
Integrating Answer Set Programming with
Object-oriented Languages

Jakob Rath and Christoph Redl

jakob.rath@student.tuwien.ac.at, redl@kr.tuwien.ac.at

January 16, 2017

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 1 / 22

mailto:redl@kr.tuwien.ac.at

Motivation

Outline

1 Motivation

2 General Approach

3 Input and Output Specification Language

4 Implementation and Applications

5 Conclusion

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 2 / 22

Motivation

Motivation

Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm [?].

Applications: workforce management [?], generating holiday plans for
tourists [?], cf. [?].

Limitations

Typical end-user applications contain components which cannot be (easily)
solved in ASP:

graphical user interfaces
presentation of results
interfaces to data sources
etc.

Realizing such components is in the domain of traditional object-oriented
(OOP) languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 22

Motivation

Motivation

Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm [?].

Applications: workforce management [?], generating holiday plans for
tourists [?], cf. [?].

Limitations

Typical end-user applications contain components which cannot be (easily)
solved in ASP:

graphical user interfaces
presentation of results
interfaces to data sources
etc.

Realizing such components is in the domain of traditional object-oriented
(OOP) languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 22

Motivation

Motivation

Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm [?].

Applications: workforce management [?], generating holiday plans for
tourists [?], cf. [?].

Limitations

Typical end-user applications contain components which cannot be (easily)
solved in ASP:

graphical user interfaces
presentation of results
interfaces to data sources
etc.

Realizing such components is in the domain of traditional object-oriented
(OOP) languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 22

Motivation

Motivation

Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm [?].

Applications: workforce management [?], generating holiday plans for
tourists [?], cf. [?].

Limitations

Typical end-user applications contain components which cannot be (easily)
solved in ASP:

graphical user interfaces
presentation of results
interfaces to data sources
etc.

Realizing such components is in the domain of traditional object-oriented
(OOP) languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 3 / 22

Motivation

Motivation

Typical approach

Use ASP programs as components of a larger application.

The ASP program solves the core computational problem, while other
components are implemented in an object-oriented language.

To this end, object-oriented code
1 adds input as facts,
2 evaluates the ASP program, and
3 interprets the answer sets.

But: An implementation from scratch is similar for most applications
⇒ repetitive work.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 22

Motivation

Motivation

Typical approach

Use ASP programs as components of a larger application.

The ASP program solves the core computational problem, while other
components are implemented in an object-oriented language.

To this end, object-oriented code
1 adds input as facts,
2 evaluates the ASP program, and
3 interprets the answer sets.

But: An implementation from scratch is similar for most applications
⇒ repetitive work.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 22

Motivation

Motivation

Typical approach

Use ASP programs as components of a larger application.

The ASP program solves the core computational problem, while other
components are implemented in an object-oriented language.

To this end, object-oriented code
1 adds input as facts,
2 evaluates the ASP program, and
3 interprets the answer sets.

But: An implementation from scratch is similar for most applications
⇒ repetitive work.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 4 / 22

Motivation

Motivation

Contribution

The ASP program is extended with annotations which specify input/output.

Input specifications define how objects are mapped to facts.

Output specifications define how answer sets are mapped back to objects.

Based on annotations, the integration with object-oriented code is automated.

In contrast to existing approaches,
ours is independent of a concrete OOP language.

We provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 5 / 22

Motivation

Motivation

Contribution

The ASP program is extended with annotations which specify input/output.

Input specifications define how objects are mapped to facts.

Output specifications define how answer sets are mapped back to objects.

Based on annotations, the integration with object-oriented code is automated.

In contrast to existing approaches,
ours is independent of a concrete OOP language.

We provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 5 / 22

General Approach

Outline

1 Motivation

2 General Approach

3 Input and Output Specification Language

4 Implementation and Applications

5 Conclusion

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 6 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Overview

We want to use ASP programs similarly to subprocedures:
an ASP program P performs a computation over input parameters v1, . . . , vn,
each answer set should correspond to a solution object.

⇒ eval(P, v1, . . . , vn) should return a set of objects (=problem solutions).

Approach: the ASP program is annotated with input/output specifications.
Annotations are added as special comments of form %! to the ASP code.

We then provide an interpreter library for evaluating (“calling”)
such an annotated program:

it takes an annotated ASP program and a list of input parameters (objects) as
input, and
returns a set of objects (corresponding the results of the ASP program).

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Overview

We want to use ASP programs similarly to subprocedures:
an ASP program P performs a computation over input parameters v1, . . . , vn,
each answer set should correspond to a solution object.
⇒ eval(P, v1, . . . , vn) should return a set of objects (=problem solutions).

Approach: the ASP program is annotated with input/output specifications.
Annotations are added as special comments of form %! to the ASP code.

We then provide an interpreter library for evaluating (“calling”)
such an annotated program:

it takes an annotated ASP program and a list of input parameters (objects) as
input, and
returns a set of objects (corresponding the results of the ASP program).

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Overview

We want to use ASP programs similarly to subprocedures:
an ASP program P performs a computation over input parameters v1, . . . , vn,
each answer set should correspond to a solution object.
⇒ eval(P, v1, . . . , vn) should return a set of objects (=problem solutions).

Approach: the ASP program is annotated with input/output specifications.
Annotations are added as special comments of form %! to the ASP code.

We then provide an interpreter library for evaluating (“calling”)
such an annotated program:

it takes an annotated ASP program and a list of input parameters (objects) as
input, and
returns a set of objects (corresponding the results of the ASP program).

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Overview

We want to use ASP programs similarly to subprocedures:
an ASP program P performs a computation over input parameters v1, . . . , vn,
each answer set should correspond to a solution object.
⇒ eval(P, v1, . . . , vn) should return a set of objects (=problem solutions).

Approach: the ASP program is annotated with input/output specifications.
Annotations are added as special comments of form %! to the ASP code.

We then provide an interpreter library for evaluating (“calling”)
such an annotated program:

it takes an annotated ASP program and a list of input parameters (objects) as
input, and
returns a set of objects (corresponding the results of the ASP program).

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 7 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Evaluation
More precisely, the interpreter library performs the following tasks:

1 Parameters v1, . . . , vn are converted to facts according to input specification ι.

2 These facts along with the ASP program P are passed to the ASP solver.

3 The answer sets are mapped to objects O according to output specification ω.

⇒ eval(P, v1, . . . , vn) = {mapOutput(ω, I)|I ∈ AS(P ∪ genFacts(ι, v1, . . . , vn))}.

Language independence

The specification language is largely independent of a concrete OOP
language
⇒ porting the interpreter library to other OOP languages is easily possible.
⇒ the same annotated program can be used with multiple OOP languages.

Currently, we provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Evaluation
More precisely, the interpreter library performs the following tasks:

1 Parameters v1, . . . , vn are converted to facts according to input specification ι.

2 These facts along with the ASP program P are passed to the ASP solver.

3 The answer sets are mapped to objects O according to output specification ω.

⇒ eval(P, v1, . . . , vn) = {mapOutput(ω, I)|I ∈ AS(P ∪ genFacts(ι, v1, . . . , vn))}.

Language independence

The specification language is largely independent of a concrete OOP
language
⇒ porting the interpreter library to other OOP languages is easily possible.
⇒ the same annotated program can be used with multiple OOP languages.

Currently, we provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Evaluation
More precisely, the interpreter library performs the following tasks:

1 Parameters v1, . . . , vn are converted to facts according to input specification ι.

2 These facts along with the ASP program P are passed to the ASP solver.

3 The answer sets are mapped to objects O according to output specification ω.

⇒ eval(P, v1, . . . , vn) = {mapOutput(ω, I)|I ∈ AS(P ∪ genFacts(ι, v1, . . . , vn))}.

Language independence

The specification language is largely independent of a concrete OOP
language
⇒ porting the interpreter library to other OOP languages is easily possible.
⇒ the same annotated program can be used with multiple OOP languages.

Currently, we provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 22

General Approach

Evaluating ASP Programs from Object-Oriented Code

Evaluation
More precisely, the interpreter library performs the following tasks:

1 Parameters v1, . . . , vn are converted to facts according to input specification ι.

2 These facts along with the ASP program P are passed to the ASP solver.

3 The answer sets are mapped to objects O according to output specification ω.

⇒ eval(P, v1, . . . , vn) = {mapOutput(ω, I)|I ∈ AS(P ∪ genFacts(ι, v1, . . . , vn))}.

Language independence

The specification language is largely independent of a concrete OOP
language
⇒ porting the interpreter library to other OOP languages is easily possible.
⇒ the same annotated program can be used with multiple OOP languages.

Currently, we provide a prototypical implementation PY-ASPIO for Python.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 8 / 22

General Approach

Assumptions about the Object-Oriented Language

Requirements

The specification language is “largely” independent of the OOP language,
we obviously have to presuppose a minimum set of features:

1 Data is organized in classes, which consist of named attributes and methods.

2 The language must provide the classes str and int.
3 We presuppose the following collection types:

Set〈T〉:
a collection of unique objects of type T.
Dictionary〈K,V〉:
a mapping from objects of type K (the keys) to objects of type V (the values).
Tuple〈T1, . . . , Tn〉:
an ordered list of fixed length n, where the component at position i is of type Ti

for 1 ≤ i ≤ n.
Sequence〈T〉:
a finite ordered sequence containing objects of type T, where elements are
addressable by an integer index.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 22

General Approach

Assumptions about the Object-Oriented Language

Requirements

The specification language is “largely” independent of the OOP language,
we obviously have to presuppose a minimum set of features:

1 Data is organized in classes, which consist of named attributes and methods.

2 The language must provide the classes str and int.
3 We presuppose the following collection types:

Set〈T〉:
a collection of unique objects of type T.
Dictionary〈K,V〉:
a mapping from objects of type K (the keys) to objects of type V (the values).
Tuple〈T1, . . . , Tn〉:
an ordered list of fixed length n, where the component at position i is of type Ti

for 1 ≤ i ≤ n.
Sequence〈T〉:
a finite ordered sequence containing objects of type T, where elements are
addressable by an integer index.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 22

General Approach

Assumptions about the Object-Oriented Language

Requirements

The specification language is “largely” independent of the OOP language,
we obviously have to presuppose a minimum set of features:

1 Data is organized in classes, which consist of named attributes and methods.

2 The language must provide the classes str and int.

3 We presuppose the following collection types:
Set〈T〉:
a collection of unique objects of type T.
Dictionary〈K,V〉:
a mapping from objects of type K (the keys) to objects of type V (the values).
Tuple〈T1, . . . , Tn〉:
an ordered list of fixed length n, where the component at position i is of type Ti

for 1 ≤ i ≤ n.
Sequence〈T〉:
a finite ordered sequence containing objects of type T, where elements are
addressable by an integer index.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 22

General Approach

Assumptions about the Object-Oriented Language

Requirements

The specification language is “largely” independent of the OOP language,
we obviously have to presuppose a minimum set of features:

1 Data is organized in classes, which consist of named attributes and methods.

2 The language must provide the classes str and int.
3 We presuppose the following collection types:

Set〈T〉:
a collection of unique objects of type T.
Dictionary〈K,V〉:
a mapping from objects of type K (the keys) to objects of type V (the values).
Tuple〈T1, . . . , Tn〉:
an ordered list of fixed length n, where the component at position i is of type Ti

for 1 ≤ i ≤ n.
Sequence〈T〉:
a finite ordered sequence containing objects of type T, where elements are
addressable by an integer index.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 9 / 22

Input and Output Specification Language

Outline

1 Motivation

2 General Approach

3 Input and Output Specification Language

4 Implementation and Applications

5 Conclusion

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 10 / 22

Input and Output Specification Language

Input Specification
Example (3-Colorability)

Assume we want to use a 3-colorability program from our object-oriented code.

Let the graph in the object-oriented code be represented by sets of nodes and
edges, where

nodes are instances of class Node with the attribute label as a unique string
identifiying the node, and

edges are instances of class Edge, where the attributes first and second
are the nodes at both ends of the edge.

Mapping of the input graph to predicates vertex and edge and problem encoding:

%! INPUT (Set<Node> nodes , Set<Edge> edges) {
%! ver tex (n . l a b e l) f o r n i n nodes ;
%! edge (e . f i r s t . l abe l , e . second . l a b e l) f o r e i n edges ; }
co lo r (X, r) v co l o r (X, g) v co l o r (X, b) :− ver tex (X)
:− co lo r (X,C) , co l o r (Y,C) , edge (X,Y)

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 11 / 22

Input and Output Specification Language

Input Specification
Example (3-Colorability)

Assume we want to use a 3-colorability program from our object-oriented code.

Let the graph in the object-oriented code be represented by sets of nodes and
edges, where

nodes are instances of class Node with the attribute label as a unique string
identifiying the node, and

edges are instances of class Edge, where the attributes first and second
are the nodes at both ends of the edge.

Mapping of the input graph to predicates vertex and edge and problem encoding:

%! INPUT (Set<Node> nodes , Set<Edge> edges) {
%! ver tex (n . l a b e l) f o r n i n nodes ;
%! edge (e . f i r s t . l abe l , e . second . l a b e l) f o r e i n edges ; }
c o lo r (X, r) v co l o r (X, g) v co l o r (X, b) :− ver tex (X)
:− co lo r (X,C) , co l o r (Y,C) , edge (X,Y)

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 11 / 22

Input and Output Specification Language

Input Specification Language
Language Definition

In general, an input specification ι is of the form
INPUT (t1 v1, . . . , tn vn) {s1; s2; . . . sk; }

where
v1, . . . , vn are input parameters of types t1, . . . , tn,
s1, . . . , sk are predicate specifications defined as follows.

Each predicate specification si for 1 ≤ i ≤ k is of form
p(x1, . . . , xm) for w1 in y1 . . .for w` in y` (1)

where
p . . . predicate symbol,
x1, . . . , xm are objects of any type,
w1, . . . ,w` are (iteration) variables,
y1, . . . , y` are collections.

Here, the constructs for wi in yi are iteration clauses which are used to let
wi iterate over the contents of a collection object yi.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 12 / 22

Input and Output Specification Language

Output Specification

Example (3-Colorability (cont’d))

We want to map the valid 3-colorings back to objects.
Let ColoredNode be an extension of Node with the attribute color.

%! INPUT (Set<Node> nodes , Set<Edge> edges) {
%! ver tex (n . l a b e l) f o r n i n nodes ;
%! edge (e . f i r s t . l abe l , e . second . l a b e l) f o r e i n edges ; }
%! OUTPUT {
%! colorednodes = set { query : co l o r (X,C) ;
%! content : ColoredNode (X,C) ; } ; }
co lo r (X, r) v co l o r (X, g) v co l o r (X, b) :− ver tex (X)
:− co lo r (X,C) , co l o r (Y,C) , edge (X,Y)

The output is a set containing instances of ColoredNode, which are created by
calling the constructor of the class with arguments X and C for each atom
color(X,C) in the current answer set.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 13 / 22

Input and Output Specification Language

Output Specification

Example (3-Colorability (cont’d))

We want to map the valid 3-colorings back to objects.
Let ColoredNode be an extension of Node with the attribute color.

%! INPUT (Set<Node> nodes , Set<Edge> edges) {
%! ver tex (n . l a b e l) f o r n i n nodes ;
%! edge (e . f i r s t . l abe l , e . second . l a b e l) f o r e i n edges ; }
%! OUTPUT {
%! colorednodes = set { query : co l o r (X,C) ;
%! content : ColoredNode (X,C) ; } ; }
c o lo r (X, r) v co l o r (X, g) v co l o r (X, b) :− ver tex (X)
:− co lo r (X,C) , co l o r (Y,C) , edge (X,Y)

The output is a set containing instances of ColoredNode, which are created by
calling the constructor of the class with arguments X and C for each atom
color(X,C) in the current answer set.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 13 / 22

Input and Output Specification Language

Output Specification

Example (3-Colorability (cont’d))

%! INPUT (Set<Node> nodes , Set<Edge> edges) {
%! ver tex (n . l a b e l) f o r n i n nodes ;
%! edge (e . f i r s t . l abe l , e . second . l a b e l) f o r e i n edges ; }
%! OUTPUT {
%! colorednodes = set { query : co l o r (X,C) ;
%! content : ColoredNode (X,C) ; } ; }
c o lo r (X, r) v co l o r (X, g) v co l o r (X, b) :− ver tex (X)
:− co lo r (X,C) , co l o r (Y,C) , edge (X,Y)

This program can be called with two parameters of types Set<Node> resp.
Set<Edge> and its output is a set of type Set<ColoredNode>.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 14 / 22

Input and Output Specification Language

Output Specification Language
Language Definition

Building blocks are (possibly nested) expressions which transform
atoms, sets of atoms, and/or results of subexpressions to objects.

Support types:
Basic Expressions are integer and string constants e.
Collection Expressions are of one of the following forms:

set {query : q; content : e; }
sequence {query : q; index : i; content : e; }
dictionary {query : q; key : k; content : e; }

Composite Expressions are instances of custom classes of the object-oriented
language.

An output specification ω is then of the form
OUTPUT {w1 = e1; . . .wk = ek; }

where
w1, . . . ,wk are pairwise distinct attributes and e1, . . . , ek are expressions.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 15 / 22

Implementation and Applications

Outline

1 Motivation

2 General Approach

3 Input and Output Specification Language

4 Implementation and Applications

5 Conclusion

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 16 / 22

Implementation and Applications

Implementation

PY-ASPIO

We implemented an interpreter for our specification language for Python.

ASP Interface to Object-oriented programs for Python.

Available at https://github.com/hexhex/py-aspio.

dlvhex is used as ASP solver (switching to other solvers is easily possible).

Implementations for other object-oriented languages are left for future work.

User Code

ASP Program

Input Arguments Input Mapper

PY-ASPIOFacade

Output Mapper

Facts

ASP Solver

Answer Sets

User Application PY-ASPIO Library ASP Solver

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 17 / 22

https://github.com/hexhex/py-aspio

Implementation and Applications

Example: Using the Library from Python

Suppose the ASP program from above is stored in file coloring.dl.

Example (3-Colorability (cont’d))

from c o l l e c t i o n s import namedtuple
import aspio

Def ine c lasses and create sample data
Node = namedtuple (’Node ’ , [’ l a b e l ’])
ColoredNode = namedtuple (’ ColoredNode ’ , [’ l a b e l ’ , ’ co l o r ’])
Edge = namedtuple (’Edge ’ , [’ f i r s t ’ , ’ second ’])
a , b , c = Node (’ a ’) , Node (’ b ’) , Node (’ c ’)
nodes = {a , b , c}
edges = {Edge (a , b) , Edge (a , c) , Edge (b , c)}

Reg is te r c lass names wi th aspio
aspio . r e g i s t e r d i c t (g loba ls ())

Load ASP program and inpu t / output s p e c i f i c a t i o n s from f i l e
prog = aspio . Program (f i lename= ’ c o l o r i n g . d l ’)

I t e r a t e over a l l answer sets
for r e s u l t in prog . so lve (nodes , edges) :

pr in t (r e s u l t . colored nodes)

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 18 / 22

Implementation and Applications

Applications
Potential industrial applications

Hard problems occur in the real world: packing, scheduling, optimization, etc.

Users of such applications are not necessarily IT experts:

department heads who create working plans,
teachers who create timetables,
logisticians who create packing plans, etc.

⇒ The direct usage of ASP might be unacceptable.
⇒ A user interface is needed!

Interfaces to databases, Web services, etc. might be needed.

Upcoming research application

ASP extensions support epistemic negation (quantification over answer sets).

The evaluation algorithm for such programs is based on evaluating sets of
programs and reasoning about their answer sets.

An implementation of epistemic ASP based on PY-ASPIO is work in progress.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 22

Implementation and Applications

Applications
Potential industrial applications

Hard problems occur in the real world: packing, scheduling, optimization, etc.

Users of such applications are not necessarily IT experts:

department heads who create working plans,
teachers who create timetables,
logisticians who create packing plans, etc.

⇒ The direct usage of ASP might be unacceptable.
⇒ A user interface is needed!

Interfaces to databases, Web services, etc. might be needed.

Upcoming research application

ASP extensions support epistemic negation (quantification over answer sets).

The evaluation algorithm for such programs is based on evaluating sets of
programs and reasoning about their answer sets.

An implementation of epistemic ASP based on PY-ASPIO is work in progress.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 22

Implementation and Applications

Applications
Potential industrial applications

Hard problems occur in the real world: packing, scheduling, optimization, etc.

Users of such applications are not necessarily IT experts:

department heads who create working plans,
teachers who create timetables,
logisticians who create packing plans, etc.

⇒ The direct usage of ASP might be unacceptable.
⇒ A user interface is needed!

Interfaces to databases, Web services, etc. might be needed.

Upcoming research application

ASP extensions support epistemic negation (quantification over answer sets).

The evaluation algorithm for such programs is based on evaluating sets of
programs and reasoning about their answer sets.

An implementation of epistemic ASP based on PY-ASPIO is work in progress.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 22

Implementation and Applications

Applications
Potential industrial applications

Hard problems occur in the real world: packing, scheduling, optimization, etc.

Users of such applications are not necessarily IT experts:

department heads who create working plans,
teachers who create timetables,
logisticians who create packing plans, etc.

⇒ The direct usage of ASP might be unacceptable.
⇒ A user interface is needed!

Interfaces to databases, Web services, etc. might be needed.

Upcoming research application

ASP extensions support epistemic negation (quantification over answer sets).

The evaluation algorithm for such programs is based on evaluating sets of
programs and reasoning about their answer sets.

An implementation of epistemic ASP based on PY-ASPIO is work in progress.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 22

Implementation and Applications

Applications
Potential industrial applications

Hard problems occur in the real world: packing, scheduling, optimization, etc.

Users of such applications are not necessarily IT experts:

department heads who create working plans,
teachers who create timetables,
logisticians who create packing plans, etc.

⇒ The direct usage of ASP might be unacceptable.
⇒ A user interface is needed!

Interfaces to databases, Web services, etc. might be needed.

Upcoming research application

ASP extensions support epistemic negation (quantification over answer sets).

The evaluation algorithm for such programs is based on evaluating sets of
programs and reasoning about their answer sets.

An implementation of epistemic ASP based on PY-ASPIO is work in progress.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 19 / 22

Conclusion

Outline

1 Motivation

2 General Approach

3 Input and Output Specification Language

4 Implementation and Applications

5 Conclusion

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 20 / 22

Conclusion

Conclusion
Integrating ASP with object-oriented code

ASP is good for solving hard problems.

Applications often have components which cannot be easily realized in ASP.

⇒We integrate ASP with object-oriented languages.

Existing approaches

Focus on a particular language, cf. e.g. [?], [?], [?].

Tweety [?] and PyASP (https://pypi.python.org/pypi/pyasp) provide only
a generic atom-based interface, but no customizable mapping.

Future work

Language extensions.

Implementation for other object-oriented languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 21 / 22

https://pypi.python.org/pypi/pyasp

Conclusion

Conclusion
Integrating ASP with object-oriented code

ASP is good for solving hard problems.

Applications often have components which cannot be easily realized in ASP.

⇒We integrate ASP with object-oriented languages.

Existing approaches

Focus on a particular language, cf. e.g. [?], [?], [?].

Tweety [?] and PyASP (https://pypi.python.org/pypi/pyasp) provide only
a generic atom-based interface, but no customizable mapping.

Future work

Language extensions.

Implementation for other object-oriented languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 21 / 22

https://pypi.python.org/pypi/pyasp

Conclusion

Conclusion
Integrating ASP with object-oriented code

ASP is good for solving hard problems.

Applications often have components which cannot be easily realized in ASP.

⇒We integrate ASP with object-oriented languages.

Existing approaches

Focus on a particular language, cf. e.g. [?], [?], [?].

Tweety [?] and PyASP (https://pypi.python.org/pypi/pyasp) provide only
a generic atom-based interface, but no customizable mapping.

Future work

Language extensions.

Implementation for other object-oriented languages.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 21 / 22

https://pypi.python.org/pypi/pyasp

Conclusion

References I

Erdem, E., Gelfond, M., and Leone, N. (2016).
Applications of answer set programming.
AI Magazine, 37(3):53–68.

Febbraro, O., Leone, N., Grasso, G., and Ricca, F. (2012).
JASP: A Framework for Integrating Answer Set Programming with Java.
In Brewka, G., Eiter, T., and McIlraith, S. A., editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June
10-14, 2012. AAAI Press.

Fuscà, D., Germano, S., Zangari, J., Anastasio, M., Calimeri, F., and Perri, S. (2016).
A framework for easing the development of applications embedding answer set programming.
In Cheney, J. and Vidal, G., editors, Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, Edinburgh, United Kingdom, September
5-7, 2016, pages 38–49. ACM.

Gelfond, M. and Lifschitz, V. (1991).
Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9(3–4):365–386.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 22 / 22

Conclusion

References II
Ielpa, S. M., Iiritano, S., Leone, N., and Ricca, F. (2009).
An ASP-Based System for e-Tourism.
In Erdem, E., Lin, F., and Schaub, T., editors, Logic Programming and Nonmonotonic Reasoning,
10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009.
Proceedings, volume 5753 of Lecture Notes in Computer Science, pages 368–381. Springer.

Oetsch, J., Pührer, J., and Tompits, H. (2011).
Extending Object-Oriented Languages by Declarative Specifications of Complex Objects using
Answer-Set Programming.
CoRR, abs/1112.0922.

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., and Leone, N. (2012).
Team-building with answer set programming in the Gioia-Tauro seaport.
TPLP, 12(3):361–381.

Thimm, M. (2014).
Tweety: A Comprehensive Collection of Java Libraries for Logical Aspects of Artificial Intelligence
and Knowledge Representation.
In Baral, C., Giacomo, G. D., and Eiter, T., editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014. AAAI Press.

Rath J., Redl C. (TU Vienna) HEX-Programs January 16, 2017 23 / 22

	Motivation
	General Approach
	Input and Output Specification Language
	Implementation and Applications
	Conclusion

