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Introduction
I Answer Set Programming (ASP): recent problem solving approach

I Term coined by DBLP:conf/iclp/Lifschitz99
[DBLP:conf/iclp/Lifschitz99,lifs-2002], proposed by others at about
the same time, e.g. [Marek and Truszczyński, 1999], [Niemelä, 1999]

I It has roots in KR, logic programming, and nonmonotonic reasoning

I At an abstract level, relates to Satisfiability (SAT) solving and
Constraint Programming (CP)

I Books: [Baral, 2003], [Gebser et al., 2012], compact survey:
[Brewka et al., 2011]

Fall 2016
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Logic Programming – Prolog

1960s/70s: Logic as a programming language (??)

I Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL
I Knowledge for problem solving (LOGIC)
I “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

Example: Dilbert
man(dilbert).

person(X)← man(X).

query ?− person(X)
answer X = dilbert
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The key: techniques to search for proofs

I Proofs provide answers, based on SLD resolution
I Understanding the resolution mechanism is important
I It may make a difference which logically equivalent form is used

(e.g., termination).

Example: reverse lists
reverse([X|Y],Z)← append(U, [X],Z), reverse(Y,U). (1)

vs
reverse([X|Y],Z)← reverse(Y,U), append(U, [X],Z). (2)

query: ?− reverse([a|X], [b, c, d, b])

I (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?
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Negation in Logic Programs

Why negation?

I Natural linguistic concept
I Facilitates convenient, declarative descriptions (definitions)

E.g., ”Men who are not husbands are singles.”

Prolog: “not 〈X〉” means “Negation as Failure (to prove 〈X〉)”
Different from negation in classical logic!

Example: Dilbert cont’d

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← fail. % fail = ”false” in Prolog

query ?− single(X)
answer X = dilbert
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Cyclic Negation

(cont’d)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X)← man(X), not husband(X).

husband(X)← man(X), not single(X).

query ?− single(X)

answer in Prolog ????

Problem: not a single intuitive model!

Two intuitive models:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!
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LP Desiderata

Relieve the programmer from several concerns:

I the order of program rules does not matter;

I the order of subgoals in a rule does not matter;

I termination is not subject to such order.

“Pure” declarative programming

I Prolog does not satisfy these desiderata

I Satisfied by the answer set semantics of logic programs
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Answer Set Programs: Syntax

Starting point: relational signature S = (C,P,X ) of pairwise disjoint sets
I C of constants,
I P of predicate symbols p/n (arity n ≥ 0), and
I X of variables

Basic building blocks:
I terms are elements of C ∪ X
I atoms are formulas p(t1, . . . , tn), where p/n ∈ P
I literals are formulas a or not a, where a is an atom

Example
Typically, S is not stated explicitly if it is clear from the context;
variables start with upper case letter

I terms X, bob, 123
I atoms day(), written as day, firstname(bob), reachable(a,Y)

I literals firstname(bob), day, not day
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Answer Set Programs: Syntax (cont’d)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form

A1 ∨ . . . ∨ Am ← L1 . . . ,Ln, m, n ≥ 0
where all Ai are atoms and all Lj are literals.

I head(r) = {A1, . . . ,Am} is the head (conclusion)
I body(r) = {L1, . . . ,Ln} is the body (premise)

Rules r with body(r) = ∅ are facts, and with head(r) = ∅ are constraints

Example
day ∨ night.

← sunshine, raining.

sunshine← day, not raining.
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Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example
r1 : p(X)← q(X,Y), at, not r(X). safe X

r2 : p(X)← not t(Z). unsafe ×

Example: Reachability/Unreachability

r1 : reachable(X,Y)← connection(X,Y).

r2 : reachable(X,Z)← reachable(X,Y), reachable(Y,Z).

r3 : not reachable(X,Y)← location(X), location(Y), not reachable(X,Y).

I Rules r1 and r2 express reachability (recursion)
I Rule r3 expresses unreachability on top – not expressible in

first-order logic!
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Semantics
I Consider ground (i.e. variable-free) rules and programs
I This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C,P,X ),

I the Herbrand universe HU are all ground terms (i.e. C),
I the Herbrand base HB is the set of all ground atoms wrt. S,
I a (Herbrand) interpretation is any set I ⊆ HB.

Intuitively, a ∈ I means a is true in I, and false otherwise.

Example
P = { friend(X, Y)← friend(Y,X); happy(X)← friend(bob,X); friend(joy, bob)}

I HU = { joy, bob}
I HB = { friend(bob, bob), friend(bob, joy),

friend(joy, bob), friend(joy, joy), happy(bob), happy(joy)}
I I = { friend(joy, bob), friend(bob, joy), happy(joy)}
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Semantics (cont’d)
Satisfaction of formulas, programs etc α in interpretation I, denoted
I |= α, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

I a ground atom a, if a ∈ I;
I a literal not a, if I 6|= a;
I a conj. L1, . . . ,Ln of ground literals, I |= Li for i = 1, . . . , n;
I a disj. A1 ∨ . . . ∨ Am of ground atoms if I |= Ak for some 1≤ k≤m;
I a ground rule r, if I |= body(r) implies that I |= head(r);
I a ground program P, if I |= r for each rule r ∈ P.

Example (cont’d)
I = {friend(joy, bob), friend(bob, joy), happy(joy)}

I I |= happy(joy); I 6|= happy(bob)

I I |= friend(bob, joy)← friend(joy, bob)

I I |= happy(joy) ∨ happy(bob)← friend(bob, joy), not friend(joy, bob)
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Semantics (cont’d)
Example

P =
{

b. a← b. c← d.
}

I I1 = {b, a} is a model of P
I I2 = {b, a, c} is a model of P as well

why should c being true in I2 be accepted?

CWA Rationale
I Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is

not derivable, assume it is false
I Semantically, prefer minimal models: a model I of P is minimal, if no

model J ⊆ I of P exists.

Example: CWA on mutual recursion
P =

{
a← b. b← a.

}
,

I I = HB = {a, b} is a model (if P has no constraints)
I the minimal model is I = ∅
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Answer Sets

Guiding Idea

I rules must be obeyed (= model)
I model must be generated by firing rules
I incorporate CWA (minimality)

FLP-Reduct
The FLP-reduct PI of a ground program P wrt. an interpretation I is
obtained as follows: delete from P all rules r with false bodies:

PI = {r ∈ grnd(P) | I |= body(r)}.

Answer sets of a program P are then defined as follows:

Answer Set
An interpretation I is an answer set of P, if I is a minimal model of PI .
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Answer Sets (cont’d)

Example: Restaurant

program P:
r1 : restaurant(osteria).

r2 : indoor(osteria)← restaurant(osteria), not outdoor(osteria).

I I1 = {restaurant(osteria), indoor(osteria)}: answer set X

reduct PI = {r1, r2} = P

I I2 = {restaurant(osteria), outdoor(osteria)}: no answer set ×

reduct PI = {r1}
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Answer Sets (cont’d)

Example: Restaurant with Decision Making

r1 restaurant(osteria).

r2 indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

r3 eat(osteria)← indoor(osteria), raining.

r4 eat(osteria)← outdoor(osteria), not raining.

answer sets:
I I1 = {restaurant(osteria), indoor(osteria)} X

reduct PI1 = {r1, r2}
I I2 = {restaurant(osteria), outdoor(osteria), eat(osteria)} X

reduct PI2 = {r1, r2, r4}
I I3 = {restaurant(osteria), indoor(osteria), raining} ×

reduct PI3 = {r1, r2, r3}
I all other I: ×
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Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping σ : X ∪ C → C s.t. σ(c) = c for any c ∈ C

The grounding of (i) a rule r is grnd(r) = {rσ | σ is a substitution};
(ii) a program P is grnd(P) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example

I P reach(X, Y)← conn(X, Y).

reach(X, Z)← reach(X, Y), reach(Y, Z).

grnd(P) = ∅ as P has no constants (in theory, let then C = {c})
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reach(a, b)← conn(a, b).
reach(b, a)← conn(b, a).
reach(b, c)← conn(b, c).
reach(c, b)← conn(c, b).
reach(c, a)← conn(c, a).
reach(a, c)← conn(a, c).

reach(a, b)← reach(a, b), reach(a, b).
reach(b, a)← reach(b, a), reach(b, a).
reach(b, c)← reach(b, c), reach(b, c).
reach(c, b)← reach(c, b), reach(c, b).
reach(c, a)← reach(c, a), reach(c, a).
reach(a, c)← reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}
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ASP Paradigm

General idea: answer sets are solutions!

Reduce solving a problem instance I to computing answer sets of an LP

Problem 

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

I Method:
1. encode I as a (non-monotonic) logic program P, such that solutions of

I are represented by models of P
2. compute some model M of P, using an ASP solver
3. extract a solution for I from M.

variant: compute multiple/all models (for multiple/all solutions)

I Often: decompose I into problem specification and data
I Use a guess and check approach
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Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P = { p← not p. }

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).

shaves(X,Y)← barber(X),man(Y), not shaves(Y,Y).

I Adding p← q1, . . . , qm, not r1, . . . , not rn, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
q1, . . . , qm, and (ii) do not contain r1, . . . , rn.

I This is equivalent to the constraint ← q1, . . . , qm, not r1, . . . , not rn.
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Incomparability and Minimality

I Answer sets are minimal models of PI .
I What about P itself?

Proposition (Incomparability)
If I is an answer set I of a program P, then I |= P and no answer set
I′ ⊂ I of P exists (i.e., with I′ ⊆ I s.t. I′ 6= I).

Example

I P = {a← not b}, answer set I = {a}
I P = {a← not b; b← not a; }, answer sets I1 = {a}, I2 = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.
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Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)
Given some programs P,P′ and an atom a, that I |= a for every answer
set of P does not imply that I |= a for every answer set of P ∪ P′.

Example: Plain Restaurant

I restaurant program P:
restaurant(osteria).

indoor(osteria)← restaurant(osteria), not outdoor(osteria).

answer set
I = {restaurant(osteria), indoor(osteria)} |= indoor(osteria)

I P ∪ {outdoor(osteria)} has the answer set
I = {restaurant(osteria), outdoor(osteria)} 6|= indoor(osteria)

Can be exploited to declare default behaviour!
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Supportedness

Presence of atoms in answer sets must be supported by rules

Example

I rule r : a← b, not c, model I = {a, b}
I a is supported by the “firing” rule r

Proposition (Supportedness)
Any answer set I of a program P is a supported model, i.e., for each a∈ I
some rule r∈ grnd(P) exists s.t. I |= body(r) and I ∩ head(r) = {a}.

Example (cont’d)

I For P = {b; a← b, not c}, I = {a, b} is an answer set
I For P = {a← b, not c}, I = {a, b} is no answer set (b lacks support)

But: stable 6= minimal + supported!

Example
P = {a← a; a← not a}
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Computational Complexity

An answer set program P is normal, if each rule r ∈ P is normal, defined
as |head(r)| ≤ 1.

Theorem
Deciding whether a normal program P has some answer set is

I NP-complete in the ground (propositional) case;
I NEXPTIME-complete in the non-ground case.

Theorem
Deciding whether an answer set program P has some answer set is

I Σp
2-complete in the propositional case (Σp

2 = NPNP);

I NEXPTIMENP-complete in the non-ground case.

Note: the relational (i.e., function-free) non-ground case as considered
here is also called datalog case

More on complexity: [Dantsin et al., 2001]
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Extensions of ASP

Language extensions like aggregates, complex formula syntax are within
same semantic / computational framework

Need
I interoperability with other logics, e.g. Description Logics

I interfacing with programming languages, e.g. C++, Python

I access to general external sources of information, e.g. WordNet

Approaches

I embedded ASP: akin to embedded SQL
I bilateral interaction: e.g. JASP
I ASP + concrete theories: constraint ASP, ASP + ontologies
I ASP + abstract theories: clingo, HEX/ DLVHEX
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External Information Access

Examples

I import external RDF triples into the program

triple(S,P,O)← &rdf [”http://〈Nick〉.livejournal.com/data/foaf”](S,P,O).

I access external graph

reachable(X)← &reachable[conn, a](X).

I perform auxiliary / data structure computations

fullname(Z)← &concat[X,Y](Z), firstname(X), lastname(Y).
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External Information Access (cont’d)

Issues

I Formal Model of External Atoms
I predicate input
I allow arbitrary external code

⇒ “impedance mismatch”

I Semantics
I e.g. cyclic reference (web graphs!)
I non-monotonic external sources

⇒ no simple fixpoint computation

I Value Invention
I new ground terms might appear
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Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C,P,X ,G) is of the form

&g[Y1, . . . ,Yn](X1, . . . ,Xm)
where

I Y1, . . . ,Yn are terms and predicate names from C ∪ X ∪ P (input list)
I X1, . . . ,Xm are terms from C ∪ X (output list)
I &g ∈ G is an external predicate name with in(&g) = n, out(&g) = m

Examples

I &rdf [U](S,P,O): intuitively, from a given concrete “input” URL U (a
constant), retrieve (one by one) all “output” triples (S,P,O)

I &reachable[connection, a](X): intuitively, all nodes X reachable from
node a in a graph represented by atoms of form connection(u, v).
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External Atoms
Examples (cont’d)

I &concat[X,Y](Z): intuitively, concatenate two strings
I &concat[bob, dylan](bobdylan) is true
I &concat[bob, dylan](Z) is true for Z = bobdylan
I &concat[bob, Y](bobdylan) is true for Y = dylan

External atoms can be of any nature (non-logical) nature

Example
&weatherreport[dateLocationPredicate](WeatherConditions)

query a web-based weather report
I input dateLocationPredicate is a binary predicate with tuples (d, l) of

dates d and locations l (facts dateLocationPredicate(d, l))
I output WeatherConditions are (one by one) all weather conditions

that occur at some input date & location

&weatherreport[goto](W) where goto = {(1, paris), (1, london), (2, paris),
(2, london)} returns all weather conditions on dates 1/2 for London/Paris
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HEX Programs

HEX rule and program
A HEX program is a set P of (HEX) rules r of the form

A1 ∨ . . . ∨ Am ← L1 . . . ,Ln, m, n ≥ 0,
where all Ai are atoms, and all Lj are either literals or HEX-literals, i.e.
either

I an ordinary literal,
I an external atom,
I or a default-negated external atom.

That is, like ordinary ASP rules/programs but external atoms can occur in
rule bodies

Examples

I reachable(X)← &reachable[connection, a](X).

I fullname(Z)← &concat[X,Y](Z), firstname(X), lastname(Y).

I ← & weatherreport[goto](W), badweather(W).
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HEX Programs (cont’d)

Example: City Trip

Plan to visit Paris and London, under the condition the weather isn’t bad

Program Πgoto:
r1 badweather(rain). badweather(snow).

r2 goto(1, paris) ∨ goto(1, london).

r3 goto(2, paris) ∨ goto(2, london).

r4 ← & weatherreport[goto](W), badweather(W).

I state what bad weather means (r1)

I decide on what day to go to which city (r2, r3)
I exclude trips where the (external) weather report indicates bad

weather during the trip (r4)
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Semantics
Analogous to ordinary ASP:

I the Herbrand base HB for HEX program P
I the grounding of a rule r, grnd(r), and of P, grnd(P) =

⋃
r∈P grnd(r).

I interpretations are subsets I⊆HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Oracle Function
Every &g ∈ G, has an associated decidable oracle function

f&g : 2HBP × (C ∪ P)n × Cm → {T,F}, n = in(&g), m = out(&g)

that maps each (I,~y,~x), where I ⊆ HB is an interpretation, ~y = y1, . . . , yn

on C ∪ P is “input”, and ~x = x1, . . . , xm on C is “output”, to T or F.

Pragmatic assumptions:
I for any I,~y, only finitely many ~x yield f&g(I,~y,~x) = T
I output ~x is independent of the extensions of the predicates that do

not occur in the input ~y
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Oracle Functions

Example: String Concatenation
for the external predicate &concat, the associated function is

f&concat(I,X,Y,Z) =

{
T, if XY = Z;
F, otherwise

(where XY is concatenation of X and Y)

Example: City Trip (cont’d)

I weather forecast Paris: sun on day 1 and day 2
I weather forecast London: rain on day 1 and day 2

the corresponding oracle function is (wr = weatherreport)

f&wr(I, goto,W) =



T, if {goto(1, london), goto(2, london)} ⊆ I and W = rain,
T, if {goto(1, london), goto(2, paris)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, london)} ⊆ I and W ∈{sun, rain},
T, if {goto(1, paris), goto(2, paris)} ⊆ I and W = sun,
F, otherwise.
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Satisfaction and Models

Satisfaction of External Atom
An interpretation I ⊆ HB satisfies (is a model of) a ground external atom
a = &g[~y](~x), denoted I |= a, if f&g(I,~y,~x) = T.
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Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I ⊆ HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

PI = {r ∈ grnd(P) | I |= body(r)}.

AS(P) = the set of all answer sets of P

Remarks:
I For ordinary P (no external atoms), the answer sets are as usual
I For aggregates modeled as external atoms (e.g. &count[goto](N)),

the answer sets coincide with FLP-answer sets [Faber et al., 2011]
I Alternative (more restrictive) notions of answer sets exist

[Shen et al., 2014]
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Answer Sets for HEX Programs

Example: City Trip (cont’d)
Πgoto badweather(rain). badweather(snow).

goto(1, paris) ∨ goto(1, london).

goto(2, paris) ∨ goto(2, london).

← & weatherreport[goto](W), badweather(W).

I For the above weather report, Πgoto has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain)}

I For a different weather report saying it’s always sunny, 3 more
answer sets exist:

I {goto(1, paris), goto(2, london), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, paris), badweather(snow), badweather(rain)}
I {goto(1, london), goto(2, london), badweather(snow), badweather(rain)}

I Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.
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Basic Properties

The basic properties of answer sets extend to HEX-programs:

I answer sets are incomparable
I answer sets are minimal models
I answer sets are supported models
I non-monotonicity

The computational complexity depends on external atoms: deciding
answer set existence is

I Σp
2-complete for ground programs, if evaluating external atoms, i.e.

deciding whether f&g(I,~y,~x) = T holds, is feasible in polynomial time
with an NP oracle;

I Σp
2-hard already for Horn ground programs (no disjunction, no

negation) and polynomial-time external atoms.

I Thus, minimality checking of answer set candidates for
HEX-programs is a challenging problem
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
⇒ Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

←r(X), r(Y), edge(X,Y)

←g(X), g(Y), edge(X,Y)

←b(X), b(Y), edge(X,Y)
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Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.

2. To test a property Pr we
I design a program P and an answer set candidate Isat such that Isat is

the single answer set of P if the property Pr holds, and
I P has other answer sets (excluding Isat) otherwise.

Example: Non-3-Colorability of a Graph

b(X) ∨ r(X) ∨ g(X)←node(X)

non col←r(X), r(Y), edge(X,Y)

non col←g(X), g(Y), edge(X,Y)

non col←b(X), b(Y), edge(X,Y)

r(X)←non col, node(X)

g(X)←non col, node(X)

b(X)←non col, node(X)
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Basic Methodology (cont’d)

Extension with External Atoms
I The existing techniques can be combined with external atoms.

I Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v ∈ V and edge(u, v) for all (u, v) ∈ E.

r(X) ∨ g(X) ∨ b(X)←node(X)

← not &check[edge, r, g, b]()
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Methodology for Using External Atoms

Main Usages of External Atoms

I Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

I Information Outsourcing:
External sources import information while reasoning itself is done in
the logic program.

Note:
I Both types of outsourcing may be used together in a program.
I External sources may combine both use cases.
I Important: Both usages are based on the same language features!
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Computation Outsourcing

On-demand Constrains
I Constraints of form

← &forbidden[p1, . . . , pn]()
eliminate certain extensions of predicates p1, . . . , pn.

I Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

I The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

I Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].
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Computation Outsourcing (cont’d)

Accessing Procedural Computations

I Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

I Example:
AngryHEX is an AI agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

I Computations with a complexity higher than the complexity of
ordinary ASP programs.

I External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].
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Information Outsourcing

Data Sources
I RDF triplet stores:

p(X,Y)← url(U),&rdf [U](X,Y,Z)

I Geographic data
I Description logic ontologies
I Multi-context systems
I Relational databases

Note:
Some external sources may realize a combination of data and
computation outsourcing (e.g. complex queries over ontologies).
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Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.
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Applications of HEX-Programs

Some examples:
I Queries of Web resources (RDF triplet stores, social graphs, etc)
I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)
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Example: Semantic Web Application

Example: Friend-of-a-Friend
Use the FOAF (Friend-of-a-friend) RDF schema to return all pairs of
nicknames that know each other, as stored in a FOAF RDF datasource:

explore(”http://〈Nick〉.livejournal.com/data/foaf”)

triple(S,P,O)←&rdf [What](S,P,O), explore(What)

knows(Nick1,Nick2)← triple(Id1, ”http://xmlns.com/foaf/0.1/knows”, Id2),

triple(Id1, ”http://xmlns.com/foaf/0.1/nick”,Nick1), Nick1 <Nick2,

triple(Id2, ”http://xmlns.com/foaf/0.1/nick”,Nick2).

knows(A,C)← knows(A,B), knows(B,C)
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Example: Semantic Web Application (cont’d)

Example: Recursive FOAF querying with limited depth

explore(”http://〈Nick〉.livejournal.com/data/foaf”)

explore to(What, 3)← explore(What)

triple at(S,P,O,D)←&rdf [Uri](S,P,O), explore to(Uri,D), D > 1

explore to(U,D2)←D2 = D1 − 1,

triple at(Id, ”http://www.w3.org/2000/01/rdf-schema#seeAlso”,U,D1),

triple at(Id, ”http://xmlns.com/foaf/0.1/nick”,Nick,D1)

found(Nick)← triple at(S, ”http://xmlns.com/foaf/0.1/nick”,Nick,D).
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Example: Physics Simulation

Example: AngryHEX
Fundamental strategy:
Maximize the estimated damage to obstacles and pigs.

shootable(O,Type,Tr)←&shootable[O,Tr,V, Sx, Sy, Sw, Sh,B, bb](O),

birdType(B), velocity(V), objectType(O,Type),

slingshot(Sx, Sy, Sw, Sh), trajectory(Tr)

tgt(O,Tr)∨ ntgt(O,Tr)← shootable(O,Type,Tr)

← target(X, ), target(Y, ),X 6= Y.

← target( ,T1), target( ,T2), T1 6= T2

target ex← target( , )

← not target ex.

directDmg(O,P,E)← target(O,Tr), objectType(O,T), birdType(Bird),

dmgProbability(Bird,T,P),

energyLoss(Bird,T,E)
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Example: Physics Simulation

Example: AngryHEX (cont’d)

exDirectDmg(O)← directDmg(O, , )

nexDirectDmg(O)← not exDirectDmg(O), objectType(O, )

goodObject(O)← objectType(O, pig)

goodObject(O)← objectType(O, tnt)

 nexDirectDmg(O), goodObject(O) [1@4,O, nexDirectDmg]

 nexDirectDmg(O). [1@1,O, nexDirectDmg]
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The DLVHEX-System

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

I Based on GRINGO and CLASP from the Potassco suite .
I Supported platforms: Linux-based, OS X, Windows.

Pre-compiled binaries available.
I External sources are implemented as plugins using a plugin API

(available for C++ or Python).
I Support for the ASP-Core-2 standard.
I Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

I User manual available (see system website).
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Figure: Architecture of DLVHEX
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Python Programming Interface

More convenient interface
Previously only C++ support, but Python preferred by many developers:

I No overhead due to makefiles, compilation, linking, etc.
I High-level features.
I Negligible overhead compared to plugins implemented in C++.

Reasoning
Component

C++ Program-
ming Interface

C++ Plugins

Python Program-
ming Interface

Python Plugins

DLVHEX

Figure: Architecture of the Python Programming Interface
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Python Programming Interface (cont’d)

Example
Program

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}
compute the nodes reachable from a start node s in a graph.

Implementation of &edge[X](Y):

def edge ( x ) :
graph = ( ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 3 ) ) # s i m p l i f i e d implementat ion
for edge in graph : # search f o r out−edges of node x

i f edge [0 ]== x . i n tVa lue ( ) :
d lvhex . output ( ( edge [ 1 ] , ) ) # output edge t a r g e t

def r e g i s t e r ( ) :
prop = dlvhex . ExtSourceProper t ies ( ) # in form dlvhex about
prop . addFiniteOutputDomain ( 0 ) # f i n i t e n e s s o f the graph
dlvhex . addAtom ( ” edge ” , ( d lvhex .CONSTANT, ) , 1 , prop )
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From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

I By default, external sources are seen as black boxes.
I Behavior under an interpretation does not allow for drawing

conclusions about other interpretations.
I Algorithmic improvements require

meta-information about external sources.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!
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Specifying Properties

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.
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Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)
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Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : reach(X)← start(X). r3 : reach(Y)← reach(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.
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Use Case: Semantic Trip Planning in Vienna

Requirements
I Find shortest trip visiting predefined locations
I Long trip⇒ add lunch location using an ontology
I Choose restaurant depending on weather report
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DEMO
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Trip Planning

I Transport data might be:
I Extremely large
I Remote/not accessible

I Access external transport information
(information outsourcing)

I Use dedicated algorithm to compute shortest connection
(computation outsourcing)

External atom:
&route[File,Loc1,Loc2](Stp1,Stp2,Costs,Line)

⇒ Obtain shortest trip by using weak constraints
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DEMO
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Adding Lunch Location

I Adjustment of the trip based on its length
I Add on-demand constraint (no output needed)
I Boolean output depends monotonically on the input

I Specify according property

External atom:
&needRestaurant[trip,Limit]()

Introduces cyclic dependency, not strongly safe:
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DEMO
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Partial Evaluation

I &needRestaurant[trip,Limit]() usually evaluated
only after extension of trip is decided

I Truth value not fixed before

I Often truth value can be decided early during search
I Partial assignments: atoms can be true, false or unassigned
I Use both methods isTrue() and isFalse()

I Everything else is unassigned
I Use both methods output() and outputUnknown() to declare outputs

I All other outputs are implicitly false

I Requirement: assignment monotonicity

Example
Learned nogood: {¬t(0, 1), t(1, 1), t(2, 1), t(3, 1),&nR[t, 3]()}
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DL-Lite Plugin

I We use the DL-Lite Plugin for semantically enriched route planning
(inspired by [Eiter et al., 2016c])

I Interfaces to OWL ontologies using DL reasoner

I Provides external atoms for concept and role queries:
I &cDL[File,rp,rm,cp,cm,C](X)
I &rDL[File,rp,rm,cp,cm,R](X,Y)

I Bidirectional interaction by adding elements to concepts and roles,
resp. to their complements

Link:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html
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Restaurant Ontology

BeerGarden v Restaurant Location(Karlsplatz)

BeerGarden v ¬IndoorRestaurant Location(Museumsquartier)

IndoorRestaurant v Restaurant Location(Praterstern)

IndoorRestaurant v ¬BeerGarden BeerGarden(bg1)

IndoorRestaurant v ¬WurstStand closeTo(bg1,Praterstern)

Restaurant v ∃closeTo.Location IndoorRestaurant(ir1)

WurstStand v Restaurant closeTo(ir1,Museumsquartier)

WurstStand v ¬IndoorRestaurant WurstStand(ws1)

closeTo(ws1,Karlsplatz)
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Weather Data

I Goal: retrieve weather data from http://openweathermap.org/

I Importing dynamic data from remote location

I General plugin for retrieving JSON data from API
I Data represented by nested key-value pairs:
{"weather":[{"id":803,"main":"Clouds",
"description":"clouds", "icon":"04d"}], ...}

I Input type dlvhex.TUPLE for arbitrary number of constants
I Provide sequence of keys

External atom:
&getJSON[Url,Keys.TUPLE](Value)
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Summary of the Case Study

I Encoding uses four different external atoms in combination
I &route-Plugin for information and computation outsourcing

I &needRestaurant-Plugin for external check

I DL-Lite-Plugin for interfacing an external DL-reasoner

I &getJson-Plugin for accessing remote information on the web

I Complete implementation and more examples at:
https://github.com/hexhex/manual/tree/master/RW2017/
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HEX∃ Programs

I By value invention external atoms can generate witnesses
I Used to model query answering from existential rules

Example
Not possible in standard ASP:

∃X : office(Y,X)← employee(Y).

Encoding with external atom:

office(Y,X)← employee(Y),&exists[r1,Y](X).
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HEX Programs with Function Symbols

I External atoms can simulate composition and decomposition of
function terms

I Allows external data type checking and argument generation

Example
Not possible in standard ASP:

q(f (X))← p(X).

r(Y)← q(f (Y)).

Encoding with external atom:

q(A)← p(X),&comp[f ,X](A).

r(Y)← q(B),&decomp[B](f ,Y).
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ACTHEX

I Extension of HEX for execution of declaratively scheduled actions
I Action atoms in rule heads operate on an external environment
I Environment can influence truth values of external atoms

I Enables stateful behaviour

Example

#robot[clean, kitchen]{c, 2} ← night

#robot[clean, bedroom]{c, 2} ← day

#robot[goto, charger]{b, 1} ← &sensor[bat](low)

night ∨ day←

Answer Set Programming with External Source Access Reasoning Web Summer School 2017



90/102

Constraint HEX Programs
I Grounding issues when encoding constraints in ASP
I Contain ordinary, external and constraint atoms

I Comparisons of arithmetic expressions

I Allow to combine diverse background theories

Example

food(P)← &sql[“Select price from Food”](P)

drink(P)← &sql[“Select price from Drink”](P)

inMenu(F,D) ∨ outMenu(F,D)← food(F), drink(D)

F + D < P← inMenu(F,D),max price(P)

Encoding of constraint with external atom:

con(F,+,D, <,P) ∨ con(F,+,D,≥,P)← inMenu(F,D),max price(P)

← not &check[con]()
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Nested HEX [Eiter et al., 2013]

I External atoms for evaluating subprograms and inspecting their
answer sets:
&callhex, &callhexfile, &answersets, &predicates, &arguments

I A new instance of DLVHEX is called and results stored in an
answer cache assigning unique handles

Example

p1(x, y)←
p2(a)←
p2(b)←

handle(PH)← &callhexfile["sub.hex", p1, p2](PH)

ash(PH,AH)← &callhex["a v b :-"](PH),&answersets[PH](AH)
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Related Work

I Many approaches, different degrees of integration
I DLVDB offers access to relational databases via ODBC interface
I ONTODLV for information retrieval from OWL ontologies, extends

ASP with classes, inheritance, relations and axioms
I DLV-EX programs early generic integration approach

I Introduction of new terms by value invention
I Only terms as inputs to external sources
I Nonmonotonic aggregates not expressible

I CLINGO supports custom functions implemented in Lua or Python
I Import extensions of user-defined predicates during grounding
I Customisable built-in atoms
I No cyclic dependencies
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Related Work (cont’d)

I CLINGO 5 provides generic interfaces for theory solving in ASP
I Semantics differs from HEX unfounded support of theory atoms

allowed⇒ consider p← &id[p]()
I Theory atoms interrelated via external theory (orthogonal to HEX)
I No value invention based on answer set
I Well-suited for system developers, rich infrastructure

I Extensions of ASP with specific external sources:
I Constraint ASP solvers, e.g. CLINGCON, lc2casp, ezcsp, EZSMT
I Extensions of ASP with SMT, e.g. dingo (difference logic), ASPMT
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Summary

I HEX is a powerful formalism, wide range of applications
I Extends ASP with external sources via API-style interface
I Bi-directional interaction and value invention possible
I Methodology from ASP generalises to HEX
I Implemented in the DLVHEX system

I Plugins in Python and C++
I Exploiting external source properties

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Further Resources

I All executable examples from this course:
https://github.com/hexhex/manual/tree/master/RW2017/

I Slides of tutorial “ASP for the Semantic Web” and many executable
ASP/HEX-examples:
http://asptut.gibbi.com/

I An online demo of the DLVHEX system:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

demo.php

I Pre-built binaries of DLVHEX for Linux, OS X and Windows:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

downloadb.html

I The source code of DLVHEX and corresponding plugins, best place
for bug reports:
https://github.com/hexhex/

I Python-based HEX implementation for a fragment of the HEX
language and a subset of features
https://github.com/hexhex/hexlite
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