"globallearning" — 2017/7/26 — 11:32 — page 1 — #1

26th International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, August 19–25, 2017

Conflict-driven ASP Solving with External Sources and Program Splits

Christoph Redl

redl@tuwien.ac.at

1. Motivation

HEX-programs extend ASP by external sources:

Rule bodies may contain external atoms of the form

 $p[q_1, \ldots, q_k](t_1, \ldots, t_l)$, where p ... external predicate name, q_i ... input terms, t_j ... output terms. **Semantics:**

4. Trans-Unit (TU-)Propagation

Existing Evaluation Approaches and Observations:

- Grounding P as a whole needs exponentially many external atom calls.
- Program splitting based on acyclic evaluation graph [Eiter et al., 2016] inhibits effective conflict-driven learning.
- \blacktriangleright \Rightarrow There is either a grounding or a solving bottleneck.

1 + k + l-ary Boolean oracle function $f_{\&p}$: ground external atom $\&p[q_1, \ldots, q_k](t_1, \ldots, t_l)$ is true under assignment A iff $f_{\&p}(A, q_1, \ldots, q_k, t_1, \ldots, t_l) = T$.

Example: Set Partitioning

$$P = \begin{cases} d(a_1) \dots d(a_n). \\ r_1 \colon p(X) \leftarrow d(X), & \text{diff}[d,q](X). \\ r_2 \colon q(X) \leftarrow d(X), & \text{diff}[d,p](X). \end{cases}$$

Problem:

Due to value invention,

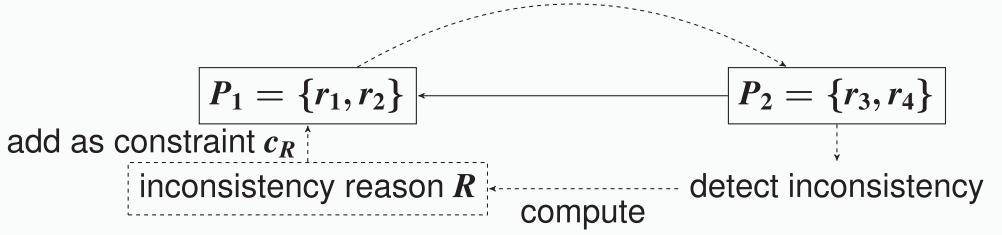
grounding nonmonotonic external atoms is expensive.

- Previous remedy: split program into components (see Block 4.).
- But: deteriorates conflict-driven solving techniques.

Our Solution:

- ► Keep splits, but compute reasons for inconsistent components.
- Propagate them as constraints to predecessor components.

2. Inconsistency Reasons (IRs)


Example

- ► Form a committee of employees; some pairs of persons are forbidden.
- Its competences depend nonmonotonically on the persons involved.
- Constraints define the competences the committee should have.

 $P = \{r_1: in(X) \lor out(X) \leftarrow person(X). \\ r_2: \leftarrow in(X), in(Y), conflict(X, Y). \}$

- $r_3: comp(X) \leftarrow \&competences[in](X).$
- $r_4: \leftarrow \operatorname{not} comp(technical), \operatorname{not} comp(financial).$

add answer set as input atoms

TU-Propagation: Propagate an IR $R = (R^+, R^-)$ of a later program component as constraint $c_R = \leftarrow R^+$, {not $a \mid a \in R^-$ } to predecessors.

5. Implementation and Experiments

We implemented tu-propagation in the **DLVHEX** solver and compared it to:

monolithic evaluation as a single program (grounding bottleneck),

Characterization of Program Inconsistency [Redl, 2017]: Let *P* be a HEX-program and *D* be a domain of atoms.

An inconsistency reason (IR) of *P* wrt. *D* is a pair $R = (R^+, R^-)$ of sets of atoms $R^+ \subseteq D$ and $R^- \subseteq D$ with $R^+ \cap R^- = \emptyset$ s.t. $P \cup facts(I)$ is inconsistent for all $I \subseteq D$ with $R^+ \subseteq I$ and $R^- \cap I = \emptyset$.

Example

Consider
$$P = \{ \leftarrow a, \operatorname{not} c; d \leftarrow b. \}$$
 and $D = \{a, b, c\}$.

An IR is $R = (\{a\}, \{c\})$ because $P \cup facts(I)$ is inconsistent for all $I \subseteq D$ such that $a \in I$ and $c \notin I$.

3. Computing Inconsistency Reasons

Ground Case:

Consider the implication graph: its nodes are literals in the current assignment, edges represent implications; nodes \perp represent conflicts.

Example

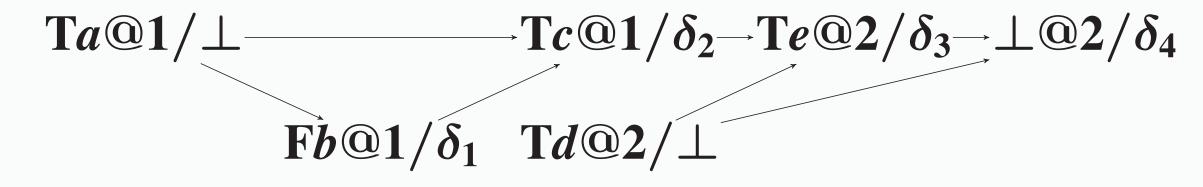
$$\Delta = \left\{ \delta_1 \colon \{\mathsf{T}a, \mathsf{T}b\}, \delta_2 \colon \{\mathsf{T}a, \mathsf{F}b, \mathsf{F}c\}, \delta_3 \colon \{\mathsf{T}c, \mathsf{T}d, \mathsf{F}e\}, \delta_4 \colon \{\mathsf{T}d, \mathsf{T}e\} \right\}$$

splitting approach (solving bottleneck).

We considered several benchmark problems, including:

1. Configuration Problem:

size	monolithic				splitting				tu-propagation			
		total	ground	solve		total	ground	solve	total	ground	solve	
8	0.20	(0)	0.05	0.04	0.49	(0)	0.15	0.20	0.19 (0)	< 0.005	0.02	
10	0.45	(0)	0.22	0.10	2.17	(0)	0.81	1.11	0.33 (0)	< 0.005	0.05	
12	1.51	(0)	0.90	0.44	9.50	(0)	3.59	5.17	0.86 (0)	0.01	0.10	
14	4.84	(0)	3.68	0.82	44.23	(0)	16.58	24.68	1.48 (0)	0.02	0.20	
16	19.52	(0)	16.55	2.08	217.46	(0)	86.17	119.93	3.80 (0)	0.07	0.57	
18	143.09	(3)	68.89	10.89	300.00	(10)	122.23	165.44	44.76 (1)	0.43	6.29	
20	300.00	(10)	300.00	n/a	300.00	(10)	126.40	162.73	37.44 (0)	0.36	3.44	
22	300.00	(10)	300.00	n/a	300.00	(10)	122.41	165.68	224.83 (6)	1.03	11.74	


2. Diagnosis Problem:

size	monolithic				splitting				tu-propagation			
	t	total ground		solve	total		ground	solve	total	ground	solve	
5	0.46	(0)	0.15	0.25	0.16	(0)	0.05	0.02	0.36 (0)	0.04	0.04	
10	10.16	(0)	5.94	5.08	2.86	(0)	2.29	0.67	6.38 (0)	1.01	0.89	
15	276.19	(5)	258.17	40.11	121.73	(1)	96.76	22.94	105.43 (3)	15.06	13.15	
20	300.00 ((10)	300.00	n/a	294.97	(9)	253.97	53.55	169.56 (5)	26.54	18.64	
25	300.00 ((10)	300.00	n/a	300.00	(10)	270.64	45.78	187.90 (5)	29.84	18.08	
30	300.00 ((10)	300.00	n/a	300.00	(10)	273.50	42.07	226.51 (6)	34.92	20.24	
35	300.00 ((10)	300.00	n/a	300.00	(10)	276.70	37.01	299.71 (9)	44.17	23.71	

6. Conclusion and Outlook

Main results:

Novel evaluation algorithm for HEX-programs and implementation.

- ► To find a reason for a literal *l* being true or a conflict \perp in terms of a set *D*, find all (transitive) predecessors *l* resp. \perp that are in *D*.
- If all assignments are on decision level 0, then transitive predecessors of \perp in *D* represent an IR.

Nonground Case:

- Optimized grounding algorithms inhibit reduction to the ground case.
- Remedy: Restrict the type of optimizations and give up completeness of IR computation (i.e., we do not always find an IR).

Experiments show a significant (up to exponential) speedup.
Future work:

- ► Generalization of tu-propagation from IRs to other learned nogoods.
- Exploit structure of the program to improve IR computation.

7. References

- Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., and Schüller, P. (2016).
 A model building framework for answer set programming with external computations. *Theory and Practice of Logic Programming*, 16(4):418–464.
- Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2014). Efficient HEX-program evaluation based on unfounded sets. *Journal of Artificial Intelligence Research*, 49:269–321.
- Redl, C. (2017). Explaining inconsistency in answer set programs and extensions.

In Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic Reasoning. To appear.

Der Wissenschaftsfonds.