
Extending Answer Set Programs with
Interpreted Functions as First-class Citizens

Christoph Redl

redl@kr.tuwien.ac.at

January 16, 2017

Redl C. (TU Vienna) HEX-Programs January 16, 2017 1 / 19

mailto:redl@kr.tuwien.ac.at

Motivation

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 2 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.

Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.

Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).

Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)

But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4, 5), 3) represents the expression (4 + 5) · 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage← car(X), not loc(X) 6= garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y)← &add[4, 5](X),&multiply[X, 3](Y)
But the functions are not first-class citizens
⇒ this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 19

Motivation

Motivation
Main idea

Represent interpreted functions themselves by terms in the program.

This turns them into first-class citizens, i.e., accessible objects.

Since they are objects in the program, they can be passed to other functions.

At specific points, they can be applied to a list of parameters.

This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

Representation of functions as terms.

Based on this representation, we present HEXIFU-programs.

A translation of such programs to traditional HEX-programs.

Applications.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 19

Motivation

Motivation
Main idea

Represent interpreted functions themselves by terms in the program.

This turns them into first-class citizens, i.e., accessible objects.

Since they are objects in the program, they can be passed to other functions.

At specific points, they can be applied to a list of parameters.

This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

Representation of functions as terms.

Based on this representation, we present HEXIFU-programs.

A translation of such programs to traditional HEX-programs.

Applications.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 19

Motivation

Motivation
Main idea

Represent interpreted functions themselves by terms in the program.

This turns them into first-class citizens, i.e., accessible objects.

Since they are objects in the program, they can be passed to other functions.

At specific points, they can be applied to a list of parameters.

This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

Representation of functions as terms.

Based on this representation, we present HEXIFU-programs.

A translation of such programs to traditional HEX-programs.

Applications.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 19

Motivation

Motivation
Main idea

Represent interpreted functions themselves by terms in the program.

This turns them into first-class citizens, i.e., accessible objects.

Since they are objects in the program, they can be passed to other functions.

At specific points, they can be applied to a list of parameters.

This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

Representation of functions as terms.

Based on this representation, we present HEXIFU-programs.

A translation of such programs to traditional HEX-programs.

Applications.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 19

Motivation

Motivation
Main idea

Represent interpreted functions themselves by terms in the program.

This turns them into first-class citizens, i.e., accessible objects.

Since they are objects in the program, they can be passed to other functions.

At specific points, they can be applied to a list of parameters.

This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

Representation of functions as terms.

Based on this representation, we present HEXIFU-programs.

A translation of such programs to traditional HEX-programs.

Applications.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 19

Interpreted Functions as First-class Citzens

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 5 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms

Basic functions

Function symbols f ∈ F are basic function associated with an arity `.

We assume that each f ∈ F has an associated (total) semantics function
semf (~y) : C` 7→ T defined for all `-ary vectors ~y ∈ C` of constants
T . . . set of all function terms constructible over F and C.

Representing general (possibly composed) functions

We let C contain constant symbols #i for all integers i ≥ 1 (placeholders),
which are used to represent function parameters.

We use T as function-representing (fr-)terms to turn interpreted functions
into accessible objects.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 6 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms

Basic functions

Function symbols f ∈ F are basic function associated with an arity `.

We assume that each f ∈ F has an associated (total) semantics function
semf (~y) : C` 7→ T defined for all `-ary vectors ~y ∈ C` of constants
T . . . set of all function terms constructible over F and C.

Representing general (possibly composed) functions

We let C contain constant symbols #i for all integers i ≥ 1 (placeholders),
which are used to represent function parameters.

We use T as function-representing (fr-)terms to turn interpreted functions
into accessible objects.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 6 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms

Example

Assume that the basic functions multiply and add have the expected semantics.

Then the fr-term t1 = multiply(add(#1,#2),#3) represents in standard
mathematical notation the function t̂1(p1, p2, p3) = (p1 + p2) · p3.

Note
An fr-term t = f (t1, . . . , t`) with f ∈ F and t1, . . . , t` ∈ T does not represent the
application of f to t1, . . . , t`, but does itself represents a (composed) function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms

Example

Assume that the basic functions multiply and add have the expected semantics.

Then the fr-term t1 = multiply(add(#1,#2),#3) represents in standard
mathematical notation the function t̂1(p1, p2, p3) = (p1 + p2) · p3.

Note
An fr-term t = f (t1, . . . , t`) with f ∈ F and t1, . . . , t` ∈ T does not represent the
application of f to t1, . . . , t`, but does itself represents a (composed) function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms
Definition
For a list of ground terms t, p1, . . . , pγ(t) we let val(t, p1, . . . , pγ(t)) be given by

val(semf (~t′), p1, . . . , pγ(t)) if t = f (~t) and ~t′ is free of #i,
f (~t′) if t = f (~t) and there is a #i in ~t′,
pi if t = #i for some 1 ≤ i ≤ γ(t),
t otherwise,

where~t and ~t′ are `-ary vectors with t′i = val(ti, p1, . . . , pγ(t)) for all 1 ≤ i ≤ `.

Example

Consider t = multiply(add(

t1︷︸︸︷
#1 ,

t2︷︸︸︷
#2)︸ ︷︷ ︸

t4

,

t3︷︸︸︷
#3) and suppose to evaluate t̂(4, 5, 3).

t′1 = val(#1, 4, 5, 3) = 4, t′2 = val(#2, 4, 5, 3) = 5, t′3 = val(#3, 4, 5, 3) = 3
t′4 = val(add(#1,#2), t′1, t

′
2, t

′
3) = val(add(#1,#2), 4, 5, 3) = 9

t′ = val(semmultiply(t′4, t
′
3)) = val(semmultiply(9, 3)) = 27

Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 19

Interpreted Functions as First-class Citzens

Representing Interpreted Functions by Terms
Definition
For a list of ground terms t, p1, . . . , pγ(t) we let val(t, p1, . . . , pγ(t)) be given by

val(semf (~t′), p1, . . . , pγ(t)) if t = f (~t) and ~t′ is free of #i,
f (~t′) if t = f (~t) and there is a #i in ~t′,
pi if t = #i for some 1 ≤ i ≤ γ(t),
t otherwise,

where~t and ~t′ are `-ary vectors with t′i = val(ti, p1, . . . , pγ(t)) for all 1 ≤ i ≤ `.

Example

Consider t = multiply(add(

t1︷︸︸︷
#1 ,

t2︷︸︸︷
#2)︸ ︷︷ ︸

t4

,

t3︷︸︸︷
#3) and suppose to evaluate t̂(4, 5, 3).

t′1 = val(#1, 4, 5, 3) = 4, t′2 = val(#2, 4, 5, 3) = 5, t′3 = val(#3, 4, 5, 3) = 3
t′4 = val(add(#1,#2), t′1, t

′
2, t

′
3) = val(add(#1,#2), 4, 5, 3) = 9

t′ = val(semmultiply(t′4, t
′
3)) = val(semmultiply(9, 3)) = 27

Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An interpreted function (ifu-)atom is of kind

R̄ =$ T̄[P̄1, . . . , P̄`],
where R̄ ∈ T is a comparison operand, T̄ ∈ T is an fr-term, and P̄1, . . . , P̄` ∈ T
are parameters.

Definition
A ground ifu-atom a of form r =$ t[t1, . . . , tn] is true wrt. assignment A, denoted
A |= a, if n = γ(t) and r has the value of val(t, t1, . . . , tn), and false, denoted
A 6|= a, otherwise.

Example

The fr-term add(#1, 1) represents the increment function.
The ifu-atom X =$ add(#1, 1)[Y] applies it to the parameter Y and compares the
result with X.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An interpreted function (ifu-)atom is of kind

R̄ =$ T̄[P̄1, . . . , P̄`],
where R̄ ∈ T is a comparison operand, T̄ ∈ T is an fr-term, and P̄1, . . . , P̄` ∈ T
are parameters.

Definition
A ground ifu-atom a of form r =$ t[t1, . . . , tn] is true wrt. assignment A, denoted
A |= a, if n = γ(t) and r has the value of val(t, t1, . . . , tn), and false, denoted
A 6|= a, otherwise.

Example

The fr-term add(#1, 1) represents the increment function.
The ifu-atom X =$ add(#1, 1)[Y] applies it to the parameter Y and compares the
result with X.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An interpreted function (ifu-)atom is of kind

R̄ =$ T̄[P̄1, . . . , P̄`],
where R̄ ∈ T is a comparison operand, T̄ ∈ T is an fr-term, and P̄1, . . . , P̄` ∈ T
are parameters.

Definition
A ground ifu-atom a of form r =$ t[t1, . . . , tn] is true wrt. assignment A, denoted
A |= a, if n = γ(t) and r has the value of val(t, t1, . . . , tn), and false, denoted
A 6|= a, otherwise.

Example

The fr-term add(#1, 1) represents the increment function.
The ifu-atom X =$ add(#1, 1)[Y] applies it to the parameter Y and compares the
result with X.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An ASP- resp. HEX-program with interpreted functions (ASPIFUresp. HEXIFU) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

Consider
compInitials(concat(firstchar(#1), firstchar(#2)))←
Consider facts of kind
person(F,L)←
represent persons with first name F and last name L.

Then
initials(F,L, I)← person(F,L), compInitials(C), I =$ C[F,L]
computes the initials of all persons by applying the function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 10 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An ASP- resp. HEX-program with interpreted functions (ASPIFUresp. HEXIFU) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

Consider
compInitials(concat(firstchar(#1), firstchar(#2)))←
Consider facts of kind
person(F,L)←
represent persons with first name F and last name L.

Then
initials(F,L, I)← person(F,L), compInitials(C), I =$ C[F,L]
computes the initials of all persons by applying the function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 10 / 19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An ASP- resp. HEX-program with interpreted functions (ASPIFUresp. HEXIFU) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

Consider
compInitials(concat(firstchar(#1), firstchar(#2)))←
Consider facts of kind
person(F,L)←
represent persons with first name F and last name L.

Then
initials(F,L, I)← person(F,L), compInitials(C), I =$ C[F,L]
computes the initials of all persons by applying the function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 10 / 19

Excursus: HEX-Programs

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 11 / 19

Excursus: HEX-Programs

HEX-Programs
HEX-programs extend ordinary ASP programs by external sources

Definition (HEX-programs)

A HEX-program consists of rules of form
a1 ∨ · · · ∨ an ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.

Definition (External Atoms)

An external atom is of the form
&p[q1, . . . , qk](t1, . . . , tl),

p . . . external predicate name
qi . . . predicate names or constants
tj . . . terms

Semantics:
1 + k + l-ary Boolean oracle function f&p:
&p[q1, . . . , qk](t1, . . . , tl) is true under assignment A
iff f&p(A, q1, . . . , qk, t1, . . . , tl) = 1.

HEX-
program Reasoner

Implementation
of &p

Redl C. (TU Vienna) HEX-Programs January 16, 2017 12 / 19

Implementation of Interpreted Functions on Top of HEX-Programs

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 13 / 19

Implementation of Interpreted Functions on Top of HEX-Programs

Evaluation of HEXIFU-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition
For an assignment A and list of ground terms t, p1, . . . , pn s.t. γ(t) = n, let
f&eval(A, t, p1, . . . , pn, r) = σ where σ = T if r = val(t, p1, . . . , pn) and σ = F
otherwise.

Definition
The translation of an ifu-atom a of kind R̄ =$ T̄[P̄1, . . . , P̄`] to an external atom is
given by τ(a) = &eval[T̄, P̄1, . . . , P̄`](R̄).

For HEXIFU-program Π, we let τ(Π) be Π after replacing each ifu-atom a by τ(a).

Proposition

An assignment A is an answer set of a HEXIFU-program Π if and only if it is an
answer set of the HEX-program τ(Π).

Redl C. (TU Vienna) HEX-Programs January 16, 2017 14 / 19

Implementation of Interpreted Functions on Top of HEX-Programs

Evaluation of HEXIFU-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition
For an assignment A and list of ground terms t, p1, . . . , pn s.t. γ(t) = n, let
f&eval(A, t, p1, . . . , pn, r) = σ where σ = T if r = val(t, p1, . . . , pn) and σ = F
otherwise.

Definition
The translation of an ifu-atom a of kind R̄ =$ T̄[P̄1, . . . , P̄`] to an external atom is
given by τ(a) = &eval[T̄, P̄1, . . . , P̄`](R̄).

For HEXIFU-program Π, we let τ(Π) be Π after replacing each ifu-atom a by τ(a).

Proposition

An assignment A is an answer set of a HEXIFU-program Π if and only if it is an
answer set of the HEX-program τ(Π).

Redl C. (TU Vienna) HEX-Programs January 16, 2017 14 / 19

Implementation of Interpreted Functions on Top of HEX-Programs

Evaluation of HEXIFU-Programs

Evaluation is based on a translation to traditional HEX-programs.

Definition
For an assignment A and list of ground terms t, p1, . . . , pn s.t. γ(t) = n, let
f&eval(A, t, p1, . . . , pn, r) = σ where σ = T if r = val(t, p1, . . . , pn) and σ = F
otherwise.

Definition
The translation of an ifu-atom a of kind R̄ =$ T̄[P̄1, . . . , P̄`] to an external atom is
given by τ(a) = &eval[T̄, P̄1, . . . , P̄`](R̄).

For HEXIFU-program Π, we let τ(Π) be Π after replacing each ifu-atom a by τ(a).

Proposition

An assignment A is an answer set of a HEXIFU-program Π if and only if it is an
answer set of the HEX-program τ(Π).

Redl C. (TU Vienna) HEX-Programs January 16, 2017 14 / 19

Applications

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 15 / 19

Applications

Applications of HEXIFU-Programs

Software design patterns

Consider &getValidator[type](V) which returns for a given type of data
type ∈ {phone, email, url, . . .} a validator.

Data can be verified using:
r1 : validators(AttType,V) ← emp(Id,AttType,AttValue),

&getValidator[AttType](V).

r2 : invalid(Id) ← emp(Id,AttType,AttValue),

validators(AttType,V), 0 =$ V[AttValue].

Redl C. (TU Vienna) HEX-Programs January 16, 2017 16 / 19

Applications

Applications of HEXIFU-Programs

Software design patterns

Consider &getValidator[type](V) which returns for a given type of data
type ∈ {phone, email, url, . . .} a validator.

Data can be verified using:
r1 : validators(AttType,V) ← emp(Id,AttType,AttValue),

&getValidator[AttType](V).

r2 : invalid(Id) ← emp(Id,AttType,AttValue),

validators(AttType,V), 0 =$ V[AttValue].

Redl C. (TU Vienna) HEX-Programs January 16, 2017 16 / 19

Applications

Applications of HEXIFU-Programs

Integration of heterogeneous knowledge bases

Suppose lookup(#1) provides access to the central dictionary and is accessible
via predicate l.

Then data(A)← l(D),K =$ D[employee],A =$ K[query] can be used to answer
queries over the employee knowledge-base using the access function D.

Traditional higher-order functions

Consider the external atom &map[f , p](X) which applies function f , given as an
fr-term, to all elements in the extension of predicate p.

Then res(R)← compInitials(C),R =$ &map[C, person](X) can be used to compute
the initials of all persons in the extension of predicate person.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 17 / 19

Applications

Applications of HEXIFU-Programs

Integration of heterogeneous knowledge bases

Suppose lookup(#1) provides access to the central dictionary and is accessible
via predicate l.

Then data(A)← l(D),K =$ D[employee],A =$ K[query] can be used to answer
queries over the employee knowledge-base using the access function D.

Traditional higher-order functions

Consider the external atom &map[f , p](X) which applies function f , given as an
fr-term, to all elements in the extension of predicate p.

Then res(R)← compInitials(C),R =$ &map[C, person](X) can be used to compute
the initials of all persons in the extension of predicate person.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 17 / 19

Conclusion

Outline

1 Motivation

2 Interpreted Functions as First-class Citzens

3 Excursus: HEX-Programs

4 Implementation of Interpreted Functions on Top of HEX-Programs

5 Applications

6 Conclusion

Redl C. (TU Vienna) HEX-Programs January 16, 2017 18 / 19

Conclusion

Conclusion

ASP Programs with Interpreted Functions

Traditionally, functions are mostly
either uninterpreted or interpreted but defined within the program.

Our approach uses externally defined functions.

In contrast to few existing approaches towards such externally defined
functions, ours treats them as first-class citizens, i.e., accessible objects.

This paves the way for higher-order functions.

Future Work

Functions with predicate parameters.

Additional means for defining functions such as currying.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 19

	Motivation
	Interpreted Functions as First-class Citzens
	Excursus: HEX-Programs
	Implementation of Interpreted Functions on Top of HEX-Programs
	Applications
	Conclusion

