snow).

goto(1, paris) ∨ goto(1, london).

goto(2, paris) ∨ goto(2, london).

← & weatherreport[goto](W), badweather(W).

I For the above weather report, Πgoto has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain)}

I For a different weather report saying it’s always sunny, 3 more
answer sets exist:

I {goto(1, paris), goto(2, london), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, paris), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, london), badweather(snow), badweather(rain)}

I Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

42/102

Outline

Background

Answer Set Programs

HEX Programs
Syntax
Semantics
Basic Properties

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

43/102

Basic Properties

The basic properties of answer sets extend to HEX-programs:

I answer sets are incomparable
I answer sets are minimal models
I answer sets are supported models
I non-monotonicity

The computational complexity depends on external atoms: deciding
answer set existence is

I Σp
2-complete for ground programs, if evaluating external atoms, i.e.

deciding whether f&g(I,~y,~x) = T holds, is feasible in polynomial time
with an NP oracle;

I Σp
2-hard already for Horn ground programs (no disjunction, no

negation) and polynomial-time external atoms.

I Thus, minimality checking of answer set candidates for
HEX-programs is a challenging problem

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

43/102

Basic Properties

The basic properties of answer sets extend to HEX-programs:

I answer sets are incomparable
I answer sets are minimal models
I answer sets are supported models
I non-monotonicity

The computational complexity depends on external atoms: deciding
answer set existence is

I Σp
2-complete for ground programs, if evaluating external atoms, i.e.

deciding whether f&g(I,~y,~x) = T holds, is feasible in polynomial time
with an NP oracle;

I Σp
2-hard already for Horn ground programs (no disjunction, no

negation) and polynomial-time external atoms.

I Thus, minimality checking of answer set candidates for
HEX-programs is a challenging problem

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

44/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling
Modeling Applications: Basic Methodology
Methodology for Using External Atoms

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

45/102

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

45/102

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

45/102

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

45/102

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

45/102

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

46/102

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.

2. To test a property Pr we
I design a program P and an answer set candidate Isat such that Isat is

the single answer set of P if the property Pr holds, and
I P has other answer sets (excluding Isat) otherwise.

Example: Non-3-Colorability of a Graph

b(X) ∨ r(X) ∨ g(X)←node(X)

non col←r(X), r(Y), edge(X,Y)

non col←g(X), g(Y), edge(X,Y)

non col←b(X), b(Y), edge(X,Y)

r(X)←non col, node(X)

g(X)←non col, node(X)

b(X)←non col, node(X)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

46/102

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

I design a program P and an answer set candidate Isat such that Isat is
the single answer set of P if the property Pr holds, and

I P has other answer sets (excluding Isat) otherwise.

Example: Non-3-Colorability of a Graph

b(X) ∨ r(X) ∨ g(X)←node(X)

non col←r(X), r(Y), edge(X,Y)

non col←g(X), g(Y), edge(X,Y)

non col←b(X), b(Y), edge(X,Y)

r(X)←non col, node(X)

g(X)←non col, node(X)

b(X)←non col, node(X)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

46/102

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

I design a program P and an answer set candidate Isat such that Isat is
the single answer set of P if the property Pr holds, and

I P has other answer sets (excluding Isat) otherwise.

Example: Non-3-Colorability of a Graph

b(X) ∨ r(X) ∨ g(X)←node(X)

non col←r(X), r(Y), edge(X,Y)

non col←g(X), g(Y), edge(X,Y)

non col←b(X), b(Y), edge(X,Y)

r(X)←non col, node(X)

g(X)←non col, node(X)

b(X)←non col, node(X)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

47/102

Basic Methodology (cont’d)

Extension with External Atoms
I The existing techniques can be combined with external atoms.

I Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

← not &check[edge, r, g, b]()

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

47/102

Basic Methodology (cont’d)

Extension with External Atoms
I The existing techniques can be combined with external atoms.
I Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

← not &check[edge, r, g, b]()

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

47/102

Basic Methodology (cont’d)

Extension with External Atoms
I The existing techniques can be combined with external atoms.
I Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

← not &check[edge, r, g, b]()

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

47/102

Basic Methodology (cont’d)

Extension with External Atoms
I The existing techniques can be combined with external atoms.
I Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

← not &check[edge, r, g, b]()

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

48/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling
Modeling Applications: Basic Methodology
Methodology for Using External Atoms

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

49/102

Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.
I External sources may combine both use cases.
I Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

49/102

Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.
I External sources may combine both use cases.
I Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

49/102

Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.

I External sources may combine both use cases.
I Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

49/102

Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.
I External sources may combine both use cases.

I Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

49/102

Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.
I External sources may combine both use cases.
I Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

50/102

Computation Outsourcing

On-demand Constrains
I Constraints of form

← &forbidden[p1, . . . , pn]()
eliminate certain extensions of predicates p1, . . . , pn.

I Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

I The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

I Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

50/102

Computation Outsourcing

On-demand Constrains
I Constraints of form

← &forbidden[p1, . . . , pn]()
eliminate certain extensions of predicates p1, . . . , pn.

I Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

I The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

I Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

50/102

Computation Outsourcing

On-demand Constrains
I Constraints of form

← &forbidden[p1, . . . , pn]()
eliminate certain extensions of predicates p1, . . . , pn.

I Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

I The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

I Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

50/102

Computation Outsourcing

On-demand Constrains
I Constraints of form

← &forbidden[p1, . . . , pn]()
eliminate certain extensions of predicates p1, . . . , pn.

I Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

I The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

I Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

51/102

Computation Outsourcing (cont’d)

Accessing Procedural Computations

I Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

I Example:
AngryHEX is an AI agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

I Computations with a complexity higher than the complexity of
ordinary ASP programs.

I External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

51/102

Computation Outsourcing (cont’d)

Accessing Procedural Computations

I Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

I Example:
AngryHEX is an AI agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

I Computations with a complexity higher than the complexity of
ordinary ASP programs.

I External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

51/102

Computation Outsourcing (cont’d)

Accessing Procedural Computations

I Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

I Example:
AngryHEX is an AI agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

I Computations with a complexity higher than the complexity of
ordinary ASP programs.

I External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

51/102

Computation Outsourcing (cont’d)

Accessing Procedural Computations

I Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

I Example:
AngryHEX is an AI agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

I Computations with a complexity higher than the complexity of
ordinary ASP programs.

I External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

52/102

Information Outsourcing

Data Sources
I RDF triplet stores:

p(X,Y)← url(U),&rdf [U](X,Y,Z)

I Geographic data
I Description logic ontologies
I Multi-context systems
I Relational databases

Note:
Some external sources may realize a combination of data and
computation outsourcing (e.g. complex queries over ontologies).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

52/102

Information Outsourcing

Data Sources
I RDF triplet stores:

p(X,Y)← url(U),&rdf [U](X,Y,Z)

I Geographic data
I Description logic ontologies
I Multi-context systems
I Relational databases

Note:
Some external sources may realize a combination of data and
computation outsourcing (e.g. complex queries over ontologies).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

53/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios
Modeling Procedure
Examples

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

54/102

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

54/102

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

54/102

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

54/102

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

54/102

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

55/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios
Modeling Procedure
Examples

The DLVHEX-System

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

56/102

Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

57/102

Example: Semantic Web Application

Example: Friend-of-a-Friend
Use the FOAF (Friend-of-a-friend) RDF schema to return all pairs of
nicknames that know each other, as stored in a FOAF RDF datasource:

explore(”http://〈Nick〉.livejournal.com/data/foaf”)

triple(S,P,O)←&rdf [What](S,P,O), explore(What)

knows(Nick1,Nick2)← triple(Id1, ”http://xmlns.com/foaf/0.1/knows”, Id2),

triple(Id1, ”http://xmlns.com/foaf/0.1/nick”,Nick1), Nick1 <Nick2,

triple(Id2, ”http://xmlns.com/foaf/0.1/nick”,Nick2).

knows(A,C)← knows(A,B), knows(B,C)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

58/102

Example: Semantic Web Application (cont’d)

Example: Recursive FOAF querying with limited depth

explore(”http://〈Nick〉.livejournal.com/data/foaf”)

explore to(What, 3)← explore(What)

triple at(S,P,O,D)←&rdf [Uri](S,P,O), explore to(Uri,D), D > 1

explore to(U,D2)←D2 = D1 − 1,

triple at(Id, ”http://www.w3.org/2000/01/rdf-schema#seeAlso”,U,D1),

triple at(Id, ”http://xmlns.com/foaf/0.1/nick”,Nick,D1)

found(Nick)← triple at(S, ”http://xmlns.com/foaf/0.1/nick”,Nick,D).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

59/102

Example: Physics Simulation

Example: AngryHEX
Fundamental strategy:
Maximize the estimated damage to obstacles and pigs.

shootable(O,Type,Tr)←&shootable[O,Tr,V, Sx, Sy, Sw, Sh,B, bb](O),

birdType(B), velocity(V), objectType(O,Type),

slingshot(Sx, Sy, Sw, Sh), trajectory(Tr)

tgt(O,Tr)∨ ntgt(O,Tr)← shootable(O,Type,Tr)

← target(X,), target(Y,),X 6= Y.

← target(,T1), target(,T2), T1 6= T2

target ex← target(,)

← not target ex.

directDmg(O,P,E)← target(O,Tr), objectType(O,T), birdType(Bird),

dmgProbability(Bird,T,P),

energyLoss(Bird,T,E)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

60/102

Example: Physics Simulation

Example: AngryHEX (cont’d)

exDirectDmg(O)← directDmg(O, ,)

nexDirectDmg(O)← not exDirectDmg(O), objectType(O,)

goodObject(O)← objectType(O, pig)

goodObject(O)← objectType(O, tnt)

 nexDirectDmg(O), goodObject(O) [1@4,O, nexDirectDmg]

 nexDirectDmg(O). [1@1,O, nexDirectDmg]

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

61/102

The DLVHEX-System

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

I Based on GRINGO and CLASP from the Potassco suite .
I Supported platforms: Linux-based, OS X, Windows.

Pre-compiled binaries available.
I External sources are implemented as plugins using a plugin API

(available for C++ or Python).
I Support for the ASP-Core-2 standard.
I Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

I User manual available (see system website).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

62/102

System Architecture

HEX
program

Evaluation
Framework

Answer
Sets

Model
Generators

ASP Solver

ASP
Grounder

HEX-
Grounder

Post
Propagator

UFS-
Checker

SAT Solver

Plugins

DLVHEX core

1

2

3

4

5

6

7

8

9 10

11

12

Figure: Architecture of DLVHEX

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

63/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System
Usability and System Features
Exploiting External Source Properties

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

64/102

Python Programming Interface

More convenient interface
Previously only C++ support, but Python preferred by many developers:

I No overhead due to makefiles, compilation, linking, etc.
I High-level features.
I Negligible overhead compared to plugins implemented in C++.

Reasoning
Component

C++ Program-
ming Interface

C++ Plugins

Python Program-
ming Interface

Python Plugins

DLVHEX

Figure: Architecture of the Python Programming Interface

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

65/102

Python Programming Interface (cont’d)

Example
Program

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}
compute the nodes reachable from a start node s in a graph.

Implementation of &edge[X](Y):

def edge (x) :
graph = ((1 , 2) , (1 , 3) , (2 , 3)) # s i m p l i f i e d implementat ion
for edge in graph : # search f o r out−edges of node x

i f edge [0]== x . i n tVa lue () :
d lvhex . output ((edge [1] ,)) # output edge t a r g e t

def r e g i s t e r () :
prop = dlvhex . ExtSourceProper t ies () # in form dlvhex about
prop . addFiniteOutputDomain (0) # f i n i t e n e s s o f the graph
dlvhex . addAtom (” edge ” , (d lvhex .CONSTANT,) , 1 , prop)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

66/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System
Usability and System Features
Exploiting External Source Properties

DLVHEX in Practice

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

67/102

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

I By default, external sources are seen as black boxes.
I Behavior under an interpretation does not allow for drawing

conclusions about other interpretations.
I Algorithmic improvements require

meta-information about external sources.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

67/102

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

I By default, external sources are seen as black boxes.
I Behavior under an interpretation does not allow for drawing

conclusions about other interpretations.
I Algorithmic improvements require

meta-information about external sources.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

67/102

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

I By default, external sources are seen as black boxes.
I Behavior under an interpretation does not allow for drawing

conclusions about other interpretations.
I Algorithmic improvements require

meta-information about external sources.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!
Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.

I As part of the HEX-program using property tags 〈 · · · 〉.
Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

68/102

Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

69/102

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

69/102

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

69/102

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

70/102

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

70/102

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

70/102

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!

I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

70/102

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

70/102

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

71/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice
Case Study (Demo)
Further Use Cases

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

72/102

Use Case: Semantic Trip Planning in Vienna

Requirements
I Find shortest trip visiting predefined locations
I Long trip⇒ add lunch location using an ontology
I Choose restaurant depending on weather report

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

73/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

74/102

Trip Planning

I Transport data might be:
I Extremely large
I Remote/not accessible

I Access external transport information
(information outsourcing)

I Use dedicated algorithm to compute shortest connection
(computation outsourcing)

External atom:
&route[File,Loc1,Loc2](Stp1,Stp2,Costs,Line)

⇒ Obtain shortest trip by using weak constraints

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

75/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

76/102

Adding Lunch Location

I Adjustment of the trip based on its length
I Add on-demand constraint (no output needed)
I Boolean output depends monotonically on the input

I Specify according property

External atom:
&needRestaurant[trip,Limit]()

Introduces cyclic dependency, not strongly safe:

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

77/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

78/102

Partial Evaluation

I &needRestaurant[trip,Limit]() usually evaluated
only after extension of trip is decided

I Truth value not fixed before

I Often truth value can be decided early during search
I Partial assignments: atoms can be true, false or unassigned
I Use both methods isTrue() and isFalse()

I Everything else is unassigned
I Use both methods output() and outputUnknown() to declare outputs

I All other outputs are implicitly false

I Requirement: assignment monotonicity

Example
Learned nogood: {¬t(0, 1), t(1, 1), t(2, 1), t(3, 1),&nR[t, 3]()}

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

79/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

80/102

DL-Lite Plugin

I We use the DL-Lite Plugin for semantically enriched route planning
(inspired by [Eiter et al., 2016c])

I Interfaces to OWL ontologies using DL reasoner

I Provides external atoms for concept and role queries:
I &cDL[File,rp,rm,cp,cm,C](X)
I &rDL[File,rp,rm,cp,cm,R](X,Y)

I Bidirectional interaction by adding elements to concepts and roles,
resp. to their complements

Link:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

81/102

Restaurant Ontology

BeerGarden v Restaurant Location(Karlsplatz)

BeerGarden v ¬IndoorRestaurant Location(Museumsquartier)

IndoorRestaurant v Restaurant Location(Praterstern)

IndoorRestaurant v ¬BeerGarden BeerGarden(bg1)

IndoorRestaurant v ¬WurstStand closeTo(bg1,Praterstern)

Restaurant v ∃closeTo.Location IndoorRestaurant(ir1)

WurstStand v Restaurant closeTo(ir1,Museumsquartier)

WurstStand v ¬IndoorRestaurant WurstStand(ws1)

closeTo(ws1,Karlsplatz)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

82/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

83/102

Weather Data

I Goal: retrieve weather data from http://openweathermap.org/

I Importing dynamic data from remote location

I General plugin for retrieving JSON data from API
I Data represented by nested key-value pairs:
{"weather":[{"id":803,"main":"Clouds",
"description":"clouds", "icon":"04d"}], ...}

I Input type dlvhex.TUPLE for arbitrary number of constants
I Provide sequence of keys

External atom:
&getJSON[Url,Keys.TUPLE](Value)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

84/102

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

85/102

Summary of the Case Study

I Encoding uses four different external atoms in combination
I &route-Plugin for information and computation outsourcing

I &needRestaurant-Plugin for external check

I DL-Lite-Plugin for interfacing an external DL-reasoner

I &getJson-Plugin for accessing remote information on the web

I Complete implementation and more examples at:
https://github.com/hexhex/manual/tree/master/RW2017/

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

86/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice
Case Study (Demo)
Further Use Cases

Conclusion

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

87/102

HEX∃ Programs

I By value invention external atoms can generate witnesses
I Used to model query answering from existential rules

Example
Not possible in standard ASP:

∃X : office(Y,X)← employee(Y).

Encoding with external atom:

office(Y,X)← employee(Y),&exists[r1,Y](X).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

88/102

HEX Programs with Function Symbols

I External atoms can simulate composition and decomposition of
function terms

I Allows external data type checking and argument generation

Example
Not possible in standard ASP:

q(f (X))← p(X).

r(Y)← q(f (Y)).

Encoding with external atom:

q(A)← p(X),&comp[f ,X](A).

r(Y)← q(B),&decomp[B](f ,Y).

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

89/102

ACTHEX

I Extension of HEX for execution of declaratively scheduled actions
I Action atoms in rule heads operate on an external environment
I Environment can influence truth values of external atoms

I Enables stateful behaviour

Example

#robot[clean, kitchen]{c, 2} ← night

#robot[clean, bedroom]{c, 2} ← day

#robot[goto, charger]{b, 1} ← &sensor[bat](low)

night ∨ day←

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

90/102

Constraint HEX Programs
I Grounding issues when encoding constraints in ASP
I Contain ordinary, external and constraint atoms

I Comparisons of arithmetic expressions

I Allow to combine diverse background theories

Example

food(P)← &sql[“Select price from Food”](P)

drink(P)← &sql[“Select price from Drink”](P)

inMenu(F,D) ∨ outMenu(F,D)← food(F), drink(D)

F + D < P← inMenu(F,D),max price(P)

Encoding of constraint with external atom:

con(F,+,D, <,P) ∨ con(F,+,D,≥,P)← inMenu(F,D),max price(P)

← not &check[con]()
Answer Set Programming with External Source Access Reasoning Web Summer School 2017

91/102

Nested HEX [Eiter et al., 2013]

I External atoms for evaluating subprograms and inspecting their
answer sets:
&callhex, &callhexfile, &answersets, &predicates, &arguments

I A new instance of DLVHEX is called and results stored in an
answer cache assigning unique handles

Example

p1(x, y)←
p2(a)←
p2(b)←

handle(PH)← &callhexfile["sub.hex", p1, p2](PH)

ash(PH,AH)← &callhex["a v b :-"](PH),&answersets[PH](AH)

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

92/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion
Related Work
Summary
Further Resources

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

93/102

Related Work

I Many approaches, different degrees of integration
I DLVDB offers access to relational databases via ODBC interface
I ONTODLV for information retrieval from OWL ontologies, extends

ASP with classes, inheritance, relations and axioms
I DLV-EX programs early generic integration approach

I Introduction of new terms by value invention
I Only terms as inputs to external sources
I Nonmonotonic aggregates not expressible

I CLINGO supports custom functions implemented in Lua or Python
I Import extensions of user-defined predicates during grounding
I Customisable built-in atoms
I No cyclic dependencies

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

94/102

Related Work (cont’d)

I CLINGO 5 provides generic interfaces for theory solving in ASP
I Semantics differs from HEX unfounded support of theory atoms

allowed⇒ consider p← &id[p]()
I Theory atoms interrelated via external theory (orthogonal to HEX)
I No value invention based on answer set
I Well-suited for system developers, rich infrastructure

I Extensions of ASP with specific external sources:
I Constraint ASP solvers, e.g. CLINGCON, lc2casp, ezcsp, EZSMT
I Extensions of ASP with SMT, e.g. dingo (difference logic), ASPMT

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

95/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion
Related Work
Summary
Further Resources

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

96/102

Summary

I HEX is a powerful formalism, wide range of applications
I Extends ASP with external sources via API-style interface
I Bi-directional interaction and value invention possible
I Methodology from ASP generalises to HEX
I Implemented in the DLVHEX system

I Plugins in Python and C++
I Exploiting external source properties

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

97/102

Outline

Background

Answer Set Programs

HEX Programs

Methodology and Modeling

Application Scenarios

The DLVHEX-System

DLVHEX in Practice

Conclusion
Related Work
Summary
Further Resources

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

98/102

Further Resources

I All executable examples from this course:
https://github.com/hexhex/manual/tree/master/RW2017/

I Slides of tutorial “ASP for the Semantic Web” and many executable
ASP/HEX-examples:
http://asptut.gibbi.com/

I An online demo of the DLVHEX system:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

demo.php

I Pre-built binaries of DLVHEX for Linux, OS X and Windows:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

downloadb.html

I The source code of DLVHEX and corresponding plugins, best place
for bug reports:
https://github.com/hexhex/

I Python-based HEX implementation for a fragment of the HEX
language and a subset of features
https://github.com/hexhex/hexlite

Answer Set Programming with External Source Access Reasoning Web Summer School 2017

https://github.com/hexhex/manual/tree/master/RW2017/
http://asptut.gibbi.com/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html
https://github.com/hexhex/
https://github.com/hexhex/hexlite

References I
Chitta Baral.
Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Univ. Press, 2003.

Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller.
The MCS-IE system for explaining inconsistency in multi-context systems.
In In Proceedings of the Twelfth European Conference on Logics in Artificial Intelligence (JELIA
2010), pages 356–359, 2010.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Thomas Krennwallner
Roland Kaminski, Nicola Leone, Francesco Ricca, and Torsten Schaub.
ASP-Core-2 Input Language Format, 2013.

Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph Redl, and
Anton Wimmer.
AngryHEX: an artificial player for angry birds based on declarative knowledge bases.
In National Workshop and Prize on Popularize Artificial Intelligence, pages 29–35, 2013.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys, 33(3):374–425, 2001.

Phan Minh Dung.
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games.
Artificial Intelligence, 77(2):321–357, 1995.

99/102

References II
Thomas Eiter, Thomas Krennwallner, and Christoph Redl.
HEX-Programs with Nested Program Calls.
In Hans Tompits, Salvador Abreu, Johannes Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu
Umeda, and Armin Wolf, editors, 19th International Conference on Applications of Declarative
Programming and Knowledge Management (INAP 2011), volume 7773 of LNAI, pages 1–10.
Springer, October 2013.

Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Efficient HEX-program evaluation based on unfounded sets.
Journal of Artificial Intelligence Research, 49:269–321, February 2014.

Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
Domain expansion for asp-programs with external sources.
Artif. Intell., 233:84–121, 2016.

Thomas Eiter, Tobiask Kaminski, Christoph Redl, and Antonius Weinzierl.
Exploiting partial assignments for efficient evaluation of answer set programs with external source
access.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI
2016), July 9–15, 2016, New York City, New York, USA, July 2016.

Thomas Eiter, Thomas Krennwallner, Matthias Prandtstetter, Christian Rudloff, Patrik Schneider,
and Markus Straub.
Semantically enriched multi-modal routing.
Int. J. Intelligent Transportation Systems Research, 14(1):20–35, 2016.

Esra Erdem, Volkan Patoglu, and Peter Schüller.
A Systematic Analysis of Levels of Integration between High-Level Task Planning and Low-Level
Feasibility Checks.
AI Communications, IOS Press, 2016.

100/102

References III

Esra Erdem, Volkan Patoglu, and Peter Schüller.
A Systematic Analysis of Levels of Integration between Low-Level Reasoning and Task Planning.
AI Communications, 29(2):319–349, 2016.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Semantics and complexity of recursive aggregates in answer set programming.
Artificial Intelligence, 175(1):278–298, 2011.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2012.

Giovambattista Ianni, Francesco Calimeri, Stefano Germano, Andreas Humenberger, Christoph
Redl, Daria Stepanova, Andrea Tucci, and Anton Wimmer.
Angry-HEX: an artificial player for angry birds based on declarative knowledge bases.
IEEE Transactions on Computational Intelligence and AI in Games, 2016.

Victor W. Marek and Mirosław Truszczyński.
Stable Models and an Alternative Logic Programming Paradigm.
In The Logic Programming Paradigm – A 25-Year Perspective, pages 375–398. Springer, 1999.

Ilkka Niemelä.
Logic programming with stable model semantics as constraint programming paradigm.
Annals of Mathematics and Artificial Intelligenc, 25(3–4):241–273, 1999.

Max Ostrowski and Torsten Schaub.
ASP modulo CSP: the clingcon system.
Theory and Practice of Logic Programming (TPLP), 12(4-5):485–503, 2012.

101/102

References IV

Yi-Dong Shen, Kewen Wang, Thomas Eiter, Michael Fink, Christoph Redl, Thomas Krennwallner,
and Jun Deng.
FLP answer set semantics without circular justifications for general logic programs.
Artificial Intelligence, 213:1–41, 2014.

Hande Zirtiloglu and Pinar Yolum.
Ranking semantic information for e-government: complaints management.
In Alistair Duke, Martin Hepp, Kalina Bontcheva, and Marc B. Vilain, editors, Proceedings of the
First International Workshop on Ontology-supported Business Intelligence, OBI 2008, Karlsruhe,
Germany, October 27, 2008, volume 308 of ACM International Conference Proceeding Series,
page 5. ACM, 2008.

102/102

	Background
	Answer Set Programs
	HEX Programs
	Methodology and Modeling
	Application Scenarios
	The dlvhex-System
	dlvhex in Practice
	Conclusion

