Extending Answer Set Programs with Interpreted Functions as First-class Citizens

Christoph Redl

redl@kr.tuwien.ac.at

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

January 16, 2017

Outline

1 Motivation

- 2 Interpreted Functions as First-class Citzens
- 3 Excursus: HEX-Programs
- 4 Implementation of Interpreted Functions on Top of HEX-Programs
- 5 Applications
- 6 Conclusion

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and are used for structuring information.

Motivation

Function Symbols in Answer Set Programs

 Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4+5) · 3, but does not actually evaluate it.

Motivation

Function Symbols in Answer Set Programs

- Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4+5) · 3, but does not actually evaluate it.
- Existing approaches towards interpreted functions typically define functions as part of the program.

Motivation

Function Symbols in Answer Set Programs

 Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4 + 5) · 3, but does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions as part of the program. Example: $loc(X) = garage \leftarrow car(X)$, not $loc(X) \neq garage$

Motivation

Function Symbols in Answer Set Programs

- Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4+5) · 3, but does not actually evaluate it.
- Existing approaches towards interpreted functions typically define functions as part of the program. Example: loc(X) = garage ← car(X), not loc(X) ≠ garage
- Externally defined semantics of function symbols are supported by only few approaches (e.g. HEX-programs, VI-programs, Clingo5).

Motivation

Function Symbols in Answer Set Programs

- Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4+5) · 3, but does not actually evaluate it.
- Existing approaches towards interpreted functions typically define functions as part of the program. Example: loc(X) = garage ← car(X), not loc(X) ≠ garage
- Externally defined semantics of function symbols are supported by only few approaches (e.g. HEX-programs, VI-programs, Clingo5). Example: $result(Y) \leftarrow & add[4,5](X), & multiply[X,3](Y)$

Motivation

Function Symbols in Answer Set Programs

- Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4+5) · 3, but does not actually evaluate it.
- Existing approaches towards interpreted functions typically define functions as part of the program.
 Example: lac(X) = agrage (agr(X) pot loc(X) ≠ agrage
 - Example: $loc(X) = garage \leftarrow car(X), not loc(X) \neq garage$

■ Externally defined semantics of function symbols are supported by only few approaches (e.g. HEX-programs, VI-programs, Clingo5). Example: *result*(*Y*) ← &*add*[4,5](*X*), &*multiply*[*X*,3](*Y*) But the functions are not first-class citizens ⇒ this inhibits higher-order functions.

Function Symbols in Answer Set Programs

- Function symbols are often uninterpreted and are used for structuring information.
 Example: *multiply(add(4,5),3)* represents the expression (4 + 5) · 3, but does not actually evaluate it.
- Existing approaches towards interpreted functions typically define functions as part of the program. Example: $loc(X) = garage \leftarrow car(X)$, not $loc(X) \neq garage$

Externally defined semantics of function symbols are supported by only few approaches (e.g. HEX-programs, VI-programs, Clingo5). Example: $result(Y) \leftarrow &add[4,5](X), &multiply[X,3](Y)$ But the functions are not first-class citizens \Rightarrow this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as objects, compose them to new functions and pass them to other functions.

- Represent interpreted functions themselves by terms in the program.
- This turns them into first-class citizens, i.e., accessible objects.

- Represent interpreted functions themselves by terms in the program.
- This turns them into first-class citizens, i.e., accessible objects.
- Since they are objects in the program, they can be passed to other functions.

- Represent interpreted functions themselves by terms in the program.
- This turns them into first-class citizens, i.e., accessible objects.
- Since they are objects in the program, they can be passed to other functions.
- At specific points, they can be applied to a list of parameters.

- Represent interpreted functions themselves by terms in the program.
- This turns them into first-class citizens, i.e., accessible objects.
- Since they are objects in the program, they can be passed to other functions.
- At specific points, they can be applied to a list of parameters.
- This paves the way for new modeling techniques: abstract usage of functions, import of functions from outside, design patterns, higher-order techniques from functional programming.

Main idea

- Represent interpreted functions themselves by terms in the program.
- This turns them into first-class citizens, i.e., accessible objects.
- Since they are objects in the program, they can be passed to other functions.
- At specific points, they can be applied to a list of parameters.
- This paves the way for new modeling techniques: abstract usage of functions, import of functions from outside, design patterns, higher-order techniques from functional programming.

Contribution

- Representation of functions as terms.
- Based on this representation, we present HEX^{IFU}-programs.
- A translation of such programs to traditional HEX-programs.
- Applications.

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Basic functions

- Function symbols $f \in \mathcal{F}$ are basic function associated with an arity ℓ .
- We assume that each $f \in \mathcal{F}$ has an associated (total) semantics function $sem_f(\vec{y}) : \mathcal{C}^\ell \mapsto \mathcal{T}$ defined for all ℓ -ary vectors $\vec{y} \in \mathcal{C}^\ell$ of constants $\mathcal{T} \dots$ set of all function terms constructible over \mathcal{F} and \mathcal{C} .

Basic functions

- Function symbols $f \in \mathcal{F}$ are basic function associated with an arity ℓ .
- We assume that each $f \in \mathcal{F}$ has an associated (total) semantics function $sem_f(\vec{y}) : \mathcal{C}^\ell \mapsto \mathcal{T}$ defined for all ℓ -ary vectors $\vec{y} \in \mathcal{C}^\ell$ of constants $\mathcal{T} \dots$ set of all function terms constructible over \mathcal{F} and \mathcal{C} .

Representing general (possibly composed) functions

- We let C contain constant symbols #i for all integers $i \ge 1$ (placeholders), which are used to represent function parameters.
- We use *T* as function-representing (fr-)terms to turn interpreted functions into accessible objects.

Example

Assume that the basic functions *multiply* and *add* have the expected semantics.

Then the fr-term $t_1 = multiply(add(\#1, \#2), \#3)$ represents in standard mathematical notation the function $\hat{t}_1(p_1, p_2, p_3) = (p_1 + p_2) \cdot p_3$.

Example

Assume that the basic functions *multiply* and *add* have the expected semantics.

Then the fr-term $t_1 = multiply(add(\#1, \#2), \#3)$ represents in standard mathematical notation the function $\hat{t}_1(p_1, p_2, p_3) = (p_1 + p_2) \cdot p_3$.

Note

An fr-term $t = f(t_1, ..., t_\ell)$ with $f \in \mathcal{F}$ and $t_1, ..., t_\ell \in \mathcal{T}$ does not represent the application of f to $t_1, ..., t_\ell$, but does itself represents a (composed) function.

Definition

For a list of ground terms $t, p_1, \ldots, p_{\gamma(t)}$ we let $val(t, p_1, \ldots, p_{\gamma(t)})$ be given by $\begin{cases}
val(sem_f(\vec{t'}), p_1, \ldots, p_{\gamma(t)}) & \text{if } t = f(\vec{t}) \text{ and } \vec{t'} \text{ is free of } \#i, \\
f(\vec{t'}) & \text{if } t = f(\vec{t}) \text{ and there is a } \#i \text{ in } \vec{t'}, \\
p_i & \text{if } t = \#i \text{ for some } 1 \le i \le \gamma(t), \\
t & \text{otherwise,} \\
\text{where } \vec{t} \text{ and } \vec{t'} \text{ are } \ell\text{-ary vectors with } t'_i = val(t_i, p_1, \ldots, p_{\gamma(t)}) \text{ for all } 1 \le i \le \ell.
\end{cases}$

Definition

 $\begin{cases} val(sem_f(\vec{t'}), p_1, \dots, p_{\gamma(t)}) & \text{if } t = f(\vec{t}) \text{ and } t^{\vec{t}} \text{ is free of } \#i, \\ f(\vec{t'}) & \text{if } t = f(\vec{t}) \text{ and there is a } \#i \text{ in } t^{\vec{t}}, \\ p_i & \text{if } t = \#i \text{ for some } t \end{cases}$ For a list of ground terms $t, p_1, \ldots, p_{\gamma(t)}$ we let $val(t, p_1, \ldots, p_{\gamma(t)})$ be given by otherwise.

where \vec{t} and $\vec{t'}$ are ℓ -ary vectors with $t'_i = val(t_i, p_1, \dots, p_{\gamma(t)})$ for all $1 \le i \le \ell$.

Example

Consider
$$t = multiply(\underbrace{add(\#1, \#2)}_{t_4}, \underbrace{\#3}^{t_2})$$
, $\underbrace{\#3}^{t_3}$) and suppose to evaluate $\hat{t}(4, 5, 3)$.
a $t'_1 = val(\#1, 4, 5, 3) = 4, t'_2 = val(\#2, 4, 5, 3) = 5, t'_3 = val(\#3, 4, 5, 3) = 3$
a $t'_4 = val(add(\#1, \#2), t'_1, t'_2, t'_3) = val(add(\#1, \#2), 4, 5, 3) = 9$
b $t' = val(sem_{multiply}(t'_4, t'_3)) = val(sem_{multiply}(9, 3)) = 27$

Definition

An interpreted function (ifu-)atom is of kind

$$\bar{R} =_{\$} \bar{T}[\bar{P_1},\ldots,\bar{P_\ell}],$$

where $\bar{R} \in \mathcal{T}$ is a comparison operand, $\bar{T} \in \mathcal{T}$ is an fr-term, and $\bar{P}_1, \ldots, \bar{P}_\ell \in \mathcal{T}$ are parameters.

Definition

An interpreted function (ifu-)atom is of kind

$$\bar{R} =_{\$} \bar{T}[\bar{P_1},\ldots,\bar{P_\ell}],$$

where $\bar{R} \in \mathcal{T}$ is a comparison operand, $\bar{T} \in \mathcal{T}$ is an fr-term, and $\bar{P}_1, \ldots, \bar{P}_\ell \in \mathcal{T}$ are parameters.

Definition

A ground ifu-atom *a* of form $r = t[t_1, ..., t_n]$ is true wrt. assignment *A*, denoted $A \models a$, if $n = \gamma(t)$ and *r* has the value of $val(t, t_1, ..., t_n)$, and false, denoted $A \not\models a$, otherwise.

Definition

An interpreted function (ifu-)atom is of kind

$$\bar{R} =_{\$} \bar{T}[\bar{P_1},\ldots,\bar{P_\ell}],$$

where $\bar{R} \in \mathcal{T}$ is a comparison operand, $\bar{T} \in \mathcal{T}$ is an fr-term, and $\bar{P}_1, \ldots, \bar{P}_\ell \in \mathcal{T}$ are parameters.

Definition

A ground ifu-atom *a* of form $r =_{\$} t[t_1, \ldots, t_n]$ is true wrt. assignment *A*, denoted $A \models a$, if $n = \gamma(t)$ and *r* has the value of $val(t, t_1, \ldots, t_n)$, and false, denoted $A \not\models a$, otherwise.

Example

The fr-term add(#1,1) represents the increment function. The ifu-atom $X =_{\$} add(\#1,1)[Y]$ applies it to the parameter *Y* and compares the result with *X*.

Definition

An ASP- resp. HEX-program with interpreted functions (ASP^{IFU}resp. HEX^{IFU}) is an ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Definition

An ASP- resp. HEX-program with interpreted functions (ASP^{IFU}resp. HEX^{IFU}) is an ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

■ Consider $compInitials(concat(firstchar(#1), firstchar(#2))) \leftarrow$

■ Consider facts of kind person(F, L) ← represent persons with first name F and last name L.

Definition

An ASP- resp. HEX-program with interpreted functions (ASP^{IFU}resp. HEX^{IFU}) is an ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

Consider

 $\textit{compInitials}(\textit{ concat}(\textit{firstchar}(\#1),\textit{firstchar}(\#2))) \leftarrow$

■ Consider facts of kind person(F, L) ← represent persons with first name F and last name L.

Then

 $initials(F, L, I) \leftarrow person(F, L), compInitials(C), I =_{\$} C[F, L]$ computes the initials of all persons by applying the function.

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

HEX-Programs

HEX-programs extend ordinary ASP programs by external sources

Definition (HEX-programs)

A HEX-program consists of rules of form

$$a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_m$$
, not b_{m+1}, \ldots , not b_n ,

with classical literals a_i , and classical literals or an external atoms b_j .

Definition (External Atoms)

An external atom is of the form

$$p[q_1,\ldots,q_k](t_1,\ldots,t_l),$$

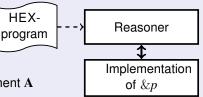
 $p \dots$ external predicate name

 $q_i \dots$ predicate names or constants

 $t_j \ldots$ terms

Semantics:

1 + k + l-ary Boolean oracle function $f_{\&p}$: $\&p[q_1, \dots, q_k](t_1, \dots, t_l)$ is true under assignment **A** iff $f_{\&p}(\mathbf{A}, q_1, \dots, q_k, t_1, \dots, t_l) = 1$.



Outline

1 Motivation

- 2 Interpreted Functions as First-class Citzens
- 3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

- 5 Applications
- 6 Conclusion

Evaluation of HEX^{IFU}-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition

For an assignment *A* and list of ground terms t, p_1, \ldots, p_n s.t. $\gamma(t) = n$, let $f_{\&eval}(A, t, p_1, \ldots, p_n, r) = \sigma$ where $\sigma = \mathbf{T}$ if $r = val(t, p_1, \ldots, p_n)$ and $\sigma = \mathbf{F}$ otherwise.

Evaluation of HEX^{IFU}-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition

For an assignment *A* and list of ground terms t, p_1, \ldots, p_n s.t. $\gamma(t) = n$, let $f_{\&eval}(A, t, p_1, \ldots, p_n, r) = \sigma$ where $\sigma = \mathbf{T}$ if $r = val(t, p_1, \ldots, p_n)$ and $\sigma = \mathbf{F}$ otherwise.

Definition

The translation of an ifu-atom a of kind $\bar{R} =_{\$} \bar{T}[\bar{P}_1, \dots, \bar{P}_{\ell}]$ to an external atom is given by $\tau(a) = \&eval[\bar{T}, \bar{P}_1, \dots, \bar{P}_{\ell}](\bar{R})$.

For HEX^{IFU}-program Π , we let $\tau(\Pi)$ be Π after replacing each ifu-atom *a* by $\tau(a)$.

Evaluation of HEX^{IFU}-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition

For an assignment *A* and list of ground terms t, p_1, \ldots, p_n s.t. $\gamma(t) = n$, let $f_{\&eval}(A, t, p_1, \ldots, p_n, r) = \sigma$ where $\sigma = \mathbf{T}$ if $r = val(t, p_1, \ldots, p_n)$ and $\sigma = \mathbf{F}$ otherwise.

Definition

The translation of an ifu-atom a of kind $\bar{R} =_{\$} \bar{T}[\bar{P}_1, \dots, \bar{P}_{\ell}]$ to an external atom is given by $\tau(a) = \&eval[\bar{T}, \bar{P}_1, \dots, \bar{P}_{\ell}](\bar{R})$.

For HEX^{IFU}-program Π , we let $\tau(\Pi)$ be Π after replacing each ifu-atom a by $\tau(a)$.

Proposition

An assignment A is an answer set of a HEX^{IFU}-program Π if and only if it is an answer set of the HEX-program $\tau(\Pi)$.

Outline

1 Motivation

- 2 Interpreted Functions as First-class Citzens
- 3 Excursus: HEX-Programs
- 4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Software design patterns

■ Consider & getValidator[type](V) which returns for a given type of data $type \in \{phone, email, url, ...\}$ a validator.

Software design patterns

- Consider & getValidator[type](V) which returns for a given type of data $type \in \{phone, email, url, ...\}$ a validator.
- Data can be verified using:
 - r_1 : validators(AttType, V) $\leftarrow emp(Id, AttType, AttValue),$

&getValidator[AttType](V).

 $r_2: invalid(Id) \qquad \leftarrow emp(Id, AttType, AttValue), \\ validators(AttType, V), 0 =_{\$} V[AttValue].$

Integration of heterogeneous knowledge bases

Suppose lookup(#1) provides access to the central dictionary and is accessible via predicate *l*.

Then $data(A) \leftarrow l(D), K =_{\$} D[employee], A =_{\$} K[query]$ can be used to answer queries over the *employee* knowledge-base using the access function *D*.

Integration of heterogeneous knowledge bases

Suppose lookup(#1) provides access to the central dictionary and is accessible via predicate *l*.

Then $data(A) \leftarrow l(D), K =_{\$} D[employee], A =_{\$} K[query]$ can be used to answer queries over the *employee* knowledge-base using the access function *D*.

Traditional higher-order functions

Consider the external atom &map[f, p](X) which applies function f, given as an fr-term, to all elements in the extension of predicate p.

Then $res(R) \leftarrow compInitials(C), R =_{\$} \&nap[C, person](X)$ can be used to compute the initials of all persons in the extension of predicate *person*.

Outline

1 Motivation

- 2 Interpreted Functions as First-class Citzens
- 3 Excursus: HEX-Programs
- 4 Implementation of Interpreted Functions on Top of HEX-Programs
- 5 Applications
- 6 Conclusion

Conclusion

ASP Programs with Interpreted Functions

- Traditionally, functions are mostly either uninterpreted or interpreted but defined within the program.
- Our approach uses externally defined functions.
- In contrast to few existing approaches towards such externally defined functions, ours treats them as first-class citizens, i.e., accessible objects.
- This paves the way for higher-order functions.

Future Work

- Functions with predicate parameters.
- Additional means for defining functions such as currying.