
L O G C O M P
R E S E A R C H

R E P O R T

Institut für Logic and Computation

FB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR LOGIC AND COMPUTATION

FACHBEREICH WISSENSBASIERTE SYSTEME

EXPLOITING PARTIAL ASSIGNMENTS FOR

EFFICIENT EVALUATION OF ANSWER SET

PROGRAMS WITH EXTERNAL SOURCE

ACCESS

THOMAS EITER TOBIAS KAMINSKI

CHRISTOPH REDL ANTONIUS WEINZIERL

LOGCOMP RESEARCH REPORT 18-02

JANUARY 2018

LOGCOMP RESEARCH REPORT

LOGCOMP RESEARCH REPORT 18-02, JANUARY 2018

EXPLOITING PARTIAL ASSIGNMENTS FOR EFFICIENT EVALUATION

OF ANSWER SET PROGRAMS WITH EXTERNAL SOURCE ACCESS

Thomas Eiter1 Tobias Kaminski1 Christoph Redl1 Antonius Weinzierl2

Abstract. Answer Set Programming (ASP) is a well-known declarative problem solving approach
based on nonmonotonic logic programs, which has been successfully applied to a wide range of ap-
plications in artificial intelligence and beyond. To address the needs of modern applications, HEX-
programs were introduced as an extension of ASP with external atoms for accessing information
outside programs via an API style bi-directional interface mechanism. To evaluate such programs,
conflict-driving learning algorithms for SAT and ASP solving have been extended in order to capture
the semantics of external atoms. However, a drawback of the state-of-the-art approach is that exter-
nal atoms are only evaluated under complete assignments (i.e., input to the external source) while in
practice, their values can often already be determined based on partial assignments (i.e., from incom-
plete input to the external source). This prevents early backtracking in case of conflicts, and hinders
more efficient evaluation of HEX-programs. We thus extend the notion of external atoms to allow
for three-valued evaluation under partial assignments, while the two-valued semantics of the overall
HEX-formalism remains unchanged. This paves the way for three enhancements: first, to evaluate
external sources at any point during model search, which can trigger learning knowledge about the
source behavior and/or early backtracking in the spirit of theory propagation in SAT modulo theories
(SMT). Second, to optimize the knowledge learned in terms of so called nogoods, which roughly
speaking are impossible input-output configurations. Shrinking nogoods to their relevant input part
leads to more effective search space pruning. And third, to make a necessary minimality check of
candidate answer sets more efficient by exploiting early external evaluation calls. As this check usu-
ally accounts for a large share of the total runtime, optimization is here particularly important. We
further present an experimental evaluation of an implementation of a novel HEX-algorithm that in-
corporates these enhancements using a benchmark suite. Our results demonstrate a clear efficiency
gain over the state-of-the-art HEX-solver for the benchmarks, and provide insights regarding the
most effective combinations of solver configurations.

1Institut für Logic and Computation, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,kaminski,redl}@kr.tuwien.ac.at.

2Department of Computer Science, Aalto University, FI-00076 Aalto; email: antonius.weinzierl@aalto.fi

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF) projects
P27730 and W1255-N23.

Some results in this paper have been presented in preliminary form at IJCAI 2016 [Eiter et al., 2016c].

Copyright c© 2018 by the authors

2 LOGCOMP RR 18-02

Contents

1 Introduction 3

2 Preliminaries 6

3 Extension to Partial Assignments 9

4 Nogood Learning with Partial Assignments 12

5 Nogood Minimization 14

6 Interleaving External Evaluation and Unfounded Set Search 18

7 Implementation and Evaluation 23
7.1 Experimental Setup . 23
7.2 Investigating the Effect of Partial Evaluation in the Main Search 25
7.3 Investigating the Effect of Partial Evaluation in the Unfounded Set Search 31

8 Discussion and Conclusion 36
8.1 Related Work . 36
8.2 Summary and Outlook . 38

A Proofs 44

LOGCOMP RR 18-02 3

1 Introduction

Answer Set Programming (ASP) is a well-known declarative programming approach based on the stable-
model semantics [Gelfond and Lifschitz, 1991]. Thanks to efficient and expressive systems like CLASP
[Gebser et al., 2011]1, SMODELS [Simons et al., 2002]2, DLV [Leone et al., 2006]3, and WASP [Alviano et
al., 2015a] 4, it has been successfully applied to a wide range of applications in artificial intelligence and
beyond [Brewka et al., 2011; Erdem et al., 2016]. In a nutshell, a problem at hand is represented by a set
of rules (an ASP-program) such that its models, called answer sets, encode the solutions to the problem; an
answer set solver is used to compute models, from which the solutions are then extracted. The approach is a
relative of SAT solving, but in contrast starts from a relational language where variables range over a (finite)
set of constants, which allows for more compact formalization than in propositional logic. Furthermore, the
support of negation as failure makes ASP inherently nonmonotonic, which allows one for instance to easily
express transitive closure. Finally, a number of language extensions that include, among others, optimization
constructs, aggregates, disjunctions, and choice rules, cf. Gebser and Schaub [2016], have turned ASP into
a very expressive and powerful problem solving tool.

HEX-programs [Eiter et al., 2017] are an extension of ASP-programs aimed at the integration of he-
terogeneous external information sources, such as XML/RDF data bases, SAT solvers, route planners etc.
So-called external atoms can be used in rules, and provide a bidirectional interface between the logic pro-
gram and the external sources in an API style manner. To this end, an external atom passes information from
the program, given by predicates and constants, to an external source, which returns the output values for
the respective input; the atom states an input-output relationship, which evaluates to either true or false wrt.
each potential output value. For example, an external atom &synonym[car](X) might find synonyms X of
car , e.g. automobile, bus , motocar etc., by accessing a thesaurus such as the one of Merriam-Webster5;
that is, e.g. &synonym[car](automobile) evaluates to true. As seen from this example, external sources
can be of non-logical nature, and without particular assumption about how the external source is evaluated.
This is facilitated by an abstract modeling of external atoms that can exhibit nonmonotonic behavior, be
used in recursive and cyclic definitions, and introduce new constants which do not appear in the original
program (known as value invention). This rich expressiveness empowers HEX-programs to subsume many
other ASP extensions such as programs with (nonmonotonic) aggregates [Alviano et al., 2015b], constraint
ASP [Ostrowski and Schaub, 2012], and DL-programs [Eiter et al., 2004], to mention a few; furthermore,
the versatility and genericity of external atoms has been exploited for different purposes and application
domains, cf. Erdem et al. [2016; 2017].

Efficient evaluation of HEX-programs is a challenging issue, and several methods and techniques have
been developed to this end. Current evaluation algorithms for (ground) HEX build on existing ASP solvers
(in particular, on CLASP). Roughly speaking, they first compute a complete truth-assignment by guessing
the truth values of all external atoms and evaluating an accordingly rewritten program using a solver for
ordinary ASP-programs. Only when the assignment is complete, the correctness of the guess can be verified
by calls to the external sources; if this succeeds, an additional check is required to establish foundedness
(i.e., minimality) of the candidate answer set. This basic approach has been enhanced with conflict-driven
learning techniques, which learn parts of the external source semantics while the search space is traversed

1http://potassco.sourceforge.net
2http://www.tcs.hut.fi/Software/smodels
3http://www.dlvsystem.com
4https://github.com/alviano/wasp
5https://www.merriam-webster.com/thesaurus/

4 LOGCOMP RR 18-02

in order to prevent that wrong guesses reoccur [Eiter et al., 2012]. Moreover, advanced techniques for
minimality checking have been developed to boost efficiency [Eiter et al., 2014a].

Despite these improvements, the evaluation of external atoms over complete assignments is an obstacle
to good performance in general. This can be mitigated by launching evaluation when the input to an external
atom is complete, rather than the whole assignment to all predicates. However, even then this late evaluation
does not yield much information to prune the search space and to guide the search algorithm effectively.
Intuitively, evaluating external sources under yet partial assignments (i.e., assignments in which only some
input atoms are set to true or false, while others remain unassigned) may in some cases allow to decide the
eventual truth value of an external atom, regardless of how the assignment will be completed. For exam-
ple, suppose an external atom &planar [node, edge]() interfaces an external source for checking whether
a graph whose nodes and edges are captured by the unary predicate node and the binary predicate edge ,
respectively, is a planar graph. If a rule edge(X,Y)∨not edge(X)← connected(X,Y) guesses the edges
of a graph from a pool of connections, the external checker might detect non-planarity even if the guess is
not yet complete (i.e., some edges are missing). Early external evaluation has the potential for significant
performance gains, as wrong guesses may be detected early on or avoided entirely. In this way, the external
sources can guide the answer set search proactively.

This idea is in the spirit of theory propagation in SAT modulo theories (SMT) [Barrett et al., 2009].
However, adopting evaluations under partial assignments for HEX-programs is non-trivial, because – unlike
in SMT, which considers only fixed theories – external sources are largely black boxes, without much
information about their structure (as in case of privacy and data hiding, or of a wrapped web service) let alone
a propagation machinery available. Moreover, their heterogeneity and (possibly) nonmonotonic nature,
e.g. if the external source access is to ASP engines or argumentation solvers, adds further conceptual and
computational complexity.

In this paper, we address the issue of partial evaluation by extending external source access via external
atoms from a Boolean semantics, which is defined only under complete assignments, to a three-valued eva-
luation semantics that is defined under partial assignments. This extension is furnished with novel evaluation
techniques to achieve the main goal of efficiency improvements. In particular, learning about the behavior
of external sources during evaluation under partial assignments allows us to acquire additional knowledge
that aids in guiding the search, similar as theory propagation in SMT; we will encode such knowledge as
nogoods [Gebser et al., 2012], i.e., sets of literals that must not be true at the same time. Moreover, the
possibility of such early evaluation further paves the way for identifying the part of the input that is rele-
vant for the final value of an external atom. This allows for minimizing the learned nogoods in order to
obtain a larger cover of the external source semantics. Importantly, the semantics of the overall formalism
remains unchanged, i.e., the three-valued semantics of external sources is only exploited for performance
improvements during the search, while the final answer sets are still two-valued.

Contributions. The main contributions of our work are briefly summarized as follows.

• We extend the notion of external atom in two dimensions: first, that it can be evaluated under partial as-
signments, which set each atom to either true, false, or unassigned. Second, that the output of the evaluation
can be either true, false or unknown; this is because the truth value of the external atom might be definitely
known (true or false), or it is yet unknown under the current partial input. However, the overall semantics
of HEX-programs remains unchanged, i.e., answer sets still remain two-valued. Thanks to backwards com-
patibility, we further show how existing (two-valued) external atoms can be seamlessly integrated in our
extended framework for three-valued evaluation.

• Based on this extension, we then present a novel evaluation algorithm which exploits three-valued

LOGCOMP RR 18-02 5

evaluation in external source access for early search space pruning in answer set search. At the heart of this
algorithm is learning additional knowledge about external sources, similar as done by theory propagation
in SMT solving. Owing to the generic nature of external atoms, this knowledge is acquired by abstractly
defined learning functions and represented by nogoods. The latter consist of sets of literals over the input
predicates of an external atom plus a designated literal that excludes an evaluation result for matching inputs.

• As well-known, learning can be much more effective if structural properties of the underlying domain
are known, cf. Valiant [1984]. We thus present also concrete learning functions for external sources with
certain properties, among them monotonicity (relative to the input assignment). Along with that, we devote
particular attention to minimizing the nogoods learned, given the interface for evaluation under partial assig-
nments; as already mentioned, small (non-redundant) nogoods are instrumental for pruning the search space
of candidate answer sets effectively. However, each minimization step causes computational costs, and ex-
ternal evaluation comes at a price. We mitigate the minimization cost using several techniques: first, besides
sequential (literal by literal) minimization, we exploit the divide-and-conquer strategy that was presented by
Junker [2004] for conflict set minimization in constraint programming. Second, we develop simultaneous
minimization of multiple nogoods: an external source may return for a given input multiple output values
(e.g., &gas station[route](X) may return for a tour given in route all gas stations close by), and the struc-
tural relationships of according nogoods can be exploited. Notably, simultaneous minimization has not been
considered in SMT. Third, we consider heuristics towards a good trade-off between the efforts and benefits
of evaluation calls and minimization steps.

• In further pushing the computation effort down, we also exploit the possibility for evaluation under
partial assignments for minimality checking of candidate answer sets. This is particularly important as the
minimality check accounts for a major share of the overall runtime, and usually involves significantly more
external evaluation calls than the search for candidates itself. In particular, we discuss how three-valued
external evaluation can be interleaved with the search for an unfounded set, which is a semantics-based
characterization of minimality for answer sets [Leone et al., 1997] that has been lifted to HEX-programs
[Eiter et al., 2014a]. Again learning from external source calls is used for guiding the search; notably, the
nogoods learned can be pooled with those in the main search, and thus speed up the latter.

• We present a prototype implementation of our approach in the DLVHEX system, based on the grounder
GRINGO and the solver CLASP as backends. Furthermore, we perform an experimental evaluation of the new
techniques on a rich benchmark suite that comprises problems of different characteristics. It appears that
each of them can yield significant performance gains, yet the picture of their combination is (as expected)
more complex and does not lend for a canonical way of how to apply them; in particular, heuristics may
lead to diverging (though explainable) behavior. In any case, our experimental results show a speedup of up
to two orders of magnitude in performance (in theory, even exponential gains are possible).

Thus in conclusion, our results significantly advance the evaluation of ASP-programs with external
source access, as formally available in HEX-programs, drawing from and extending similar ideas in SMT
solving. In turn, the idea of simultaneous minimization might be of interest for SMT and related approaches
as well. Our approach is further related to techniques that are used in constraint ASP solvers to minimize
learned knowledge, such as those implemented in the CLINGCON system [Ostrowski and Schaub, 2012].
However, these techniques usually rely on a tailored integration of theory solvers crafted by experts, while
the DLVHEX system branches out for a broad range of heterogeneous source access and users, where the
latter may have little or no prior knowledge on solver construction. The interface-based HEX-approach
makes it easier for them to harness performance gains by the new learning techniques. In fact, as we show
nogood minimization and theory-specific learning are closely related, and thus user-crafted optimizations

6 LOGCOMP RR 18-02

in learning, in particular finding small nogoods, can be shifted to nogood minimization by the system for
three-valued external evaluation under partial assignments. Full backward compatibility with existing two-
valued source descriptions makes exploiting the new features an option but not a requirement for the use of
DLVHEX on legacy and new applications.

Organisation. The rest of this article is structured as follows. After necessary preliminaries in Section 2,
we proceed to present in Section 3 the extension of external evaluations under partial assignments, and
an algorithm that exploits this in answer set search. The subsequent Section 4 considers nogood learning
functions, while Section 5 is devoted to nogood minimization and its relationship to external learning. In
Section 6, the usage of evaluation under partial assignments for minimality checking is explored. Section 7
contains a description of our implementation and the experimental evaluation. The final Section 8 considers
related work and concludes the article with a discussion of further issues and future work.

A preliminary version of this work was presented at IJCAI 2016 [Eiter et al., 2016c]. The additions in
this paper comprise the extension of the techniques to the unfounded set check (Section 6), the introduction
of an additional nogood minimization algorithm, a more exhaustive discussion of the theory, additional
experiments, and formal proofs of the results.

2 Preliminaries

We follow Drescher et al. [2008] for basic concepts. A (signed) literal is a positive or a negated ground
atom Ta or Fa, where a is of form p(c1, . . . , c`) with predicate symbol p and constant symbols c1, . . . , c`
from a set C of constant symbols, abbreviated as p(c); we write c ∈ c if c = ci for some 1 ≤ i ≤ `. For
σ ∈ {T,F} let σ = T if σ = F and σ = F if σ = T, and for a literal L = σa let L = σa. A complete
assignment over the (finite) set A of atoms is a set A of literals s.t. for all a ∈ A, Ta ∈ A iff Fa /∈ A; here
Ta ∈ A expresses that a is true and Fa ∈ A that a is false.6

A nogood is a set {L1, . . . , Ln} of literals Li, 1 ≤ i ≤ n of type Ta or Fa. A complete assignment A
is a solution to a nogood δ resp. a set of nogoods ∆, if δ 6⊆ A resp. δ 6⊆ A for all δ ∈ ∆.

HEX-Programs. We briefly recall HEX-programs, which generalize (disjunctive) logic programs under
the answer set semantics [Gelfond and Lifschitz, 1991]; for more details and background, see Eiter et al.
[2005b, 2014a].

We restrict our theoretical investigation to ground programs as safety conditions allow for applying a ad-
vanced grounding algorithms to compute finite groundings, cf. Eiter et al. [2016a]. However, our examples
will also use variables as shortcuts for all possible values.
Syntax. HEX-programs extend ordinary ASP-programs by external atoms, which enable a bidirectional
interaction between a program and external sources of computation. A ground external atom is of the form
&g [p](c), where p = p1, . . . , pk is a list of input parameters (predicate names or object constants), called
input list, and c = c1, . . . , cl are constant output terms.

Definition 1. A ground HEX-program Π consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn., (1)
6Here, complete refers to the fact that the complete assignment defines for each atom a ∈ A whether it is true or false. We

explicitly say complete in this section in order to distinguish it from the more general concept of partial assignments we introduce
later.

LOGCOMP RR 18-02 7

where each ai is a ground atom and each bj is either an ordinary ground atom or a ground external atom.

The head of a rule r is H(r) = {a1, . . . , ak}, its body is B(r) = {b1, . . . , bm, not bm+1, . . . ,not bn},
and its positive resp. negative body is B+(r) = {b1, . . . , bm} resp. B−(r) = {bm+1, . . . , bn}. We let
B+
o (r) resp. B−o (r) be the set of ordinary atoms in B+(r) resp. B−(r). For a program Π we let X(P) =⋃
r∈P X(r) for X ∈ {H,B,B+, B−}.

Example 1. Consider the HEX-program Π that consists of the following facts and rules:

node(a). node(b).

edge(X,Y) ∨ n edge(X,Y)← node(X),node(Y), X 6= Y.

← &geq [edge, 2]().

Informally, the rule on the second line guesses edges (arcs) of a loop-free directed graph whose vertices
are given as facts on the first line. The constraint on the third line uses an external atom &geq [edge, 2]() to
check whether the number of edges is at most one, by eliminating the guess if at least two edges exist.

In the following, we call a program ordinary if it does not contain external atoms, i.e., if it is a standard
ASP-program.

Semantics. First, we discuss the semantics of ground HEX-programs Π. In the following, assignments are
over the set A(Π) of ordinary atoms that occur in the program Π at hand.

The semantics of a ground external atom &g [p](c) wrt. a complete assignment A is given by the value
of a 1+k+l-ary decidable two-valued (Boolean) oracle function

f&g : A×Pk×Cl → {T,F}

that is defined for all possible values of A, p and c, where k and l are the lengths of p and c, respectively,
and A must be complete over the ordinary atoms A(Π) in the program at hand. Thus, &g [p](c) is true
relative to A, denoted A |= &g [p](c), if f&g(A,p, c) = T and false, denoted A 6|= &g [p](c), otherwise.
We make the restriction that for a fixed complete assignment A and input p, we have that f&g(A,p, c) = T
only for finitely many different vectors c. While in general the value of an external atom f&g(A,p, c) may
depend on any literal in A, we make in the following the restriction that its value depends only on literals
over predicates that appear in p; formally: f&g(A,p, c) = f&g(A

′,p, c) for all complete assignments A
and A′ that assign the same truth values to all atoms of the form p(c′) where p ∈ p.

Satisfaction of ordinary rules and ASP-programs [Gelfond and Lifschitz, 1991] is then extended to HEX-
rules and -programs as follows. A complete assignment A satisfies an atom a, denoted A |= a, if Ta ∈ A,
and it does not satisfy it, denoted A 6|= a, otherwise. It satisfies a default-negated atom not a, denoted
A |= not a, if A 6|= a, and it does not satisfy it, denoted A 6|= not a, otherwise. A rule r is satisfied under
complete assignment A, denoted A |= r, if A |= a for some a ∈ H(r) or A 6|= a for some a ∈ B(r). A
HEX-program Π is satisfied under assignment A, denoted A |= Π, if A |= r for all r ∈ Π.

The answer sets of a HEX-program Π are then defined as follows. Let the FLP-reduct [Faber et al., 2011]
of Π wrt. a complete assignment A be the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose
body is satisfied by A, and let for assignments A1, A2 denote A1 ≤ A2 that {Ta ∈ A1} ⊆ {Ta ∈ A2}.
Then:

Definition 2. A complete assignment A is an answer set of a HEX-program Π, if A is a ≤-minimal model
of fΠA.

8 LOGCOMP RR 18-02

For a given ground HEX-program Π we let AS(Π) denote the set of all answer sets of Π.
For ordinary ASP-programs (i.e., HEX-programs without external atoms), the above definition of answer

sets based on the FLP-reduct fΠA is equivalent to the original definition of answer sets by Gelfond and
Lifschitz [1991] based on the GL-reduct ΠA = {H(r)← B+(r) | r ∈ Π,A 6|= b for all b ∈ B−(r)}.

We illustrate the notion of answer set on some simple examples.

Example 2 (cont’d). The external atom in Example 1 has an associated oracle function f&geq(A, p, n)
defined as follows:

f&geq(A, p, n) =

{
T if |Tp(x, y) ∈ A}| ≥ n,
F otherwise.

Then, the assignment A1 = {Tnode(a),Tnode(b),Tedge(a, a),Fedge(a, b),Fedge(b, a),Fedge(b, b)}
is an answer set of Π. On the other hand, the assignment A2 = {Tnode(a),Tnode(b),Tedge(a, a),
Tedge(a, b), Fedge(b, a), Fedge(b, b)} is not an answer set of Π. As easily seen, Π has three answer sets
that correspond to the loop-free directed graphs on a,b with less than two edges.

Example 3. Consider as another example the program Π = {p ← &id [p]().}, where &id [p]() is true iff p
is true. Then Π has the answer set A1 = {Fp}; indeed A1 is a ≤-minimal model of the reduct fΠA1 = ∅.
We remark that using the traditional Gelfond-Lifschitz reduct, which had been devised for ordinary ASP-
programs by Gelfond and Lifschitz [1991], adapted to HEX-programs instead of the FLP-reduct would admit
another answer set A2 = {Tp}; constructing the latter would however involve cyclic justification, which is
intuitively not acceptable.

Evaluation. For evaluation, HEX-programs Π can be transformed to ordinary ASP-programs as fol-
lows. Each external atom &g [p](c) in Π is replaced by an ordinary replacement atom e&g[p](c) and a
rule e&g[p](c) ∨ ne&g[p](c)← . is added. The answer sets of the resulting guessing program Π̂ are compu-
ted by an ASP solver. The assignment encoded by such an answer set may not satisfy Π, as f&g may yield
for &g [p](c) a value that is different from the guess for e&g[p](c). Thus, the answer set is merely a model
candidate; if a check against the external sources finds no discrepancy, it is a compatible set. Formally:

Definition 3. A compatible set of a program Π is an answer set Â of the guessing program Π̂ such that
f&g(Â,p, c) = T iff Te&g[p](c) ∈ Â for all external atoms &g [p](c) in Π.

Each answer set of Π is the projection A of a compatible set Â to the atoms A(Π) in Π, but not vice
versa. To discard the non-answer sets, the evaluation algorithm calls an FLP check which uses unfounded
sets to check minimality wrt. fΠA [Eiter et al., 2014a].

Example 4 (cont’d). For the program Π in Example 1, the guessing program Π̂ is as follows:

node(a). node(b).

edge(X,Y) ∨ n edge(X,Y)← node(X),node(Y), X 6= Y.

← e&geq[edge,2]().

e&geq[edge,2]() ∨ ne&geq[edge,2]()← .

The answer sets of Π̂ comprise the sets Â1 = A1 ∪ {Fe&geq[edge,2]()} where A1 = {Tnode(a),Tnode(b),

Tedge(a, a), Fedge(a, b), Fedge(b, a),Fedge(b, b)}, and Â2 = A2 ∪ {Fe&geq[edge,2]()} where A2 =

LOGCOMP RR 18-02 9

{Tnode(a),Tnode(b),Tedge(a, a),Tedge(a, b),Fedge(b, a),Fedge(b, b)}. While Â1 is a compatible set
of Π̂, Â2 is not. Thus, the latter cannot give rise to some answer set of Π. Regarding Â1, it is easy to see that
A1 is a minimal model of the FLP-reduct fΠA1 = {node(a).; node(b).} ∪ {edge(x, y)∨ n edge(x, y)←
node(x),node(y), x 6= y. | x, y ∈ {a, b}}. Hence, A1 is an answer set of Π.

Example 5 (cont’d). Reconsider Π = { p ← &id [p](). } from Example 3. Then the guessing program
Π̂ = { p ← e&id [p]().; e&id [p] ∨ ne&id [p] ← . } has the answer sets Â1 = {Fp,Fe&id [p]} and Â2 =

{Tp,Te&id [p]}; as easily seen, both are compatible sets of Π̂. Here the projection A1 is a≤-minimal model
of fΠA1 = ∅, and thus A1 is an answer set of Π̂; on the other hand, A2 not a minimal model of fΠA2 = Π,
and thus A2 is not an answer set of Π̂.

3 Extension to Partial Assignments

In this section, we start by extending complete assignments and oracle functions to partial assignments,
which provide a means for explicitly representing that some atom is yet unassigned. To this end, we intro-
duce signed literals Ua to represent that an atom a is yet unassigned in an assignment. Also oracle functions
may be extended to deal with unassigned input atoms and in turn may also evaluate to U to represent that the
value of the corresponding external atom is yet unknown under the given input. This allows us, in the next
step, to enhance the existing evaluation algorithm in such a way that external sources are already evaluated
early during search, which potentially allows for earlier backtracking. We note that the extended concepts
are only used by the algorithm during solving, while the semantics of the formalism remains unchanged.
That is, answer sets define the truth values of all atoms, and are thus still two-valued.

We start with a formal definition of the required concepts:

Definition 4. A partial assignment over a set A of atoms is a set A of signed literals of the form Ta, Fa
and Ua such that for every a ∈ A it holds that |A ∩ {Ta,Fa,Ua}| = 1.

Then, a complete assignment as defined in Section 2 corresponds to the special case of partial assignment
which contains no signed literal Ua. Since the rest of the paper will use the more general concept of partial
assignment only (with complete assignments as special case thereof), we will drop ‘partial’ in the following
and say only assignment.

For partial assignments A,A′ we call A′ an extension of A, denoted A′ � A, if {Ta ∈ A} ∪ {Fa ∈
A} ⊆ A′ (i.e., some unassigned atoms in A are flipped to true resp. false).

Oracle functions are then extended as follows in order to define the semantics of an external atom
&g [p](c) wrt. partial assignments.

Definition 5. A three-valued oracle function f&g for a ground external atom &g [p](c) with k input and l
output parameters is a 1+k+l-ary function

f&g : A×Pk×Cl → {T,F,U}

whereA is the set of all possible assignments A, P the set of all predicates p and C is the set of all constants
c, such that f&g(A,p, c) 6= U whenever A is a complete assignment.

Thus, &g [p](c) is true, false or unassigned relative to A, if the value of f&g(A,p, c) is T, F or U,
respectively. As in the case of two-valued oracle functions, we assume that f&g(A,p, c) = f&g(A

′,p, c)

10 LOGCOMP RR 18-02

for all partial assignments A and A′ that assign the same truth values to all atoms of the form p(c′) where
p ∈ p.

We require that once the output of f&g is assigned to true or false for some A, the value stays the same
for all extensions.

Definition 6. A three-valued oracle function f&g is assignment-monotonic if f&g(A,p, c) = X , X ∈
{T,F}, implies f&g(A

′,p, c) = X for all assignments A′ � A.

Assignment-monotonicity guarantees that no compatible set is lost when querying external sources on
partial assignments.

Example 6. Reconsider the program Π in Examples 1 and 4 and recall that the (two-valued) oracle function
f&geq(A, edge, 2) for a complete assignment A evaluates to true if A contains at least two distinct literals
Tedge(x, y), and to false otherwise.

We can extend the oracle to partial assignments A′ by defining an assignment-monotonic three-valued
oracle function f ′&geq(A′, p, n) as follows:

f ′&geq(A′, p, n) =


T if |{Tp(x, y) ∈ A′}| ≥ n,
U if |{Tp(x, y) ∈ A′}| < n and
|{p(x, y) | Tp(x, y) ∈ A′ or Up(x, y) ∈ A′}| ≥ n,

F otherwise.

such that &geq [edge, 2]() can also be evaluated under partial assignments, where f ′&geq(A′, edge, 2) yields
true if |{edge(x, y)|Tedge(x, y) ∈ A′}| ≥ 2, unassigned if |{edge(x, y)|Tedge(x, y) ∈ A′}| < 2 and
|{edge(x, y) | Tedge(x, y) ∈ A′ or Uedge(x, y) ∈ A′}| ≥ 2, and false otherwise.

Note that the definition of answer sets carries immediately over to programs with external atoms that
use three-valued oracle functions. This is because answer sets are complete assignments and thus, the oracle
function call for an external atom &g [p](c) evaluates to either T or F. It is therefore not necessary to extend
the definitions of satisfaction of ordinary atoms, rules, and programs, and the definition of answer sets, to
partial assignments.

A two-valued oracle function, however, cannot handle partial assignments and is thus not a special case
of a three-valued oracle function that can be passed to an algorithm expecting the latter. However, we can
always obtain a three-valued from a two-valued oracle function such that answer sets remain invariant.

Proposition 1. For every HEX-program Π and external predicate &g defined by a two-valued oracle func-
tion, one can redefine &g by an assignment-monotonic three-valued oracle function without changing the
answer sets of Π.

Intuitively, we construct a three-valued oracle function which coincides with the two-valued one for
complete assignments, and returns U otherwise. Hence, Proposition 1 allows us to “wrap” two-valued
oracle functions for use by our algorithms below; in the implementation this is the basis for backwards
compatibility with existing external sources.

We exploit partial assignments by extending previous evaluation algorithms. In the spirit of theory
propagation in SMT solvers [Barrett et al., 2009], we use external theory learning (ETL). It is related to
external behavior learning (EBL), which encodes observed output of external sources as nogoods [Eiter

LOGCOMP RR 18-02 11

Algorithm 1: HEX-CDNL
Input: A HEX-program Π
Output: An answer set of Π if one exists, and ⊥ otherwise

Let Π̂ be the guessing program of Π

Â← {Ua | a ∈ A} // all atoms unassigned
∇ ← ∅ // set of dynamic nogoods
dl ← 0 // decision level
while true do

(a) (Â,∇)← Propagation(Π̂,∇, Â)

(b) if some nogood δ violated by Â then
if dl = 0 then return ⊥
analyze conflict, add learned nogood to ∇, set dl to backjump level

(c) else if Â is complete then
A← Â ∩

{
Ta,Fa | a ∈ A(Π̂)

}
(d) if there is an unfounded set U of Π̂ wrt. Â s.t. U ∩ {Ta ∈ Â} 6= ∅ then

construct violated nogood for U and add it to ∇
analyze conflict, add learned nogood to ∇, set dl to backjump level

else if Â is not compatible for Π̂ or A is not a minimal model of fΠA then
∇ ← ∇∪ {Â}

else
return A

(e) else if heuristics evaluates &g [y] and Λ(&g [y], Â) 6⊆ ∇ then
∇ ← ∇∪ Λ(&g [y], Â)

(f) else
Guess σa ∈ {Ta,Fa} for some atom a with Ua ∈ Â
dl ← dl + 1

Â← (Â \ {Ua}) ∪ {σa}

et al., 2012], but our extension works over partial assignments such that external sources may drive early
propagation of truth values implied by the current partial assignment.

As for EBL, we can associate with each external source a learning-function Λ that yields a set of nogoods
Λ(&g [p],A) learned from the evaluation of &g [p] under an assignment A. Learned nogoods have to be
correct, i.e., they must not eliminate compatible sets. Formally, a nogood δ is correct wrt. a program Π, if
all compatible sets of Π are solutions to δ.

We extend learning functions for partial assignments as follows. Let E(Π) contain all expressions &g [p]
(called external predicate instances) that occur in Π, and let S(Π̂) = {Ta,Fa,Ua | a ∈ A(Π̂)} denote the
set of all signed literals on atoms that occur in A(Π̂).

Definition 7. A (three-valued) learning function for a HEX-program Π is a mapping Λ: E(Π) × 2S(Π̂) →
22S(Π̂)

that assigns each external predicate instance &g [p] and partial assignment A a set Λ(&g [p],A)

of nogoods. We call Λ correct for Π, if for all arguments &g [p] ∈ E and A ∈ 2S(Π̂), every nogood
δ ∈ Λ(&g [p],A) is correct for Π.

Throughout the rest, we assume that learning functions are always correct for the programs at hand.

12 LOGCOMP RR 18-02

We now present a procedure for computing an answer set of a HEX-program, shown in Algorithm 1. To
compute multiple answer sets, we can naively add previous answer sets as constraints and call the algorithm
again (cf. Gebser et al. [2007] for more elaborated techniques). The basic structure of Algorithm 1 resembles
an ordinary ASP solver, but has additional checks in Part (c) and external calls to learn further nogoods in
Part (e), which is based on partial assignments. Without the extensions, it computes an answer set Â of
the guessing program Π̂ and returns the projection of Â to the atoms in Π (cf. Drescher et al. [2008]). To
this end, it starts from a void assignment and performs unit propagation in Part (a) to derive further truth
values. Part (b) backtracks and learns nogoods from conflicts. Part (c) checks compatibility and minimality
of the model candidate. To this end, the (more efficient) check in the if-block checks minimality from the
perspective of an ordinary ASP-solver without respecting the semantics of external sources (i.e., minimality
of Â wrt. Π̂); the minimality check is realized using so-called unfounded sets [Eiter et al., 2014a], which we
will discuss in detail in Section 6. If this check fails, the algorithm learns a nogood and backtracks. Only if
this check is passed, the elsif-block in Part (d) checks compatibility and minimality under consideration of
external sources (i.e., minimality of A wrt. Π), cf. Definition 2; if this check is also passed, an answer set
has been found. Finally, without Part (e), the algorithm makes a guess in Part (f) if no further truth values
can be derived and the assignment is incomplete.

The additional calls to external sources and nogood learning in Part (e) are not mandatory but prune the
search space; they may eliminate assignments violating known behavior of external sources already early
in the search, while the correctness of the learning function Λ guarantees that no compatible set of Π̂ (and
hence no answer set of Π) is eliminated. Notably and in contrast to previous algorithms [Eiter et al., 2012],
external atoms are evaluated under partial assignments and use a three-valued oracle function.

We can show that this algorithm is sound and complete:

Theorem 1 (Soundness and Completeness of Algorithm 1). If Algorithm 1 returns for an input program Π
(i) an assignment A, then A is an answer set of Π; (ii) the symbol ⊥, then Π is inconsistent.

Algorithm HEX-CDNL describes the schematic backbone of concrete incarnations that are obtained by
choosing particular learning functions and heuristics for driving the learning process under partial assign-
ment evaluation. Furthermore, different procedures for the unfounded set check might be used; we shall
deal with these aspects in the next sections.

4 Nogood Learning with Partial Assignments

In this section, we discuss the generation of nogoods which partially encode the semantics of external
atoms. In contrast to previous work on external behavior learning (EBL), this generation however will work
for partial assignments in general, and not only for complete assignments. When certain ground instances
of an external atom can already be decided, nogoods can be learned early on, and incompatible assignments
identified; thus, they can guide the solver. Intuitively, nogoods learned based on partial assignments are
preferable as they are usually smaller and cut incomplete assignments.
Three-valued Learning Functions. Let us first assume that we have no further knowledge about external
sources and can only observe their (partial) output under a given (possibly partial) input. We introduce a
three-valued learning function for the general case, which is a lifting of the respective two-valued learning
function defined by Eiter et al. [2012].

Definition 8. An input-output (io-)nogood is any nogood of the form

N = {σ1a1, . . . , σnan} ∪ {σn+1e&g[p](c)} where σ1, . . . , σn+1 ∈ {T,F};

LOGCOMP RR 18-02 13

we let NI = {σ1a1, . . . , σnan} be the literals over ordinary atoms (input part), NO = {σn+1e&g[p](c)} be
the replacement atom (output part) of N , and σ(NO) = σn+1. We call N faithful, if f&e(A,p, c) = σ(NO)
for all partial assignments A ⊇ NI , i.e., it resembles the semantics of the external source.

We note the following property.

Proposition 2. If N is a faithful io-nogood such that NO = {σn+1e&g[p](c)}, then N is correct wrt. all
programs Π that use e&g[p](c).

As for the converse, correct nogoods wrt. a given program Π may be io-nogoods that are not faithful, or
simply even no io-nogoods. In particular, for inconsistent ordinary ASP-programs any io-nogood is trivially
correct as there are no compatible sets which could be wrongly eliminated, but e.g. the empty nogood is not
an io-nogood.

When the oracle of an external atom is evaluated, the solver can create a new nogood for the observed
input-output relationship. That is, evaluating &g [p] for a partial assignment A, the solver learns, given all
true and false literals of input predicates, whether the output contains c, where f&g(A,p, c) 6= U. Note that,
since we only consider ground HEX-programs Π, for any partial assignment A and input list p there can
only be finitely many tuples c where f&g(A,p, c) = F such that c occurs in a given program Π. Hence,
in general we only need to consider a finite number of potential output tuples, which we call a scope S of
output tuples. In our implementation, the scope S corresponds to those tuples c that occur in the ground
program at hand.

Definition 9. The learning function for an external predicate with input parameters &g [p] under partial
assignment A and scope S is

Λu(&g [p],A) =
{
A′ ∪ {σe&g[p](c)}|f&g(A,p, c) =σ 6= U, c ∈ S

}
,

where A′ = {σ′p(c′) ∈ A | p ∈ p, σ′ 6= U} is the relevant part of the external atom input.

Each respective nogood is an io-nogood by construction and as the oracle is assignment-monotonic, also
faithful. Hence:

Proposition 3. Let &g [p](·) be an external atom in a HEX-program Π. Then for all assignments A, the
nogoods Λu(&g [p],A) in Definition 9 are correct wrt. Π.

Example 7 (cont’d). Assume we are given for the graph guessing program Π in Example 1 the partial as-
signment A = {Tnode(a), Tnode(b), Fedge(a, b), Uedge(b, a), Tn edge(a, b), Un edge(b, a)}. Then
the learning function Λu(&geq [edge, 2],A) yields the single io-nogood {Fedge(a, b), Te&geq[edge,2]()},
which is indeed faithful. For A′ = {Tnode(a), Tnode(b), Tedge(a, b), Uedge(b, a), Fn edge(a, b),
Un edge(b, a)}, no io-nogood can be learned and Λu(&geq [edge, 2],A′) returns ∅ as f ′&geq(A′, edge, 2) =
U, where f ′&geq is the three-valued assignment-monotonic oracle functions as in Example 6.

According to Eiter et al. [2012], given an external predicate with input parameters &g [p] and a complete
assignment A, an input parameter pi ∈ p is monotonic, if f&g(A,p, c) = T implies that f&g(A

′,p, c) = T
for every A′ ≥ A that augments A only by atoms with predicate pi. We can refine a three-valued function
Λu similar to two-valued learning functions, cf. Eiter et al. [2012], and tailor it to external sources with
specific properties. We show this for external atoms which are monotonic in an input predicate pi, i.e.,
the value of the external atom cannot switch from true to false if more atoms over pi become true and,

14 LOGCOMP RR 18-02

conversely, it cannot switch from false to true if more atoms over pi become false. Then, literals of the form
Fpi(c

′) may be dropped from io-nogoods containing Fe&g[p](c), and literals of the form Tpi(c
′) may be

dropped from io-nogoods containing Te&g[p](c). Accordingly, by exploiting monotonic behavior of oracle
functions we are able to obtain smaller, i.e. more general, io-nogoods than by using the general learning
function Λu.

Definition 10. The learning function for an external predicate with input parameters &g [p] that is monoto-
nic in pm ⊆ p, under a partial assignment A and a scope S, yields

Λmu(&g [p],A) =
{
A′σ ∪ {σe&g[p](c) |f&g(A,p, c) =σ 6= U, c ∈ S

}
,

where A′σ = {σ′p(c′) ∈ A | p ∈ p, p 6∈ pm, σ
′ 6= U} ∪ {σp(c′) ∈ A | p ∈ pm}.

As before, we can also show that nogoods learned by means of the learning function Λmu are not violated
by any compatible set:

Proposition 4. Let &g [p](·) be an external atom in a HEX-program Π. Then for all assignments A, the
nogoods Λmu(&g [p],A) in Definition 9 are correct wrt. Π.

Example 8 (cont’d). Consider again program Π from Example 1 and partial assignment A = {Tnode(a),
Tnode(b), Fedge(a, b), Tedge(b, a), Tn edge(a, b), Un edge(b, a)}. When employing the general le-
arning function Λu, we obtain Λu(&geq [edge, 2],A) =

{
{Fedge(a, b), Tedge(b, a), Te&geq[edge,2]()}

}
.

However, we obtain Λmu(&geq [edge, 2],A) =
{
{Fedge(a, b), Te&geq[edge,2]()}

}
by exploiting monotoni-

city of the input parameter edge.

The learning functions Λu and Λmu generate nogoods depending on the oracle function given a certain
input. However, an external source provider usually knows the source semantics better and can thus pro-
vide better nogoods. The latter might include only the necessary atoms in the input; they are thus smaller
and prune more of the search space. In such cases, it makes sense to provide custom learning functions
Λl(&g [p],A) which generate for &g [p] and a (possibly partial) assignment A a set of nogoods.

5 Nogood Minimization

In this section, we discuss a second way to exploit partial assignments for more effective learning of io-
nogoods based on three-valued oracle functions. Instead of calling three-valued oracle functions with partial
input assignments that are generated during solving, a new partial assignment A′ can be obtained from a
given assignment A, where A � A′, by changing part of the truth values of literals in A from T or F to U
afterwards. Then, a three-valued oracle function can be called with the resulting assignment A′ in order to
detect truth assignments in A which are irrelevant for the evaluation of the respective external source.

By employing this strategy we eliminate redundant (input) literals from the nogoods in Λu and Λmu,
while faithfulness of io-nogoods is retained (relying on assignment-monotonicity of three-valued oracle
functions). Recall that io-nogoods do not contain any literals which are unassigned. Hence, we can obtain
smaller and thus, more general io-nogoods, which potentially prune larger parts of the search space. For this
purpose, we introduce two new algorithms for computing minimal io-nogoods, i.e, nogoods from which no
literal in the input part can be removed without changing the output value of the respective oracle function
to unassigned. Moreover, we show that minimization and theory-specific learning are in fact closely related.

LOGCOMP RR 18-02 15

Definition 11. Given a faithful io-nogood N with NO = {σe&g[p](c)}, the set of minimized nogoods of N
is

minimize(N) = {N ′ ⊆ N | N ′ is a faithful io-nogood, f&g(N
′′,p, c) = U for all N ′′ (N ′I}.

This extends to sets S of nogoods by minimize(S) =
⋃
N∈S minimize(N). Note that exponentially

many minimal nogoods in the size of N are possible.

Example 9 (cont’d). Consider the assignment A = {Tnode(a), Tnode(b), Fedge(a, b), Fedge(b, a),
Tn edge(a, b), Tn edge(b, a)} and faithful io-nogood N = {Fedge(a, b), Fedge(b, a), Te&geq[edge,2]()}
∈ Λu(&geq [edge, 2],A). We then obtain minimize(N) = {{Fedge(a, b),Te&geq[edge,2]()}, {Fedge(b, a),
Te&geq[edge,2]()}}.

The minimized nogoods subsume all faithful io-nogoods.

Proposition 5. Let A be a partial assignment and N be a faithful io-nogood for &g [p] over the atoms in
A. Then some N ′ ∈ minimize(Λu(&g [p],A)) exists such that N ′ ⊆ N .

As a subset of each faithful io-nogood occurs among all minimized nogoods, no further faithful io-
nogoods prune the search space more effectively. Still there might be further correct nogoods (non-io ones
and/or depending on the program).

In the following, we call a theory-specific learning function Λl(·, ·) io-complete for an external source
&g , if for every partial assignment A′ ⊆ A and input list p, it holds that Λl(&g [p],A) is the least set that
contains A′∪{σe&g[p](c)} for every output list c such that f&g(A

′,p, c) = σ ∈ {T,F}; otherwise, we call
Λl(·, ·) partial. That is, Λl learns all and only io-nogoods with a premise over the current partial assignment
which resemble the semantics of &g .

As it turns out, learning using io-complete theory-specific learning functions and nogood minimization
are closely related. Let min⊆(S) = {N ∈ S | @N ′ ∈ S s.t. N ′ (N} be the restriction of S to subset-
minimal nogoods.7 Then:

Proposition 6. Let Λl be an io-complete theory-specific learning function for an external source &g . Then
for all partial assignments A and input lists p we have minimize(Λu(&g [p],A)) = min⊆(Λl(&g [p],A)).

This proposition implies that we have alternative techniques to learn all nogoods that prune the search
space in an optimal (cf. Proposition 5) way. As above, it considers only faithful io-nogoods while further
correct nogoods may exist. Notably, the equality holds only under the premises of exhaustive minimization
in the first case and an io-complete theory-specific learning function in the second; otherwise different sets
of nogoods may be produced. As both operations are expensive and impractical, it makes sense to support
both (incomplete) minimization and (incomplete) theory-specific learning functions.

Sequential Nogood Minimization. In practice, we use Algorithm 2 to compute only one minimal io-
nogood for each learned io-nogood. Instead of minimizing each nogood separately and to avoid redundant
queries, we proceed in parallel and use a cache for the external atom output of a set S of io-nogoods
with identical input but different outputs. The algorithm works by sequentially removing the same literal
simultaneously from the premises of allN in S in Part (a), and checking whether the output for the resulting
premises is already in the cache, in Part (b). If not, all outputs c′ s.t. f&g(A,p, c

′) 6= U are computed

7Despite similar names, minimize differs from min⊆ as it minimizes wrt. oracle results while min⊆ just selects the minimal
sets.

16 LOGCOMP RR 18-02

Algorithm 2: Simultaneous Nogood Minimization
Input: A set S of faithful io-nogoods N with NI = {σ1a1, . . . , σnan}
Output: A set of minimal faithful io-nogoods

ch ← ∅ // cache for oracle calls
for each signed literal σiai ∈ NI do

(a) for each io-nogood N ′ ∈ S with N ′O = {σn+1e&g[p](c)} do
N s ← N ′I \ {σiai} // smaller oracle input

(b) if 〈N s , ·〉 6∈ ch then
ch ← ch ∪

{〈
N s , {σe&g[p](c

′) | f&g(N s ,p, c′) =σ 6= U}
〉}

(c) if σn+1e&g[p](c) ∈ output for 〈N s , output〉 ∈ ch then
Replace N ′ by N s ∪ {σn+1e&g[p](c)} in S

return S

(this is a single call in the implementation) and stored in the cache. Otherwise, no external source call is
needed. It is then checked if the resulting nogood is still faithful in Part (c), and N is replaced by its reduced
equivalent in S in this case. Formally:

Proposition 7. For a set S of faithful io-nogoods with equal input parts and distinct output parts, Algorithm
2 yields exactly one faithful io-nogood N ′ ∈ minimize(N) for each N ∈ S.

Divide-and-Conquer Strategy for Nogood Minimization. Even when io-nogoods with the same input
parts are minimized simultaneously, removing each literal from the respective input separately and checking
the output of the corresponding oracle function may result in a large number of external calls, which directly
depends on the length of the input part. In cases where io-nogoods are large or the external evaluation
requires a lot of time, the additional computational effort required for nogood minimization may outweigh
the positive effect of obtaining smaller nogoods, or even make minimization infeasible. While in the worst
case, i.e. when an io-nogood is already minimal, this situation cannot be improved, it can be more efficient
to remove several literals from a nogood at once before evaluating the external source when the input part
contains many irrelevant literals.

The QUICKXPLAIN algorithm, which has been introduced by Junker [2004] for efficiently computing
minimal conflict sets in the context of constraint programming, can be used for this purpose as an alternative
algorithm for minimizing io-nogoods. It implements a divide-and-conquer strategy producing a binary
search tree, and can be employed for computing a minimal nogood from a given io-nogood more efficiently
if the nogood contains many irrelevant literals, especially when the input part of the io-nogood is large.
In this way, given an io-nogood with input part of size n, instead of n calls to the oracle function, only
O(log2n) external calls are required. However, in the worst case, i.e. when no literal can be removed from a
given nogood, O(n) calls are necessary. Consequently, the algorithm can behave either better or worse than
a sequential algorithm, depending on the properties of the io-nogoods that are minimized.

Algorithm 3 is a variant of the QUICKXPLAIN algorithm as presented by Shchekotykhin et al. [2015],
adapted to our specific setting of io-nogood minimization. The algorithm receives a faithful io-nogood
N = {σ1a1, . . . , σnan, σn+1e&g[p](c)} and first checks whether the literal in the output part NO depends
on a non-empty input part NI , in Part (a). Subsequently, a recursive function is called in Part (b), which
during its execution checks if different subsets of NI imply the same external replacement literal in NO as
NI .

LOGCOMP RR 18-02 17

Algorithm 3: QuickXplain Nogood Minimization
Input: A faithful io-nogood N = {σ1a1, . . . , σnan, σn+1e&g[p](c)}
Output: A minimal faithful io-nogood N ′ ∈ minimize(N)

(a) if f&g(∅,p, c) =σn+1 then return {σn+1e&g[p](c)}
(b) return quickXplain(∅, ∅,NI) ∪ {σn+1 e&g[p](c)}

function quickXplain(B ,D ,N ′)
(c) if D 6= ∅ and f&g(B,p, c) =σn+1 then return ∅
(d) if |N ′| = 1 then return N ′
(e) Partition N ′ into two non-empty sets N1 and N2

D1 ← quickXplain(B ∪N2 ,N2 ,N1)
D2 ← quickXplain(B ∪D1 ,D1 ,N2)
return D1 ∪D2

The first argumentB of the function quickXplain(B ,D ,N ′) contains the current subset of the input part
NI wrt. which the oracle function f&g(B,p, c) is evaluated in Part (c). The second argument D indicates
if the oracle function needs to be evaluated for a given B, which is only the case if D is non-empty as only
then B has changed since the last external evaluation. If B is determined to imply the same truth value
for e&g[p](c) as NI in Part (c), no further literals from N ′ need to be added to B and thus, the empty set
is returned. In case the subset N ′ of the input part NI of literals that can still be added to B to obtain
the correct value for f&g(B,p, c) is a singleton, it is returned in Part (d). Finally, in Part (e), the provided
subset N ′ of the input part NI is partitioned into two nonempty sets N1 and N2, and the function is called
recursively, once for each partition N1 and N2 of N ′. The result D1 of the first call, where N1 is provided
as new subset of the input part NI , contains all literals from N1 that need to be added to B ∪N2 such that
the oracle function still evaluates to σn+1. Similarly, all literals from NI that need to be added to B ∪ D1

such that the oracle function still evaluates to σn+1 are stored in D2. As a result, no literal can be removed
from D1 or D2 such that f&g(B∪D1∪D2,p, c) =σ still holds, and the input part D1∪D2, which together
with {σn+1e&g[p](c)} yields a minimal io-nogood, is returned.

The computation of a minimal io-nogood by Algorithm 3 is illustrated by the following example.

Example 10 (cont’d). Reconsider f ′&geq from Example 6 and the faithful io-nogood N = {Fedge(a, a),
Tedge(b, b),Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()}. When Algorithm 3 is executed with N as input,
the function call quickXplain(∅, ∅,NI) is performed with NI = {Fedge(a, a),Tedge(b, b),Tedge(a, b),
Tedge(b, a)}. Since D = ∅ and |N | 6= 1 hold wrt. the first call, N ′ = NI is partitioned into two sets, e.g.
N1 = {Fedge(a, a),Tedge(b, b)} and N2 = {Tedge(a, b),Tedge(b, a)}.

Subsequently, the first recursive call of the function quickXplain returns ∅, which is assigned to D1,
as f ′&geq(N2, edge, 2) = T, i.e. {Tedge(a, b),Tedge(b, a), Fe&geq[edge,2]()} ⊂ N is still a faithful io-
nogood. Accordingly, the second recursive call in Part (e) corresponds to the call quickXplain(∅, ∅,N2),
in which N2 is partitioned again into the sets {Tedge(a, b)} and {Tedge(b, a)}. Because each of the sets
has cardinality 1 but none of them suffices to derive &geq [edge, 2](), N1 and N2 are returned from the two
recursive calls in Part (e), respectively. Thus, N1 ∪N2 is returned by the second recursive call in the outer
function call, which is assigned to D2. Consequently, ∅ ∪ {Tedge(a, b),Tedge(b, a)} is returned by the
function called in Part (b). Finally, the minimal io-nogood {Tedge(a, b),Tedge(b, a),Fe&geq[edge,2]()} is
returned by Algorithm 3.

Algorithm 3 always finds a minimal faithful io-nogood, which follows directly from Proposition 6 and

18 LOGCOMP RR 18-02

Theorem 1 by Junker [2004]:

Proposition 8. Given a faithful io-nogood N , Algorithm 3 terminates and returns exactly one faithful io-
nogood N ′ ∈ minimize(N).

Like Algorithm 2, Algorithm 3 returns exactly one minimal io-nogood for a given input. A straightfor-
ward way to obtain multiple minimal io-nogoods consists in re-running Algorithm 3 with different partition
heuristics in Part (e); and every minimal io-nogood can be obtained in this way.

6 Interleaving External Evaluation and Unfounded Set Search

So far, we have only considered external evaluations based on partial assignments which are performed
during the search for compatible sets. As described in Section 2, not every compatible set is also an answer
set, due to the possibility of cyclic support involving external atoms, and an additional minimality check
(cf. Part (d) in Algorithm 1) is required for finding answer sets of HEX-programs. The basic approach for
ensuring minimality of answer sets wrt. the FLP-reduct (called explicit FLP check by Eiter et al. [2014a])
consists in explicitly constructing the FLP-reduct for a given compatible set A and searching for a model
A′ of the reduct for which A′ ⊆ A holds. In general, it is also necessary to evaluate external atoms again
for finding smaller models of the FLP-reduct because their truth value might change when the truth value
of some ordinary atoms is switched from true to false. In the previous approach, similar as in the case of
the main search, this evaluation could only be performed after the complete input to an external atom in a
potential smaller model had been decided since input atoms were not allowed to be unassigned.

In this section, we discuss how based on three-valued assignments the evaluation of external atoms can
be interleaved with the search in the minimality check. As before, the goal is to increase the efficiency by
evaluating external atoms as early as possible and thus, to potentially avoid many wrong guesses. Improving
the efficiency of the minimality check for HEX-programs is of special interest as the check accounts for many
programs to a large share of the total runtime. In addition, the models of the FLP-reduct (built for a complete
assignment) often outnumber the compatible sets of the program (cf. Eiter et al. [2014a]), and for each such
set the guesses for the truth values of external atoms need to be verified.

Here, we consider a more sophisticated variant of the FLP check that utilizes the concept of unfounded
sets in order to ensure minimality of answer sets in HEX, i.e., that they amount to minimal models of the
FLP-reduct with the complete interpretation encoded by a compatible set. An unfounded set of a HEX-
program Π wrt. an assignment A is a set of atoms that can be jointly set to false without violating any rule
in Π because they only circularly support each other wrt. A. Formally:

Definition 12 (adapted from Eiter et al. [2014a]). Let Π be a HEX-program and let A and U be complete
assignments over A(Π). Then, U is an unfounded set for Π wrt. A if, for each rule r with H(r) ∩ {a |
Ta ∈ U} 6= ∅, at least one of the following holds, where A ∪̇ ¬.U = (A \ {Ta ∈ U}) ∪ {Fa | Ta ∈ U}:

(1) some literal of B(r) is false wrt. A,

(2) some literal of B(r) is false wrt. A ∪̇ ¬.U, or

(3) some atom of H(r) \ {a | Ta ∈ U} is true wrt. A.

Note that unlike previous literature, we define unfounded sets as complete assignments rather than sets of
atoms. This is in order to make the operator ∪̇ reusable for additional results below. However, conceptually
an unfounded set U still represents a set of atoms, given by the true atoms Ta ∈ U.

LOGCOMP RR 18-02 19

Answer sets of a HEX-program Π correspond exactly to those models M of Π where the true part of M
does not intersect with any unfounded set for Π wrt. M , i.e. {Ta ∈ M} ∩U = ∅ for every unfounded set
U for Π wrt. M [Faber, 2005; Eiter et al., 2014a]. Eiter et al. [2014a] showed that ensuring the absence of
unfounded sets is a more efficient strategy for verifying minimality than applying the explicit FLP check,
due to the fact that smaller models of the FLP-reduct do not have to be generated explicitly in the former
case. However, truth values of external atoms still need to be checked as described above to verify that
candidate unfounded sets that have been detected actually constitute unfounded sets.

Example 11. Reconsider the program Π = {p ← &id [p]().} from Example 3. As observed, A = {Tp}
is not an answer set of the program since it is not a subset-minimal model of fΠA = Π. This is because
there is an unfounded set U = {Tp}, which intersects with the true atoms in A: the only rule whose head
intersects with {a |Ta ∈ U} is p← &id [p](), for which condition (2) is satisfied.

To enable external checks at any point during the search for unfounded sets, even before a candidate
unfounded set has been detected, we introduce a novel algorithm for unfounded set checking that exploits
external evaluations based on partial assignments. Subsequently, we show the correctness and completeness
of the new algorithm. At this, interleaving unfounded set search with external evaluations can initiate back-
jumping as soon as it can be determined that guesses for external atoms violate the conditions for unfounded
sets. So far, this could only be detected by means of a post-check. As before, input-output relations lear-
ned from oracle calls wrt. partial assignments can also be exploited to avoid wrong guesses in the further
unfounded set search.

We start by providing background on the previous unfounded set check for HEX-programs [Eiter et al.,
2014a], which we extend to partial evaluations in the following.
Background on Unfounded Set Search. For detecting unfounded sets of a HEX-program Π wrt. a complete
assignment A, Eiter et al. [2014a] introduced an encoding ΩΠ that is represented by a set of nogoods such
that solutions to the encoding that are compatible with the semantics of external sources used in the program
Π correspond exactly to the unfounded sets of Π wrt. A. The encoding is uniform wrt. all executions of the
unfounded set check, i.e. it does not depend on the current assignment and thus only needs to be generated
once. Accordingly, a compatible set A for which the check is performed needs to be injected by adding a
set of so-called assumptions AA, represented by a consistent set of signed literals, that fix the truth values
of dedicated atoms. In this way, the encoding does not have to be regenerated for each compatible set from
scratch, and in an implementation, assumptions can be treated in a special way such that part of the solver
state can be maintained when assumptions are changed. As a result, a SAT solver can be utilized to detect
unfounded set candidates by searching for a solution to ΩΠ with assumptions AA.

Because external replacement atoms in ΩΠ do not encode the truth values of external atoms wrt. a
solution S of the SAT encoding, but relative to a compatible set modified by S, faithful io-nogoods learned
wrt. S cannot be added directly to the encoding. For this reason, Eiter et al. [2014a] defined a nogood
transformation TΩ that ranges over io-nogoods and yields corresponding nogoods that imply the correct
truth value for external replacement atoms in ΩΠ. We do not go into the details of the particular encoding
and the nogood transformation here, as they are not relevant for our purposes; we refer to Eiter et al. [2014a]
for more information.
Extension to Partial Assignments. As in the search for compatible sets, we can also add the input-output
relations that are learned from external evaluations based on partial assignments for the SAT encoding in
form of nogoods to the SAT solver. However, here we have to take into account that external replacement
atoms do not encode the truth values of external atoms under a partial assignment in the solver, but represent
their evaluation relative to the current compatible set modified by the respective partial assignment for ΩΠ

20 LOGCOMP RR 18-02

Algorithm 4: HEX-UFSCheck
Input: A HEX-program Π, a complete assignment A, a set of nogoods ∇ of Π
Output: true if the true part of A intersects with an unfounded set for Π wrt. A and false otherwise,

learned nogoods added to ∇
Ω′Π ← ΩΠ ∪ AA ∪ {TΩ(N) | N is an io-nogood in ∇} // SAT instance with assumptions

// and io-nogoods from main search
S← {Ua | a ∈ A(Ω′Π)} // all atoms unassigned
dl ← 0 // decision level
while true do

(a) S← Propagation(Ω′Π,S)
(b) if some nogood in Ω′Π violated by S then

if dl = 0 then return false
Analyze conflict, add learned nogood to Ω′Π, set dl to backjump level

(c) else if S is complete then
isUFS ← true
for all external atoms &g [p](c) in Π do
∇ ← ∇∪ Λ(&g [y],A ∪̇ ¬.S)
Ω′Π ← Ω′Π ∪ {TΩ(N) | N ∈ Λ(&g [y],A ∪̇ ¬.S)}
if Te&g[p](c) ∈ S, A 6|= &g [p](c) and A ∪̇ ¬.S 6|= &g [p](c) then

isUFS ← false

if Fe&g[p](c) ∈ S, A |= &g [p](c) and A ∪̇ ¬.S |= &g [p](c) then
isUFS ← false

if isUFS then
Let N be a nogood learned from the UFS
∇ ← ∇∪ {N}
if {Ta ∈ A} ∩ S 6= ∅ then return true

else
Ω′Π ← Ω′Π ∪ {S}

(d) else if Heuristics evaluates &g [y] and Λ(&g [y],A ∪̇ ¬.S) 6⊆ ∇ then
∇ ← ∇∪ Λ(&g [y],A ∪̇ ¬.S)
Ω′Π ← Ω′Π ∪ {TΩ(N) | N ∈ Λ(&g [y],A ∪̇ ¬.S)}

(e) else
Guess σa with σ ∈ {T,F} for some variable a with Ua ∈ S
dl ← dl + 1
S← (S \ {Ua}) ∪ {σa}

with assumptionsAA. For this reason, we generalize the definition of A ∪̇ ¬.X as follows, considering also
partial assignments for the SAT encoding.

Definition 13. Given a complete assignment A and a partial assignment X, let A ∪̇ ¬.X = (A \ {Ta |
Ta ∈ X or Ua ∈ X}) ∪ {Fa | Ta ∈ X} ∪ {Ua | Ua ∈ X and Ta ∈ A}.

In contrast to Definition 12, where U is considered to be a complete assignment, atoms which are
unassigned in X and true in A remain unassigned in A ∪̇ ¬.X; those atoms can potentially be set to false
in A ∪̇ ¬.X′ wrt. some complete assignment X′ � X. Atoms that are true in X and A are false under
A ∪̇ ¬.X as before.

LOGCOMP RR 18-02 21

Example 12. Consider the complete assignment A = {Tp,Tq,Tr} and X = {Tp,Fq,Ur}. We then
obtain A ∪̇ ¬.X = {Fp,Tq,Ur}.

We note that due to assignment monotonicity of three-valued oracle functions, extending in a partial
assignment A ∪̇ ¬.X the set X does not change the value of an oracle function call that is determined (i.e.,
yields true or false). Formally:

Proposition 9. Let A be a complete assignment, X be a partial assignment, and f&g be an assignment
monotonic three-valued oracle function. Then, f&g(A ∪̇ ¬.X,p, c) = X , X ∈ {T,F}, implies for every
assignment X′ � X that f&g(A ∪̇ ¬.X′,p, c) = X .

The proposition implies that early external evaluations during the unfounded set search wrt. an assign-
ment A ∪̇ ¬.X yield nogoods N s.t. f&e(A ∪̇ ¬.X′,p, c) = σ(NO) for all extensions X′ of X. The fact
that faithful io-nogoods added via the transformation TΩ to the encoding ΩΠ do not remove unfounded sets,
as stated in Proposition 15 by Eiter et al. [2014a], is based on the latter property.

We are now ready to present our new algorithm for detecting unfounded sets which also exploits learning
wrt. partial assignments.

New Algorithm for Unfounded Set Detection. Our new procedure for detecting unfounded sets, which is
formalized by Algorithm 4, extends the unfounded set check procedure described by Eiter et al. [2014a]. It
is used in Part (d) of Algorithm 1 in order to check whether a compatible set A for a HEX-program Π is an
answer set, i.e. its true part does not intersect with an unfounded set for Π wrt. A.

Algorithm 4 receives as input a HEX-program Π, a complete assignment A representing a compatible set
of Π, and a set∇ of nogoods that have been generated by Algorithm 1. It returns true if Π has an unfounded
set wrt. A that intersects with the true part of A, and false otherwise, i.e. when A is an answer set of Π.
At first, the assumptions AA and the transformations of io-nogoods already learned in the main search are
added to the encoding ΩΠ. In our implementation, elements in AA are marked as assumptions and hence,
they can be removed from the encoding without the need to reinitialize the SAT solver completely.

Similar to Algorithm 1, Algorithm 4 explores the search space in one loop based on the well-known
CDCL procedure [Marques-Silva et al., 2009], where unit propagation is performed in Part (a), conflict
learning and backjumping in Part (b), and guessing in Part (e). However, to take the semantics of external
atoms into account, there are two additional parts integrated into the CDCL procedure, where the first is
necessary to ensure correctness of the algorithm, while the second potentially increases its efficiency.

On the one hand, in Part (c), after a solution S to Ω′Π has been found, it is checked for each &g [p](c) in
Π whether the truth value assigned to the replacement atom e&g[p](c) is compatible with the evaluation of
the corresponding oracle function under A ∪̇ ¬.S. It has been shown that when the truth value of an external
atom &g [p](c) under A coincides with the one for e&g[p](c) assigned by S, the check for ensuring that S
represents an unfounded set can be skipped (cf. Eiter et al. [2014a]).

If a solution S passes the external checks, an unfounded set for Π wrt. A has been detected and the
algorithm returns true in case S intersects with the true part of the complete assignment A; otherwise, S is
added to Ω′Π and the search continues. The io-nogoods learned from the external evaluations are added to
the nogood store ∇ for use in the search for compatible sets and to Ω′Π via the nogood transformation TΩ,
in order to avoid wrong guesses for replacement atoms in the further unfounded set search.

On the other hand, external evaluations can also be performed based on partial assignments for Ω′Π,
which are triggered by a heuristics in Part (d). Accordingly, the respective oracle function is evaluated in
Part (c) under an assignment A ∪̇ ¬.S as in Definition 13. As before, learned nogoods are added to ∇ and
(via the nogood transformation) to Ω′Π, respectively.

22 LOGCOMP RR 18-02

Note that Algorithm 4 is parametric on the learning function Λ used in Parts (c) and (d). Because the
nogood transformation TΩ by Eiter et al. [2014a] can only be applied to faithful io-nogoods, we assume
that Λ only returns faithful io-nogoods in Algorithm 4. That is, all other nogoods returned by the learning
function Λ are simply ignored. In practice, we employ the learning functions Λu and Λmu.
Properties. The following proposition, adapted from Theorem 10 by Eiter et al. [2014a], states that by
the checks in Part (c) of Algorithm 4, we can determine whether a complete solution S corresponds to an
unfounded set for Π wrt. A:

Proposition 10. Let Π be a HEX-program and let A be a complete assignment over A(Π). If there is a
solution S for ΩΠ with assumptions AA such that for all external atoms &g [p](c) in Π it holds that

(1) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A ∪̇ ¬.S 6|= &g [p](c), and

(2) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A ∪̇ ¬.S |= &g [p](c),

then U =
{
Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T,F}

}
is an unfounded set for Π wrt. A.

Moreover, we can show that for every unfounded set U for Π wrt. A where U intersects with the true
part of A, a solution to ΩΠ with assumptions AA can be generated that passes the checks in Part (c) of
Algorithm 4, and that the nogoods added in Part (d) of Algorithm 4 do not eliminate the solution:

Proposition 11. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose Al-
gorithm 4 is executed with Π and A as inputs. If there is an unfounded set U for Π wrt. A s.t. {Ta ∈
A} ∩ U 6= ∅, then there is a solution S for ΩΠ with assumptionsAA, s.t. {Ta ∈ A} ∩ S 6= ∅, that satisfies
conditions (1) and (2) of Proposition 10 and all transformed nogoods TΩ(N) added to Ω′Π in Part (d) of
Algorithm 4.

We remark that in case the learning function Λu is used in Part (d), backjumping is triggered by the
added nogoods as soon as it can be determined that a partial assignment cannot be extended to a solution
satisfying conditions (1) and (2). However, we refrain from a formal statement and proof of this behavior in
the special case, as it would require to delve into the very details of the uniform encoding and the particular
nogood transformation (the respective conflict involves a transformed nogood).

Example 13. Consider the HEX-program Π = {r ← &id [q]().; q ← . ; p ← &id [p]().}, the complete
assignment A = {Tp,Tq,Tr} and a partial assignment S s.t. S ⊇ {Fe&id [q](),Fe&id [r](),Tr,Fq,Up}.
Note that S cannot be extended s.t. it corresponds to an unfounded set of Π wrt. A. Accordingly, by perfor-
ming external evaluations wrt. S, we find that it violates condition (2) of Proposition 10 as Fe&id [q]() ∈ S,
A |= &id [q]() and f&id(A ∪̇ ¬.S, q) = T. This demonstrates that we can detect that S cannot be extended
to a solution corresponding to an unfounded set without constructing a complete solution to Ω′Π.

Correctness and completeness of Algorithm 4 can be derived from the facts that it returns only solutions
for ΩΠ with assumptions AA that satisfy conditions (1) and (2) of Proposition 10, and that no such solution
is removed due to the nogoods learned in Part (d).

Theorem 2 (Soundness and Completeness of Algorithm 4). Given a HEX-program Π and a complete as-
signment A over A(Π) as inputs, Algorithm 4 returns true if there is an unfounded set U for Π wrt. A s.t.
{Ta ∈ A} ∩U 6= ∅, and false otherwise.

Thus, by employing Algorithm 4, we are now also able to exploit partial assignments for evaluating
external sources at any point during the unfounded set search, and for learning corresponding io-nogoods
that can decrease the number of unfounded set candidates which need to be generated.

LOGCOMP RR 18-02 23

7 Implementation and Evaluation

In this section, we present the results of an experimental evaluation of our techniques. To this end, we
integrated them into DLVHEX 2.5.0 with GRINGO 4.4.0 and CLASP 3.1.1 as backends.

We remark that although CLINGO 5 is known for its theory solving capabilities [Gebser et al., 2016], also
previous versions of GRINGO resp. CLASP had similar features, which are exploited by DLVHEX; CLINGO 5
makes these features more accessible. While we plan to upgrade our backend to CLINGO 5 as part of future
work, this will mainly simplify the interfaces, but will not allow for algorithmic improvements, hence there is
no interference with the techniques presented in this paper. For a more detailed discussion of the differences
to CLINGO 5 we refer to Section 8.

7.1 Experimental Setup

Evaluation Platform. All benchmarks were run on a Linux machine with two 12-core AMD Opteron
6238 SE CPUs and 512 GB RAM; the timeout was 300 seconds and the memout was 8 GB per instance. We
used the HTCondor load distribution system8 to ensure robust runtimes (i.e., deviations of runs on the same
instance are negligible). The average runtime of 50 instances per problem size is reported (in seconds) for
computing all answer sets respectively the first answer set; the number of timeouts is shown in parentheses
and furthermore the average number of solutions, where ‘≥’ respects timeouts. All instances and details on
the experiments can be found at [URL to be inserted in the final version].

Benchmark Configurations. Naturally, there is a tradeoff between the information that can be gained
from additional external evaluations under partial assignments during solving, and the runtime that has to
be invested for the respective external calls. For this reason, we used different heuristics for controlling the
number of external evaluations, and investigated the impact of 10 different solver configurations.

Initially, we tested 3 heuristics for additional external source calls during the main search for compatible
sets (cf. Algorithm 1, Part (e)) without nogood minimization, namely

• never: no additional calls, i.e. DLVHEX without the new techniques;

• periodic: partial evaluation at each 10th heuristics call; and

• always: partial evaluation at every heuristics call.

Moreover, we tested two heuristics for interleaving external evaluations with the search for unfounded sets
(cf. Algorithm 4, Part (d)), namely

• ufs-p: partial evaluation at each 10th heuristics call during unfounded set search, and

• ufs-a: partial evaluation at every heuristics call during unfounded set search.

In addition, we investigated the effect of enabling external evaluations based on partial assignments both
during the main search and the unfounded set search, i.e. combining configurations always and ufs-a. We
then tested nogood minimization instead of additional calls (i.e., only for complete assignments), where
we used the algorithm for simultaneous nogood minimization (cf. Algorithm 2) and the QUICKXPLAIN

algorithm (cf. Algorithm 3), respectively, for minimizing either

• all nogoods in conditions ngm and qxp, or

8http://research.cs.wisc.edu/htcondor

24 LOGCOMP RR 18-02

• the currently conflicting ones, i.e. those which violate the current solver assignment and trigger back-
jumping, in conditions ngm-c and qxp-c.

For benchmarks where external atoms have output values, we also compared simultaneous minimization
with sequential minimization (ngm-sq), i.e. minimizing each io-nogood separately. We omit results for
minimization combined with periodic, always, ufs-p or ufs-a, as this was always significantly slower
than some other configuration (due to many more external calls with little gain).
Benchmark Problems. We have considered encodings of three problems in the evaluation:

• Pseudo-boolean (PB-)problems, also known as 0-1 integer linear programs, representing linear con-
straints over boolean variables, which are among Karp’s famous 21 NP-complete problems [Karp,
1972].

• Assignment of taxi drivers to customers under constraints, where queries to an external ontology,
expressed in the lightweight description logic (DL) DL-Lite, are made via external atoms to find out
locations and classify customers and drivers (Taxi Assignment with Ontology Access) [Eiter et al.,
2014b; 2016b]. Note that despite a similar scenario our benchmark is different from the one used
by Eiter et al. [2014b], as it admits multiple solutions due to nondeterministic guessing of customer
assignments.

• Different variants of the well-known Strategic Companies problem [Cadoli et al., 1997], which is po-
pular with ASP competitions, extended with externally stored conflicts among companies (Conflicting
Strategic Companies) and externally computed control among companies based on shares (Strategic
Companies (with Nonmonotonic) External Controls Relation).

The problems have different characteristics with regard to the computational complexity and the exter-
nal atoms and their usage. While query answering wrt. the DL-Lite ontology used in our taxi assignment
benchmark is tractable [Calvanese et al., 2007], and solving PB-problems is NP-complete, computing stra-
tegic companies is located at the second level of the polynomial hierarchy. Moreover, the general learning
function Λu is used for the PB-problems benchmark and the variant of the strategic companies benchmark
where a nonmonotonic external control relation is added. Due to monotonicity of external sources, the le-
arning function Λmu can be utilized in all other benchmarks. A further difference consists in the fact that
external atoms are used to formulate integrity constraints in the PB-problems and the conflicting strategic
companies benchmark, and output values are only derived in the other benchmarks.

7.2 Investigating the Effect of Partial Evaluation in the Main Search

First, we used the three different benchmark problems to investigate the effect of partial evaluations during
the main search using different heuristics. In addition, we compared the results to the runtimes achieved by
employing our new algorithms for nogood minimization.
Hypotheses. We started our investigation with the following hypotheses regarding the employment of
partial evaluation in the main search:

(H1) The heuristics periodic and always decrease the runtime over never if useful information is obtai-
nable by early evaluation with little runtime overhead, and increase it otherwise, whereby the effect is
stronger for always.

(H2) The heuristics periodic performs better than always if more runtime needs to be invested for each
external call, mitigating the tradeoff between information gain and runtime invested in additional calls.

LOGCOMP RR 18-02 25

trueAt(X) ∨ falseAt(X)←atom(X).

←&pbCheck [trueAt ,PBInst]().

Figure 1: Pseudo-Boolean Problems Rules

(H3) The tradeoff between information gain and runtime invested in additional calls can be mitigated even
more effectively by just minimizing io-nogoods on complete assignments using ngm or ngm-c
instead of evaluating early.

(H4) Using qxp or qxp-c instead of ngm or ngm-c decreases the runtime when io-nogoods contain
many irrelevant literals, but does not increase it significantly otherwise.

Pseudo-Boolean Problems. Pseudo-boolean (PB-)problems constitute sets of pseudo-boolean constraints
of the formC0p0+...+Cn−1pn−1 ≥ Cn, where all pi are literals and allCi are integers [Eén and Sörensson,
2006]. A solution to a PB-problem P is a truth assignment to the boolean variables occurring in P such that
all inequalities in P are satisfied, where a true literal is interpreted as the value 1 and a false literal as the
value 0. Several dedicated PB-solvers have been developed (cf. Manquinho and Silva [2005]), and CLASP

can also be employed for efficient PB-problem solving.
Here, however, our goal is not to implement a reasoner for solving PB-problems that can compete with

tailored solvers, but to specify external constraints of a HEX-program in the form of PB-problems such that
answer sets are restricted to those assignments that also represent solutions to the respective PB-problem.
This strict separation of the guess and the check part results in benchmark instances that are well-suited
for investigating the effect of a tighter integration of the solving algorithm and the evaluation of external
constraints.9 Moreover, applying an analogous pattern for outsourcing constraints in HEX-programs is a
common strategy to avoid the explicit generation of all forbidden combinations of atoms during groun-
ding [Eiter et al., 2016d].

In our benchmark implementation, we search for solutions to a PB-problem P by guessing an interpreta-
tion of the atoms occurring in P utilizing a disjunctive rule, and we restrict the answer sets of the program to
solutions of P by employing the external atom &pbCheck [trueAt ,PBInst]() in a program constraint. This
results in a simple encoding shown in Figure 1, where a fact atom(a) is added for each atom a occurring in
P . At this, the variable PBInst is instantiated by a string containing the path to a file encoding the instance
P , and the true extension of the predicate trueAt wrt. an assignment A represents those atoms occurring in
P that are mapped to true by A. The external atom &pbCheck [trueAt ,PBInst]() evaluates to true wrt. a
complete assignment A iff the interpretation of the atoms occurring in P represented by A constitutes a
solution for P . We extend the semantics of the associated evaluation function to partial assignments A as
follows:

f&pbCheck ′(A, trueAt ,PBInst) =


T if every PB-constraint C0p0 + ...+ Cn−1pn−1 ≥ Cn in P

fulfills
∑
{c |TtrueAt(c)∈A}|=pi Ci ≥ Cn;

F if some PB-constraint C0p0 + ...+ Cn−1pn−1 ≥ Cn in P
fulfills

∑
{c |FtrueAt(c)/∈A}|=pi Ci < Cn;

U otherwise.

By exploiting this three-valued semantics, inconsistent partial assignments to the atoms occurring in P can
be detected earlier. As a result, potentially large parts of the search space can be pruned and the inconsistent

9Note that for the purpose of solving PB-problems as part of a HEX-program (possibly in combination with other external
sources), the external source could directly interface a dedicated PB solver.

26 LOGCOMP RR 18-02

All Answer Sets First Answer Set

never periodic always ngm ngm-c qxp qxp-c never periodic always ngm ngm-c qxp qxp-c solutions

4 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.12 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 2.06
8 0.34 (0) 0.33 (0) 0.22 (0) 0.24 (0) 0.22 (0) 0.26 (0) 0.23 (0) 0.23 (0) 0.22 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.18 (0) 4.82

12 4.82 (0) 3.95 (0) 0.80 (0) 0.59 (0) 0.50 (0) 0.60 (0) 0.46 (0) 2.23 (0) 1.82 (0) 0.35 (0) 0.34 (0) 0.33 (0) 0.31 (0) 0.30 (0) 10.96
16 280.02 (1) 71.99 (0) 3.28 (0) 1.29 (0) 1.11 (0) 1.23 (0) 0.94 (0) 123.32 (0) 38.42 (0) 1.32 (0) 0.83 (0) 0.81 (0) 0.70 (0) 0.67 (0) 12.66
20 300.00 (50) 300.00 (50) 18.87 (0) 2.63 (0) 2.16 (0) 2.41 (0) 1.62 (0) 259.72 (42) 237.47 (32) 7.92 (0) 1.59 (0) 1.58 (0) 1.22 (0) 1.17 (0) 24.56
24 300.00 (50) 300.00 (50) 76.75 (1) 4.28 (0) 3.58 (0) 3.69 (0) 2.42 (0) 294.30 (49) 286.30 (46) 31.13 (0) 2.90 (0) 2.84 (0) 1.96 (0) 1.89 (0) 32.00
28 300.00 (50) 300.00 (50) 247.06 (32) 9.92 (0) 7.25 (0) 9.48 (0) 4.61 (0) 300.00 (50) 300.00 (50) 96.86 (7) 5.30 (0) 5.26 (0) 3.32 (0) 3.20 (0) 82.28
32 300.00 (50) 300.00 (50) 294.05 (47) 20.49 (0) 11.18 (0) 22.03 (1) 6.94 (0) 300.00 (50) 300.00 (50) 179.38 (21) 8.05 (0) 8.00 (0) 4.71 (0) 4.60 (0) 269.24
36 300.00 (50) 300.00 (50) 300.00 (50) 36.44 (1) 17.31 (0) 39.27 (3) 10.28 (0) 300.00 (50) 300.00 (50) 272.92 (42) 12.29 (0) 12.30 (0) 6.65 (0) 6.58 (0) 519.20
38 300.00 (50) 300.00 (50) 298.99 (49) 38.66 (1) 19.48 (0) 40.86 (2) 10.90 (0) 300.00 (50) 300.00 (50) 264.80 (40) 13.66 (0) 13.76 (0) 7.23 (0) 7.10 (0) 451.78
40 300.00 (50) 300.00 (50) 300.00 (50) 37.13 (0) 23.89 (0) 36.04 (0) 12.70 (0) 300.00 (50) 300.00 (50) 289.35 (46) 17.26 (0) 17.11 (0) 8.74 (0) 8.68 (0) 233.50

Table 1: Random PB-problems with 4 to 40 variables

All Answer Sets First Answer Set

never periodic always ngm ngm-c qxp qxp-c never periodic always ngm ngm-c qxp qxp-c solutions

2 51.59 (0) 23.31 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0) 51.91 (0) 23.21 (0) 0.12 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.00
4 61.01 (0) 29.80 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0) 60.33 (0) 29.36 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0) 0.04
6 70.69 (0) 40.36 (0) 9.87 (0) 5.32 (0) 2.21 (0) 7.20 (0) 2.18 (0) 2.48 (0) 1.87 (0) 0.31 (0) 0.50 (0) 0.48 (0) 0.48 (0) 0.45 (0) 286.58
8 75.15 (0) 58.03 (0) 66.40 (0) 72.73 (0) 14.78 (0) 98.86 (0) 15.04 (0) 0.20 (0) 0.18 (0) 0.18 (0) 0.25 (0) 0.22 (0) 0.28 (0) 0.23 (0) 6178.00

10 78.48 (0) 78.48 (0) 150.24 (0) 191.57 (0) 43.80 (0) 242.41 (0) 44.13 (0) 0.14 (0) 0.14 (0) 0.16 (0) 0.19 (0) 0.16 (0) 0.22 (0) 0.17 (0) 18297.76
12 87.54 (0) 98.84 (0) 222.71 (0) 258.52 (1) 72.83 (0) 282.77 (16) 73.49 (0) 0.13 (0) 0.13 (0) 0.17 (0) 0.18 (0) 0.14 (0) 0.20 (0) 0.14 (0) 26785.20
14 95.24 (0) 111.57 (0) 267.78 (0) 275.09 (3) 90.38 (0) 269.99 (7) 91.07 (0) 0.13 (0) 0.13 (0) 0.18 (0) 0.17 (0) 0.13 (0) 0.19 (0) 0.12 (0) 30629.80
16 103.85 (0) 123.68 (0) 299.38 (37) 281.36 (6) 103.35 (0) 245.74 (2) 103.38 (0) 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0) 32141.44
18 113.89 (0) 135.02 (0) 300.00 (50) 285.74 (5) 114.60 (0) 221.97 (0) 114.31 (0) 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0) 32538.18
20 122.84 (0) 146.10 (0) 300.00 (50) 294.55 (12) 123.51 (0) 205.68 (0) 123.65 (0) 0.12 (0) 0.14 (0) 0.20 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0) 32685.16

Table 2: Random PB-problems with PB-constraint length of 2 to 20

partial assignments can be learned in form of io-nogoods to avoid revisiting the same partial assignments
subsequently.

First, we tested randomly generated problems withN ∈ [4, 40] variables and 4×N PB-constraints with
n = 6 and Ci ∈ [1, 5] for 0 ≤ i ≤ n. The results are shown in Table 1.

The specific ratio between the number of variables and the number of constraints ensures that only a
small fraction of all assignments are answer sets. A clear improvement over never is observed whenever
external atoms are evaluated early. The configuration always shows the best performance, with periodic
falling in-between always and never; hence learning the io-behavior of the external source as early as
possible outweighs the runtime overhead for querying it additionally. When minimizing io-nogoods only
after a complete assignment has been generated in condition ngm, the overhead of many external calls
can be reduced, while similar information can be obtained from them, resulting in much lower runtimes.
Nogood minimization is even more effective when only conflicting nogoods are minimized in condition
ngm-c. The reason is that in this benchmark, the external atom is only used in a program constraint such
that it must evaluate to false wrt. any answer set of the program. Accordingly, the truth value of the external
atom is never guessed to be true and non-conflicting io-nogoods, i.e. those which imply a false evaluation of
the external atom, cannot prune the search space. The conditions qxp and qxp-c perform better than ngm
and ngm-c, respectively, which is explained by the fact that in this benchmark io-nogoods typically contain
many irrelevant literals. Overall, qxp-c shows the best performance wrt. all instance sizes. Regarding
computing the first answer set we observe a similar pattern.

Second, to investigate the behavior when large parts of the search space contain solutions, i.e. when there
is less room for pruning it, we fixed the number of variables and PB-constraints to 15 and 60, respectively,
and tested different lengths N ∈ [2, 20]. The results are shown in Table 2.

The solution count increases with length, and for N > 14 nearly all assignments are answer sets. As

LOGCOMP RR 18-02 27

expected, periodic and always are slower than never if many (more than about half of) the candidates
are solutions. Frequent evaluation is detrimental here, as runtime investment has no pay-off in informa-
tion gain or early search termination. Likewise, minimizing all io-nogoods in conditions ngm and qxp
performs worse than never as identical nogoods are computed for many complete assignments. However,
the configuration ngm-c is very efficient and finds valuable io-nogoods without investing much runtime
because it focuses on valuable (i.e. conflicting) io-nogoods. Hence, the overhead of ngm-c compared to
never is also small for instance sizes 18 and 20, where hardly useful information for pruning the search
space is available. In contrast to Table 1, qxp-c performs slightly worse than ngm-c because conflicting
io-nogoods now contain mostly relevant literals. As the search space contains a large number of solutions
for instances with N > 6, the first answer set is always found very fast for such instances.

Taxi Assignment with Ontology Access. To facilitate query access for logic programs to external descrip-
tion logics knowledge bases (DL-KBs) was one of the early motivating applications of the HEX-formalism,
which has been syntactically framed by so-called DL-programs [Eiter et al., 2008]. Common reasoning
tasks wrt. DL-ontologies are concept and role retrieval, i.e. deriving all individuals respectively pairs of in-
dividuals that are instances of a given concept respectively role relationship. For the purpose of integrating
concept and role queries into ASP, DL-programs provide so called DL-atoms, which can be represented by
external atoms of the form &DL[c+, c−, r+, r−, q](X). Here the inputs c+ and c− are binary predicates
that declare positive and negative assertions of ontology concept instances, respectively. More specifically
an atom c+(“C”, a) (resp. c−(“C”, a)) encodes that C(a) (resp. ¬C(a)) should be asserted in the DL-KB.
Similarly, r+ and r− are ternary predicates where r+(“R”, a, b) (resp. r−(“R”, a, b)) encodes that R(a, b)
(resp. ¬R(a, b)) should be asserted in the DL-KB. Evaluating the DL-atom retrieves all instances of the
query q, which is either a concept or a role name, relative to the modified ontology. In this way, a bidirectio-
nal interaction between the rules of a logic program and the DL-KB is enabled. Accordingly, DL-programs
constitute a special type of HEX-programs; using the DL-Lite plug-in for DLVHEX [Eiter et al., 2014b], one
can evaluate DL-programs with an DL-KB formulated in the DL-Lite language.

For our experiments, we employ a DL-program that assigns taxi drivers to customers under constraints.
Our encoding is similar to the one by Eiter et al. [2016b], but guesses assignments of drivers to customers
such that different combinations are possible, whereby non-permissible ones can possibly be detected early
by partial evaluation. At this, exactly one driver is assigned to each customer, who must be located in the
same region; customers may share the driver, where a taxi fits at most four customers. An external DL-KB
formulated in DL-Lite holds part of the information, e.g. about locations of individuals, about e-customers
(customers demanding electric cars), and about e-drivers (drivers of electric cars). Based on this information,
e-customers must be assigned to e-drivers and normal customers to normal drivers. Moreover, drivers of e-
customers are positively asserted for the concept drivesECust, which affects subsequent inferences in the
DL-KB.

The answer sets of the program with the rules in Figure 2 and further facts driver(d), customer(c) and
region(r) for drivers d, customers c and regions r encode legal assignments. For a complete assignment A,
a ground DL-atom &DL[c+, c−, r+, r−, q](c) evaluates as follows:

f&DL(A, c+, c−, r+, r−, q) =

{
T if q(c) is derivable from KB ∪Assrt(A),
F otherwise,

where Assrt(A) consists of all assertions c(i) such that Tc+(“C”, i) ∈ A, ¬c(i) such that Tc−(“C”, i) ∈
A, r(i1, i2) such that Tr+(“r”, i1, i2) ∈ A and ¬r(i1, i2) such that Tr−(“r”, i1, i2) ∈ A. Exploiting

28 LOGCOMP RR 18-02

drives(X,Y)←driver(X), customer(Y),&DL[n,n,n,n, isIn](X,A),

&DL[n,n,n,n, isIn](Y,A), region(A), notndrives(X,Y).

ndrives(X,Y)←driver(X), customer(Y), not drives(X,Y).

driven(Y)←drives(, Y).

← not driven(Y), customer(Y).

←drives(X,Y), drives(X1, Y), X 6= X1.

r+(“drivesECust”, X, Y)←drives(X,Y),&DL[n,n, r+,n,ECust](Y).

←#count{Y : drives(X,Y)} > 4, driver(X).

←drives(X,Y), not&DL[n,n, r+,n,ECust](Y),&DL[n,n, r+,n,EDriver](X).

←drives(X,Y),&DL[n,n, r+,n,ECust](Y), not&DL[n,n, r+,n,EDriver](X).

Figure 2: Taxi Assignment Rules

monotonicity of DLs, the evaluation of the associated three-valued oracle function is as follows:

f&DL′(A, c
+, c−, r+, r−, q) =


T if q(c) is derivable from KB ∪Assrt(A),
F if q(c) is not derivable from KB ∪Assrt(Amax),
U otherwise,

where Amax ⊇ A is the (unique) assignment leading to the largest addition set of assertions.
For instance, the atom &DL[n,n, r+,n,EDriver](d) is true wrt. A if EDriver(d) is derivable after

adding all assertions r(i1, i2) s.t. Tr+(“r”, i1, i2) ∈ A; it is false if d cannot be derived after adding all
assertions r(i1, i2) s.t. Fr+(“r”, i1, i2) 6∈ A; and it is unassigned otherwise. The input parameters n in
Figure 2 are dummies that, as they do not occur in rule heads or in facts added, have empty extent in every
answer set.

In our tests, we increased the number N of drivers and customers gradually from 4 to 30, which were
put in N/2 regions randomly, where the drivers were balanced among regions. Furthermore, half of the
customers were e-customers. The results are shown in Tables 3 and 4.

As DL-atoms have output constants, simultaneous minimization (ngm) and sequential minimization
(ngm-sq) yield different results in this benchmark and we tested both configurations. All configurations
that exploit partial evaluations are significantly faster than never. The configuration periodic now shows
better results than always because the external DL calls are costly, and waiting a bit until issuing the next
one can pay off. Since the premise of an io-nogood can be large but the output often depends only on a small
part, minimization can drastically shrink io-nogoods. However, this comes at the price of many external calls
due to the large size of the io-nogoods, such that ngm-sq is slower than periodic and always. The costs
of minimization can be reduced by minimizing nogoods with the same premise simultaneously, or applying
binary search in form of the QUICKXPLAIN algorithm. Accordingly, both ngm and qxp perform better
than ngm-sq. Moreover, we observe that qxp is slightly faster than ngm, even though io-nogoods with
identical input parts are not minimized simultaneously by the QUICKXPLAIN algorithm. As for the previous
benchmark, minimizing only conflicting nogoods in conditions ngm-c and qxp-c yields the best results.

Notably, by employing partial evaluations, the first solution can be found rapidly and much faster than
in condition never, except for the configurations ngm-c and qxp-c. In contrast to the PB-problems
benchmark, here the use of external atoms is not limited to constraints such that minimal nogoods obtained
from non-conflicting io-nogoods may contain valuable information. As a result, the missing information
leads to timeouts for certain instances even before the first answer set is found, while for other instances the
set of all answer sets can be computed faster by ngm-c and qxp-c than by other configurations.

LOGCOMP RR 18-02 29

All Answer Sets

never periodic always ngm-sq ngm ngm-c qxp qxp-c solutions

4 0.20 (0) 0.18 (0) 0.22 (0) 0.19 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.17 (0) 7.88
6 0.33 (0) 0.26 (0) 0.32 (0) 0.29 (0) 0.26 (0) 0.22 (0) 0.26 (0) 0.22 (0) 17.44
8 1.13 (0) 0.41 (0) 0.60 (0) 0.57 (0) 0.47 (0) 0.33 (0) 0.41 (0) 0.33 (0) 36.08

10 7.61 (0) 0.89 (0) 1.42 (0) 1.60 (0) 1.15 (0) 0.66 (0) 0.88 (0) 0.65 (0) 93.76
12 228.44 (18) 2.19 (0) 3.98 (0) 5.50 (0) 2.98 (0) 1.49 (0) 2.65 (0) 1.75 (0) 329.92
14 300.00 (50) 9.25 (0) 12.71 (0) 24.52 (1) 15.44 (1) 5.15 (0) 6.78 (0) 6.45 (0) 651.52
16 300.00 (50) 15.34 (1) 24.22 (1) 55.81 (2) 33.73 (1) 12.31 (1) 16.89 (1) 13.27 (1) ≥964.68
18 300.00 (50) 67.38 (5) 79.43 (4) 131.03 (12) 87.58 (9) 47.30 (3) 51.88 (4) 58.43 (3) ≥2767.34
20 300.00 (50) 79.94 (6) 108.65 (7) 186.26 (21) 139.49 (14) 50.26 (3) 76.36 (5) 67.77 (6) ≥3783.20
22 300.00 (50) 146.88 (15) 201.91 (23) 265.82 (42) 209.16 (27) 160.66 (17) 167.53 (17) 178.43 (18) ≥5665.76
24 300.00 (50) 194.62 (25) 243.07 (32) 286.70 (46) 249.06 (34) 216.56 (28) 212.44 (25) 209.65 (26) ≥5840.56
26 300.00 (50) 265.54 (41) 284.26 (45) 294.01 (49) 290.69 (47) 261.73 (39) 275.54 (43) 265.89 (40) ≥5743.16
28 300.00 (50) 248.42 (39) 253.66 (42) 258.08 (43) 254.46 (42) 243.08 (39) 252.00 (41) 247.76 (40) ≥5057.28
30 300.00 (50) 293.90 (48) 294.02 (49) 294.01 (49) 294.01 (49) 292.78 (48) 294.02 (49) 294.01 (49) ≥5322.62

Table 3: Taxi Assignment Results - All Answer Sets

First Answer Set

never periodic always ngm-sq ngm ngm-c qxp qxp-c

4 0.15 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0)
6 0.18 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.18 (0)
8 0.36 (0) 0.17 (0) 0.20 (0) 0.22 (0) 0.21 (0) 0.22 (0) 0.21 (0) 0.22 (0)

10 1.24 (0) 0.18 (0) 0.23 (0) 0.25 (0) 0.25 (0) 0.33 (0) 0.25 (0) 0.32 (0)
12 23.56 (0) 0.22 (0) 0.27 (0) 0.33 (0) 0.33 (0) 0.44 (0) 0.30 (0) 0.43 (0)
14 139.70 (16) 0.25 (0) 0.32 (0) 0.41 (0) 0.44 (0) 1.10 (0) 0.36 (0) 1.08 (0)
16 273.78 (40) 0.29 (0) 0.37 (0) 0.49 (0) 0.63 (0) 7.39 (1) 0.42 (0) 7.50 (1)
18 300.00 (50) 0.40 (0) 0.42 (0) 0.59 (0) 0.73 (0) 23.39 (2) 0.50 (0) 26.53 (3)
20 300.00 (50) 0.34 (0) 0.46 (0) 0.66 (0) 2.00 (0) 2.12 (0) 0.56 (0) 9.62 (1)
22 300.00 (50) 0.43 (0) 0.69 (0) 0.64 (0) 0.53 (0) 61.87 (4) 0.67 (0) 53.99 (3)
24 300.00 (50) 0.46 (0) 0.76 (0) 0.72 (0) 0.60 (0) 113.78 (12) 0.77 (0) 88.03 (9)
26 300.00 (50) 0.52 (0) 0.86 (0) 0.85 (0) 0.68 (0) 59.02 (6) 0.85 (0) 84.77 (10)
28 300.00 (50) 0.56 (0) 1.00 (0) 0.90 (0) 0.74 (0) 76.59 (5) 0.88 (0) 95.74 (14)
30 300.00 (50) 0.63 (0) 1.10 (0) 1.04 (0) 0.83 (0) 112.02 (11) 1.05 (0) 103.03 (11)

Table 4: Taxi Assignment Results - First Answer Set

Conflicting Strategic Companies. Strategic Companies is a business problem that is a popular benchmark
for ASP competitions, located at the second level of the polynomial hierarchy [Cadoli et al., 1997; Leone
et al., 2006]. The scenario is that a set C = {c1, ..., cm} of companies and a set G = {g1, ..., gn} of goods
are given, where each company ci ∈ C produces some goods Gi ⊆ G and is possibly controlled by a
consortium of owner companies Oi ⊆ C. A set of companies C ′ ⊆ C constitutes a strategic set if (1) the
companies in C ′ produce all the goods in G, (2) if Oi ⊆ C ′ for some 1 ≤ i ≤ m, then ci is in C ′ as well,
and (3) C ′ is subset-minimal wrt. conditions (1) and (2) [Leone et al., 2006]. The knowledge about which
companies belong to a strategic set can be crucial for a holding owning the companies in C, e.g. if it has
to sell some of its companies and does not want to suffer a loss in economic power. The problem can be
encoded concisely in ASP by exploiting the minimality of answer sets, so that each answer set corresponds
to one strategic set.

In our benchmark setting, we assume that each product is produced and each company is controlled
by at most four companies in C. We further assume an additional conflict relation R ⊆ C×C, such that
companies which are related by R cannot occur together in a strategic set. This constraint makes sense
when certain companies may not be kept simultaneously, e.g. due to legislation. The program in Figure 3
encodes the strategic sets that satisfy the conflict relation in its answer sets. In this program, we check the
conflict constraint on strategic sets via the external atom &strategicConflict [strategic](), where strategic
contains all companies in the strategic set; on complete assignments, it evaluates to true if some companies
ci, cj in strategic are in conflict, i.e., (ci, cj) ∈ R holds (where R is externally stored).

30 LOGCOMP RR 18-02

All Answer Sets First Answer Set

never periodic always ngm ngm-c qxp qxp-c never periodic always ngm ngm-c qxp qxp-c solutions

5 0.15 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.15 (0) 1.72
10 0.13 (0) 0.13 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.12 (0) 0.12 (0) 0.13 (0) 0.12 (0) 0.12 (0) 0.12 (0) 0.12 (0) 3.22
15 0.20 (0) 0.19 (0) 0.21 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.13 (0) 8.08
20 0.65 (0) 0.49 (0) 0.51 (0) 0.25 (0) 0.21 (0) 0.20 (0) 0.20 (0) 0.24 (0) 0.20 (0) 0.17 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 23.42
25 3.49 (0) 1.60 (0) 1.35 (0) 0.43 (0) 0.31 (0) 0.29 (0) 0.27 (0) 0.76 (0) 0.36 (0) 0.21 (0) 0.20 (0) 0.20 (0) 0.18 (0) 0.18 (0) 53.50
30 26.79 (0) 7.61 (0) 5.30 (0) 1.09 (0) 0.55 (0) 0.50 (0) 0.44 (0) 4.60 (0) 1.03 (0) 0.41 (0) 0.29 (0) 0.29 (0) 0.23 (0) 0.23 (0) 105.32
35 193.38 (0) 33.34 (0) 17.46 (0) 5.72 (0) 1.05 (0) 1.07 (0) 0.87 (0) 26.05 (0) 2.71 (0) 0.54 (0) 0.39 (0) 0.37 (0) 0.27 (0) 0.27 (0) 282.26
40 300.00 (50) 135.66 (0) 46.70 (0) 45.95 (3) 1.82 (0) 2.03 (0) 1.53 (0) 118.70 (12) 10.67 (0) 1.47 (0) 0.54 (0) 0.54 (0) 0.34 (0) 0.33 (0) 507.08
45 300.00 (50) 297.18 (49) 139.51 (5) 131.44 (15) 5.46 (0) 13.53 (1) 4.97 (0) 158.24 (22) 21.35 (0) 1.38 (0) 0.56 (0) 0.55 (0) 0.34 (0) 0.34 (0) 1794.60
50 300.00 (50) 300.00 (50) 267.27 (33) 227.98 (31) 10.25 (0) 27.46 (1) 9.59 (0) 230.00 (32) 43.29 (3) 6.19 (0) 0.76 (0) 0.75 (0) 0.40 (0) 0.40 (0) 3453.50
55 300.00 (50) 300.00 (50) 295.25 (46) 262.83 (42) 35.64 (0) 108.24 (14) 35.15 (0) 287.99 (47) 131.69 (15) 5.67 (0) 1.05 (0) 1.04 (0) 0.51 (0) 0.51 (0) 5419.98
60 300.00 (50) 300.00 (50) 300.00 (50) 297.71 (49) 56.68 (1) 147.00 (16) 55.26 (1) 291.70 (47) 187.90 (26) 10.10 (0) 1.47 (0) 1.45 (0) 0.64 (0) 0.63 (0) ≥6300.94
65 300.00 (50) 300.00 (50) 300.00 (50) 295.89 (49) 151.06 (11) 242.18 (35) 150.19 (11) 294.49 (49) 229.99 (35) 15.06 (0) 1.85 (0) 1.86 (0) 0.76 (0) 0.77 (0) ≥7531.40
70 300.00 (50) 300.00 (50) 300.00 (50) 293.64 (48) 194.48 (21) 267.46 (41) 192.18 (22) 300.00 (50) 244.27 (39) 52.26 (1) 2.32 (0) 2.26 (0) 0.85 (0) 0.83 (0) ≥7005.06

Table 5: Conflicting Strategic Companies Results

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy(, C1, C2, C3, C4).

s(C)←controlledBy(C,C1, C2, C3, C4), s(C1), s(C2), s(C3), s(C4).

←&stratConflict [s]().

Figure 3: Conflicting Strategic Companies Rules

Since finding a strategic set is computationally hard, excluding candidate strategic sets with a conflict
early in the search by partial evaluations should noticeably decrease the runtime. We use for such evaluations
a three-valued oracle function f&strategicConflict ′(A, s), defined as follows:

f&strategicConflict ′(A, s) =


T if Ts(ci),Ts(cj) ∈ A holds for some (ci, cj) ∈ R,
F if Fs(ci) ∈ A or Fs(cj) ∈ A for every (ci, cj) ∈ R,
U otherwise.

We ran tests on instances with N ∈ [5, 70] companies, at most N randomly assigned control relations,
5 × N products with randomly assigned producers, and N/2 randomly created conflicts. The results are
shown in Table 5.

The external conflict constraint cuts more than 90% of the strategic sets (i.e., solution candidates). Thus,
like in the first PB-problems benchmark, only a small part of the search space contains solutions. Ac-
cordingly, we observe a similar pattern as in Table 1, where partial evaluation significantly decreases the
runtime in all conditions. The configuration qxp-c again exhibits the best results. Since strategic sets are
minimal, io-nogoods learned on complete assignments do not provide any valuable information, such that
we did not observe a difference when the learning function Λu is used instead of Λmu in this case. Notably,
for computing strategic sets containing a specific company (which is ΣP

2 -hard in general) we obtain similar
results.

Regarding the results for finding the first answer set, the larger difference between never and always in
comparison to Table 1 is due to the higher computational effort required for finding compatible sets, where
learning based on partial assignments is able to guide the search towards a compatible set which is also an
answer set.

Findings Regarding Partial Evaluation in the Main Search. In our experiments, we found that early
evaluation in conditions always and periodic increased the performance for all benchmarks, except for
the case where nearly all candidate solutions correspond to answer sets such that no useful information is
obtainable from additional oracle calls. This finding is in line with hypothesis (H1). Moreover, in the case

LOGCOMP RR 18-02 31

of the taxi assignment benchmark, where external calls require more runtime than in the other benchmark
implementations, periodic performed better than always due to less runtime overhead, which supports
our hypothesis (H2). Similar improvements could be achieved by minimizing all io-nogoods that are learned
based on complete assignments with configuration ngm. However, regarding hypothesis (H3), the results
are mixed because minimization performs worse when io-nogoods are large or contain many relevant literals
(cf. Tables 2 and 3). This overhead is avoided by only minimizing nogoods that directly trigger backjumping
in condition ngm-c. The configuration ngm-c performs well for all benchmark problems and has only little
overhead when no useful information is available, as can be observed in Table 2. Finally, the fact that qxp
performed better than ngm in the taxi assignment benchmark, where io-nogoods typically contain many
irrelevant literals, and did not increase the runtime much when nearly all literals are relevant (as it is the
case for the second experiment using PB-problems) provides supporting evidence for hypothesis (H4). This
effect results from the number of external calls that have to be performed in the best resp. the worst case by
the QUICKXPLAIN algorithm compared to sequential minimization.

Overall, minimization of conflicting nogoods by configuration ngm-c or qxp-c always yielded the best
results with only small differences between the two conditions. Hence they are suggested as the default
configurations.

7.3 Investigating the Effect of Partial Evaluation in the Unfounded Set Search

In our benchmark programs, the one for the taxi assignment problem contains cyclic dependencies through
external atoms, while this is not the case for the pseudo-boolean and conflicting strategic companies pro-
grams. The absence of such cyclic dependencies means that compatible sets of a HEX-program already
correspond to its answer sets and a minimality check can be skipped [Eiter et al., 2014a]. Consequently,
partial evaluation during the search for unfounded sets did not have an impact on the performance results
for the pseudo-booelan and conflicting strategic companies benchmarks.

For this reason, in addition to the taxi assignment benchmark, we have considered two variants of the
conflicting strategic companies problem in order to test partial evaluation during the unfounded set check
with different heuristics.

Hypotheses. Our hypotheses concerning the use of partial evaluation in the unfounded set search were the
following:

(H5) The heuristics ufs-a and ufs-p decrease the runtime over never if useful information is obtainable
by early evaluation during the unfounded set search with little runtime overhead, and increase it
otherwise, whereby the effect is stronger for ufs-a.

(H6) The heuristics ufs-p performs better than ufs-a if external calls need more time or less information
can be gained from them, mitigating the tradeoff between information gain and runtime invested in
additional calls.

(H7) If the heuristics ufs-a or ufs-p are combined with the heuristics always, there is a further speedup
in case many io-nogoods learned during the unfounded set search are not already learned during the
main search. Thus, the combination is expected to be more effective when for learning the function
Λu is used instead of Λmu.

Taxi Assignment. For testing the effect of partial evaluation during the unfounded set search wrt. the
taxi assignment benchmark, we used the same set of problem instances as before (cf. Table 5). The results

32 LOGCOMP RR 18-02

All Answer Sets First Answer Set

never always ufs-p ufs-a always +
ufs-a qxp-c never always ufs-p ufs-a always +

ufs-a qxp-c

4 0.19 (0) 0.22 (0) 0.20 (0) 0.48 (0) 0.53 (0) 0.17 (0) 0.16 (0) 0.17 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.15 (0)
6 0.35 (0) 0.35 (0) 0.38 (0) 1.64 (0) 1.78 (0) 0.22 (0) 0.20 (0) 0.19 (0) 0.20 (0) 0.28 (0) 0.28 (0) 0.18 (0)
8 1.27 (0) 0.70 (0) 1.02 (0) 8.70 (0) 8.31 (0) 0.33 (0) 0.39 (0) 0.22 (0) 0.37 (0) 0.55 (0) 0.38 (0) 0.22 (0)

10 7.86 (0) 1.41 (0) 3.67 (0) 33.22 (0) 30.28 (0) 0.65 (0) 1.27 (0) 0.22 (0) 1.16 (0) 1.65 (0) 0.46 (0) 0.32 (0)
12 228.11 (17) 4.16 (0) 37.50 (1) 139.01 (10) 93.41 (3) 1.75 (0) 22.60 (0) 0.27 (0) 21.88 (0) 25.55 (1) 0.59 (0) 0.43 (0)
14 300.00 (50) 12.25 (0) 186.79 (20) 281.62 (42) 190.64 (21) 6.45 (0) 137.84 (15) 0.32 (0) 134.38 (14) 139.96 (15) 0.79 (0) 1.08 (0)
16 300.00 (50) 24.42 (1) 292.14 (47) 300.00 (50) 273.96 (40) 13.27 (1) 273.70 (40) 0.37 (0) 267.38 (39) 270.47 (40) 1.04 (0) 7.50 (1)
18 300.00 (50) 81.46 (4) 300.00 (50) 300.00 (50) 295.59 (49) 58.43 (3) 300.00 (50) 0.43 (0) 300.00 (50) 300.00 (50) 1.32 (0) 26.53 (3)
20 300.00 (50) 110.71 (8) 300.00 (50) 300.00 (50) 300.00 (50) 67.77 (6) 300.00 (50) 0.47 (0) 300.00 (50) 300.00 (50) 1.61 (0) 9.62 (1)
22 300.00 (50) 203.06 (24) 300.00 (50) 300.00 (50) 288.02 (48) 178.43 (18) 300.00 (50) 0.69 (0) 300.00 (50) 300.00 (50) 2.92 (0) 53.99 (3)
24 300.00 (50) 243.39 (32) 300.00 (50) 300.00 (50) 294.02 (49) 209.65 (26) 300.00 (50) 0.78 (0) 300.00 (50) 300.00 (50) 3.78 (0) 88.03 (9)
26 300.00 (50) 284.93 (45) 300.00 (50) 300.00 (50) 294.01 (49) 265.89 (40) 300.00 (50) 0.89 (0) 300.00 (50) 300.00 (50) 4.56 (0) 84.77 (10)
28 300.00 (50) 253.71 (42) 300.00 (50) 300.00 (50) 258.15 (43) 247.76 (40) 300.00 (50) 1.04 (0) 300.00 (50) 300.00 (50) 5.05 (0) 95.74 (14)
30 300.00 (50) 294.02 (49) 300.00 (50) 300.00 (50) 294.02 (49) 294.01 (49) 300.00 (50) 1.29 (0) 300.00 (50) 300.00 (50) 8.12 (0) 103.03 (11)

Table 6: Taxi Assignment Results for Partial Evaluation in Unfounded Set Search

are shown in Table 6, where we also report the running times of the conditions always and qxp-c for
comparison with partial evaluation during the main search.

For this benchmark, the compatible sets are identical to the answer sets, such that no unfounded sets
are detected during unfounded set search. However, due to cyclic dependencies through external atoms,
minimality wrt. the FLP-reduct still needs to be verified for each instance by means of the unfounded set
check. We observe that configurations ufs-p and ufs-a slightly improve the efficiency over never, where
ufs-p yields better results since calls to the external oracle are costly in this benchmark. However, perfor-
ming early evaluations during the main search in condition always is much faster resulting in less timeouts;
and combining early evaluation in the main and the unfounded set search does not result in an additional
speedup. This is expected: as reasoning in a DL ontology is monotonic and for DL-Lite ontologies the
io-nogoods are small, the information that is obtained by early evaluation in the respective parts is largely
overlapping.
Strategic Companies with External Controls Relation. We considered a second variant of the strate-
gic companies problem, where the controls relation is derived by means of an external atom of the form
&majority [strategic](c), based on the company shares that other companies own. A company is then con-
trolled by a suite of other companies if their combined shares exceed 50 %. No conflict relations are added
in this benchmark as they only remove compatible sets and do not have a direct influence on the minimality
check, while the aim of this experiment is to investigate the effect of partial evaluation on the unfounded set
search.

Let shares(c1, c2) denote the fraction of shares of company c2 that company c1 owns. Given a partial
assignment A, a company c, and a predicate strategic representing a set of companies, the corresponding
three-valued oracle function f&majority(A, strategic, c) is defined as follows:

f&majority(A, strategic, c) =


T if

∑
Tstrategic(ci)∈A shares(ci, c) > 50 %;

F if
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %;
U otherwise.

As the oracle function behaves monotonically, we can employ the learning function Λmu.
For testing, we randomly generated instances with N ∈ [10, 30] companies, randomly distributed 50 %

to 100 % of the shares of each company over 1 to 4 other companies, and added 5 × N products with
randomly assigned producers. The results are shown in Table 7, again with the running times of always
and qxp-c.

LOGCOMP RR 18-02 33

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy(, C1, C2, C3, C4).

s(C)←&majority [s](C), company(C).

Figure 4: Strategic Companies with External Controls Relation Rules

All Answer Sets First Answer Set

never always ufs-p ufs-a always +
ufs-a qxp-c never always ufs-p ufs-a always +

ufs-a qxp-c solutions /
compatible sets

2 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0) 1.18 / 1.68
4 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.21 (0) 0.17 (0) 0.14 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.17 (0) 0.15 (0) 1.70 / 2.96
6 0.19 (0) 0.25 (0) 0.21 (0) 0.31 (0) 0.36 (0) 0.26 (0) 0.16 (0) 0.18 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.21 (0) 2.56 / 4.46
8 0.29 (0) 0.41 (0) 0.33 (0) 0.58 (0) 0.71 (0) 0.50 (0) 0.19 (0) 0.22 (0) 0.20 (0) 0.26 (0) 0.29 (0) 0.32 (0) 4.20 / 6.42

10 0.63 (0) 0.81 (0) 0.76 (0) 1.27 (0) 1.49 (0) 0.95 (0) 0.25 (0) 0.29 (0) 0.29 (0) 0.39 (0) 0.43 (0) 0.55 (0) 7.44 / 10.10
12 1.80 (0) 1.56 (0) 1.91 (0) 2.86 (0) 2.95 (0) 1.89 (0) 0.51 (0) 0.46 (0) 0.55 (0) 0.71 (0) 0.67 (0) 1.01 (0) 9.30 / 13.62
14 4.97 (0) 3.14 (0) 5.09 (0) 6.96 (0) 6.31 (0) 3.49 (0) 0.72 (0) 0.55 (0) 0.77 (0) 0.98 (0) 0.79 (0) 1.45 (0) 18.08 / 24.46
16 15.88 (0) 5.98 (0) 15.03 (0) 16.97 (0) 12.81 (0) 6.65 (0) 2.03 (0) 0.85 (0) 2.46 (0) 2.13 (0) 1.25 (0) 2.67 (0) 26.96 / 35.04
18 59.10 (0) 13.52 (0) 50.48 (0) 47.16 (0) 26.65 (0) 13.86 (0) 5.01 (0) 2.00 (0) 7.49 (0) 5.06 (0) 2.05 (0) 5.87 (0) 36.52 / 47.56
20 169.77 (1) 30.46 (0) 132.65 (0) 124.17 (0) 55.99 (0) 31.44 (0) 14.15 (0) 2.31 (0) 15.46 (0) 12.55 (0) 2.41 (0) 11.64 (0) 64.30 / 79.58
22 297.81 (46) 59.32 (0) 285.57 (40) 275.11 (32) 108.75 (0) 61.88 (0) 54.07 (2) 5.10 (0) 54.66 (3) 49.00 (3) 4.19 (0) 21.82 (0) 97.02 / 116.22
24 300.00 (50) 128.94 (0) 300.00 (50) 300.00 (50) 210.98 (11) 127.59 (4) 73.45 (3) 10.84 (0) 99.72 (4) 64.73 (2) 4.92 (0) 48.33 (1) ≥154.66 / 195.84
26 300.00 (50) 255.72 (20) 300.00 (50) 300.00 (50) 269.39 (36) 235.22 (17) 144.56 (12) 23.70 (1) 155.93 (15) 124.87 (10) 7.13 (0) 73.96 (7) ≥242.22 / 366.26
28 300.00 (50) 292.88 (43) 300.00 (50) 300.00 (50) 295.10 (46) 279.55 (41) 189.26 (21) 34.27 (2) 190.98 (25) 169.98 (22) 9.29 (0) 153.97 (20) ≥121.64 / 402.66
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 298.91 (49) 222.31 (31) 86.92 (7) 230.87 (35) 190.72 (27) 11.35 (0) 172.17 (22) ≥102.06 / 548.94

Table 7: Strategic Companies with External Controls Relation Results

In contrast to the taxi assignment benchmark, where all compatible sets were answer sets, now around
20 % of the solution candidates are eliminated by the unfounded set check. While always again significantly
increases the performance, there is no clear winner among the conditions never, ufs-p and ufs-a. For
instance sizes smaller than 16, configuration never is faster than ufs-a, with ufs-p falling in between.
However, for instances with more than 16 companies, this pattern is inverted and ufs-a exhibits a slightly
better performance than the other two configurations. The reason is that for larger instances, the unfounded
set search requires a larger fraction of the overall solving time. Thus, triggering backjumping earlier has
a higher impact on the overall running time of the unfounded set search wrt. larger instances. Overall,
the effect of employing partial evaluations only in the unfounded set search is small since monotonicity of
the external source already allows to learn small io-nogoods that are exploited by the unfounded set search.
The fact that conditions always and qxp-c are still very efficient indicates that nogoods learned in the main
search help to speed up the unfounded set search as well, but not the other way around. This is also supported
by the observation that exploiting early evaluations based on partial assignments both in the main and in the
unfounded set search in condition always + ufs-a decreases the performance compared to always.

Notably, configuration always + ufs-a significantly outperforms all other conditions for computing the
first answer set. This is explained by the fact that, in this case, different io-nogoods are learned in the main
and the unfounded set search, respectively, while the overlap increases when more answer sets are computed.
Accordingly, nogoods learned in each of the two search procedures are more likely to complement each
other, resulting in lower running times.

Strategic Companies with Nonmonotonic External Controls Relation. We considered a second variant
of the strategic companies problem with an external controls relation to test the effect of early external
evaluation during the unfounded set check when the external source behaves nonmonotonically. In this
case, the general learning function Λu has to be used instead of Λmu. As a result, io-nogoods are less
general because they also contain the negative input part (cf. Definition 10) and thus, nogoods learned in the
main search are less likely to be also useful in the unfounded set search.

Here, the same problem instances as in the previous monotonic case are used, but the semantics of the

34 LOGCOMP RR 18-02

oracle function associated with the external atom &majority [strategic](c) is modified as follows:

f&majority ′(A, strategic, c) =



T if
∑

Tstrategic(ci)∈A shares(ci, c) > 50 %

and
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) < 100 %;
F if

∑
Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %

or
∑

Tstrategic(ci)∈A shares(ci, c) = 100 %;
U otherwise.

Accordingly, a company is only added to a candidate strategic set via the external atom if its shares owned
by other companies in the set exceed 50 %, but are less than 100 %. This is motivated by the fact that selling
the full shares, i.e., the entire company, might result in a higher payoff than selling only bits; hence a holding
might be inclined to not keep a company that it owns fully. The corresponding results are shown in Table 8.

We do not observe a difference regarding the number of solutions compared to the previous benchmark
as 100 % of controlled shares are usually not reached wrt. the used instances. Nevertheless, the external
source needs to ensure that this limit cannot be reached, before returning the truth value T for a particular
company in the output. Consequently, the learning function Λu has to be utilized such that nogoods are
typically larger than in the previous benchmark. Due to the altered semantics of the external source, running
times in general increase, while the overall pattern remains similar to the one encountered for the previous
benchmark. However, we observe that the running times for configuration never increase to a higher degree
relative to the other conditions. This indicates that exploiting external evaluations wrt. partial assignments
has an additional benefit when the external source behaves nonmonotonically. Now, for instances containing
more than 12 companies we always observe an advantage of ufs-a and ufs-p over never, whereby ufs-a
is faster than ufs-p.

Again, condition always + ufs-a proved to be very efficient for computing only the first answer set.
Even though the running times for computing one solution in all other conditions significantly increase
compared to the previous benchmark setting, the running times for configuration always + ufs-a are similar
to before. This is because, on the one hand, less information about the external source semantics is available
to the solver from the preceding search before the first answer set has been computed. On the other hand,
io-nogoods learned in conditions always and ufs-a, respectively, are now less likely to be useful for the
main search and the unfounded set search simultaneously, due to nonmonotonicity of the external source.
In contrast, configuration always + ufs-a enables the learning of io-nogoods tailored to each of the two
search procedures.

Findings Regarding Partial Evaluation in the Unfounded Set Search. We found that configurations
ufs-p and ufs-a improve the performance in all benchmarks considered for testing partial evaluation in
the unfounded set search. However, the improvement was not as pronounced as the one we found for
partial evaluation in the main search, and depends on how much room there is for decreasing the runtime
of the unfounded set search by detecting conflicts earlier. Thus, hypothesis (H5) is partly supported by
our experimental results. In the experiments employing strategic companies problems, where external calls
are inexpensive, condition ufs-a showed lower running times than ufs-p, while for the taxi benchmark
with more costly external evaluations it was the other way around. This is in line with hypotheses (H5)
and (H6). In support of hypothesis (H6), ufs-p also performs better than ufs-a for small instances of the
strategic companies benchmarks, where the information obtained from external calls is less useful due to
less time required by the minimality check and low usefulness of learned nogoods wrt. the main search.
Finally, we found that for computing all answer sets the combination always + ufs-a does not increase the
efficiency compared to only utilizing partial evaluation in the main search. However, the combination is very

LOGCOMP RR 18-02 35

All Answer Sets First Answer Set

never always ufs-p ufs-a always +
ufs-a qxp-c never always ufs-p ufs-a always +

ufs-a qxp-c solutions /
compatible sets

2 0.13 (0) 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.12 (0) 0.13 (0) 0.14 (0) 0.13 (0) 1.18 / 1.68
4 0.14 (0) 0.17 (0) 0.15 (0) 0.18 (0) 0.20 (0) 0.17 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.15 (0) 0.16 (0) 0.15 (0) 1.70 / 2.96
6 0.19 (0) 0.24 (0) 0.21 (0) 0.30 (0) 0.34 (0) 0.28 (0) 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.20 (0) 0.21 (0) 2.56 / 4.46
8 0.41 (0) 0.43 (0) 0.44 (0) 0.63 (0) 0.66 (0) 0.56 (0) 0.22 (0) 0.22 (0) 0.23 (0) 0.27 (0) 0.27 (0) 0.33 (0) 4.20 / 6.42

10 1.48 (0) 1.03 (0) 1.65 (0) 1.91 (0) 1.66 (0) 1.31 (0) 0.46 (0) 0.35 (0) 0.49 (0) 0.55 (0) 0.43 (0) 0.70 (0) 7.44 / 10.10
12 5.48 (0) 2.31 (0) 5.65 (0) 5.68 (0) 3.33 (0) 3.14 (0) 1.51 (0) 0.63 (0) 1.57 (0) 1.53 (0) 0.73 (0) 1.62 (0) 9.30 / 13.62
14 21.73 (0) 5.42 (0) 21.90 (0) 18.82 (0) 8.16 (0) 8.85 (0) 3.79 (0) 1.11 (0) 3.77 (0) 3.49 (0) 0.98 (0) 4.11 (0) 18.08 / 24.46
16 82.33 (0) 10.30 (0) 85.19 (1) 62.76 (0) 16.58 (0) 16.81 (0) 13.33 (0) 2.91 (0) 20.98 (1) 10.42 (0) 1.51 (0) 10.99 (0) 26.96 / 35.04
18 295.92 (38) 27.77 (0) 276.44 (25) 223.77 (5) 31.65 (0) 51.90 (2) 47.45 (0) 10.23 (0) 74.04 (5) 38.08 (0) 2.49 (0) 41.02 (2) 36.52 / 47.56
20 300.00 (50) 66.34 (1) 300.00 (50) 300.00 (50) 66.86 (0) 104.89 (7) 147.18 (8) 27.06 (0) 154.22 (12) 129.44 (6) 3.18 (0) 79.82 (6) 64.30 / 79.58
22 300.00 (50) 128.22 (6) 300.00 (50) 300.00 (50) 130.16 (1) 141.36 (13) 241.06 (31) 58.19 (5) 242.13 (32) 237.55 (29) 5.53 (0) 104.79 (12) ≥96.84 / 116.22
24 300.00 (50) 216.67 (15) 300.00 (50) 300.00 (50) 237.73 (15) 234.66 (27) 280.97 (45) 90.34 (7) 280.88 (44) 277.49 (42) 6.14 (0) 179.49 (23) ≥143.32 / 195.74
26 300.00 (50) 291.04 (43) 300.00 (50) 300.00 (50) 277.07 (39) 278.78 (38) 294.46 (48) 125.64 (16) 294.04 (48) 294.23 (48) 8.90 (0) 153.72 (21) ≥131.10 / 311.74
28 300.00 (50) 295.25 (47) 300.00 (50) 300.00 (50) 295.78 (46) 286.65 (45) 300.00 (50) 154.06 (22) 300.00 (50) 300.00 (50) 10.48 (0) 210.73 (33) ≥120.28 / 280.04
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 299.88 (49) 300.00 (50) 300.00 (50) 194.76 (29) 300.00 (50) 300.00 (50) 12.76 (0) 198.39 (31) ≥108.38 / 267.14

Table 8: Strategic Companies with Nonmonotonic External Controls Relation Results

efficient when only the first answer set is computed, where the sets of io-nogoods learned in the main and the
unfounded set search, respectively, are less likely to overlap. Moreover, we observed that the combination
has an even higher advantage over other conditions when a nonmonotonic external source is accessed as this
as well increases the chance of learning different nogoods in the main search and the unfounded set search,
respectively. Accordingly, our experiments confirm hypothesis (H7).

We conclude that even when partial evaluation during the unfounded set search does not increase the
efficiency for computing all answer sets compared to other configurations, it can be highly effective in
combination with partial evaluation during the main search in case only one solution is required.

8 Discussion and Conclusion

In this section, we first continue and extend our review of related work, and we then conclude with a
summary and outlook on ongoing and future issues.

8.1 Related Work

As mentioned in the introduction, our work is most closely related to SMT solving, in particular to theory
propagation there [Nieuwenhuis et al., 2006], and naturally to constraint ASP solving, as in [Gebser et al.,
2009], and theory solving in CLINGO 5 [Gebser et al., 2016].

As for the relation to SMT solving, we observe that the latter typically considers fixed types of theories,
while HEX is more general and geared towards supporting heterogeneous theories. Using a fixed type of
theory is a characteristics of several extensions of ASP with SMT, such as DINGO [Janhunen et al., 2013],
which uses difference logic, NLP-DL [Eiter et al., 2005a], which uses description logics, and ASPMT [Lee
and Meng, 2013].

Furthermore, the abstract level of semantics in terms of input-output relations accommodates even ar-
bitrary non-logical theories. However, there is closer similarity regarding integration schemas and learning
techniques. Typical integration schemas for SMT have been identified [Balduccini and Lierler, 2013b],
which apply to ASP modulo theories as well (a comparison is given by Balduccini and Lierler [2013a]):

• In black-box integration, the SAT solver blindly generates a model and passes it for checking to the
theory solver. If it passes the check, the model is returned, otherwise it is added in constraint form to

36 LOGCOMP RR 18-02

the instance and the solver restarts. This allows for easy coupling with arbitrary theories but does not
enable search space pruning.

• In grey-box integration, the theory solver is only called for complete models of the SAT instance, but
the SAT solver is merely suspended during checking and can continue its search afterwards; integra-
tion is still relatively simple.

• Only in clear-box integration, the SAT solver is interleaved with the theory solver, which is called
already for partial assignments and in turn may propagate further truth values or detect inconsistencies.
However, the integration is much more challenging as the theory solver must identify atoms implied
by the given partial assignment, or by inconsistency reasons, respectively.

Examining HEX, the grey-box schema corresponds to the evaluation algorithms in use before external beha-
vior learning was introduced in [Eiter et al., 2012]; black-box integration, i.e. resorting to complete restarts,
has never been used for HEX solving. With incorporation of such learning, the algorithms fit an intermediate
schema between grey- and clear-box integration: external sources were still only evaluated under complete
assignments, but the learned nogoods possibly pruned the search space.

Compared to constraint ASP solving, the HEX formalism is more general as it supports access to arbitrary
external sources which are largely black boxes, and without (implicit) assumptions of their properties. In this
respect, constraint ASP can be considered as a special case of HEX with theory-specific knowledge. There
are a number of integrations of ASP with constraint programming, as realized e.g. in CLINGCON [Ostrowski
and Schaub, 2012], LC2CASP [Cabalar et al., 2016], EZCSP [Balduccini, 2009], and EZSMT [Susman and
Lierler, 2016]; we refer to [Lierler et al., 2016] for an overview of systems. Here, we focus on the work of
Ostrowski and Schaub [2012], who considered nogood minimization as we do, but used different algorithms
that avoid expensive resets of the constraint solver. However, this is only possible by exploiting properties
of the specific theory at hand (monotonic constraint satisfaction), which in our more general setting do
not always apply (e.g., for nonmonotonic external atoms); furthermore, the user-friendly plug-and-play
integration of external sources does not provide control over the external algorithms. On the other hand,
other possibilities for optimizations arise, e.g., simultaneous io-nogood minimization since external atoms
can have multiple output values for the same input.

Unlike HEX-programs, theory solving in CLINGO 5 (and constraint ASP as a special instance thereof)
does not support external atoms with dedicated input and output. Instead, certain atoms in the logic program
are declared as theory atoms whose truth values are set via the external theory. In that, CLINGO 5 follows a
global perspective rather than the local one of external atoms in HEX-programs, where the scope is the rule
body (as customary in logic programming), where theory atoms may be shared by different rules. Another
more distinguishing difference concerns the actual semantics of programs, and here in particular founded-
ness of answer sets. Roughly speaking, CLINGO 5 fixes a valuation of the theory atoms and computes then
an answer set of the program relative to this valuation; this amounts to using a GL-style reduct where theory
atoms are removed from rules. In contrast, for evaluating HEX-programs all external atoms remain in the
rules, according to the FLP reduct. While CLINGO 5 makes no further minimality check, for HEX-programs
an unfounded set check is launched which may eliminate a candidate answer set. For example, CLINGO 5
would return A2 = {Tp} as an answer set for the program Π = {p ← &id [p]().} (adapted to the different
formalism), which is eliminated by the unfounded set check for HEX-programs. Notably, the need for exter-
nal evaluation calls in the unfounded set check leaves room for different evaluation heuristics as presented
in Section 6.10

10The authors of CLINGO have conducted some experiments with partial unfounded set checking earlier, but merely for ordinary

LOGCOMP RR 18-02 37

Other related work comprises alternative solving techniques, such as the one by Eiter et al. [2014b],
where the semantics of external atoms is captured by so-called support sets, which are similar to our faithful
io-nogoods and related to implicants of logical theories [Darwiche and Marquis, 2002; Reiter and de Kleer,
1987]. However, different from our approach, the main idea there is to learn all or sufficiently many support
sets at the beginning of the solving process, such that satisfaction and unsatisfaction of an external atom
under given input is completely covered. External atom evaluation can then be accomplished by matching
the support sets against the interpretation; this eliminates external calls during solving entirely, but comes
at the price of learning up to exponentially many support sets; a related support-set based approach goes a
step further and encodes the semantics of external atoms straight into the ASP-program [Redl, 2017]. The
exponential worst-case blowup suggests to use these approaches only for external atoms with a compact
and small representation by support sets. Moreover, since they genuinely depend on exhaustive learning
of support sets at the beginning, they cannot directly benefit from the possibility of partial evaluation as
presented in the previous sections.

Finally, Antic et al. [2013] considered partial HEX-semantics before, by employing Approximation Fix-
point Theory (AFT) [Denecker et al., 2000; 2004] that works on intervals in the power set lattice. While our
partial oracle functions amount to their three-valued oracle functions, we only consider two-valued answer
sets and we do not apply a fixpoint construction to define the answer set semantics. Similarly, Pelov et
al. [2004] have defined a family of partial stable model semantics for logic programs with aggregates using
AFT. Assignment-monotonic oracle functions are also related to their approximating aggregate relations
which must be precision-monotone and generalize ordinary aggregate relations to a three-valued semantics.

8.2 Summary and Outlook

In this article, we have pushed efficient evaluation techniques for ASP with external source access, by in-
troducing three-valued evaluation of external atoms under partial (incomplete) truth value assignments. The
techniques we introduced yield a full-fledged clear-box integration. Moreover, due to automatic nogood
minimization, developers of external sources do not need to manually describe implied truth values or in-
consistency reasons, but only need to implement a three-valued oracle function, which keeps the integration
of sources simple.

In our experiments, the new techniques yielded a speedup of up to two orders of magnitude; unsur-
prisingly, their ranking depends on the instances. This is similar to the observations by Ostrowski and
Schaub [2012], who reported mixed results for different propagation delays. Our results are also in line with
results in SMT, where theory propagation, if doable with small overhead, is crucial for performance [Du-
tertre and de Moura, 2006; Lahiri et al., 2006; Nieuwenhuis and Oliveras, 2005]. We observed that in
most cases learning from complete assignments plus minimization of conflicting nogoods (based on par-
tial assignments) outperforms learning during search; hence, this setting is suggestive as a default. This is
explained by the fact that in this case, learning focuses on nogoods that are useful for conflict resolution,
thus the information gain is similar and the overhead much smaller. This is in line with the observation by
Nieuwenhuis et al. [2006] that conflict analysis uses only a small fraction of the lemmas learned by the-
ory propagation, which can be addressed with lazy explanations [Gent et al., 2010]. The speedup can be
exponential, as evidenced by an external atom whose truth value is definite after assigning a single input
atom, e.g. &empty [p]() to check whether an atom over p is true. Each naive nogood eliminates one of
exponentially many assignments, but a linear number of minimized ones eliminate all wrong guesses.

programs, where ‘partial’ refers to an incomplete model candidate whose minimality might already be violated. They found no real
computational benefits for this approach. (Informal communication.)

38 LOGCOMP RR 18-02

There are different directions for ongoing and future work. One topic is to include further heuristics for
deciding whether external evaluation is invoked or skipped at some point. This decision might be based, for
instance, on the past information gain; other criteria are conceivable. Another topic is further improvement
of nogood minimization. To this end, the divide-and-conquer strategy borrowed from Junker’s QUICKX-
PLAIN algorithm [2004] might be replaced by a more sophisticated one, e.g. the one that Shchekotykhin
et al. [2015] developed for their MERGEXPLAIN algorithm. By the latter, multiple minimal conflict sets
(resp., nogoods) can be found during one program run; this could be integrated into our approach for obtai-
ning multiple minimal io-nogoods.

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) via the projects P24090 and W1225-
N23.

References

[Alviano et al., 2015a] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances
in WASP. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczynski, editors, Logic
Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington,
KY, USA, September 27-30, 2015. Proceedings, volume 9345 of Lecture Notes in Computer Science,
pages 40–54. Springer, 2015.

[Alviano et al., 2015b] Mario Alviano, Wolfgang Faber, and Martin Gebser. Rewriting recursive aggregates
in answer set programming: back to monotonicity. Theory and Practice of Logic Programming (TPLP),
15(4-5):559–573, 2015.

[Antic et al., 2013] Christian Antic, Thomas Eiter, and Michael Fink. Hex semantics via approximation
fixpoint theory. In Pedro Cabalar and Tran Cao Son, editors, Logic Programming and Nonmonotonic
Reasoning, LPNMR 2013, volume 8148 of LNCS, pages 102–115. Springer, 2013.

[Balduccini and Lierler, 2013a] Marcello Balduccini and Yuliya Lierler. Hybrid automated reasoning tools:
from black-box to clear-box integration. CoRR, abs/1312.6105, 2013.

[Balduccini and Lierler, 2013b] Marcello Balduccini and Yuliya Lierler. Integration schemas for constraint
answer set programming: a case study. Theory and Practice of Logic Programming (TPLP), 13(4-5-
Online-Supplement), 2013.

[Balduccini, 2009] Marcello Balduccini. Representing constraint satisfaction problems in answer set pro-
gramming. In Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP) at
ICLP, 2009.

[Barrett et al., 2009] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfi-
ability modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
825–885. IOS Press, 2009.

[Brewka et al., 2011] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming
at a glance. Communications of the ACM, 54(12):92–103, 2011.

LOGCOMP RR 18-02 39

[Cabalar et al., 2016] Pedro Cabalar, Roland Kaminski, Max Ostrowski, and Torsten Schaub. An ASP
semantics for default reasoning with constraints. In Kambhampati [2016], pages 1015–1021.

[Cadoli et al., 1997] M. Cadoli, T. Eiter, and G. Gottlob. Default Logic as a Query Language. IEEE Trans.
on Knowledge and Data Engineering, 9(3):448–463, May/June 1997.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in description logics: The DL-
Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[Carro et al., 2016] Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos, editors. Technical
Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, October
16-21, 2016, New York City, USA, volume 52 of OASICS. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. of
Artificial Intelligence Research, 17:229–264, 2002.

[Denecker et al., 2000] Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, stable
operators, well-founded fixpoints and applications in nonmonotonic reasoning. In Jack Minker, editor,
Logic-Based Artificial Intelligence, volume 597 of The Springer International Series in Engineering and
Computer Science, pages 127–144. Kluwer Academic Publishers, Norwell, Massachusetts, 2000.

[Denecker et al., 2004] Marc Denecker, Victor Marek, and Mirosław Truszczyński. Ultimate approxima-
tion and its application in nonmonotonic knowledge representation systems. Information and Computa-
tion, 192(1):84–121, 2004.

[Drescher et al., 2008] Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann, Arne
König, Max Ostrowski, and Torsten Schaub. Conflict-driven disjunctive answer set solving. In Ger-
hard Brewka and Jérôme Lang, editors, Principles of Knowledge Representation and Reasoning, KR
2008, pages 422–432. AAAI Press, 2008.

[Dutertre and de Moura, 2006] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, CAV
2006, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[Eén and Sörensson, 2006] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

[Eiter et al., 2004] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Com-
bining Answer Set Programming with Description Logics for the Semantic Web. In Didier Dubois,
Christopher Welty, and Mary-Anne Williams, editors, Proceedings of the 9th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2004), pages 141–151. AAAI Press, June
2004.

[Eiter et al., 2005a] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. NLP-DL:
A KR system for coupling nonmonotonic logic programs with description logics. In R. Mizoguchi, editor,
Poster & Demonstration Proceedings of the 4th International Semantic Web Conference (ISWC 2005),
page PID 67, 2005. System poster.

40 LOGCOMP RR 18-02

[Eiter et al., 2005b] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uni-
form integration of higher-order reasoning and external evaluations in answer-set programming. In Les-
lie Pack Kaelbling and Alessandro Saffiotti, editors, International Joint Conference on Artificial Intelli-
gence, IJCAI 2005, pages 90–96. Professional Book Center, 2005.

[Eiter et al., 2008] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and
Hans Tompits. Combining answer set programming with description logics for the semantic web. Artifi-
cial Intelligence, 172(12-13):1495–1539, 2008.

[Eiter et al., 2012] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-
driven ASP solving with external sources. Theory and Practice of Logic Programming (TPLP), 12(4-
5):659–679, 2012.

[Eiter et al., 2014a] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter
Schüller. Efficient HEX-program evaluation based on unfounded sets. Journal of Artificial Intelligence
Research, 49:269–321, February 2014.

[Eiter et al., 2014b] Thomas Eiter, Michael Fink, Christoph Redl, and Daria Stepanova. Exploiting support
sets for answer set programs with external evaluations. In Carla E. Brodley and Peter Stone, editors,
Conference on Artificial Intelligence, AAAI 2014, pages 1041–1048. AAAI Press, 2014.

[Eiter et al., 2016a] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Domain ex-
pansion for ASP-programs with external sources. Artificial Intelligence, 233:84–121, 2016.

[Eiter et al., 2016b] Thomas Eiter, Michael Fink, and Daria Stepanova. Data repair of inconsistent nonmo-
notonic description logic programs. Artif. Intell., 239:7–53, 2016.

[Eiter et al., 2016c] Thomas Eiter, Tobias Kaminski, Christoph Redl, and Antonius Weinzierl. Exploiting
partial assignments for efficient evaluation of answer set programs with external source access. In Kam-
bhampati [2016], pages 1058–1065.

[Eiter et al., 2016d] Thomas Eiter, Christoph Redl, and Peter Schüller. Problem solving using the HEX
family. In Christoph Beierle, Gerhard Brewka, and Matthias Thimm, editors, Computational Models
of Rationality, Essays dedicated to Gabriele Kern-Isberner on the occasion of her 60th birthday, pages
150–174. College Publications, 2016.

[Eiter et al., 2017] Thomas Eiter, Tobias Kaminski, Christoph Redl, Peter Schüller, and Antonius Wein-
zierl. Answer set programming with external source access. In Giovambattista Ianni, Domenico Lembo,
Leopoldo E. Bertossi, Wolfgang Faber, Birte Glimm, Georg Gottlob, and Steffen Staab, editors, Reaso-
ning Web. Semantic Interoperability on the Web - 13th International Summer School 2017, London, UK,
July 7-11, 2017, Tutorial Lectures, volume 10370 of Lecture Notes in Computer Science, pages 204–275.
Springer, 2017.

[Erdem et al., 2016] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set program-
ming. AI Magazine, 37(3):53–68, 2016.

[Faber et al., 2011] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Semantics and complexity of recur-
sive aggregates in answer set programming. Artificial Intelligence, 175(1):278–298, January 2011.

LOGCOMP RR 18-02 41

[Faber, 2005] Wolfgang Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Re-
asoning (LPNMR 2005), Diamante, Italy, September 5-8, 2005, volume 3662, pages 40–52. Springer,
2005.

[Gebser and Schaub, 2016] Martin Gebser and Torsten Schaub. Modeling and language extensions. AI
Magazine, 37(3):33–44, 2016.

[Gebser et al., 2007] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set enumeration. In Chitta Baral, Gerhard Brewka, and John S. Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning, LPNMR 2007, volume 4483 of LNCS, pages 136–148.
Springer, 2007.

[Gebser et al., 2009] Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solving.
In Patricia M. Hill and David S. Warren, editors, International Conference on Logic Programming, ICLP
2009, volume 5649 of LNCS, pages 235–249. Springer, 2009.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. Potassco: The Potsdam Answer Set Solving Collection. AI Commun.,
24(2):107–124, 2011.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188:52–89, August 2012.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Philipp Wanko. Theory solving made easy with clingo 5. In Carro et al. [2016], pages
2:1–2:15.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9(3–4):365–386, 1991.

[Gent et al., 2010] Ian P. Gent, Ian Miguel, and Neil C. A. Moore. Lazy explanations for constraint propa-
gators. In Manuel Carro and Ricardo Peña, editors, Practical Aspects of Declarative Languages, PADL
2010, volume 5937 of LNCS, pages 217–233. Springer, 2010.

[Janhunen et al., 2013] Tomi Janhunen, Guohua Liu, and Ilkka Niemelä. Tight integration of non-ground
answer set programming and satisfiability modulo theories. In Pedro Cabalar, David Mitchell, David
Pearce, and Eugenia Ternovska, editors, Informal Proceedings of the 1st Workshop on Grounding and
Transformations for Theories with Variables (GTTV’11), LPNMR, Vancouver, BC, Canada May 16th,
2011, pages 1–14, 2013. Online available at http://www.dc.fi.udc.es/GTTV11/GTTV-Proc.pdf.

[Junker, 2004] Ulrich Junker. QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems. In Deborah L. McGuinness and George Ferguson, editors, Innovative Applications of Artificial
Intelligence, IAAI 2004, pages 167–172. AAAI Press / The MIT Press, 2004.

[Kambhampati, 2016] Subbarao Kambhampati, editor. Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. IJCAI/AAAI
Press, 2016.

42 LOGCOMP RR 18-02

[Karp, 1972] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York.,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[Lahiri et al., 2006] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT techniques for
fast predicate abstraction. In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification,
CAV 2006, volume 4144 of LNCS, pages 424–437. Springer, 2006.

[Lee and Meng, 2013] Joohyung Lee and Yunsong Meng. Answer set programming modulo theories and
reasoning about continuous changes. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 990–
996. IJCAI/AAAI, 2013.

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive Stable Models:
Unfounded Sets, Fixpoint Semantics, and Computation. Information and Computation, 135(2):69–112,
June 1997.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic (TOCL), 7(3):499–562, July 2006.

[Lierler et al., 2016] Yuliya Lierler, Marco Maratea, and Francesco Ricca. Systems, engineering environ-
ments, and competitions. AI Magazine, 37(3):45–52, 2016.

[Manquinho and Silva, 2005] Vasco M. Manquinho and João P. Marques Silva. Effective lower bounding
techniques for pseudo-boolean optimization. In 2005 Design, Automation and Test in Europe Conference
and Exposition (DATE 2005), 7-11 March 2005, Munich, Germany, pages 660–665. IEEE Computer
Society, 2005.

[Marques-Silva et al., 2009] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause
learning sat solvers. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 4,
pages 131–153. IOS Press, February 2009.

[Nieuwenhuis and Oliveras, 2005] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive the-
ory propagation and its application to difference logic. In Kousha Etessami and Sriram K. Rajamani,
editors, Computer Aided Verification, CAV 2005, volume 3576 of LNCS, pages 321–334. Springer, 2005.

[Nieuwenhuis et al., 2006] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal
of the ACM, 53(6):937–977, November 2006.

[Ostrowski and Schaub, 2012] Max Ostrowski and Torsten Schaub. ASP modulo CSP: The clingcon sy-
stem. Theory and Practice of Logic Programming (TPLP), 12(4-5):485–503, 2012.

[Pelov et al., 2004] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Partial stable models for
logic programs with aggregates. In Vladimir Lifschitz and Ilkka Niemelä, editors, Logic Programming
and Nonmonotonic Reasoning, LPNMR 2004, volume 2923 of LNCS, pages 207–219. Springer, 2004.

LOGCOMP RR 18-02 43

[Redl, 2017] Christoph Redl. Efficient evaluation of answer set programs with external sources based on
external source inlining. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.,
pages 1222–1228. AAAI Press, 2017.

[Reiter and de Kleer, 1987] Raymond Reiter and Johan de Kleer. Foundations of assumption-based truth
maintenance systems: Preliminary report. In Kenneth D. Forbus and Howard E. Shrobe, editors, AAAI,
pages 183–189. Morgan Kaufmann, 1987.

[Shchekotykhin et al., 2015] Kostyantyn M. Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. Mer-
geXplain: Fast computation of multiple conflicts for diagnosis. In Qiang Yang and Michael Wooldridge,
editors, International Joint Conference on Artificial Intelligence, IJCAI 2015, pages 3221–3228. AAAI
Press, 2015.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Implementing the
Stable Model Semantics. Artificial Intelligence, 138:181–234, June 2002.

[Susman and Lierler, 2016] Benjamin Susman and Yuliya Lierler. SMT-based constraint answer set solver
EZSMT (system description). In Carro et al. [2016], pages 1:1–1:15.

[Valiant, 1984] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

44 LOGCOMP RR 18-02

A Proofs

Proposition 1. For every HEX-program Π and external predicate &g defined by a two-valued oracle func-
tion, one can redefine &g by an assignment-monotonic three-valued oracle function without changing the
answer sets of Π.

Proof. For each external predicate &g we introduce a new external predicate &g ′, construct program Π′ by
replacing all occurrences of &g in Π by &g ′, and define f&g′(A, ·, ·) = f&g(A, ·, ·) if A is complete over
Π and f&g′(A, ·, ·) = U otherwise. Since under complete assignments all external atoms in Π have the
same truth values as the corresponding external atoms in Π′, and answer sets are complete assignments by
definition, it follows immediately that AS(Π) = AS(Π′).

Theorem 1 (Soundness and Completeness of Algorithm 1). If Algorithm 1 returns for an input program Π
(i) an assignment A, then A is an answer set of Π; (ii) the symbol ⊥, then Π is inconsistent.

Proof. The algorithm extends the conflict-driven algorithm for ordinary ASP as follows:

• The check for compatibility of Â and for minimality wrt. fΠA in the if-block of Part (c) is added.

• The evaluation of external atoms and addition of nogoods in Part (e).

Without these changes, soundness and completeness of the algorithm for ordinary ASP (cf. Drescher
et al. [2008]) implies that the algorithm returns the projection of some answer set Â of Π̂ to A(Π) if Π̂ is
consistent, and ⊥ otherwise. We now show that the changes adopt the behavior as desired.

First, the added if-block in Part (c) eliminates those answer sets of Π̂ which are either not compatible
sets of Π, or not minimal models wrt. fΠA. The remaining answer sets of Π̂ projected to the atoms in Π
are exactly the answer set of Π (cf. Definition 2). Thus, the algorithm with the added if-block in Part (c) but
without the addition of Part (e) has exactly the desired behavior.

Second, the addition of Part (e) is only an optimization and we need to justify that it does not eliminate
answer sets of Π. But this follows from the correctness of Λ(·, ·), which implies that assignments forbid-
den by such nogoods would be incompatible with the external sources anyway; therefore they cannot be
compatible sets and also not answer sets.

Proposition 2. If N is a faithful io-nogood such that NO = {σn+1e&g[p](c)}, then N is correct wrt. all
programs Π that use e&g[p](c).

Proof. Consider a faithful io-nogood N = {σ1a1, . . . , σnan}∪{σn+1e&g[p](c)}. Then faithfulness implies
f&e(NI ,p, c) = σ(NO). Suppose an assignment A violates N . Then A ⊇ NI and thus f&e(A,p, c) =
σ(NO) = σn+1. However, since σn+1e&g[p](c) ∈ A, it follows that A cannot be a compatible set of any
program.

Proposition 3. Let &g [p](·) be an external atom in a HEX-program Π. Then for all assignments A, the
nogoods Λu(&g [p],A) in Definition 9 are correct wrt. Π.

Proof. The added nogood for an output tuple c such that f&g(A,p, c) = σ, σ ∈ {T,F}, is {σe&g[p](c)} ∪
{σ′p(c′) ∈ A | p ∈ p, σ′ 6= U}. If the nogood is violated by an assignment A′, then the guess for e&g[p](c)
wrt. A′ was wrong as the replacement atom is guessed false (resp. true) but the tuple c is in the output (resp.
not in the output). Hence, the assignment A′ is not compatible and cannot be a compatible set anyway.

LOGCOMP RR 18-02 45

Proposition 4. Let &g [p](·) be an external atom in a HEX-program Π. Then for all assignments A, the
nogoods Λmu(&g [p],A) in Definition 9 are correct wrt. Π.

Proof. The added nogood for an output tuple c such that f&g(A,p, c) = σ, σ ∈ {T,F}, is {σe&g[p](c)} ∪
{σ′p(c′) ∈ A | p ∈ p, p 6∈ pm, σ

′ 6= U} ∪ {σp(c′) ∈ A | p ∈ pm}. If the nogood is violated by an
assignment A′, then the guess for e&g[p](c) wrt. A′ was wrong as the replacement atom is guessed false
(resp. true) but the tuple c is in the output (resp. not in the output). The previous holds despite the fact
that literals of form Tp(c) (resp. Fp(c)), where p ∈ pm, are omitted from io-nogoods implying a false
(resp. true) evaluation of the oracle function because {Tp(c) ∈ A′} ≥ {Tp(c) ∈ A} (resp. {Fp(c) ∈
A′} ⊇ {Fp(c) ∈ A}) must hold for all p ∈ pm, and we have that f&g(A,p, c) = T implies that
f&g(A

′′,p, c) = T for every A′′ ≥ A (resp. that f&g(A,p, c) = F implies that f&g(A
′′,p, c) = F for

every A′′ s.t. {Fp(c) ∈ A′′} ⊇ {Fp(c) ∈ A}), due to the definition of monotonic input parameters. Hence,
the assignment A′ is not compatible and cannot be a compatible set anyway.

Proposition 5. Let A be a partial assignment and N be a faithful io-nogood for &g [p] over the atoms in
A. Then some N ′ ∈ minimize(Λu(&g [p],A)) exists such that N ′ ⊆ N .

Proof. Nogood N can be reduced to a subset-minimal set M such that M is a faithful io-nogood but
f&g(N

′′,p, c) = U for all N ′′ with N ′′I (MI , N ′′O = MO. Observe that M ∈ minimize(Λu(&g [p],A))
and M ⊆ N .

Proposition 6. Let Λl be an io-complete theory-specific learning function for an external source &g . Then
for all partial assignments A and input lists p we have minimize(Λu(&g [p],A)) = min⊆(Λl(&g [p],A)).

Proof. Let A be a partial assignment and let p be an input list.
(⇒) Let N ∈ minimize(Λu(&g [p],A)) be an io-nogood learned from Λu after minimization. Since

f&g(NI ,p, c) = σ(NO) by faithfulness, it follows from completeness of Λl that N ∈ Λl(&g [p],A). Mo-
reover, since N is minimal, it follows that f&g(N

′
I ,p, c) = U for all N ′ = N ′I ∪ NO with N ′I (NI .

Therefore, there can be no N ′ (N with N ′ ∈ Λl(&g [p],A), thus N ∈ min⊆(Λl(&g [p])).
(⇐) LetN ∈ min⊆(Λl(&g [p],A)) be a subset-minimal nogood learned from Λl. Since f&g(NI ,p, c) =

σ(NO) (due to faithfulness) we have N ∈ Λu(&g [p],A) by definition of Λu. Moreover, since N is subset-
minimal among the nogoods Λl(&g [p],A) and Λl is io-complete, we have that f&g(N

′
I ,p, c) = U for

all N ′ = N ′I ∪ {σ(NO)e&g[p](c)}. But then no atom from N can be removed as by Definition 11, thus
N ∈ minimize(Λu(&g [p],A)).

Proposition 7. For a set S of faithful io-nogoods with equal input parts and distinct output parts, Algorithm
2 yields exactly one faithful io-nogood N ′ ∈ minimize(N) for each N ∈ S.

Proof. Let S be a set of faithful io-nogoods with identical input parts and distinct output parts. To distinguish
between the input and the output of Algorithm 2, we denote by So the altered set which is returned by the
algorithm given input S.

First of all, S is only manipulated in Part (c) by replacing the input part of nogoods in S. Hence, it
holds that |S| = |So|. Moreover, all N ∈ S have different output parts which are not changed in Part (c).
As a result, after every replacement exactly one element in the resulting set S′ can be associated with each
nogood in the initial set S. This proves that each input has a corresponding output nogood. It remains to
show that these are minimal faithful io-nogoods.

46 LOGCOMP RR 18-02

LetN ∈ S andNo ∈ So the corresponding output nogood, i.e.NO = No
O = σn+1e&g[p](c). We have to

show that No ∈ minimize(N). According to Definition 11, this means we have to show that No ⊆ N , that
No is a faithful io-nogood, and that f&g(N

′′,p, c) = U for all N ′′ (No
I . Clearly, it holds that No ⊆ N

since elements are only removed from NI by Algorithm 2.
Next, we prove thatNo is a faithful io-nogood by showing that faithful io-nogoods in S are only replaced

by faithful io-nogoods, in Algorithm 2. Let S′ be an arbitrary state of S during the execution of Algorithm 2,
andN ′ ∈ S′ a faithful io-nogood. We need to show thatN s∪N ′O is also a faithful io-nogood forN s = N ′I \
σiai where σiai ∈ N ′I . SinceN s ⊂ N ′I , it holds thatN s∪N ′O is an io-nogood. In Part (c),N ′I is replaced by
N s in S only if N ′O ∈ output for 〈N s , output〉 ∈ ch , which is the case only if f&g(N

s ,p, c) =σ(N ′O) 6=
U, due to Part (b) of the algorithm. Note that it is ensured in Part (b) that for N s there is exactly one
〈N s , output〉 ∈ ch . Further, we know that σ(N ′O) 6= U as N ′ is an io-nogood. Due to assignment-
monotonicity of f&g, we have that f&g(N

s ,p, c) = X , X ∈ {T,F}, implies f&g(A,p, c) = X for
all partial assignments A � N s , by Definition 6. We derive that f&e(A,p, c) = σ(N ′O) for all partial
assignments A ⊇ N s and thus, that N s ∪ N ′O is in fact a faithful io-nogood. Since we know that N is a
faithful io-nogood, we conclude that No is a faithful io-nogood as well.

Finally, we prove that f&g(N
′′,p, c) = U for all N ′′ (No

I . Assume to the contrary that we have
f&g(N

′′,p, c) 6= U for some N ′′ (No
I , and let σiai ∈ No

I \ N ′′. Since σiai ∈ No
I , we have that N s =

N ′I \σiai holds for someN ′ that is chosen during the execution of Algorithm 2 in Part (a) (i.e. in the iteration
when it is tried to obtain smaller nogoods by removing σiai), with N ′O = σn+1e&g[p](c) and N ′I ⊆ No

I .
As we have that σiai ∈ No

I , we derive that f&g(N
s ,p, c) = U. Otherwise N ′ would be replaced by

N s ∪ N ′O in Part (c), and we would obtain σiai 6∈ No
I . However, we obtain that f&g(N

′′,p, c) 6= U,
f&g(N

s ,p, c) = U and N s ⊃ N ′′, which together contradicts that f&g is assignment-monotonic. This
proves that indeed f&g(N

′′,p, c) = U for all N ′′ (No
I and thus, No ∈ minimize(N).

Proposition 9. Let A be a complete assignment, X be a partial assignment, and f&g be an assignment
monotonic three-valued oracle function. Then, f&g(A ∪̇ ¬.X,p, c) = X , X ∈ {T,F}, implies for every
assignment X′ � X that f&g(A ∪̇ ¬.X′,p, c) = X .

Proof. Let A be a complete assignment, X a partial assignment, and f&g an assignment monotonic three-
valued oracle function. Further let f&g(A ∪̇ ¬.X,p, c) = X , where X ∈ {T,F}, and let X′ be an arbitrary
partial assignment s.t. X′ � X. We need to show that f&g(A ∪̇ ¬.X′,p, c) = X . First, we show that
A ∪̇ ¬.X′ � A ∪̇ ¬.X. Recall that A ∪̇ ¬.X = (A\{Ta | Ta ∈ X or Ua ∈ X})∪{Fa | Ta ∈ X}∪{Ua |
Ua ∈ X and Ta ∈ A}, according to Definition 13. Since X′ � X, we have that {Ta ∈ X} ∪ {Fa ∈
X} ⊆ X′, due to the definition of “�”. Hence, we derive that {Ta | Ta ∈ X or Ua ∈ X} � {Ta | Ta ∈
X′ or Ua ∈ X′}. It follows that (A \ {Ta | Ta ∈ X′ or Ua ∈ X′}) � (A \ {Ta | Ta ∈ X or Ua ∈ X}).
It is also easy to see that {Fa | Ta ∈ X′} � {Fa | Ta ∈ X} and {Ua | Ua ∈ X′ and Ta ∈ A} �
{Ua | Ua ∈ X and Ta ∈ A}. Consequently, we infer that A ∪̇ ¬.X′ � A ∪̇ ¬.X. Because we have that
f&g(A ∪̇ ¬.X,p, c) = X , and due to assignment monotonicity according to Definition 6, from A ∪̇ ¬.X′ �
A ∪̇ ¬.X it follows that f&g(A ∪̇ ¬.X′,p, c) = X .

Proposition 11. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose
Algorithm 4 is executed with Π and A as inputs. If there is an unfounded set U for Π wrt. A s.t. {Ta ∈
A} ∩ U 6= ∅, then there is a solution S for ΩΠ with assumptionsAA, s.t. {Ta ∈ A} ∩ S 6= ∅, that satisfies
conditions (1) and (2) of Proposition 10 and all transformed nogoods TΩ(N) added to Ω′Π in Part (d) of
Algorithm 4.

LOGCOMP RR 18-02 47

Proof. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose Algorithm 4 is
executed with Π and A as inputs. Further, let there be an unfounded set U for Π wrt. A s.t. {Ta ∈ A}∩U 6=
∅. According to Proposition 8 by Eiter et al. [2014a], there is a solution S for ΩΠ with assumptions AA

s.t. {Ta ∈ A} ∩ S 6= ∅. In addition, it follows directly from Proposition 11 by Eiter et al. [2014a] that S
satisfies conditions (1) and (2) of Proposition 10.

It is easy to see that any faithful io-nogood as defined in Definition 8 is also a valid input-output-
relationship according to Definition 9 by Eiter et al. [2014a]. Moreover, we only consider faithful io-
nogoods returned by the learning function Λ. Consequently, we infer that S also satisfies all transformed
nogoods TΩ(N) added to Ω′Π in Part (d) of Algorithm 4 according to Proposition 15 by Eiter et al. [2014a].

Theorem 2 (Soundness and Completeness of Algorithm 4). Given a HEX-program Π and a complete
assignment A over A(Π) as inputs, Algorithm 4 returns true if there is an unfounded set U for Π wrt. A
s.t. {Ta ∈ A} ∩U 6= ∅, and false otherwise.

Proof. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose Algorithm 4 is
executed with Π and A as inputs.

We first show that Algorithm 4 returns true if there is an unfounded set U for Π wrt. A s.t. {Ta ∈
A} ∩U 6= ∅. Consider the case that there is an unfounded set U for Π wrt. A s.t. {Ta ∈ A} ∩U 6= ∅.
According to Proposition 11, a solution S for ΩΠ with assumptions AA exists, s.t. {Ta ∈ A} ∩ S 6= ∅,
which does not violate any nogood added to Ω′Π in Part (d) of Algorithm 4. Consequently, the complete
assignment S is generated by Algorithm 4 and Part (c) is executed. Since S satisfies conditions (1) and (2)
of Proposition 10, according to Proposition 11, the variable isUFS is not set to false in Part (c), and because
{Ta ∈ A} ∩ S 6= ∅ the algorithm returns true .

Now we show that Algorithm 4 returns false if there is no unfounded set U for Π wrt. A s.t. {Ta ∈
A}∩U 6= ∅. Towards contradiction, suppose that there is no unfounded set U for Π wrt. A s.t. {Ta ∈ A}∩
U 6= ∅ and that Algorithm 4 does not return false . This means that false is not returned in Part (b) because
true is returned before the search space has been completely explored. Accordingly, a complete assignment
S is generated by Algorithm 4 and Part (c) is executed, which satisfies conditions (1) and (2) of Proposition
10. Moreover, it must hold that {Ta ∈ A} ∩ S 6= ∅ because otherwise true would not be returned in
Part (c). However, from Proposition 10 we know that U =

{
Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T,F}

}
is an

unfounded set for Π wrt. A. Since we have that {Ta ∈ A} ∩ S 6= ∅, we have that {Ta ∈ A} ∩U 6= ∅ and
hence, we infer that there is an unfounded set U for Π wrt. A s.t. {Ta ∈ A} ∩U 6= ∅. Thus, we derive
a contradiction, and infer that Algorithm 4 returns false if there is no unfounded set U for Π wrt. A s.t.
{Ta ∈ A} ∩U 6= ∅.

