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Abduction is the process of finding explanations for
observed phenomena in accord to known laws about
a given application domain. This form of reasoning is
an important principle of common-sense reasoning and
is particularly relevant in conjunction with nonmono-
tonic knowledge representation formalisms. In this pa-
per, we deal with a model for abduction in which the
domain knowledge is represented in terms of a default
theory. We show how the main reasoning tasks asso-
ciated with this particular form of abduction can be
axiomatised within the language of quantified Boolean
logic. More specifically, we provide polynomial-time
constructible reductions mapping a given abduction
problem into a quantified Boolean formula (QBF) such
that the satisfying truth assignments to the free vari-
ables of the latter determine the solutions of the origi-
nal problem. Since there are now efficient QBF-solvers
available, this reduction technique yields a straightfor-
ward method to implement the discussed abduction
tasks. We describe a realisation of this approach by
appeal to the reasoning system QUIP.
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1. Introduction

The philosopher C. S. Peirce identified three
fundamental modes of reasoning: (i) deduction,
an analytic process determining necessary conse-
quences from general rules; (ii) induction, a syn-
thetic form of reasoning deriving probable general-
isations from factual data; and (iii) abduction, an-
other form of synthetic inference, yielding relevant
premisses from rules and observed consequences.
Thus, following Peirce, abduction can be charac-
terised as the “probational adoption of a hypoth-

esis” as explanation for observed facts, according
to known laws modelling a specific domain under
consideration [29].

Various formalisations of abductive reasoning
have been proposed in the literature, differing ba-
sically in the way the domain knowledge is repre-
sented. Besides abduction by set-covering [30] or
probabilistic abduction [28; 30], an important cat-
egory of abductive reasoning techniques is logic-
based abduction, in which the application domain
is modelled by means of a logical theory. Although
classical logic is mainly used for this purpose [32],
recent years witnessed an increasing interest in
employing nonmonotonic reasoning formalisms as
underlying language for logic-based abduction. As
a case in point, abductive logic programming [18;
36; 11; 19] is a well-known realisation of this
paradigm, and successful implementations of this
particular approach exist [20; 5; 8].

Another important nonmonotonic reasoning for-
malism relevant for abduction is default logic [33].
A formal model for abduction from default the-
ories has been introduced by Eiter, Gottlob, and
Leone [12]. In this approach, a default abduction
problem, P, consists of a default theory T =
〈W,∆〉 (where W is a set of formulas and ∆ is a
set of defaults), a set M of observed phenomena,
and a set H of hypotheses. An explanation for P is
any set E ⊆ H such that M can be inferred from
the extended default theory TE = 〈W∪E,∆〉, pro-
viding TE has a consistent extension. Inference in
the context of default logic is understood either
as brave inference (checking whether M is con-
tained in some extension of TE) or skeptical in-
ference (checking whether M is contained in all
extensions of TE).

Although a restriced fragment of this approach
has been realised by the diagnosis front-end of
the DLV system [8], no general solver for default
abduction has been put forth so far. In this pa-
per, we take up this challenge and describe a gen-
eral method to build a prototype reasoning system
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for the default abduction model from [12], based
on a reduction approach. The central idea is to
translate a given abduction task into a quantified
Boolean formula (QBF) and then applying some
sophisticated QBF-solver to evaluate the trans-
lated QBF. The existence of efficient QBF-solvers,
like, e.g., the systems developed by Cadoli et al. [3],
Giunchiglia et al. [15], Rintanen [35], Letz [23],
or Feldmann et al. [14], makes this reduction ap-
proach practicably applicable.

Concerning the particular encodings, we provide
efficient (polynomial-time constructible) transla-
tions of the following reasoning tasks into QBFs:

(i) computing all explanations for a given abduc-
tion problem;

(ii) computing all hypotheses which are relevant
for a given abduction problem, i.e., which
contribute to some explanation; and

(iii) computing all hypotheses which are necessary
for a given abduction problem, i.e., which
contribute to all explanations.

Each of the above tasks is dealt with for brave and
skeptical default inference, as well as for arbitrary
explanations and for subset-minimal explanations.

From a theoretical point of view, the rationale
of the current approach relies on the observation
that the evaluation problem of quantified Boolean
formulas, qsat, is PSPACE-complete, so any de-
cision problem in PSPACE can be polynomially
reduced to qsat. In fact, the evaluation problem
for QBFs having prenex normal form with i − 1
quantifier alternations is complete for the i-th level
of the polynomial hierarchy. Since the reasoning
tasks considered in this paper are located between
the second and fourth level of the polynomial hi-
erarchy, efficient translations to QBFs with one,
two, or three quantifier alternations must exist.

A similar approach for solving various reason-
ing tasks belonging to the area of nonmonotonic
reasoning has been realised in the system QUIP [6;
13; 4; 2; 27]. This prototype implementation cur-
rently handles the computation of the main rea-
soning tasks for default logic, several modal non-
monotonic logics, consistency-based approaches to
belief revision and paraconsistent reasoning, and
equilibrium logic, a generalisation of the stable
model semantics for logic programs. We obtain a
straightforward implementation of the translations
for default abduction problems by appeal to the
system QUIP.

Reduction methods to QBFs naturally gener-
alise similar approaches for problems in NP; these
latter problems can in turn be solved by translat-
ing them (in polynomial time) to sat, the satisfi-
ability problem of classical propositional logic (see
e.g., [21] for such an application in Artificial In-
telligence). Besides the implementation of differ-
ent nonmonotonic reasoning tasks as realised by
the system QUIP, successful applications based on
reductions to QBFs have also been applied to con-
ditional planning [34].

The paper is organised as follows. In the next
section, we give some basic notation and recapitu-
late the relevant aspects of default logic. Section 3
introduces the default abduction framework, and
Section 4 lays down the elementary facts about
QBFs. Section 5 contains our main results, and
Section 6 deals with implementational issues. Sec-
tion 7 supplies some concluding remarks.

2. Preliminaries

2.1. Basic Notation

We deal with propositional languages and use
the primitive sentential connectives ¬ and ∧ , to-
gether with the logical constant >, to construct
formulas in the standard way. The operators ∨ ,
⊃ , ≡, as well as the symbol ⊥, are defined from
¬, ∧ , and > as usual. We write LA to denote a
language over an alphabet A of propositional vari-
ables or atoms. Formulas are denoted by Greek
lower-case letters (possibly with subscripts). Con-
junctions of form

∧

i∈I φi are assumed to stand for
the logical constant > whenever I = ∅. A literal is
either an atom p or a negated atom ¬p. The set of
all atoms occurring in a formula φ is denoted by
Var(φ). Similarly, for a set S of formulas, Var(S)
is the set of all atoms occurring in elements of S,
i.e., Var(S) =

⋃

φ∈S Var(φ). Furthermore, ¬S de-
notes the set {¬φ | φ ∈ S}.

The (propositional) derivability operator, `, is
defined in the usual way, and likewise its seman-
tic counterpart |=. The deductive closure of a set
S ⊆ LA of formulas is given by CnA(S) = {φ ∈
LA | S ` φ}. We say that S is deductively closed
iff S = CnA(S). Furthermore, S is consistent pro-
viding ⊥ /∈ CnA(S). If the language is clear from
the context, we usually drop the index “A” from
CnA(·) and simply write Cn(·).
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Given an alphabet A, we define a disjoint al-
phabet A′ as A′ = {p′ | p ∈ A}. Accordingly, for
α ∈ LA, we define α′ as the result of replacing in
α each atom p from A by the corresponding atom
p′ in A′ (so implicitly there is an isomorphism be-
tween A and A′). This is defined analogously for
sets of formulas.

We assume the reader familiar with the basic
concepts of complexity theory (see, e.g., [26] for
a comprehensive introduction). Relevant for our
purposes are the elements of the polynomial hier-
archy, given by the following sequence of classes:

ΣP
0 = ΠP

0 = P;

and, for i > 0,

ΣP
i = NPΣP

i−1 and ΠP
i = co-NPΣP

i−1 .

Here, P is the class of all problems solvable on a
deterministic Turing machine in polynomial time;
NP is similarly defined but using a nondeter-
ministic Turing machine as underlying computing
model; and, for complexity classes C and A, the
notation CA stands for the relativized version of
C, consisting of all problems which can be decided
by Turing machines of the same sort and time
bound as in C, only that the machines have access
to an oracle for problems in A. As well, co-C is
the class of all problems which are complementary
to the problems in C. We note that ΣP

1 = NP,
ΣP

2 = NPNP, and ΠP
2 = co-NPNP.

2.2. Default Logic

In default logic [33], knowledge about the world
is represented in terms of default theories, which
are ordered pairs of form T = 〈W,∆〉, where W is
a set propositional formulas, called the premisses
of T , and ∆ is a set of default rules (or defaults,
for short). The set W represents certain (though in
general incomplete) information about the given
application domain, whilst ∆ represents defeasible
knowledge, which may be invalidated by new, more
accurate information. Formally, a default, δ, is an
inference rule of form

α : β1, . . . , βn

γ
,

where α, β1, . . . , βn, and γ are formulas. Intu-
itively, δ expresses that γ is asserted whenever
α is believed and β1, . . . , βn are consistent with
what is believed (i.e., there is no evidence that

one of ¬β1, . . . ,¬βn holds). We call α the prereq-
uisite, the formulas β1, . . . , βn the justifications,
and γ the consequent of δ. For notational conve-
nience, we also write p(δ) for the prerequisite α
of δ, j(δ) for the set {β1, . . . , βn}, and c(δ) for
the consequent γ of δ. Accordingly, p(∆) is the
set of prerequisites of all default rules in ∆; j(∆)
and c(∆) are defined analogously. Furthermore, we
define Var(∆) = Var(p(∆) ∪ j(∆) ∪ c(∆)) and
Var(T ) = Var(W ) ∪ Var(∆), for T = 〈W,∆〉. As
well, we extend our priming notation introduced
for (sets of) formulas to defaults and default the-
ories in the obvious way, i.e., δ′ denotes the result
of replacing each atom p in default δ by p′, and
likewise for sets of defaults and default theories.

We say that a default theory T = 〈W,∆〉 is finite
iff both W and ∆ are finite.

For simplicity, defaults will also be written in
the form (α : β1, . . . , βn/γ).

The semantics of default theories is defined in
terms of extensions. Formally, a set S ⊆ LA is
an extension of a default theory T = 〈W,∆〉 iff
S =

⋃

i≥0 Si, where S0 = W and, for i ≥ 0,

Si+1 = Cn(Si) ∪ {c(δ) | δ ∈ GDi},

with

GDi = {δ ∈ ∆ | p(δ) ∈ Si,¬j(δ) ∩ S = ∅}.

In general, a default theory may possess none,
one, or several extensions. Intuitively, an extension
characterises a possible totality of beliefs to which
an agent may refer on the basis of a given default
theory.

Setting GD(∆, S) =
⋃

i≥0GDi, it holds that
S = Cn(W ∪ c(GD(∆, S))), for any extension S of
T = 〈W,∆〉. We call the elements of GD(∆, S) the
generating defaults of S.

Following Marek and Truszczyński [24], exten-
sions can alternatively be characterised as follows.
For any set ∆ of defaults and any S ⊆ LP , de-
fine the reduct of ∆ with respect to S as the set of
classical inference rules

∆S =

{

p(δ)

c(δ)

∣

∣

∣

∣

δ ∈ ∆,¬j(δ) ∩ S = ∅

}

.

Furthermore, for any set F of propositional for-
mulas and any set K of classical inference rules,
let CnK(F ) be the set of all formulas derivable
from F using classical logic together with the rules
in K. Then, S is an extension of T = 〈W,∆〉 iff
S = Cn∆S (W ).
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There are two basic inference operations in the
context of default logic, viz. brave inference and
skeptical inference. To wit, we say that a formula
φ is a brave consequence of a given default the-
ory T , symbolically T ∼ b φ, iff φ belongs to
some extension of T , and φ is a skeptical conse-
quence of T , symbolically T ∼ s φ, iff φ belongs
to all extensions of T . As shown in [16], both in-
ference tasks are intractable in the general case.
More specifically, given a default theory T and a
formula φ, checking whether T ∼ b φ holds is ΣP

2 -
complete, whilst checking whether T ∼ s φ holds
is ΠP

2 -complete. Analogously, checking whether a
given default theory possesses an extension is ΣP

2 -
complete as well.

Let S be a set of formulas. We write T ∼ b S
to indicate that T ∼ b φ, for any φ ∈ S; a similar
notation applies for ∼ s .

3. The Abduction Framework

Following Eiter, Gottlob, and Leone [12], we de-
fine a formal model for abduction from proposi-
tional default theories as follows.

Definition 1 A default abduction problem, P, is a
quadruple 〈H,M,W,∆〉, where H and M are sets
of literals, and 〈W,∆〉 is a default theory. We call
the elements of H the hypotheses or abducibles,
and the elements of M the observations or mani-
festations of P.

The default abduction problem P is finite iff
each constituting member H, M , W , and ∆ of P
is finite.

Informally, in a default abduction problem P =
〈H,M,W,∆〉, H specifies the universe of admis-
sible explanations, the elements of M are the ob-
served phenomena, and 〈W,∆〉 represents the cur-
rent world knowledge. A set E ⊆ H serves as
an explanation for the observed manifestations in
M if the adjunction of E to the world knowl-
edge 〈W,∆〉 entails all propositions in M . Given
that there are two different inference operations
associated with default theories, there are, accord-
ingly, two fundamental kinds of explanations for
observed phenomena, as defined next.

Definition 2 Let P = 〈H,M,W,∆〉 be a default ab-
duction problem, and let E ⊆ H.

We call E a brave explanation for P iff (i) 〈W∪
E,∆〉 ∼ b M and (ii) 〈W ∪E,∆〉 has a consistent
extension. Similarly, E is a skeptical explanation
for P iff (i) 〈W∪E,∆〉 ∼ s M and (ii) 〈W∪E,∆〉
has a consistent extension.

The stipulation that 〈W ∪ E,∆〉 possesses a
consistent extension assures that explanations are
consistent with the knowledge represented in the
given default theory 〈W,∆〉. This requirement is
similar to the usual consistency condition in ab-
duction from theories in classical logic.

We note that brave explanations for a given ab-
duction problem P = 〈H,M,W,∆〉 can be equiv-
alently characterised as sets E ⊆ H such that
〈W ∪ E,∆〉 has a consistent extension containing
M . This is a simple consequence of the well-known
fact that if a default theory T has some consis-
tent extension, then all extensions of T must be
consistent.

The assumption that hypotheses and mani-
festations in a default abduction problem P =
〈H,M,W,∆〉 are given by literals instead of ar-
bitrary formulas is no restriction since for each
non-literal hypothesis or manifestation φ a new
propositional atom pφ can be introduced, and af-
ter adding the formula pφ ≡ φ to W , φ can be
equivalently replaced by pφ.

We extend our notation Var(·) and our priming
convention to default abduction problems in the
obvious way, i.e., for P = 〈H,M,W,∆〉, we define
Var(P) = Var(H ∪M ∪W ) ∪ Var(∆) and P ′ =
〈H ′,M ′,W ′,∆′〉.

Following Occam’s principle of parsimony, one
usually prefers simpler explanations over more
complicated ones. In the present context, this idea
is realised by accepting only those explanations
which are minimal among the class of explana-
tions. More formally, we call E ⊆ H a minimal
brave (resp., minimal skeptical) explanation for P
iff E is a brave (resp., skeptical) explanation for P
and there is no F ⊂ E such that F is also a brave
(resp., skeptical) explanation for P.

Another interesting property of hypotheses is
whether they contribute to some explanation or
to all explanations for a given abduction problem.
More specifically, we call a set H0 ⊆ H relevant
for P = 〈H,M,W,∆〉 under brave (resp., skepti-
cal) explanations iff H0 ⊆ E for some brave (resp.,
skeptical) explanation E for P. Dually, H0 ⊆ H is
necessary for P under brave (resp., skeptical) ex-
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Table 1

Complexity results of abduction from default theories.

Abduction Problem P

arbitrary explanations minimal explanations

Decision Problem brave skeptical brave skeptical

consistency ΣP

2
ΣP

3
ΣP

2
ΣP

3

relevance ΣP

2
ΣP

3
ΣP

3
ΣP

4

necessity ΠP

2
ΠP

3
ΠP

2
ΠP

3

planations iff H0 ⊆ E for each brave (resp., skep-
tical) explanation E for P. Both concepts are sim-
ilarly defined for abduction problems under mini-
mal explanations.

For illustration, let us consider the following
simple example.

Example 1 Let 〈W,∆〉 be the default theory con-
sisting of the following items:

W =
{(

l ∧ (s ∨ (c ∧ r))
)

⊃ m,

(¬s ∨ ¬c)
}

;

D =
{

(w : ¬j/r), (w : ¬r/j)
}

.

Furthermore, assume we are interested in finding
explanations for the manifestation M = {m} us-
ing H = {l, s, c, w} as the set of hypotheses. Then,
by straightforward calculations, it can be shown
that the brave explanations for P = 〈H,M,W,∆〉
are given by {l, s}, {l, s, w}, and {l, c, w}, whilst
only {l, s} and {l, s, w} represent the skeptical ex-
planations for P. The reason for this difference
is that m is not contained in all extensions of
〈W ∪ {l, c, w},∆〉, which are given by

S1 = Cn({l, c, w, r,m}) and

S2 = Cn({l, c, w, j}).

Observe that {l} is the only set necessary for
P under brave explanations, whilst {l, s} is neces-
sary for P under skeptical explanations. Moreover,
{c} is relevant for P under brave explanations but
not under skeptical ones. Also, {l, s} and {l, c, w}
are the minimal brave explanations for P, whereas
{l, s} is the single minimal skeptical explanation
for P. 2

Abstracting from the particular kind of expla-
nation, the main decision problems in the context
of abductive reasoning are the following:

consistency: Does a given finite default abduc-
tion problem possess an explanation?

relevance: Given some finite default abduction
problem P = 〈H,M,W,∆〉 and a setH0 ⊆ H,
is H0 relevant for P?

necessity: Given some finite default abduction
problem P = 〈H,M,W,∆〉 and a setH0 ⊆ H,
is H0 necessary for P?

Concerning the computational complexity of
these tasks, as shown in [12], these problems are
located between the second and fourth level of the
polynomial hierarchy. Table 1 gives the specific
results; each entry C represents completeness of
the corresponding problem for the class C.1 As
can be seen from these results, skeptical abduction
is always one level harder than brave abduction.
This contrasts with complexity results for usual
nonmonotonic reasoning formalisms, where skepti-
cal reasoning has complementary complexity than
brave reasoning. Also, minimality of explanations
is a source of complexity for relevance but nei-
ther for consistency nor for necessity. The rea-
son for this phenomenon is the fact that an abduc-
tion problem P has a minimal brave (resp., mini-
mal skeptical) explanation iff it has a brave (resp.,
skeptical) explanation; likewise, a set is necessary
for P under minimal brave (resp., minimal skep-
tical) explanations iff it is necessary for P under
brave (resp., skeptical) explanations. Finally, the

1Strictly speaking, [12] defines relevant and necessary hy-

potheses as single formulas (actually, literals) whereas we

allow here sets for this purpose; but this difference is im-

material.
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results for relevance contrast with correspond-
ing results for abduction from theories in classical
logic where minimality is not a source of complex-
ity [10].

The main contribution of this paper is to show
how each of the above decision problems, as well as
each corresponding search problem, can be mapped
in polynomial time into a quantified Boolean for-
mula such that the models of the latter determine
the answers of the former. In fact, the translations
are realised in such a way that the structure of the
constructed formulas precisely matches the com-
plexity of the encoded reasoning tasks. In the next
section, we briefly recapitulate the relevant aspects
of quantified Boolean logic.

4. Quantified Boolean Logic

Quantified Boolean logic is an extension of clas-
sical propositional logic in which formulas are per-
mitted to contain quantifications over proposi-
tional variables. More formally, the language of
quantified Boolean logic comprises the symbols of
propositional logic, together with unary operators
of form ∀p (where p is some atom), called univer-
sal quantifiers. Similar to first-order logic, ∃p is
defined as the operator ¬∀p¬ and is called an ex-
istential quantifier. Formulas of this language are
referred to as quantified Boolean formulas (QBFs)
and are denoted by Greek upper-case letters.

Informally, a QBF of form ∀p∃qΦ means that
for all truth assignments of p there is a truth as-
signment of q such that Φ is true. For instance,
under this reading, it is easily seen that the QBF
∃p∃q ((p ⊃ q) ∧ ∀r(r ⊃ q)) evaluates to true.

The precise semantical meaning of QBFs is de-
fined as follows. First, some ancillary notation. An
occurrence of a propositional variable p in a QBF
Φ is free iff it does not appear in the scope of a
quantifier Qp (Q ∈ {∀,∃}), otherwise the occur-
rence of p is bound. If Φ contains no free variable
occurrences, then Φ is closed, otherwise Φ is open.
Furthermore, Φ[p1/φ1, . . . , pn/φn] denotes the re-
sult of uniformly substituting in Φ each free occur-
rence of a variable pi by a formula φi, for 1 ≤ i ≤ n.

By an interpretation, I, we understand a set of
atoms. Informally, an atom p is true under I iff
p ∈ I. In general, the truth value, νI(Φ), of a QBF
Φ under an interpretation I is recursively defined
as follows:

1. if Φ = >, then νI(Φ) = 1;
2. if Φ = p, for some atom p, then νI(Φ) = 1 if
p ∈ I, otherwise νI(Φ) = 0;

3. if Φ = ¬Ψ, then νI(Φ) = 1 if νI(Ψ) = 0,
otherwise νI(Φ) = 0;

4. if Φ = (Φ1 ∧Φ2), then νI(Φ) = 1 if νI(Φ1) =
νI(Φ2) = 1, otherwise νI(Φ) = 0;

5. if Φ = ∀pΨ, then νI(Φ) = 1 if νI(Ψ[p/>]) =
νI(Ψ[p/⊥]) = 1, otherwise νI(Φ) = 0.

The truth conditions for ⊥, ∨ , ⊃ , ≡, and ∃ follow
from the above in the usual way. Obviously, we
have that

νI(∀pΨ) = νI(Ψ[p/>] ∧ Ψ[p/⊥]) and

νI(∃pΨ) = νI(Ψ[p/>] ∨ Ψ[p/⊥]).

We say that Φ is true under I iff νI(Φ) = 1,
otherwise Φ is false under I. If νI(Φ) = 1, then I is
a model of Φ. The set of all models of Φ is denoted
by Mod(Φ). If Mod(Φ) 6= ∅, then Φ is satisfiable.
If Φ is true under every interpretation, then Φ is
valid. As usual, we write |= Φ to express that Φ is
valid.

It is easily seen that the truth value of a QBF
Φ under interpretation I depends only on the free
variables in Φ. Hence, without loss of generality,
for determining the truth value of QBFs, we may
restrict our attention to interpretations which con-
tain only atoms occurring free in the given QBF.
In particular, closed QBFs are either true under
every interpretation or false under every interpre-
tation, i.e., they are either valid or unsatisfiable.
So, for closed QBFs there is no need to refer to
particular interpretations. As well, if a closed QBF
Φ is valid, we say that Φ evaluates to true, and,
correspondingly, if Φ is unsatisfiable, we say that
Φ evaluates to false. Two sets of formulas (i.e., or-
dinary propositional formulas or QBFs) are logi-
cally equivalent iff they possess the same models.
Thus, formulas Φ and Ψ are logically equivalent iff
Φ ≡ Ψ is valid.

In the sequel, we use the following abbreviations
in the context of QBFs: Let R = {φ1, . . . , φn}
and S = {ψ1, . . . , ψn} be indexed sets of formu-
las. Then, R ≤ S abbreviates

∧n
i=1(φi ⊃ ψi), and

R < S is a shorthand for (R ≤ S) ∧ ¬(S ≤ R).
Furthermore, for an indexed set P = {p1, . . . , pn}
of variables and Q ∈ {∀,∃}, we let QP Φ stand for
the formula Qp1Qp2 · · ·Qpn Φ. To ease notation,
we usually identify a finite set of formulas with
the conjunction of its elements. Finally, the logi-
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cal complexity of a formula Φ, or the degree of Φ,
symbolically d(Φ), is the number of occurrences of
the primitive operators ¬, ∧ , and ∀p (where p is
some variable) occurring in Φ.

The operators ≤ and < are fundamental tools
for expressing certain tests on sets of atoms. In
particular, the following properties hold: Let P =
{p1, . . . , pn} be a set of indexed atoms, and let
I1, I2 ⊆ P be two interpretations. Then,

(i) I1 ⊆ I2 iff I ′1 ∪ I2 is a model of P ′ ≤ P ; and
(ii) I1 ⊂ I2 iff I ′1 ∪ I2 is a model of P ′ < P .

We say that QBF Φ is in prenex form if Φ =
Q1p1 . . .Qnpnφ, where Qi ∈ {∀,∃}, for 1 ≤ i ≤
n, and φ is some propositional formula. Using
quantifier-shifting rules similar to those of classical
first-order logic, any QBF can be effectively trans-
formed into an equivalent QBF in prenex form. In
fact, this transformation can be done in polyno-
mial time.

QBFs are closely related to the constituting
members of the polynomial hierarchy, as described
by the following well-known result:

Proposition 1 ([40]) Given a propositional formula
φ whose atoms are partitioned into i ≥ 1 sets
V1, . . . , Vi, deciding whether ∃V1∀V2∃V3 . . .QViφ
evaluates to true is ΣP

i -complete, where Q = ∃ if
i is odd and Q = ∀ if i is even. Dually, decid-
ing whether ∀V1∃V2∀V3 . . . Q̄Viφ evaluates to true
is ΠP

i -complete, where Q̄ = ∀ if i is odd and Q̄ = ∃
if i is even.

From this proposition it follows that any deci-
sion problem in ΣP

i can be efficiently reduced to
the evaluation problem of prenex QBFs of form
∃V1∀V2∃V3 . . .QViφ, with Q as above, and sim-
ilarly for problems in ΠP

i . In the next section,
we describe polynomial-time constructible trans-
lations from the main abductive reasoning tasks
into QBFs such that the quantifier structure of the
resultant formulas precisely matches the inherent
complexity of the encoded problem.

5. Translations

In this section, we present efficient reductions of
the main reasoning tasks in the context of abduc-
tion from default theories into QBFs. These reduc-
tions are constructed in such a way that the solu-
tions of the given abduction problems are deter-
mined by the models of the corresponding QBFs.

In what follows, we tacitly assume that all con-
sidered default abduction problems are finite.

5.1. Preparatory Characterisations

We start with some basic results concerning the
operator ≤. To wit, we first describe a particular
substitution theorem involving ≤, and afterwards
we discuss two basic QBF modules required sub-
sequently.

Proposition 2 Let H = {φ1, . . . , φn} and G =
{g1, . . . , gn} be indexed sets of formulas and atoms,
respectively, such that G ∩ Var(H) = ∅, and let
ΦG≤H be a QBF containing one or more desig-
nated occurrences of G ≤ H such that the elements
of G occur free in ΦG≤H and, moreover, only in
the designated subformulas G ≤ H of ΦG≤H . Fur-
thermore, let I ⊆ Var(ΦG≤H) \G and J ⊆ G, and
let HJ =

∧

gi∈J φi.
Then, ΦG≤H is true under I ∪ J iff ΦHJ

is true
under I, where ΦHJ

comes from ΦG≤H by replac-
ing all designated occurrences of G ≤ H by HJ .

Proof. For a formula Ψα containing designated oc-
currences of a formula α as consecutive parts, de-
fine d′(Ψα) like d(Ψα), but count the specific oc-
currences of α as atomic formulas. The proof of the
proposition proceeds by induction on d′(ΦG≤H).

Induction Base. Assume d′(ΦG≤H) = 0. Then,
ΦG≤H = G ≤ H and ΦHJ

= HJ . Since, for each
1 ≤ i ≤ n, the truth value of gi ⊃ φi under inter-
pretation I ∪ J coincides with the truth value of
φi under I if gi ∈ J , and gi ⊃ φi is trivially true
under I ∪ J if gi /∈ J , we have that

νI∪J (

n
∧

i=1

(gi ⊃ φi)) = νI(
∧

gi∈J

φi),

which proves that ΦG≤H is true under I ∪J iff HJ

is true under I.

Induction Step. Assume d′(ΦG≤H) > 0, and let
the statement hold for all formulas ΨG≤H , con-
taining specified occurrences of G ≤ H, such that
d′(ΨG≤H) < d′(ΦG≤H).

Since d′(ΦG≤H) > 0, ΦG≤H is a compound for-
mula having as its main operator either ¬, ∧ , or
a universal quantifier (recall that ∨ , ⊃ , ≡, and
existential quantifiers are defined operators). We
only deal with the case where ΦG≤H is a univer-
sally quantified formula; the remaining cases follow
by similar arguments.
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Assume therefore that ΦG≤H = ∀pΨG≤H . Re-
call that νI∪J (∀pΨG≤H) is given by

νI∪J (ΨG≤H [p/>] ∧ ΨG≤H [p/⊥]).

Since both d′(ΨG≤H [p/>]) and d′(ΨG≤H [p/⊥]) are
strictly less than d′(ΦG≤H), by induction hypoth-
esis it follows that

νI∪J (ΨG≤H [p/>]) = νI(ΨHJ
[p/>]) and

νI∪J (ΨG≤H [p/⊥]) = νI(ΨHJ
[p/⊥]),

from which we immediately get, by the semantics
of conjunction and universal quantification, that

νI∪J (∀pΨG≤H) = νI(∀pΨHJ
),

i.e., ΦG≤H is true under I ∪ J iff ΦHJ
is true un-

der I.

Next, we describe two fundamental QBF mod-
ules, capturing the following tasks, respectively:

1. Given finite sets R and S of propositional for-
mulas, compute all Q ⊆ S such that R∪Q is
satisfiable.

2. Given finite sets R and S of propositional
formulas, and some propositional formula ψ,
compute all Q ⊆ S such that R ∪Q |= ψ.

These tasks can be characterised as follows.

Proposition 3 Let R and S = {φ1, . . . , φn} be fi-
nite sets of propositional formulas, let ψ be a
propositional formula, and let G = {g1, . . . , gn} be
a set of new variables. Furthermore, consider any
Q ⊆ S and any I ⊆ G such that φi ∈ Q iff gi ∈ I,
for 1 ≤ i ≤ n.

Then,

1. R∪Q is satisfiable iff I is a model of the QBF

C[R,S;G] = ∃U
(

R ∧ (G ≤ S)
)

,

where U = Var(R∪S) and such that G∩U =
∅; and

2. R ∪Q |= ψ iff I is a model of the QBF

D[R,S, ψ;G] = ∀V
(

(R ∧ (G ≤ S)) ⊃ ψ
)

,

where V = Var(R ∪ S ∪ {ψ}) and such that
G ∩ V = ∅.

Proof. Consider Q ⊆ S and I ⊆ G such that φi ∈
Q iff gi ∈ I, for 1 ≤ i ≤ n. For proving Part 1,
according to Proposition 2, we have that I is a
model of ∃U

(

R ∧ (G ≤ S)
)

iff

∃U
(

R ∧
∧

gi∈I

φi

)

(1)

is valid. But Q =
∧

gi∈I φi, hence, by the semantics
of existential quantification, we get that (1) is valid
iff R ∪Q is satisfiable. It follows that I is a model
of C[R,S;G] iff R ∪Q is satisfiable.

Part 2 is an immediate consequence of Part 1,
by observing that R ∪ Q |= ψ iff (R ∪ {¬ψ}) ∪ Q
is unsatisfiable, and since

¬∃V
(

(R ∧ ¬ψ) ∧ (G ≤ S)
)

is equivalent to

∀V
(

(R ∧ (G ≤ S)) ⊃ ψ
)

.

Note that C[R,S;G] is an open QBF having G
as its set of free variables. These variables facilitate
the selection of those elements of S which deter-
mine the sets Q ⊆ S such that R∪Q is satisfiable.
In fact, C[R,S;G] is designed to express all poten-
tial subsets Q ⊆ S such that R ∪ Q is satisfiable.
Similar considerations apply to D[R,S, ψ;G].

5.2. Encodings for Default Logic

In order to express default abduction problems
in terms of QBFs, we need suitable QBF encod-
ings capturing the underlying default inference
mechanism. To this end, we use results from [6],
where QBF reductions for default reasoning are
given. More specifically, that paper contains two
different kinds of encodings for default logic: one
translation is based on the characterisation of
extensions following the method of Marek and
Truszczyński [24], and the other translation ex-
ploits the so-called full-set characterisation of ex-
tensions, due to Niemelä [25]. Here, we adopt the
former method because it is more suitable for our
purposes.

The following result contains the required reduc-
tions.

Proposition 4 ([6; 39]) Let T = 〈W,∆〉 be a de-
fault theory with ∆ = {δ1, . . . , δn}, let φ be a
propositional formula, and let C = {c1, . . . , cn},
D = {d1, . . . , dn}, and D′ = {d′1, . . . , d

′
n} be sets

of pairwise distinct new variables.
Furthermore, consider the QBFs from Fig. 1

with V = Var(W ∪ c(∆)), P = Var(φ) \ V ,
Ui = Var(p(δi)) \ V , and Zi,j = Var(βj) \ V , for
βj ∈ j(δi) and 1 ≤ i ≤ n.

Then, for any F ⊆ ∆ and any I ⊆ D such that
δi ∈ F iff di ∈ I, for 1 ≤ i ≤ n, the following
conditions hold:
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E [W,∆;D] = ∃D′((D ≤ D′) ∧ Φ1 ∧ Φ2 ∧ Φ3);

Mb[W,∆, φ;D] = E [W,∆;D] ∧ ∀V ∀P
(

(

W ∧ (D ≤ c(∆))
)

⊃ φ
)

;

Ms[W,∆, φ;D] = E [W,∆;D] ∧ ∃V ∃P
(

W ∧ (D ≤ c(∆)) ∧ ¬φ
)

;

Φ1 =

n
∧

i=1

[

d′i ≡
∧

βj∈j(δi)

∃V ∃Zi,j

(

W ∧
(

D ≤ c(∆)
)

∧ βj

)]

;

Φ2 =

n
∧

i=1

[

(d′i ∧ ¬di) ⊃ ∃V ∃Ui

(

W ∧
(

D ≤ c(∆)
)

∧ ¬p(δi))
)]

;

Φ3 = ∀C
{

(C ≤ D′) ⊃
[

∀V
(

(

W ∧ (C ≤ c(∆))
)

⊃ (D ≤ c(∆))
)

∨

n
∨

i=1

(

d′i ∧ ¬ci ∧ ∀V ∀Ui

(

(

W ∧ (C ≤ c(∆))
)

⊃ p(δi)
))]}

.

Fig. 1. QBF modules for expressing default reasoning.

1. Cn(W ∪ c(F )) is an extension of T iff I is a
model of E [W,∆;D], providing (C∪D∪D′)∩
Var(T ) = ∅;

2. Cn(W ∪ c(F )) is an extension of T contain-
ing φ iff I is a model of Mb[W,∆, φ;D], pro-
viding D ∩ (Var(T ) ∪ Var(φ)) = (C ∪D′) ∩
Var(T ) = ∅; and

3. Cn(W ∪ c(F )) is an extension of T not con-
taining φ iff I is a model of Ms[W,∆, φ;D],
assuming the same proviso as in 2.

Here, the module E [W,∆;D] characterises the
extensions of the given default theory T = 〈W,∆〉,
and

D[W, c(∆), φ;D] =

∀V ∀P
(

(

W ∧ (D ≤ c(∆))
)

⊃ φ
)

checks whether a given formula φ is contained in
a selected extension. Note that, dually,

C[W ∪ {¬φ}, c(∆);D] =

∃V ∃P
(

W ∧ (D ≤ c(∆)) ∧ ¬φ
)

,

which is equivalent to ¬D[W, c(∆), φ;D], checks
whether φ is not contained in the selected ex-
tension. The selection of an extension S, in turn,
is done by means of the variables in D, which
constitute the set of free variables of each of the
three main modules E [W,∆;D], Mb[W,∆, φ;D],

and Ms[W,∆, φ;D]. More specifically, the vari-
ables in D′ take care of selecting the members
in the reduct ∆S , and the variables in D check
whether the consequent of a selected rule is con-
tained in S = Cn∆S (W ). To that end, the follow-
ing tests are performed, expressed by the submod-
ules Φ1, Φ2, and Φ3:

– Φ1 tests whether each default in the guessed
set ∆S is consistent with the guess for the
extension S;

– Φ2 tests whether no applicable default in ∆S

is missing with respect to the guessed assign-
ment for D; and

– Φ3 utilises the test whether, for each default,
it holds that its consequent is actually con-
tained in Cn∆S (W ).

The latter formula encodes a result due to Got-
tlob [17] stating that a formula ψ /∈ Cn∆S (W ) iff
there exists a subset B ⊆ {γi | αi/γi ∈ ∆S} such
that (i) W ∪ B 6|= ψ, and (ii) for each αi/γi ∈ ∆S

with γi /∈ B, we have that W ∪B 6|= αi.
Encodings for brave and skeptical default infer-

ence are obtained from Proposition 4 in the fol-
lowing way.

Corollary 1 Let T , φ, and D be as in Proposi-
tion 4.

Then,

1. T ∼ b φ iff |= ∃DMb[W,∆, φ;D]; and
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2. T ∼ s φ iff |= ¬∃DMs[W,∆, φ;D].

We note that ∃DMb[W,∆, φ;D] can be trans-
formed in polynomial time into a QBF of prenex
form ∃X1∀X2ψ, whilst ¬∃DMs[W,∆, φ;D] can
be transformed, in the same manner, into a QBF
of prenex form ∀Y1∃Y2ϕ. Hence, in view of Propo-
sition 1, these encodings precisely match the inher-
ent computational complexity of brave and skep-
tical default reasoning, respectively.

5.3. Encodings of the Basic Abduction Tasks

The following definition gives the core modules
for our encodings.

Definition 3 Let P = 〈H,M,W,∆〉 be a default
abduction problem with ∆ = {δ1, . . . , δn}, and
let D = {d1, . . . , dn} and UH = {uh | h ∈
H} be sets of pairwise distinct variables with
(D ∪ UH) ∩ Var(P) = ∅. Furthermore, let E [·, ·; ·]
and Mσ[·, ·, ·; ·] be the translations from Proposi-
tion 4, for σ ∈ {b, s}, and consider the values
E [W ∧ (UH ≤ H),∆;D] and Mσ[W ∧ (UH ≤
H),∆,M ;D].

Then,

E+[W,∆;D,UH ]

is the result of dropping in E [W ∧ (UH ≤ H),∆;D]
all quantifiers which bind variables from UH . Like-
wise,

M+
σ [W,∆,M ;D,UH ]

is the result of dropping in formula Mσ[W ∧
(UH ≤ H),∆,M ;D] all quantifiers which bind
variables from UH .

Observe that the modules E+[W,∆;D,UH ] and
M+

σ [W,∆,M ;D,UH ] have D ∪ UH as their sets
of free variables. In fact, the variables in UH will
be used for selecting those elements from H which
represent a solution to the given abduction prob-
lem.

The next results gives the specific encodings for
brave and skeptical explanations.

Theorem 1 Under the circumstances of Defini-
tion 3, and supposing further that V = Var(H ∪
W ∪ c(∆)), the following conditions hold, for any
E ⊆ H and any I ⊆ UH such that h ∈ E iff
uh ∈ I:

1. E is a brave explanation for P iff I is a model
of the QBF T b

cons [P;UH ], given by

∃D
(

M+
b [W,∆,M ;D,UH ]∧

∃V
(

W ∧ (UH ≤ H) ∧ (D ≤ c(∆))
)

)

;

and
2. E is a skeptical explanation for P iff I is a

model of the QBF T s
cons [P;UH ], given by

∃D
(

E+[W,∆;D,UH ]∧

∃V
(

W ∧ (UH ≤ H) ∧ (D ≤ c(∆))
)

)

∧

¬∃DM+
s [W,∆,M ;D,UH ].

Proof. For Part 1, recall that E is a brave expla-
nation for P iff there is a consistent extension of
〈W ∪ E,∆〉 containing M . Consider any J ⊆ D
and any F ⊆ ∆ such that di ∈ J iff δi ∈ F , for
1 ≤ i ≤ n. We show that Cn(W ∪ E ∪ c(F )) is a
consistent extension of 〈W ∪ E,∆〉 containing M
iff I ∪ J is a model of

M+
b [W,∆,M ;D,UH ]∧

∃V
(

W ∧ (UH ≤ H) ∧ (D ≤ c(∆))
)

.

From this, by the semantics of existential quantifi-
cation, Part 1 follows.

First of all, according to Part 1 of Proposition 3,
we obviously have that Cn(W ∪ E ∪ c(F )) is con-
sistent iff I ∪ J is a model of

∃V
(

W ∧ (UH ≤ H) ∧ (D ≤ c(∆))
)

.

It remains to show that Cn(W ∪ E ∪ c(F )) is an
extension of 〈W ∪ E,∆〉 containing M iff I ∪ J is
a model of

M+
b [W,∆,M ;D,UH ]. (2)

This can be seen as follows.
To begin with, observe that, by construction, (2)

is a QBF of form ΦW ∧ (UH≤H), resulting from
Mb[W ∧ (UH ≤ H),∆,M ;D] by dropping all
quantifiers which bind variables from UH . Since
E and I are chosen in such a way that E =
∧

uh∈I h, Proposition 2 implies that I ∪ J is a
model of (2) iff J is a model of ΦW ∧E , where
the latter formula is the result of replacing all oc-
currences of W ∧ (UH ≤ H) in ΦW ∧ (UH≤H) by
W ∧ E. Now, ΦW ∧E is a QBF differing from
Mb[W ∧E,∆,M ;D] only by the presence of quan-
tifiers binding variables from Var(H\E). But such
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quantifiers clearly have no influence on the seman-
tics of the respective formulas, i.e., we have that

νJ(ΦW ∧E) = νJ(Mb[W ∧ E,∆,M ;D]).

Hence, I ∪ J is a model of (2) iff J is a model
of Mb[W ∧ E,∆,M ;D]. Consequently, in view of
Proposition 4(2), it follows that I ∪ J is a model
of (2) iff Cn(W ∪ E ∪ c(F )) is an extension of 〈W∪
E,∆〉 containing M . This concludes the proof of
Part 1.

Concerning Part 2, consider again J ⊆ D and
F ⊆ ∆ as above, satisfying di ∈ J iff δi ∈ F ,
for 1 ≤ i ≤ n. By an analogous argumentation as
in Part 1, Proposition 2 implies that I ∪ J is a
model of E+[W,∆;D,UH ] iff J is a model of E [W ∧
E,∆;D]. Hence, in view of Propositions 3(1) and
4(1), we have that Cn(W ∪ E ∪ c(F )) is a consis-
tent extension of 〈W ∪ E,∆〉 iff I ∪ J is a model
of

Ψ = E+[W,∆;D,UH ]∧

∃V
(

W ∧ (UH ≤ H) ∧ (D ≤ c(∆))
)

.

Therefore, the following condition holds:

(α) 〈W ∪ E,∆〉 has a consistent extension iff
∃DΨ is true under I.

Likewise, using Proposition 2 and Part 2 of Corol-
lary 1, one can show as above that

(β) 〈W ∪ E,∆〉 ∼ s φ just in case that I is a
model of

¬∃DM+
s [W,∆,M ;D,UH ].

Combining (α) and (β), we obtain that E is a
skeptical explanation for P iff I is a model of
T s
cons [P;UH ].

We note that, besides T b
cons [P;UH ], another

QBF encoding for brave explanations could be ob-
tained by replacing in T s

cons [P;UH ] the second con-
junct

¬∃DM+
s [W,∆,M ;D,UH ]

by

∃DM+
b [W,∆,M ;D,UH ].

Albeit such a transformation would result in a
more uniform axiomatics for the considered kinds
of explanations, the present reduction T b

cons [P;UH ]
is clearly more concise than that version.

By taking the existential closure of the reduc-
tions T b

cons [P;UH ] and T s
cons [P;UH ], we immedi-

ately obtain encodings for consistency under
brave and skeptical explanations, respectively.

Corollary 2 Let P be a default abduction problem.
Then,

1. there is at least one brave explanation for P
iff |= ∃UH T b

cons [P;UH ]; and
2. there is at least one skeptical explanation for

P iff |= ∃UH T s
cons [P;UH ].

It is easy to check that ∃UH T b
cons [P;UH ] can

be transformed in polynomial time into an equiva-
lent QBF of prenex form ∃X1∀X2φ, where X1, X2

are disjoint sets of variables and φ is some propo-
sitional formula, matching the ΣP

2 complexity of
the decision problem consistency under brave
explanations. However, ∃UH T s

cons [P;UH ] is equiv-
alent to a QBF of prenex form ∃Y1∀Y2∃Y3ψ, con-
taining an additional quantifier alternation, stem-
ming from module ¬∃DM+

s [W,∆,M ;D,UH ] and
reflecting the ΣP

3 complexity of consistency un-
der skeptical explanations.

Let us illustrate the mechanism of these encod-
ings with our example from Section 3.

Example 2 Consider the default abduction prob-
lem P from Example 1, and suppose we want to
compute the brave explanations for P by means
of translation T b

cons [P;UH ]. Recall that P has
three brave explanations, viz. {l, s}, {l, s, w}, and
{l, c, w}, so we expect that {ul, us}, {ul, us, uw},
and {ul, uc, uw} are the models of T b

cons [P;UH ].
In the present case, T b

cons [P;UH ] is given by

∃d1∃d2

(

E+[W,∆;D,UH ] ∧ Ψ1 ∧ Ψ2

)

,

where d1 corresponds to default δ1 = (w : ¬j/r),
d2 corresponds to default δ2 = (w : ¬r/j), D =
{d1, d2}, UH = {ul, us, uc, uw}, and Ψ1 and Ψ2 are
the following QBFs:

Ψ1 = ∀V
(

(

φ1 ∧ φ2 ∧ φ3

)

⊃ m
)

;

Ψ2 = ∃V
(

φ1 ∧ φ2 ∧ φ3

)

,

with V = Var(P) = {l, s, c, r,m, j, w} and φi (i =
1, 2, 3) given as

φ1 =
([

l ∧ (s ∨ (c ∧ r))
]

⊃ m
)

∧
(

¬s ∨ ¬c
)

;

φ2 =
(

ul ⊃ l
)

∧
(

us ⊃ s
)

∧
(

uc ⊃ c
)

∧

(

uw ⊃ w
)

;

φ3 =
(

d1 ⊃ r
)

∧
(

d2 ⊃ j
)

.
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It is easy to check that the models of Ψ1 are
given by

Mod(Ψ1) = {I ⊆ UH ∪D | ul, us ∈ I} ∪

{I ⊆ UH ∪D | ul, uc, d1 ∈ I}.

In view of the conjunct
(

¬s ∨ ¬c
)

of φ1, only
those I ∈ Mod(Ψ1) are models of Ψ2 which sat-
isfy the condition that us ∈ I iff uc /∈ I. Hence,
Mod(Ψ1 ∧ Ψ2) = S1 ∪ S2, where

S1 =
{

{ul, us} ∪ I | I ⊆ {uw, d1, d2}
}

and

S2 =
{

{ul, uc, d1} ∪ I | I ⊆ {uw, d2}
}

.

Therefore, the potential models of T b
cons [P;UH ]

are given by {ul, us}, {ul, us, uw}, {ul, uc}, and
{ul, uc, uw}. First of all, {ul, uc} is not a model of
T b
cons [P;UH ], because, as easily seen, there is no
J ⊆ D such that {ul, uc} ∪ J is a model of

E+[W,∆;D,UH ] ∧ Ψ1 ∧ Ψ2. (3)

Indeed, both {ul, uc} and {ul, uc, d2} are not mod-
els of Ψ1, and, by the basic mechanism of trans-
lation E+[W,∆;D,UH ], neither {ul, uc, d1} nor
{ul, uc, d1, d2} are models of the latter QBF.

Now consider {ul, us}. It is easy to verify that
{ul, us} is a model of E+[W,∆;D,UH ] (mainly be-
cause, under this interpretation, both d1 and d2

are false, so no default is applied), hence there is
some J ⊆ D (namely J = ∅) such that {ul, us}∪J
is a model of (3). By the semantics of existential
quantification, it follows that {ul, us} is a model
of T b

cons [P;UH ].
Similarly, {ul, us, uw} is a model of T b

cons [P;UH ]
because choosing, e.g., J0 = {d1}, it follows that
{ul, us, uw} ∪ J0 is a model of E+[W,∆;D,UH ],
from which we get that {ul, us, uw} ∪ J0 is also a
model of (3). Therefore, there is some J ⊆ D such
that {ul, us, uw} ∪ J is a model of (3).

Finally, {ul, uc, uw} is a model of T b
cons [P;UH ]

because for J0 = {d1}, we have that {ul, uc, uw} ∪
J0 is a model E+[W,∆;D,UH ], implying again
that there is some J ⊆ D such that {ul, uc, uw}∪J
is a model of (3). 2

We continue with the translations for expressing
relevant and necessary explanations.

Theorem 2 Let P = 〈H,M,W,∆〉 be a default ab-
duction problem, let H0 ⊆ H, and let T b

cons [P;UH ]
and T s

cons [P;UH ] be the encodings from Theorem 1,
for UH = {uh | h ∈ H}.

Consider the QBFs

T σ
rel [P, H0;UH ] =

(

∧

h∈H0
uh

)

∧ T σ
cons [P;UH ]

and

T σ
nec [P, H0;UH ] = ¬

(

∧

h∈H0
uh

)

∧ T σ
cons [P;UH ],

for σ ∈ {b, s}.
Then, for any any E ⊆ H and any I ⊆ UH such

that h ∈ E iff uh ∈ I, the following conditions
hold:

1. E is a brave (resp., skeptical) explanation
for P containing H0 iff I is a model of
T b
rel [P, H0;UH ] (resp., T s

rel [P, H0;UH ]); and
2. E is a brave (resp., skeptical) explanation

for P not containing H0 iff I is a model of
T b
nec [P, H0;UH ] (resp., T s

nec [P, H0;UH ]).

Proof. Consider sets E ⊆ H and I ⊆ UH such that
h ∈ E iff uh ∈ I. According to Theorem 1, we have
that

(α) E is a brave (resp., skeptical) explanation
for P iff I is a model of T b

cons [P;UH ] (resp.,
T s
cons [P;UH ]).

Furthermore, by construction of E and I, the fol-
lowing condition holds:

(β) H0 ⊆ E iff
∧

h∈H0
uh is true under I.

Obviously, Part 1 is an immediate consequence of
(α) and (β). But Part 2 follows from these two
conditions as well, since (β) is clearly equivalent
to

(γ) H0 6⊆ E iff ¬
(

∧

h∈H0
uh

)

is true under I.

Similar to Corollary 2, taking the existential clo-
sure of the above translations yields encodings for
the decision problems relevance and necessity.

Corollary 3 Let P = 〈H,M,W,∆〉 be a default ab-
duction problem and let H0 ⊆ H. Then,

1. H0 is relevant for P under brave explanations
iff

|= ∃UH T b
rel [P, H0;UH ];

likewise, H0 is relevant for P under skeptical
explanations iff

|= ∃UH T s
rel [P, H0;UH ];

and
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2. H0 is necessary for P under brave explana-
tions iff

|= ¬∃UH T b
nec [P, H0;UH ];

likewise, H0 is necessary for P under skepti-
cal explanations iff

|= ¬∃UH T s
nec [P, H0;UH ].

Since T σ
rel [P, H0;UH ] possesses the same quan-

tifier structure than T σ
cons [P;UH ] (for σ ∈ {b, s}),

we have that ∃UH T b
rel [P, H0;UH ] is equivalent to

a QBF of prenex form ∃X1∀X2φ, whilst encod-
ing ∃UH T s

rel [P, H0;UH ] is equivalent to a QBF of
form ∃Y1∀Y2∃Y3ψ, corresponding to the ΣP

2 and
ΣP

3 complexity of relevance under brave and
skeptical explanations, respectively. Accordingly,
¬∃UH T b

nec [P, H0;UH ] and ¬∃UH T s
nec [P, H0;UH ]

are equivalent to QBFs of form ∀Z1∃Z2ϕ and
∀Q1∃Q2∀Q3ξ, respectively, reflecting the ΠP

2 and
ΠP

3 complexity of necessity under brave and
skeptical explanations.

Example 3 Continuing Examples 1 and 2, suppose
we want to check whether c is relevant for P un-
der brave explanations. In view of Corollary 3, we
thus have to check whether ∃UH T b

rel [P, {uc};UH ]
evaluates to true, which is given by

∃UH

(

uc ∧ T b
cons [P;UH ]

)

, (4)

for UH = {ul, us, uc, uw} and T b
cons [P;UH ] as in

Example 2. We already know that the models of
T b
cons [P;UH ] are given by {ul, us}, {ul, us, uw},

and {ul, uc, uw}. Due to the last of these models,
we have that there is an interpretation I ⊆ UH

such that uc ∧ T b
cons [P;UH ] is true under I. Hence,

by the semantics of ∃UH , (4) evaluates to true. 2

Based on results shown in [11], there are al-
ternative methods to decide relevance and ne-
cessity of hypotheses. First of all, for a given
abduction problem P = 〈H,M,W,∆〉, it holds
that H0 ⊆ H is relevant for P under brave
(resp., skeptical) explanations iff Prel(H0) = 〈H \
H0,M,W ∪ H0,∆〉 has a brave (resp., skeptical)
explanation, andH0 is necessary for P under brave
(resp., skeptical) explanations iff Pnec(H0) =
〈H \ H0,M,W,∆〉 has no brave (resp., skeptical)
explanation. Hence, ∃UH T σ

cons [Prel(H0);UH ] and
¬∃UH T σ

cons [Pnec(H0);UH ] check relevance and ne-
cessity of H0, respectively (for σ ∈ {b, s}).

Also, checking relevance and necessity for brave
explanations can be efficiently reduced to default

reasoning, by means of the following construc-
tion [11]: given P = 〈H,M,W,∆〉, define

WP =W ∪ {ah ⊃ h | h ∈ H} ; and

∆P = ∆ ∪
{

:¬m
⊥

| m ∈M
}

∪
{

:ah

ah
, :¬ah

¬ah
| h ∈ H

}

,

where, for each h ∈ H, ah is a new atom. Then,
H0 ⊆ H is relevant for P under brave explanations
iff there is a consistent extension of 〈WP ,∆P〉 con-
taining

∧

h∈H0
ah, and H0 is necessary for P under

brave explanations iff
∧

h∈H0
ah belongs to all ex-

tensions of 〈WP ,∆P〉. Therefore, relevance of H0

can be checked by QBF

∃D
(

Mb[WP ,∆P ,
∧

h∈H0
ah;D]∧

∃V
(

WP ∧ (D ≤ c(∆P)
)

)

,

and necessity of H0 can be checked by

¬∃DMs[WP ,∆P ,
∧

h∈H0
ah;D],

where D is a set of new variables correspond-
ing to the defaults in ∆P and V = Var(WP ∪
c(∆P)). However, the above two QBFs have in
general a higher logical complexity (but of course
the same quantifier structure) than the encodings
∃UHT b

rel [P, H0;UH ] and ¬∃UHT b
nec [P, H0;UH ], as

the module Mb[·, ·, ·; ·] grows quadratically in the
number of defaults but only linearly in the num-
ber of premisses of the associated default theory of
a given default abduction problem—and the def-
inition of the module M+

b [·, ·, ·; ·], required for all
abduction encodings, involves only a modification
of the premisses of the associated default theory,
but no new defaults are introduced.

5.4. Minimal Explanations

Now we turn our attention to abductive reason-
ing under minimal explanations.

Theorem 3 Let P = 〈H,M,W,∆〉 be a default ab-
duction problem, let H0 ⊆ H, and let T σ

cons [P;UH ],
T σ
rel [P, H0;UH ], and T σ

nec [P, H0;UH ] be the en-
codings from Theorems 1 and 2, respectively, for
σ ∈ {b, s}.

Furthermore, let Mmin [P;UH ] be the QBF

¬∃U ′
H

(

(U ′
H < UH) ∧ T σ

cons [P
′;U ′

H ]
)

,

where P ′ = 〈H ′,M ′,W ′,∆′〉, and consider
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T σ,min
cons [P;UH ] = T σ

cons [P;UH ] ∧ Mmin [P;UH ],

as well as

T σ,min
µ [P, H0;UH ] =

T σ
µ [P, H0;UH ] ∧ Mmin [P;UH ],

for µ ∈ {rel ,nec}.
Then, for any any E ⊆ H and any I ⊆ UH such

that h ∈ E iff uh ∈ I, the following conditions
hold:

1. E is a minimal brave (resp., minimal skep-
tical) explanation for P iff I is a model of
T b,min
cons [P;UH ] (resp., T s,min

cons [P;UH ]);
2. E is a minimal brave (resp., minimal skep-

tical) explanation for P such that H0 ⊆ E

iff I is a model of T b,min
rel [P, H0;UH ] (resp.,

T s,min
rel [P, H0;UH ]); and

3. E is a minimal brave (resp., minimal skep-
tical) explanation for P such that H0 6⊆ E
iff I is a model of T b,min

nec [P, H0;UH ] (resp.,
T s,min
nec [P, H0;UH ]).

Proof. We only show Part 2; the remaining cases
follow in essentially the same way.

Consider sets E ⊆ H and I ⊆ UH such that
h ∈ E iff uh ∈ I. By definition, E is a minimal
brave (resp., minimal skeptical) explanation for P
containing H0 iff

(α) E is a brave (resp., skeptical) explanation for
P containing H0; and

(β) there is no F ⊂ E such that F is a brave
(resp., skeptical) explanation for P.

According to Theorem 2(1), (α) is equivalent to
the condition that I is a model of T b

rel [P, H0;UH ]
(resp., T s

rel [P, H0;UH ]). It remains to show that
Condition (β) holds iff I is a model of

Mmin [P;UH ] =

¬∃U ′
H

(

(U ′
H < UH) ∧ T σ

cons [P
′;U ′

H ]
)

.

This can be seen as follows.
Consider any F ⊆ H and any J ⊆ UH such

that h ∈ F iff uh ∈ J . Obviously, we have that
F ⊂ E iff J ⊂ I. Furthermore, by Theorem 1, F
is a brave (resp., skeptical) explanation for P iff
J is a model of T b

cons [P;UH ] (resp., T s
cons [P;UH ]).

By a simple renaming, we have that J is a model
of T σ

cons [P;UH ] iff J ′ is a model of T σ
cons [P

′;U ′
H ]

(for σ ∈ {b, s}). Since the latter formula has no
free occurrences of elements from UH , and since
UH ∩ U ′

H = ∅, we thus obtain that

(γ) F is a brave (resp., skeptical) explanation for
P iff I ∪J ′ is a model of T b

cons [P
′;U ′

H ] (resp.,
T s
cons [P

′;U ′
H ]).

Observing that J ⊂ I iff I ∪ J ′ is a model of
(U ′

H < UH), it follows that

(δ) F ⊂ E iff I ∪ J ′ is a model of (U ′
H < UH).

Combining (γ) and (δ), by construction of F
and J , and by the semantics of existential quantifi-
cation, we obtain that (β) holds precisely in case
when I is a model of Mmin [P;UH ].

In passing, we note that the minimisation prin-
ciple expressed by the QBF

¬∃U ′
H

(

(U ′
H < UH) ∧ T σ

cons [P
′;U ′

H ]
)

is precisely the same as that used in the propo-
sitional circumscription of a set of atoms in a
propositional theory. More specifically, given dis-
joint sets P and S of variables and a propositional
formula φ(P, S) possibly containing elements from
P and S, the circumscription of P in φ(P, S) with
varying S is the QBF CIRC (φ;P, S), given by

φ(P, S) ∧ ¬∃P ′ ∃S′
(

(P ′ < P ) ∧ φ(P ′, S′)
)

,

where φ(P ′, S′) results from φ(P, S) by replacing
uniformly all occurrences of atoms in P and S
by their primed counterparts. The salient differ-
ence, however, between the above QBF and the
encodings in Theorem 3 is that in the latter formu-
las the occurrences of T σ

cons [P;UH ], T σ
cons [P

′;U ′
H ],

and T σ
µ [P, H0;UH ] (µ ∈ {rel ,nec}) represent arbi-

trary QBFs, whilst the corresponding occurrences
of φ(P, S) and φ(P ′, S′) in CIRC (φ;P, S) are or-
dinary propositional formulas. From a complexity-
theoretical point of view, this difference can be
seen as the primary source of the additional com-
plexity of the current abduction problems com-
pared to reasoning from circumscriptive proposi-
tional theories (cf. [9] for results about the compu-
tational complexity of propositional circumscrip-
tion).

Concerning the encodings for the main decision
problems for abduction under minimal explana-
tions, in principle it is possible to obtain such char-
acterisations in the same manner as done in Corol-
laries 2 and 3, i.e., by taking the existential clo-
sure of the encodings of the respective search prob-
lems. However, it turns out that in the present case
the consistency and necessity problem can be de-
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filter QSAT intQBF   

protocol mapping

Fig. 2. Architecture to use different QBF-solvers.

scribed by somewhat simpler encodings. To wit,
deciding the existence of a minimal brave (resp.,
minimal skeptical) explanation for a given abduc-
tion problem P = 〈H,M,W,∆〉 is obviously equiv-
alent to checking whether P has some brave (resp.,
skeptical) explanation at all. Similarly, checking
whether some set H0 ⊆ H is necessary for P un-
der minimal brave (resp., minimal skeptical) ex-
planations is equivalent to checking whether H0 is
necessary for P under brave (resp., skeptical) ex-
planations (cf. Proposition 4.1 in [12]). Hence, we
have the following result:

Theorem 4 Let P = 〈H,M,W,∆〉 be a default ab-
duction problem and let H0 ⊆ H. Then,

1. P has some minimal brave (resp., skeptical)
explanation iff |= ∃UH T b

cons [P;UH ] (resp.,
|= ∃UH T s

cons [P;UH ]);
2. the set of hypotheses H0 is relevant for P un-

der minimal brave (resp., minimal skeptical)

explanations iff |= ∃UH T b,min
rel [P, H0;UH ]

(resp., |= ∃UH T s,min
rel [P, H0;UH ]); and

3. H0 is necessary for default abduction prob-
lem P under brave (resp., skeptical) expla-
nations iff |= ¬∃UH T b

nec [P, H0;UH ] (resp.,
|= ¬∃UH T s

nec [P, H0;UH ]).

Concerning the quantifier order of the encod-
ings in Part 2 of the above theorem, the pres-
ence of the minimisation module Mmin [P;UH ]
in ∃UH T σ,min

rel [P, H0;UH ] (for σ ∈ {b, s}) yields
an additional quantifier alternation compared to
∃UHT σ

rel [P, H0;UH ], reflecting the higher complex-
ity of checking relevance under minimal explana-
tions.

6. Implementation

Our methodology for expressing default abduc-
tion tasks in terms of quantified Boolean formu-
las is motivated by the availability of several prac-
ticably efficient QBF-solvers. Among the differ-

ent tools, there is a propositional theorem prover,
boole,2 based on binary decision diagrams, a sys-
tem using a generalised resolution principle [22],
several provers implementing an extended Davis-
Putnam procedure [3; 14; 15; 23; 35], as well as a
distributed algorithm running on a PC-cluster [14].
With the exception of boole, these tools do not
accept arbitrary QBFs, but require the input for-
mula to be in prenex conjunctive normal form.3

To avoid an exponential increase of formula size,
structure-preserving normal-form translations [38;
31] can be used to translate a general QBF into
the required normal form. In contrast to the usual
normal-form translations based on distributivity
laws, structure-preserving normal-form transla-
tions introduce new labels for subformula occur-
rences and are polynomial in the length of the in-
put formula.

The translations discussed in the previous sec-
tion can be easily incorporated as a special mod-
ule of the reasoning system QUIP [6; 13; 4; 2;
27], which is a prototype tool for solving several
nonmonotonic reasoning tasks based on reductions
to QBFs.

The general architecture of QUIP is depicted in
Fig. 2. QUIP consists of three parts, namely the
filter program, a QBF-evaluator, and the inter-
preter int. The input filter translates the given
problem description (in our case, a default ab-
duction problem and a specified reasoning task)
into the corresponding quantified Boolean formula,
which is then fed into the QBF-evaluator. The cur-
rent version of QUIP provides interfaces to most
of the sequential QBF-solvers mentioned above.
For the solvers requiring prenex conjunctive nor-
mal form, the QBFs are translated into structure-
preserving normal form. The result of the QBF-
evaluator is interpreted by int. Depending on the

2The system can be downloaded from the Web at URL

http://www.cs.cmu.edu/∼modelcheck/bdd.html.
3A QBF is in prenex conjunctive normal form iff it is in

prenex form and its quantifier-free part is a propositional

formula in conjunctive normal form.
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capabilities of the employed QBF-evaluator, int
provides an explanation in terms of the underlying
problem instance (e.g., listing all explanations for
a given abduction problem). This task relies on a
protocol mapping of internal variables of the gen-
erated QBF into concepts of the problem descrip-
tion which is provided by filter.

7. Conclusion and Discussion

In this paper, we have shown how the main rea-
soning tasks associated with the default abduction
model from [12] can be axiomatised by means of
quantified Boolean formulas. The general mecha-
nism of our approach is to translate (in polyno-
mial time) a reasoning problem into the evaluation
problem for QBFs such that the satisfying truth-
assignments of the latter determine the solutions
of the original problem. Thus, in effect, we reduced
abduction to satisfiability.

The present framework is a natural generalisa-
tion of a similar method successfully applied to
problems in NP. In general, the use of QBFs for
knowledge-representation purposes has been ad-
vocated in the literature [3; 35], and, besides the
current framework, reductions of other reasoning
tasks to QBFs have been discussed in [34; 6; 13; 4;
2; 27].

Our approach has several benefits. First, by em-
ploying off-the-shelf QBF-solvers, we easily obtain
a prototype reasoning system for the considered
abduction tasks. We discussed an architecture of
such an implementation by appeal to the system
QUIP. Second, the given axiomatics provides us
with further insight into the mechanism of abduc-
tion from default theories, as we obtain an object-
level description of this kind of reasoning without
the need of meta-logical constraints like certain
fixed-point conditions. Third, the approach is flex-
ible and easily extensible. A change or refinement
of a specific reasoning task is reflected by replacing
or adding a corresponding QBF module within the
overall translation schema. For instance, a simple
modification of our current translations would suf-
fice to allow for general default rules as abducibles
instead of literals only. Also, other forms of logic-
based abduction can be expressed through QBFs,
by utilising suitable QBF modules for the underly-
ing inference mechanism. For instance, a QBF en-

coding for abductive logic programming has been
described in [7].

The current translations leave room for several
optimisations. On the one hand, simpler encodings
for syntactically restricted classes of default theo-
ries can be found. For instance, [1] describes effi-
cient mappings from certain classes of default the-
ories into formulas of propositional logic such that
each model of the latter corresponds to an exten-
sion of the former. Thus, adaptions of these trans-
lations yield more direct QBF encodings for de-
fault abduction problems whose associated default
theories belong to the respective syntax classes.
On the other hand, as regards the actual imple-
mentation of the considered tasks, the modular ar-
chitecture of our approach enables a straightfor-
ward parallelisation of the overall evaluation pro-
cess. Indeed, this can be achieved either by using
different provers in parallel or by applying the dis-
tributed QBF-solver PQsolve [14]. We note that,
in general, it is a non-trivial task to design an effi-
cient distributed variant of a given special-purpose
algorithm.
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