
ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24 1

Reasoning Methods for
Personalization on the Semantic Web

Grigoris Antoniou
Institute of Computer Science – FORTH

Heraklion Crete, Greece

antoniou@ics.forth.gr

Matteo Baldoni, Cristina Baroglio, Viviana Patti
Dipartimento di Informatica

Universit̀a degli Studi di Torino, Torino, Italy

{baldoni,baroglio,patti }@di.unito.it

Robert Baumgartner, Thomas Eiter, Marcus Herzog, Roman Schindlauer, Hans Tompits
Institut für Informationssysteme

Technische Universität Wien, Austria

{baumgart,herzog }@dbai.tuwien.ac.at, {eiter,roman,tompits }@kr.tuwien.ac.at

François Bry, Sebastian Schaffert
Institut für Informatik

Ludiwg-Maximilians-Universiẗat München, Germany

{francois.bry, sebastian.schaffert }@ifi.lmu.de

Nicola Henze
Information Systems Institute – Semantic Web Group,

University of Hannover, Germany

henze@kbs.uni-hannover.de

Wolfgang May
Institut für Informatik

Universiẗat Göttingen, Germany

may@informatik.uni-goettingen.de

Abstract— The Semantic Web vision of a next genera-
tion Web, in which machines are enabled to understand
the meaning of information in order to better inter-
operate and better support humans in carrying out their
tasks, is very appealing and fosters the imagination of
smarter applications that can retrieve, process and present
information in enhanced ways. In this vision, a particular
attention should be devoted topersonalization: By bringing
the user’s needs into the center of interaction processes,
personalized Web systems overcome the one-size-fits-all
paradigm and provide individually optimized access to
Web data and information. In this paper, we provide an
overview of recent trends for establishing personalization
on the Semantic Web: Based on a discussion on reasoning
with rule- and query languages for the Semantic Web, we
outline an architecture for service-based personalization,
and show results in personalizing Web applications.

Index Terms— semantic web, personalization, reasoning
for the semantic web, rule languages, query languages,
web data extraction

I. I NTRODUCTION

T He aim of the Semantic Web initiative [27] is to
advance the state of the current Web through the

use of semantics. More specifically, it proposes to use
semantic annotationsto describe the meaning of certain
parts of Web information. For example, the Web site
of a hotel could be suitably annotated to distinguish
between hotel name, location, category, number of
rooms, available services etc. Such meta-data could
facilitate the automated processing of the information
on the Web site, thus making it accessible to machines
and not primarily to human users, as it is the case today.

However, the question arises as to how the semantic
annotations of different Web sites can be combined, if
everyone uses terminologies of their own. The solution
lies in the organization of vocabularies in so-calledon-
tologies. References to such shared vocabularies allow

ISSN 1109-9305c© 2004 AMCT

2 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

interoperability between different Web resources and
applications. For example, a geographic ontology could
be used to determine that Crete is a Greek island and
Heraklion a city on Crete. Such information would be
crucial to establish a connection between a requester
looking for accommodation on a Greek island, and a
hotel advertisement specifying Heraklion as the hotel
location.

At the writing time of this paper, there are recom-
mendations by the World Wide Web Consortium for the
lower layers of the Semantic Web tower, including the
ontology layer of the Semantic Web. The logic layer,
residing on top of the semantic languages and ontology
languages, is still to shape.

In this paper, we take a certain perspective on rea-
soning, rule- and query languages for the Semantic
Web: We investigate the required expressiveness of
reasoning languages for the Semantic Web which foster
personalized Web applications. After a brief introduc-
tion to the Semantic Web (Section II, we introduce
rule languages for the Semantic Web, with particular
notion to nonmonotonic rules (Section III). Aspects of
evolution, updates and events are discussed in the subse-
quent section, exemplified by an event-condition-action
approach. Reasoning about actions for implementing
personalization is described in Section V.

We then turn attention to mechanisms and applica-
tions for maintaining effective reasoning and rule-based
approaches: For querying and transforming semantic
descriptions, we discuss theXcerpt language (Section
VI). An approach to automatically generate semantic
descriptions by Web data extraction is provided by the
Lixto Suite(Section VII). The last section finally goes
practical and describes thePersonal Reader Frame-
work for personalization services on the Semantic Web,
which integrates ideas from the previous sections. We
outline the service-based architecture of the Personal
Reader framework, and describe first example Readers
for two application domains.

II. REASONING AND THE SEMANTIC WEB: STATE

OF THE ART

The development of the Semantic Web proceeds in
steps, each step building a layer on top of another.
At the bottom layer we findXML, a language that
lets one write structured Web documents with a user-
defined vocabulary. XML is particularly suitable for
sending documents across the Web, thus supporting
syntactic interoperability.RDF [22] is the basic Seman-
tic Web language for writing simple statements about
Web objects (called resources and identified uniquely
by a URI, a Universal Resource Identifier). Statements
are triples composed of a binary predicate linking
together two resources; they are logically represented

as logical factsP (x, y). RDF Schema[30] provides a
simple language for writing ontologies. Objects sharing
similar characteristics are put together to formclasses.
Examples for classes are hotels, airlines, employees,
rooms, excursions etc. Individuals belonging to a class
are often referred to as instances of that class. Binary
properties (such asworks for) are used to establish
connections between classes. The application of predi-
cates can be restricted through the use ofdomain and
range restrictions. For example, we can restrict the
propertyworks for to apply only to employees (domain
restriction), and to have as value only companies (range
restriction).

Classes can be put together in hierarchies through
the subclass relationship: a classC is a subclass of
a classD if every instance ofC is also an instance
of D. For example, the class of island destinations
is a subclass of all destinations: every instance of an
island destination (e.g. Crete) is also a destination. The
hierarchical organization of classes is important due to
the notion of inheritance: once a classC has been
declared a subclass ofD, every known instance ofC is
automaticallyclassified also as instance ofD. This has
far-reaching implications for matching customer prefer-
ences to service offerings. For example, a customer may
wish to make holidays on an indonesian island. On the
other hand, the hotel Noosa Beach advertises its location
to be Bali. It is not necessary (nor is it realistic) for the
hotel to add information that it is located in Indonesia
and on an island; instead, this information is inferred
by the ontology automatically.

But there is a need for more powerful ontology
languages that expand RDF Schema and allow the
representations of more complex relationships between
Web objects. For example, cardinality constraints (every
course must be taught by at least one lecturer) and spe-
cial properties of predicates (e.g. transitivity, symmetry
etc.). Ontology languages, such asOWL [40], are built
on the top of RDF and RDF Schema. For an easy yet
comprehensive introduction to the Semantic Web see
[5].

So far, reasoning on the Semantic Web is mostly
reasoning about knowledge expressed in a particular
ontology. This is possible because ontology languages
are formal languages, which, for example, allow us to
reason about:

• Class membership: If x is an instance of classC,
and C is a subclass ofD, then we can infer that
x is an instance ofD.

• Equivalence of classes: If classA is equivalent to
classB, andB is equivalent to classC, then we
can infer thatA is equivalent toC.

• Consistency: If we have declared that classesC
andD are disjoint, andx is an instance of bothC

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 3

andD, then there is an error.
• Classification: If we have declared that certain

property-value pairs are sufficient conditions for
membership in classA, then if an individualx
satisfies such conditions, we can conclude thatx
must be an instance ofA.

Derivations such as the preceding can be mademechan-
ically instead of being made by hand. Such reasoning
support is important because it allows one to:

• check the consistency of an ontology and the
knowledge,

• check for unintended clashes between classes,
• automatically classify instances of classes.

Automated reasoning support allows one to check many
more classes than could be checked manually. Checks
like the preceding ones are valuable for designing large
ontologies, where multiple authors are involved, and for
integrating and sharing ontologies from various sources.

A. Introducing Rules

At present, the highest layer that has reached suffi-
cient maturity is the ontology layer in the form of the
description logic-based language OWL [40]. The next
step in the development of the Semantic Web will be
the logic and proof layers, and rule systems appear to
lie in the mainstream of such activities. Moreover, rule
systems can also be utilized in ontology languages. So,
in general rule systems can play a twofold role in the
Semantic Web initiative:

(a) they can serve as extensions of, or alternatives to,
description logic-based ontology languages; and

(b) they can be used to develop declarative systems
on top of (using) ontologies.

Reasons why rule systems are expected to play a key
role in the further development of the Semantic Web
include the following:

• Seen as subsets of predicate logic, monotonic rule
systems (Horn logic) and description logics are
orthogonal; thus they provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule
languages.

• Rules are well known in practice, and are rea-
sonably well integrated in mainstream information
technology, such as knowledge bases, etc.

As an exemplary application, rules can be a natural
means for expressing personalization information. For
example, the following rules says that “IfE is an
exercise related to conceptC and personX has read
the material onC, thenE can be presented toX.

exercise(E, C), hasRead(X, C)→ presentExercise(E, X)

A more thorough discussion of personalization rules
is found in Section VIII-B.

Possible interactions between description logics and
monotonic rule systems were studied in [55]. Based on
that work and on previous work on hybrid reasoning
[69] it appears that the best one can do at present
is to take the intersection of the expressive power of
Horn logic and description logics; one way to view this
intersection is the Horn-definable subset of OWL.

One interesting research thread deals with the ex-
change of rule sets between applications, making use
of Semantic Web languages. Works in this direction
include the RuleML initiative [87], based on the XML
and RDF languages, and SWRL [61], a recent proposal
based on OWL.

A few implementations of rule systems, tailored to
reasoning on the Web, exist yet. The most important
systems are Mandarax [73] and Triple [91].

III. N ONMONOTONIC RULES FOR THESEMANTIC

WEB

Apart from the classical rules that lead to monotonic
logical systems, recently researchers started to study
systems capable of handlingconflicts among rules.
Generally speaking, the main sources of such conflicts
are:

• Default inheritance within ontologies.
• Ontology merging, where knowledge from differ-

ent sources is combined.
• Rules with exceptions as a natural representation

of business rules.
• Reasoning with incomplete information.

Defeasible reasoning[4] is a simple rule-based ap-
proach to reasoning with incomplete and inconsistent
information. It can represent facts, rules, and priorities
among rules. The main advantage of this approach is
the combination of two desirable features: enhanced
representational capabilities allowing one to reason with
incomplete and contradictory information, coupled with
low computational complexity compared to mainstream
nonmonotonic reasoning. The main features of this
approach are:

• Defeasible logics are rule-based, without disjunc-
tion.

• Rules may support conflicting conclusions.
• The logics are skeptical in the sense that conflicting

rules do not fire. Thus consistency is preserved.
• Priorities on rules may be used to resolve some

conflicts among rules.
• The logics take a pragmatic view and have low

computational complexity.

Recent system implementations, capable of reasoning
with monotonic rules, nonmonotonic rules, priorities,
RDF data and RDF Schema ontologies, are DR- DE-
VICE [14] and the system in [3].

4 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Answer Set Programsare nonmonotonic logic pro-
grams based on the Answer Set Semantics by Gelfond
and Lifschitz [49], which use extended logic programs
for reasoning and problem solving by considering possi-
ble alternative scenarios. Apart from expressing knowl-
edge by facts and disjunctive rules in a declarative way,
ASP is capable of handling incomplete information and
default knowledge. Furthermore, user preferences and
desires can be accommodated using constructs for ex-
pressing priorities and weak constraints (i.e., constraints
that can be violated at a penalty). Several very efficient
implementations of ASP reasoners exist, e.g., smodels
[81] and DLV [67], the latter providing frontends for
preferences extensions as well as brave and cautious
reasoning. These systems offer gradually expressiveness
complexity in alignment with the (lower) complexity of
syntactic fragments.

With respect to an application in the domain of the
Semantic Web, the advantages of ASP are:

• High expressiveness.
• Declarative semantics.
• Model generation in addition to inference

Model generation enables a problem-solving paradigm
in which the solutions of a problem instance are declar-
atively encoded by the models of the logic program.

Using ASP in the context of the Semantic Web
has first been proposed by [60]. A recent extension
of ASP programs provides an interface to description
logic knowledge bases (such as OWL ontologies) [44],
[45]; such extended programs, so-calleddl-programs,
may contain queries to the ontology. This formalism
allows a flow of knowledge from the ontology to the
logic program and back, exploiting the possibilities
of handling terminological knowledge in a nonmono-
tonic application. A prototype implementation via Web-
interface is available.

IV. EVOLUTION , UPDATES AND EVENTS

Personalization of the Web heavily depends on dy-
namic aspects: it is not given a priori, but it isadaptive–
i.e., evolving, and reacting upon events, e.g., inputs of
the user. Furthermore, personalization is often imple-
mented viareactive behavior – i.e., by (personalized)
rules that specify what to do in a given situation.

In [74], we have discussed generic query (see also
above section), update, and event languages for the Se-
mantic Web. Evolution of the Web is a twofold aspect:
on today’s Web, evolution means mainly evolution of
individual Web sites that are updated locally. In contrast,
considering the Web and the Semantic Web as a “living
organism” thatconsistsof autonomous data sources, but
that will show a global “behavior” leads to a notion
of evolution of the Web ascooperative evolutionof

its individual resources. Personalization aspects deal
primarily with local evolution (e.g., that a portal site
adapts to evolving profiles of its registered users) and
local reactivity (reacting on a user’s interaction). But, in
the “background”, the personalization also potentially
affects the global communication of the node (e.g.,
to gather special information that a user requests, or
to react on remote events that are relevant to some
of its users), and, the more “intelligent” such Web
nodes get, the more they need global communication to
deal with the requirements of being personalized. Even
more, there can be data exchange about personalization
aspects (user profiles) between personalized nodes (al-
though, here also non-technical issues, what a node is
entitled to tell another about a user, come into play).

In the same way as proposed in [74], for languages
for evolution and reactivityin the Semantic Web, we
recommend to follow a modular approach. The first
step is to provide local personalization of a node that
is –at the beginning– part of the conventional Web
(see e.g., [57]). The next steps then (i) extend the
results to local personalization of the Semantic Web
(i.e., semantics-based personalization), (ii) enhance per-
sonalization to a “semantic” service (i.e., an ontology
for personalization), and (iii) then apply Semantic Web
reasoning on the personalization level. In addition to
the global language aspects sketched above, the internal
mechanisms for evolution of the local personalization
base, e.g., as evolution of a logic program, are to be
considered [2], [42].

When considering evolution of and events on the
Web, two aspects must be taken into account: there are
“local” updates that apply to a given Web site only; and
there are changes in distributed scenarios that must be
propagated from one Web site to another. This means,
that in addition to local update languages there must
be a declarative, semantic framework for generically
handling andcommunicatingchanges (in general, not as
explicit updates, but as changes of a situation, described
wrt. a combined ontology of the application and of
generic events).

During the development of (generic) languages for
evolution and reactivity, personalized nodes will seam-
lessly be integrated with the application scenarios to
be developed. In course, reactive functionality will be
employed for implementing personalization and adap-
tivity (as shown below, by integrating suitable sublan-
guages for (atomic) events and actions into the generic
languages). Analogously, personalization and adaptivity
will be subject of local and global evolution.

A. Language Paradigm: ECA Rules

According to [74], we propose an approach that is
in general based on rules, more specifically,reactive

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 5

rules according to theEvent-Condition-Action(ECA)
paradigm for the specification of reactivity. An impor-
tant advantage of them is that thecontentof the commu-
nication can be separated from thegeneric semanticsof
the rules themselves. Cooperative and reactive behavior
is then based on events (e.g., an update at a data source
where possibly others depend on): If a resource detects
a relevant event (either it is delivered explicitly, or it is
in some way communicated or detectable on the Web),
conditions are checked (either simple data conditions,
or e.g. tests if the event is relevant, trustable etc.),
which are queries to one or several nodes and are to be
expressed in the proposed query language. Finally, an
appropriate action is taken (e.g., updating own informa-
tion accordingly). This action can also be formulated as
a transaction whose ACID properties ensure that either
all actions in a transaction are performed, or nothing of
is done. The actions in course raise again events (either
explicit updates, or visible as application-level events).

The focus of the development is on appropriate sub-
languages for rules, events, conditions (that are in fact
queries) and for the action part of the rules that continue
the separation between application-specificcontentsand
generic patterns (e.g. for composite events).

a) Events.: An (atomic) event is in general any
detectable occurrence on the Web, i.e., (local) system
events, incoming messages including queries and an-
swers, transactional events (commit, confirmations etc),
updates of data anywhere in the Web, or any occur-
rences somewhere in an application, that are (possibly)
represented in explicit data, or signaled as the event
itself. For theseatomic events, it must also be distin-
guished between the event itself (carrying application-
specific information), and its metadata, like the type of
event (update, temporal event, receipt of message, . . .),
time of occurrence, the time of detection/receipt (e.g.,
to refuse it, when it had been received too late), the
event origin or its generator (if applicable; e.g. in terms
of its URI).

Reactive rules often do not specify reactions on
atomic events, but use the notion ofcomposite events,
e.g., “when E1 happened and thenE2 and E3, but
not E4 after at least 10 minutes, then doA”. Complex
events are usually defined in terms ofevent algebras.
Thus, a declarative language for describing composite
events is required, together with algorithms for han-
dling composite events. This language should not be
concerned with what the information contained in the
event might be, but only with types of events. For
making events themselves part of the Semantic Web, an
ontology of composite events has to be defined, together
with mappings from and to given event algebras and
their implementations.

An important aspect is the integrability of the event

meta language, the event contents languages, and the
query language. It is desirable that the specification of
composite events can be combined with requirements on
the state of resources at given intermediate timepoints,
e.g. “when at timepointt1, a cancellation comes in
and somewhere in the past, a reservation request came
in in a timepoint when all seats were booked, then,
the cancellation is charged with an additional fee”. In
this case, the composite event handler has to state a
query at the moment when a given event arrives. For
being capable of describing these situations, a logic (and
system) that deals with sequences of events and queries
is required. Such approaches have e.g. been presented
in Transaction Logic[29]; we will also investigate the
use of Evolving Logic Programs [1] for this purpose.

So, several integrated languages have to be defined:
the surrounding language for composite events, a lan-
guage for atomic events and their metadata, and lan-
guages for expressing the contents of different types of
events – e.g., one language based on an ontology for
personalization. Note that an ontology for describing
data that is relevant to personalization is needed, and
a related language for events that are relevant for
personalization is required.

b) Events, Knowledge, and Rules.:The view de-
scribed up to this point is to result in an infrastructure
for evolution and reactivity on the Web based on reac-
tion rules that define the behavior of resources upon
detection of events. These are in general composite
events, based on atomic, application-level ones. Local
knowledge is defined by facts, derivation rules, and
reaction rules. All of this local knowledge is encoded
in XML, and is updatable, in the sense that the update
language to be developed must be capable of changing
both facts, derivation rules and reactive rules. Here we
may rely on the studies done in the context of logic
programming about updating derivation and reactive
rules [2].

B. Evolution and Reactivity for Personalization

Concepts for personalization and adaptivity will be
implemented and supported by the above framework.
“Plain” evolving and reactive applications will provide
scenarios where personalization is then applied. Ex-
pressing personalization by (ECA-) rules is a usual
way in today’s approaches, which is then extended to a
semantic level in various aspects.

For Semantic Web applications, personalization func-
tionality is built upon an ontology-based user model.
The ECA rules that implement personalized behavior
use –inside the generic languages for the rules and
for composite events– sublanguages that combine the
user modeling ontology with the respective ontology of
application-specific events.

6 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

There will prospectively be “typical” rule patterns
(i.e., typical structures of composite events that include
typical atomic events, and typical action patterns) for
expressing personalization issues. These patterns are
then “parameterized” by atomic events, special condi-
tions, and actions to yield a certain rule which then
belongs to the behavior base of an application. As stated
above, this behavior base is also subject to evolution of
several kinds:

• reactivity-controlled evolution, which adapts the
behavior base according to events on the Web (e.g.,
when adapting the personal portfolio tracker when
a stock to be traced is moved from MDAX to
DAX),

• reactivity-controlled evolution, which adapts the
behavior base according to changes in the user’s
profile (e.g., when he is not longer eligible for
student tarifs in trains),

• users are enabled to change these rules interac-
tively (via an appropriate graphical interface),

• intelligent evolution by reasoning about the behav-
ior base, etc.

In the context of evolution and reactivity, personaliza-
tion does not only mean personalized access to the
Web –as implemented in today’s portals–, but also
personalized behavior that is able to raise events. A
customer e.g. may have a personalized Web agent for
bidding at ebay or for trading stocks. The behavior of
such agents is preferably again expressed by ECA rules
that can evolve in the same way as described above.

C. Knowledge Base Update and Reasoning About

As pointed out above, the dynamic nature of the
desired infrastructure for describing evolution and re-
activity on the Web requires not only the capability of
updating facts, but also the capability of updating rules.
Such updates can be handled in different ways. On the
one hand, updates can be performed on anad hocbasis
in a static environment, exploiting and adapting methods
from the area of knowledge base revision and belief
change, see e.g. [48], [92]. On the other hand, and this is
for a dynamic environment crucial, updates may occur
event-driven. The nature and circumstances of the event
which occurred may determine the way in which an
entailed update has to be incorporated into the current
rule and knowledge base. Here, personalization comes
into play since each user might have his or her own view
on how this update should materialize. This is supported
by user-definableupdate policies, like event-condition-
action rules, in which the general change behaviour
according to the desires and preferences of the user
can be described at a generic level. For instance, the
user may define rules which suppress certain unwanted

information, or propagate information to parts of the
knowledge base which are semantically connected at
the meta level.

We envisage a general formal model for express-
ing different such update approaches, following the
method put forth in [43] for capturing different update
approaches in the context of (possibly nonmonotonic)
knowledge bases. More specifically, such a formal
model has different components, taking care of the kind
of language, the knowledge base, the change actions,
an update policy, etc. under consideration, which can be
instantiated in a suitable manner. The accommodation of
more general evolving logic programs [1] in it remains
to be explored. Moreover, such a formal model provides
the basis for defining a temporal logic language for ex-
pressing different properties of the evolving knowledge
base on top, based on a well-defined semantics. This
logical language, in turn, can be used to specify and
study general inference and reasoning tasks associated
with evolving knowledge and rule bases.

V. PERSONALIZATION BY REASONING ABOUT

ACTIONS

Reasoning about action and change is a kind of
temporal reasoning where, instead of reasoning about
time itself, we reason onphenomenathat take place
in time. Indeed, theories of reasoning about action and
change describe adynamic worldchanging because of
the execution of actions. Properties characterizing the
dynamic world are usually specified by propositions
which are calledfluents. The wordfluent stresses the
fact that the truth value of these propositions depends
on time and may vary depending on the changes which
occur in the world.

The problem of reasoning about the effects of actions
in a dynamically changing world is considered one
of the central problems in knowledge representation
theory. Different approaches in the literature took dif-
ferent assumptions on the temporal ontology and then
they developed different abstraction tools to cope with
dynamic worlds. However, most of the formal theories
for reasoning about action and change (action theories)
describe dynamic worlds according to the so-called
state-action model. In the state-action model the world
is described in terms of states andactionsthat cause the
transition from a state to another. Typically it is assumed
that the world persists in its state unless it is modified
by an action’s execution that causes the transition to a
new state (persistency assumption).

The main target of action theories is to use a logical
framework to describe the effects of actions on a world
where all changes are caused by the execution of
actions. To be precise, in general, a formal theory for

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 7

representing and reasoning about actions allows us to
specify:

• causal laws, i.e. axioms that describe domain’s
actions in terms of theirpreconditionand effects
on the fluents;

• action sequences that are executed from the initial
state;

• observationsdescribing the value of fluents in the
initial state;

• observationsdescribing the value of fluents in later
states, i.e after some action’s execution.

The termdomain descriptionis used to refer to a set
of propositions that express causal laws, observations
of the fluents values in a state and possibly other
information for formalizing a specific problem. Given
a domain description, the principal reasoning tasks are
temporal projection(or prediction),temporal explana-
tion (or postdiction) andplanning.

Intuitively, the aim of temporal projection is to
predict an action’s future effects based on even par-
tial knowledge about the current state (reasoning from
causes to effect). On the contrary, the target oftemporal
explanation is to infer something on the past states
of the world by using knowledge about the current
situation. The third reasoning task, planning, is aimed at
finding an action sequence that, when executed starting
from a given state of the world, produces a new state
where certain desired properties hold.

Usually, by varying the reasoning task, a domain
description may contain different elements that provide
a basis for inferring the new facts. For instance, when
the task is to formalize the temporal projection problem,
a domain description might contain information on (a),
(b) and (c), then the logical framework might provide
the inference mechanisms for reconstructing informa-
tion on (d). Otherwise, when the task is to deal with the
planning problem, the domain description will contain
the information on (a), (c), (d) and we will try to infer
(b), i.e. which action sequence has to be executed on
the state described in (c) for achieving a state with the
properties described in (d).

An important issue in formalization is known as the
persistency problem. It concerns the characterization of
the invariants of an action, i.e. those aspects of the
dynamic world that are not changed by an action. If
a certain fluentf representing a fact of the world holds
in a certain state and it is not involved by the next
execution of an actiona, then we would like to have an
efficient inference mechanism to conclude thatf still
hold in the state resulting froma’s execution.

Various approaches in the literature can be broadly
classified in two categories: those choosing classical
logics as the knowledge representation language [63],
[76] and those addressing the problem by using non-

classical logics [36], [52], [84], [90] or computational
logics [11], [13], [50], [72]. Among the various logic-
based approaches to reasoning about actions one of the
most popular is still the situation calculus, introduced
by Mc Carthy and Hayes in the sixties [76] to capture
change in first order classical logic. The situation calcu-
lus represents the world and its change by a sequence
of situations. Each situation represents a state of the
world and it is obtained from a previous situation by
executing an action. Later on, Kowalski and Sergot
have developed a different calculus to describe change
[63], called event calculus, in which eventsproducing
changes are temporally located and they initiate and
terminate action effects. Like the situation calculus, the
event calculus is a methodology for encoding actions
in first-order predicate logic. However, it was originally
developed for reasoning about events and time in a
logic-programming setting.

Another approach to reasoning about actions is the
one based on the use of modal logics. Modal logics
adopts essentially the same ontology as the situation
calculus by taking the state of the world as primary and
by representing actions as state transitions. In particular,
actions are represented in a very natural way by modal-
ities whose semantics is a standard Kripke semantics
given in terms of accessibility relations between worlds,
while states are represented as sequences of modalities.

Both situation calculus and modal logics influenced
the design of logic-based languages for agent program-
ming. Recently the research about situation calculus
gained a renewed attention thanks to the cognitive
robotic project at University of Toronto, that has lead
to the development of a high-level agent programming
language, called GOLOG, based on a theory of actions
in situation calculus [68]. On the other hand, inDyLOG
[12], a modal action theory has been used as a basis
for specifying and executing agent behaviour in a logic
programming setting, while the language IMPACT is an
example of use of deontic logic for specifying agents:
the agent’s behavior is specified by means of a set of
rules (the agent program) which are suitable to specify,
by means of deontic modalities, agent policies, that is
what actions an agent is obliged to take in a given state,
what actions it is permitted to take, and how it chooses
which actions to perform.

Let us now show how these concepts can be useful
in the Semantic Web, by describing two scenarios
where personalization is required. The idea of exploiting
reasoning techniques for obtaining adaptation derives
from the observation that in many application domains
the goal of the user and the interaction occurring with
a resource play a fundamental role.

8 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

A. Reasoning about Web Services

In the first scenario that we consider, the action
metaphor is used for describing (and handling)Web
services. Generally speaking, a Web service can be
seen as any device that can automatically be accessed
over the Web. It may alternatively be a software system
or a hardware device; a priori no distinction is made.
The main difference between a Web service and other
devices that are connected to a network stands in the
kind of tasks that can be performed: a Web service
can be automatically retrieved after a search (that can
be thought of as analogous to finding Web pages by
means of a search engine, given a set of keywords), it
can be automatically invoked, composed with other Web
services so to accomplish more complex tasks, it must
be possible to monitor its execution, and so on. In order
to allow the execution of these tasks, it is necessary
to enrich the Web service with a machine-processable
description, that contains all the necessary information,
such as what the service does, which inputs it requires,
which results are returned, and so forth. A lot of
research is being carried on in this area and none of the
problems that we have just enumerated has met its final
solution yet. Nevertheless, there are some proposals,
especially due to commercial coalitions, of languages
that allow the description of the single services, and
their interoperation. In this line, the most successful are
WSDL [93] and BPEL4WS. This initiative is mainly
carried on by the commercial world, with the aim
of standardizing registration, look-up mechanisms and
interoperability,

Among the other proposals, OWL-S [82] (formerly
DAML-S [38]) is more concerned with providing
greater expressiveness to service description in a way
that can bereasoned about[34]. In particular, a service
description has three conceptual levels: theprofile, used
for advertising and discovery, theprocess model, that
describes how a service works, and thegrounding,
that describes how an agent can access the service.
In particular, the process model describes a service as
atomic, simple or composite in a way inspired by the
language GOLOG and its extensions [51], [68], [77].
In this perspective, a wide variety of agent technologies
based upon theaction metaphorcan be used. In fact,
we can view a service as an action (atomic or complex)
with preconditions and effects, that modifies the state
of the world and the state of agents that work in the
world. The process model can, then, be viewed as the
description of such an action; therefore, it is possible
to design agents, which apply techniques for reasoning
about actions and change to Web service process models
for producing new, composite, and customized services.

Quoting McIlraith [78]: “[. . .] Our vision is that
agents will exploit user’s constraints and preferences

to help customize user’s requests for automatic Web
service discovery, execution, or composition and in-
teroperation[. . .]”. In different words, personalization
is seen asreasoningabout the user’s constraints and
preferences and about theeffects, on the user’s knowl-
edge and on the world, of theaction “interact with a
Web service”. Techniques for reasoning about actions
and change are applied to produce composite and cus-
tomized services.

We claim that a better personalization can be
achieved by allowing agents to reason also about the
conversation protocolsfollowed by Web services. Con-
versation protocols rule the interactions of a service
with its interlocutors: the protocol defines all the possi-
ble “conversations” that the service can enact. Roughly
speaking, we can consider it as a procedure built upon
atomic speech acts. So far, however, OWL-S does not
represent in a way that can be reasoned about, the
communicative behaviour of a service. Let us explain
with a simple example how this would be useful: an
agent, which is a user’spersonal assistant, is requested
to book a ticket at a cinema where they show a certain
movie; as a further constraint, the agent does not have to
use the user’s credit card number along the transaction.
While the first is theuser’s goal, the additional request
constrains the way in which the agent willinteractwith
the service. In this case, in order to personalize the
interaction according to the user’s request, it is indeed
necessary to reason about the service communications.

In [7] a Web service is supposed to follow some
(possibly non-deterministic) procedure for interacting
with other services/agents. The authors show that by
reasoning on the (explicitly given) conversation proto-
cols followed by Web services, it is possible to achieve
a better personalizationof the service fruition. More
recently, the same authors have shown that the same
kind of reasoning can be exploited forcomposinga
set of Web services, which must interoperate in order
to accomplish a complex task, that none of them can
execute by itself alone. Consider, as an example, the
organization of a journey: it is necessary to find and
make work together services for finding a flight, renting
a car, making a reservation at some hotel, maybe the
user’s personal calendar, etc. All services that have been
developed independently and for simpler purposes. The
problem of describing and reasoning about conversation
protocols is faced in anagent logic programmingset-
ting, by exploiting the reasoning capabilities of agents
written in theDyLOG language, introduced in [12]. In
particular, integrated in the language, a communication
kit [8], [83] allows reasoning about the possible inter-
actions ruled by a protocol by answering to existential
queries of the kind: is there a possible execution of the
protocol, after which a set of beliefs of interest (or goal)

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 9

will be true in the agent’s mental state?

B. Reasoning about Learning Resources

The second scenario is set in an e-learning frame-
work: a system has to manage a repository of learning
resources, helping users to retrieve the documentation
that they need, for acquiring some desired expertise.
The goal of the system is returning apersonalized
reading sequencethrough a (sub)set of the available
resources, that will allow the specific user to reach
his/her learning goal. Notice that resources may be of
different kinds, e.g. text, examples, tests, programming
patterns, references to books, and so forth.

The same learning object can be used in different
reading sequences, maybe aimed at different learning
goals. Moreover, a sequence might contain learning ob-
jects that are physically located in different repositories.

Based on the experience gained in previous work [9],
[10], an approach is to carry on the construction of
reading sequences by means of techniques for reasoning
about actions, like planning and temporal explanation,
applying them to semantically annotated learning re-
sources. Indeed, also in this scenario the adoption
of the “action metaphor” is quite straightforward: a
learning resourcecan, in fact, be considered as anac-
tion, with preconditions (what the student should know
for understanding the knowledge contents) and effects
(what the student is supposed to learn by reading the
resource) on the knowledge of the reader. This choice
is also supported by research in pedagogy that shows
that human learning is goal-driven, and the notions of
prerequisite and effect (in our case, knowledge gain)
play a fundamental role. In the action-based represen-
tation of learning resources, prerequisites and effects
are supposed to be expressed by means of “knowledge
entities”, i.e. terms from a reference ontology.

In this scenario the goal of personalization is to
produce reading sequences that fit the specific user’s
characteristics (i.e. users with different initial knowl-
edge will be suggested different solutions) and the
user’s learning goal. Notice that, differently than what
happens in other approaches, adaptation occurs at the
level of thereading sequencerather than at the level of
page contents (no link hiding or semaphore annotation
is supposed to be used), and it is done w.r.t. the user’s
learning goal.

Many reasoning techniques can be applied in this
scenario. One way for building personalized reading
sequences is to apply planning techniques; on the other
hand, temporal explanation can be used to motivate the
user to read documents, that apparently have no direct
relation to the learning goal. Also techniques for dealing
with failure and replanning are useful: failure occurs
when a user is not satisfied of the proposed solution,

on the whole or of part of it, and the system is asked to
find alternatives.Non-monotonicreasoning techniques
could help in this case.

In the literature, it is possible to find programming
languages based on action logics (likeDyLOG and
GOLOG) that support some of the mentioned reasoning
techniques and many others. For instance, inDyLOG
it is possible to exploit a kind of planning, known as
procedural planning, that rather than combining in all
the possible ways the available actions (documents, or
resources) searches for solutions in a restricted space,
consisting of the set of possible executions of a given
procedure. In this case the procedure describes the
general schema of the solution to be found, which is
kept separate from the specific resources. At planning
time, depending on the initial situation and on the
available resources, a solution will be built. The use of
procedures as schemas allows the achievement of a form
of personalization that not only depends on the user’s
characteristics and goal (whose description is contained
in the initial state) but it also depends on preferences
given by the providers of the resources. In the scenario
in issue, the procedure would correspond to alearning
strategydescribed by the lecturer of the course, which
takes into account the experience of the teacher and
his/her preferences on how the topic should be thought.

VI. X CERPT: A QUERY AND TRANSFORMATION

LANGUAGE FORWEB AND SEMANTIC WEB

APPLICATIONS

Querying the Web, i.e. retrieving Web and Seman-
tic Web data using queries expressed in a high level
language, can considerably ease the realization of per-
sonalized information systems on the Web. Doing this
using a query language capable of deduction can fur-
ther simplify conceiving and implementing personalized
information systems on the Web.

Xcerpt [24], [89], [94] is an experimental deductive
query language developed at the Institute for Informat-
ics of the University of Munich since 2001.

The goal of the Xcerpt project is to investigate ways
to ease realizing Web as well as Semantic Web appli-
cations, in particular realizing personalized information
systems on the Web. One might see the Semantic Web
meta-data added to today’s Web as semantic indexes
similar to encyclopedias. A considerable advantage over
conventional encyclopedias printed on paper is that
the relationships expressed by Web meta-data can be
followed by computers, very much like hyperlinks can
be followed by programs, and be used for drawing
conclusion using automated reasoning methods:

For the Semantic Web to function, computers
must have access to structured collections of
information and sets of inference rules that

10 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

they can use to conduct automated reasoning.
[28]

A central principle of the Web query language Xcerpt
presented in this section is that a common query lan-
guage capable of inference to be used for querying
both the conventional Web and the Semantic Web is
desirable and possible. This working hypothesis is one
of the salient features of Xcerpt which makes it different
from all Web as well as Semantic Web query languages
developed so far.

1) Xcerpt’s Principles:
a) Referential Transparency.:Referential trans-

parency means that, within a definition scope, all occur-
rences of an expression have the same value, i.e. denote
the same data. Referentially transparent programs are
easier to understand and therefore easier to develop,
to maintain, and to optimize. Referential transparency
surely is one of the essential properties a query language
for the Web should satisfy.

b) Answer-Closedness.:We call “answer-closed”
a query language such that replacing a subquery in a
compound query by possible (not necessarily actual) an-
swers always yields a syntactically valid query. Answer-
closed query languages ensure in particular that every
data item, i.e. every possible answer to some query, is a
syntactically valid query. Functional programs can – but
need not – be answer-closed. Answer-closedness eases
the specification of queries because it keeps limited the
unavoidable shift in syntax from the data sought for,
i.e. the expected answer, and the query specifying these
data. Xcerpt is answer-closed.

c) Answers as Arbitrary XML Data.:XML is
the lingua franca of data interchange on the Web.
As a consequence, answers should be expressible as
every possible XML application. This includes both text
without markup and freely chosen markup and structure.
This requirement is obvious and widely accepted for
conventional Web query languages but it is not enforced
by many Semantic Web query languages.

d) Answer Ranking and Top-k Answers.:It is
often desirable to rank answers according to some
application-dependent criteria. It is desirable that Web
and Semantic Web query languages offer (a) basic
means for specifying ranking criteria and, for efficiency
reasons, (b) evaluation methods computing only the top-
k answers (i.e. a given number k of best-ranked answers
according to a user-specified ranking criterium). Xcerpt
supports the specification of orders on XML documents
and the retrieval of k answers of a query, possibly sorted
according to a specified order.

e) Pattern Queries.:Xcerpt uses patterns for bind-
ing variables in query expressions instead of path ex-
pressions – like e.g. the Web query languages XQuery
and XSLT. Query patterns are especially well-suited for

a visual language because queries have a structure very
close to that of possible answers.

f) Incomplete Query Specifications.:Incomplete
queries specifying only part of data to retrieve, e.g. only
some of the children of an XML element (referring to
the tree representation of XML data called “incomplete-
ness in breadth”) or an element at unspecified nesting
depth (referring to the tree representation of XML data
called “incompleteness in depth”), are important on
the conventional Web because of its heterogeneity: one
often knows part of the structure of the XML documents
to retrieve. For similar reasons, incomplete queries are
important on the Semantic Web. Xcerpt supports queries
that are incomplete in breadth, in depth, with respect to
the element order, and because of optional elements or
attributes.

g) Incomplete Data Selections.:Because Web
data are heterogeneous in their structures, one is of-
ten interested in “incomplete answers”. Two kinds of
incomplete answers can be considered. First, one might
not be interested in some of the children of an XML
(sub)document retrieved by a query. Second, one might
be interested in some child elements if they are avail-
able, but would accept answers without such elements.
Xcerpt’s constructexcept gives rise to discard a child
of an element retrieved by a query, i.e. to express
queries of the first kind. Xcerpt’s constructoptional
gives rise to select elements only if available, i.e. to
express queries of the second kind.

h) Rule-Based, Chaining, and Recursion.:Rules
are understood here as means to specify novel, maybe
virtual data in terms of queries, i.e. what is called
“views” in (relational) databases, regardless of whether
this data is materialized or not. Views, i.e. rule-defined
data are desirable for both conventional and Semantic
Web applications. Xcerpt supports (unrestricted) recur-
sion on possibly cyclic data (relying on a so-called
“memorization” or “tabulation” technique).

i) Separation of Queries and Constructions.:Two
standard and symmetrical approaches are widespread, as
far as query and programming languages for the Web
are concerned:

• queries or programs are embedded in a Web page
or Web page skeleton giving the structure of an-
swers or data returned by calls to the programs

• parts of a Web page specifying the structure of the
data returned to a query or program evaluation are
embedded in the queries or programs.

It is a thesis of the Xcerpt project that both approaches
to queries or programs are hard to read (and, therefore,
to write and to maintain). Instead of either approach,
Xcerpt strictly separates queries and “constructions”,
i.e. expressions specifying the structure of answers.
With Xcerpt, constructions are rule heads and queries

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 11

are rule bodies. In order to relate a rule’s construction,
i.e. the rule’s head, to a rule’s query, i.e. the rule’s body,
Xcerpt uses (logic programming) variables.

j) A Query Language for both the Standard Web
and the Semantic Web.:A thesis underlying the Xcerpt
project is that a common query language for both
conventional Web and Semantic Web applications is
desirable.

k) Specific Reasoning as Theories.:Many practi-
cal applications require special forms of reasoning. For
this reason, it is desirable that a query language for
the (conventional and Semantic) Web can be extended
with so-called “theories” implementing specific forms
of reasoning.

l) Two Syntaxes: XML Syntax and Compact Hu-
man Readable Syntax.:While it is desirable that a
query language for the (conventional and/or Semantic)
Web has an XML syntax, because it makes it easier to
exchange query programs on the Web and to manipulate
them using the query language, a second, more compact
syntax easier for human being to read and write is
desirable.

2) Flavors of Xcerpt: Xcerpt’s Core Constructs:An
Xcerpt program consists of at least one goal and of some
(possibly zero) rules. Goals and rules are built from
data, query, and construct terms representing respec-
tively XML documents, query, and XML documents
constructed from the answers to queries.

Data, query, and construct terms represent tree-like
(or graph-like) structures. In data, query, and construct
terms, square brackets (i.e. []) denote ordered term
specification (as in standard XML), i.e. the matching
subterms in the queried resource are required to be
in the same order as in the query term. Curly braces
(i.e. { }) denote unordered term specification (as is
common in databases), i.e. the matching subterms in
the queried resource may be in arbitrary order. Single
(square or curly) braces (i.e. [] and{ }) denote that
a matching term must contain matching subterms for
all subterms of a term and may not contain additional
subterms (total term specification). Double braces (i.e.
[[]] and {{ }}) denote that the data term may contain
additional subterms as long as matching partners for
all subterms of the query term are found (partial term
specification).

Non-tree graph structures are expressed using refer-
ences, i.e. symbolic addresses: The constructid @ t
is a defining occurrence of the identifierid as reference
handle of a termt and the construct̂id is a referring
occurrence.

a) Data terms: represent XML documents (we
speak of “XML in disguise”). They are similar to
ground functional programming expressions and logical
atoms. Data terms may only contain single square and

curly braces, but no double braces expressing partial
specifications, as an XML document is complete.

The data term in Figure 1 is the shortened representa-
tion of an article in Xcerpt syntax. Note that some parts
of the article use unordered term specification (e.g. the
author entries) since the order is irrelevant.

b) Query terms: are partial patterns that are
matched with data terms, augmented by an arbitrary
number of variables for selecting data items from a data
term. In addition to the constructs used in data terms,
query terms have the following additional properties:

1) partial specifications omitting subterms irrelevant
to the query are possible (indicated by double
square brackets [[]] or curly braces{{ }}),

2) it is possible to specify subterms at arbitrary depth
using the constructdesc),

3) query terms may contain term variables and label
variables to “select” data.

In the following examples, upper case characters are
chosen for variables. The Xcerpt constructX -> t
(read “X as t ”) associates a variable to a query term,
so as to specify a restriction of its bindings. The Xcerpt
constructdesc (read “descendant”) is used to specify
subterms at arbitrary depth. Suppose that the articles
of the proceedings of a conference are contained in
a proceedings element. The following query term
selects title and author pairs for each article:

proceedings {{
article {{

var T -> title {{ }},
var A -> author {{ }}

}}
}}

Query terms (in general containing variables) are
unified with data or construct terms (in which variables
may occur) using a non-standard unification expecially
conceived for Xcerpt and called simulation unification
[33]. Simulation unification is based on “graph simula-
tion”, a relation similar to graph homomorphisms.

The result of unifying a query term with a data term
(construct term, resp.) is a set of substitutions for the
variables in the query term (in the query term and con-
struct term, resp.), where each substitution represents
an alternative solution.

c) Construct terms:serve to reassemble variables
(the bindings of which are specified in query terms) so
as to construct new data terms. They may only contain
single brackets (i.e. [] or{ }) and variables, but no
partial specification (i.e. no double braces [[]] or{{ }})
or variable restrictions (i.e.x -> t). The rationale
of this is to keep variable specifications within query
terms, ensuring a strict separation of purposes between
query and construct terms. The following construct term
creates an Author-Title pair wrapped in a “result ”
element:

12 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 1. Representation of an article in Xcerpt syntax
paper [

front [
title ["Reasoning Methods for Personalization

on the Smantic Web "],
author {

fname ["Grigoris"],
surname ["Antoniou"],
address { ... },
bio [...]

},
author {

fname ["Nicola"],
surname ["Henze"],
address { ... },
bio [...]

},
],
body [

section [
title ["Introduction"],],
...

],
rear [

acknowl [...],
bibliog {

bibitem [
bib ["XQuery"],
pub ["XQuery: The XML Query Language ..."]

],
...

}
]

]

result {
var A, var T

}

In a construct term, the Xcerpt constructall t
serves to collect (in the construct term) all instances oft
that can be generated by alternative substitutions for the
variables int (returned by the associated query terms
in which they occur). Likewise,some n t serves to
collect at mostn instances oft that can be generated in
the same manner. Referring to the previous query, the
following construct term creates a list of publications
for each author:

results {
result {

var A,
all var T

}
}

Referring again to the previous query, the following
construct term collects all titles for each author:

results {
all result { var A, all var T }

}

Referring again to the previous query, the following
construct term collects all titles for each author:

results {
all result { all var A, var T }

}

d) Queries: Query terms are (atomic)queries.
Query terms can be “and” or “or”-connected yielding
(complex) queries. A query is always (implicitly or
explicitly) associated with a resource, i.e. the program
itself, an external Xcerpt program or an (XML or
other) document specified by a URI (uniform resource
identifier). All occurrences of a variable in a query
term and in and-connected queries are always evaluated
identically: this is the usual approach to variable binding
in the database query language SQL and in logic
programming. The query in Figure 2 selects all authors
that have published an article in the proceedings of the
2003 and 2004 venues of a conference (it is assumed
that the articles are contained in aproceedings03
resp.proceedings04 element):

e) Construct-query rules and goals.:An Xcerpt
program consists of zero or moreconstruct-query rules,
one or moregoals and zero or more data terms. In
particular, an XML document, i.e. a data term, is an
Xcerpt program. Rules and goals have the forms:

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 13

Fig. 2. An example query
and {

in { resource { "file:proceedings03.xml" },
desc author {{

fname { var First }, surname { var Last }
}}

},
in { resource { "file:proceedings04.xml" },

desc author {{ fname { var First }, surname { var Last }
}}

}
}

CONSTRUCT construct term
FROM query
END

GOAL construct term
FROM query
END

where aconstruct term is constructed depend-
ing on the evaluation of aquery , i.e. shared variables.

f) Further constructs.:Besides the core constructs
presented above, Xcerpt has so-called “advanced con-
structs”. These constructs give rise to expressing (1)
functions and aggregations (such as count, average,
etc.), (2) that part of a query is “optional”, i.e. to be
retrieved only if present in the data considered, (3)
to express positions of subterms searched for, and (4)
negation in queries. Xcerpt’s advanced constructs are
detailed in [89].

3) Languages Related to Xcerpt:Two companion
languages of Xcerpt deserve to be mentioned: visXcerpt
and XChange. visXcerpt [23], [25] is a visual language
based on the same principles as the textual language
presented above. XChange is a reactive language based
on Xcerpt for expressing updates and exchanging events
on the Web [31], [32].

VII. W EB DATA EXTRACTION

If, on a hand, today the Semantic Web [27] is still
a vision, on the other, theunstructured Webalready
contains millions of documents which are not queryable
as a database and heavily mix layout and structure.
Moreover, they are not annotated at all. There is a huge
gap between Web information and the qualified, struc-
tured data as usually required in corporate information
systems. According to the vision of the Semantic Web,
all information available on the Web will be suitably
structured, annotated, and qualified in the future. How-
ever, until this goal is reached, and also, towards a faster
achievement of this goal, it is absolutely necessary to
(semi-)automatically extract relevant data from HTML
documents and automatically translate this data into a
structured format, e.g., XML. Once transformed, data

can be used by applications, stored into databases or
populate ontologies.

Whereas information retrieval targets to analyze and
categorize documents, information extraction collects
and structures entities inside of documents. For Web
information extraction languages and tools for access-
ing, extracting, transforming, and syndicating the Data
on the Web are required. The Web should be useful
not merely for human consumption but additionally for
machine communication. A program that automatically
extracts data and transforms it into another format
or markups the content with semantic information is
usually referred to aswrapper. Wrappers bridge the
gap between unstructured information on the Web and
structured databases.

A number of classification taxonomies for wrapper
development languages and environments have been
introduced in various survey papers [47], [64], [66].

High-level languages have been developed for Web
extraction. Thesestand-alone wrapper programming
languagesinclude Florid [75], Jedi [62], Tsimmisand
Araneus[6]. In general, all manual wrapper generation
languages are difficult to use by laypersons.

Machine learning approachesgenerally rely on learn-
ing from examples and counterexamples of a large
number of Web pages (Stalker [80], Davulcu et al.
[39], Wien [65]). The RoadRunner[37] approach does
not need labelled examples, but derives rules from a
number of given pages by distinguishing the structure
and the content. It uses an interesting generation of
pattern names based on offset-criteria in addition to
the applied semi-structured wrapping technology. Some
approaches such as [46] offer generic wrapping tech-
niques. Such approaches have the advantage that they
can wrap arbitrary Web pages never seen before, on the
other hand the disadvantage that they are restricted to
particular domains (such as detecting addresses).

Interactive approaches allow for semi-automatic ex-
traction generation and offer convenient visual dia-
logues to generate a wrapper based on a few examples
and user interaction.Supervised interactive wrapper

14 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 3. Lixto Visual Wrapper: Wrapping Publication Pages

generationtools includeW4F [88], XWrap[70], Wiccap
[71], SGWrap[79], and Wargo [85] and DEByE [86].
In general, many systems neglect the capabilities of
Deep Web navigation such as form filling; however, in
practice this is highly required, as most information is
hidden somewhere in the Deep Web [26].

A. Lixto

Lixto [17] is a methodology and tool for visual
and interactive wrapper generation developed at the
University of Technology in Vienna. It allows wrapper
designers to create so-called “XML companions” to
HTML pages in a supervised way. As internal language,
Lixto relies on Elog. Elog is a Datalog-like language
especially designed for wrapper generation. Examples
of programs in Elog are given in [16]. The Elog
language operates on Web objects, that are HTML
elements, lists of HTML elements, and strings. Elog
rules can be specified fully visually without knowledge
of the Elog language. Web objects can be identified
based on internal, contextual, and range conditions and
are extracted as so-called “pattern instances”.

In [53], [54], the expressive power of a kernel frag-
ment of Elog has been studied, and it has been shown
that this fragment captures monadic second order logic,
hence is very expressive while at the same time easy to
use due to visual specification.

Besides expressiveness of a wrapping language, ro-
bustness is one of the most important criteria. Infor-
mation on frequently changing Web pages needs to be
correctly discovered, even if e.g. a banner is introduced.

Visual Wrapper offers robust mechanisms of data
extraction based on the two paradigms of tree and string

extraction. Moreover, it is possible to navigate to further
documents during the wrapping process. Predefined
concepts such such as “is a weekday” and “is a city” can
be used. The latter is established by connecting to an
ontological database. Validation alerts can be imposed
that give warnings in case user-defined criteria are no
longer satisfied on a page.

Visually, the process of wrapping is comprised of
two steps: First, the identification phase, where relevant
fragments of Web pages are extracted (see Figure 3).
Such extraction rules are semi-automatically and vi-
sually specified by a wrapper designer in an iterative
approach. This step is succeeded by the structuring
phase, where the extracted data is mapped to some
destination format, e.g. enriching it with XML tags.
With respect to populating ontologies with Web data
instances, another phase is required: Each information
unit needs to be put into relation with other pieces of
information.

B. Visual Data Processing with Lixto

Heterogeneous environments such as integration and
mediation systems require a conceptual information
flow model. The usual setting for the creation of ser-
vices based on Web wrappers is that information is
obtained from multiple wrapped sources and has to
be integrated; often source sites have to be monitored
for changes, and changed information has to be au-
tomatically extracted and processed. Thus, push-based
information systems architectures in which wrappers
are connected to pipelines of postprocessors and in-
tegration engines which process streams of data are
a natural scenario, which is supported by the Lixto

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 15

Fig. 4. Lixto Transformation Server: REWERSE Publication Data Flow

Transformation Server [21], [59]. The overall task of
information processing is composed into stages that
can be used as building blocks for assembling an
information processing pipeline. The stages are to

• acquire the required content from the source loca-
tions; this component resembles the Lixto Visual
Wrapper plus Deep Web Navigation;

• integrate and transform content from a number of
input channels and tasks such as finding differ-
ences, and

• format and deliver results in various formats and
channels and connectivity to other systems.

The actual data flow within the Transformation
Server is realized by handing over XML documents.
Each stage within the Transformation Server accepts
XML documents (except for the wrapper component,
which accepts HTML), performs its specific task (most
components support visual generation of mappings),
and produces an XML document as result. This result is
put to the successor components. Boundary components
have the ability to activate themselves according to
a user-specified strategy and trigger the information
processing on behalf of the user. From an architectural
point of view, the Lixto Transformation Server may
be conceived as a container-like environment of visu-
ally configured information agents. The pipe flow can
model very complex unidirectional information flows
(see Figure 4). Information services may be controlled
and customized from outside of the server environment
by various types of communication media such as Web
services.

C. Web Data Extraction Application Domains

Better software connections are a key challenge to
rapid progress in collaborative and e-commerce appli-
cations. Rather than waiting for suppliers to recode
entire applications to Web service and Semantic Web
standards, one can choose the route to better Web
connectivity, using today’s existing systems. Extraction
technologies help to unfold the structure of the desired
pieces of information from HTML documents and trans-
late it into XML in a very cost-effective way.

With Lixto some functions that will be tangible only
in the future Semantic Web are already turning into
reality today. Lixto applications collect data, transform
the information into a homogeneous structure and syn-
dicate the semantically enriched data to applications or
devices. Lixto’s advantages in respect to other wrapper
tools and screen-scrapers are its high flexibility, robust-
ness, expressiveness, usability, and its ability to provide
interfaces to various data formats and delivery channels
[19], [20].

The application domains of extraction technolo-
gies are manifold. They e.g. include automatizing
portal-based interactions between automotive suppliers,
repackaging content for mobile devices, monitoring e.g.
price and news data for business intelligence frame-
works, and updating address data for CRM databases
[15], [18]. Moreover, Web data harvested and syndi-
cated by Lixto can be ideally used by personalization
systems, e.g. to offer personalized views on extracted
news or publications, as described in Section VIII-D.

16 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 5. Architecture of the Personal Reader framework, showing the different components of the Personal Reader: Visualization (user
interface), the Personal Reader backbone (consisting of the Connector services, the Reasoning service(s)), and some data-provision services,
for RDF data and for the connection with some database for storing user profile information.

VIII. P ERSONALIZATION SERVICES FOR THE

SEMANTIC WEB: THE PERSONAL READER

FRAMEWORK

How can we establish personalization for the Seman-
tic Web? Personalization can provide guidance, recom-
mendations, hints for a user browsing the Web, it makes
the retrieval process of information more effective, it
supports users in managing their view on information
on the Web, etc. To sum it up, personalization provides
an added valueor a service to the end user. One ap-
proach for bringing personalization functionality to the
(Semantic) Web is therefore to realizePersonalization
Web serviceswhich are offered to end user for selection
according to their convenience, or to applications for
retrieving and integrating additional functionality, as
discussed in Section V. In this section, we describe
two demonstrator applications for implementing person-
alization functionality in the Semantic Web, following
the approach discussed in Section IV: a Personal Reader
Instance for the e-Learning domain, and a Personal
Publication Reader.

A. Architectural Overview of the Personal Reader
Framework

The Personal Reader Framework1 is an environment
for designing, implementing and maintaining personal
Web-content Readers [41], [56]. These personal Web-
content Readers allow a user to browse information (the
Readerpart), and to access personal recommendations
and contextual information on the currently regarded
Web resource (thePersonalpart). We will briefly out-
line the underlying architecture of the Personal Reader

1www.personal-reader.de

framework, and discuss in more detail how personal-
ization services for two instances of Personal Readers
have been implemented.

The architecture of the Personal Reader is a rigorous
approach for applying recent Semantic Web technolo-
gies. A modular framework of Web services – for
constructingthe user interface, for mediatingbetween
user requests and currently available personalization
services, foruser modeling, and for offeringpersonal-
ization functionality– forms the basis for the Personal
Reader. The communications between all components /
services is syntactically based on RDF descriptions (see
Figure 5).

The common ”understanding” of the services is
realized by referring to semantics in the ontologies
which provide the valid vocabulary for describing func-
tionality, user interface components, requests, etc. In
particular, we employ the following ontologies for de-
scribing our objects of discourse, following the logic-
based definition of adaptive hypermedia systems [58]:

1) a domain ontology describing the application do-
main, and a document ontology.

2) a user model ontology (attribute–value pairs for
user characteristics, preferences, information on
the devices the user is using for accessing the
Personal Reader, etc.);

3) an observation ontology (for describing the dif-
ferent kinds of user observations made during
runtime);

4) and an adaptation ontology for describing the
adaptation functionality which is provided by the
adaptation services.

The underlying architecture of the Personal Reader
Framework allows to design, implement and maintain

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 17

Fig. 6. Determining details for the currently used learning resource
FORALL LO, LO_DETAIL detail_learningobject(LO, LO_DETAIL) <-

EXISTS C, C_DETAIL(detail_concepts(C, C_DETAIL)
AND concepts_of_LO(LO, C) AND concepts_of_LO(LO_DETAIL, C_DETAIL))
AND learning_resource(LO_DETAIL) AND NOT unify(LO,LO_DETAIL).

Personal Web Content Readers. In the following, we
describe two Personal Reader instances which have
been recently developed: A Personal Reader for the e-
Learning domain, and a Personal Publication Reader
developed for the publications of the Network of Ex-
cellence REWERSE2.

B. A Personal Reader Instance: Personal Reader for
e-Learning

Let us start with a specific scenario, involving a user,
Alice, interested in learning Java programming:

Alice is currently learning about variables
in Java by accessing some learning resource
in an online tutorial. During her studies she
realizes that she needs some clarifications on
naming variables. The Personal Reader shows
where detailed information on variables can
be found in this online tutorial, and also
points out recommended references for deeper
understanding. For ensuring that Alice un-
derstands the use of variables, the Personal
Reader provides several quizzes. When prac-
ticing, Alice does some of the recommended
exercises. For the chosen exercises, the Per-
sonal Reader provides Alice with appropriate
links to the Java API, and some already solved
exercises. A further source of information are
the JAVA FAQ references pointed out to Alice
by the Personal Reader.

The Personal Reader for e-Learning (PR-eL) provides
a learner with such a personal interface for studying
learning resources: thePersonal Annotation service
recommends the learner next learning steps to take,
points to examples, summary pages, more detailed
information, etc., and always recommends the most ap-
propriate of these information according to the learner’s
current knowledge, his/her learning style, learning goal,
background, etc.

We provide some examples of personalization rules
from the Personal Annotation services of the PR-eL for
learning the Java programming language. This Personal
Reader helps the learner to view the learning resources
from the Sun Java Tutorial [35], a freely available
online Tutorial on Java programming, in a context: more
details related to the topics of the learning resource,

2rewerse.net

the general topicsthe learner is currently studying,
examples, summaries, quizzes, etc. are generated and
enriched with personal recommendations according to
the learner’s current learning state.

For implementing the reasoning rules, we currently
use the TRIPLE [91] query and rule language for the
Semantic Web. Rules defined in TRIPLE can reason
about RDF-annotated information resources (required
translation tools from RDF to triple and vice versa
are provided). An RDF statement (which is a triple)
is written assubject[predicate -> object] .

RDF models are explicitly available in TRIPLE:
Statements that are true in a specific model are writ-
ten as ”@model”. This in particular is important for
constructing thetemporal knowledge basesas required
in the Personal Reader. Connectives and quantifiers for
building logical formulae from statements are allowed
as usual:AND, OR, NOT, FORALL, EXISTS, <- , -> ,
etc. are used.

In the following, we will describe some of the rules
that are used by the Personal Reader for learning
resources to determine appropriate adaptation strategies.

a) Providing a Context by Displaying Details of a
Learning Resource.:Generating links to more detailed
learning resources is an adaptive functionality in this
example Personal Reader.

The adaptation rule takes the isA hierarchy in
the domain ontology, in this case the domain on-
tology for Java programming, into account to deter-
mine domain concepts which are details of the cur-
rent concept or concepts that the learner is study-
ing on the learning resource. In particular, more
details for the currently used learning resource
are determined bydetail learningobject(LO,
LO DETAIL) , see Figure 6, whereLOandLO Detail
are learning resources, and whereLO DETAIL covers
more specialized learning concepts which are deter-
mined with help of the domain ontology.

N. B. the rule does neither require thatLO DETAIL
covers all specialized learning concepts, nor that it ex-
clusively covers specialized learning concepts. Further
refinements of this adaptation rule are of course possible
and should, in a future version of the Personal Reader,
be available as tuning parameters under control of the
learner. The rules for embedding a learning resource
into more general aspects with respect to the current
learning progress are similar.

18 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

b) Providing Pointers to Quizzes.:Another exam-
ple, Figure 7, of anadaptation rulefor generating em-
bedding context is the recommendation of quiz pages.
A learning resourceQ is recommended as a quiz for
a currently learned learning resourceLO if it is a quiz
(the rule for determining this is not displayed) and if
it provides questions to at least some of the concepts
learned onLO.

c) Calculating Recommendations.:Recommenda-
tions are personalized according to the current learning
progress of the user, e. g. with respect to the current set
of course materials. The rule in Figure 8 determines that
a learning resourceLO is recommended if the learner
studied at least one more general learning resource
(UpperLevelLO).

Additional rules deriving stronger recommendations
(e. g., if the user has studiedall general learning
resources), less strong recommendations (e.g., if one
or two of these haven’t been studied so far), etc., are
possible, too.

Recommendations can also be calculated with respect
to the current domain ontology, Figure 9. This is
necessary if a user is regarding course materials from
different courses at the same time.

However, the first recommendation rule, which rea-
sons within one course will be more accurate because
it has more fine–grained information about the course
and thus on the learning process of a learner taking part
in this course.

d) Reasoning Rules for User Modeling.:The Per-
sonal Reader requires only view information about
the user’s characteristics. Thus, for our example we
employed a very simple user model: This user model
traces the user’s path in the learning environment and
registers whenever the user has visited some learning
resource. This information is stored in the user’s profile,
which is bound to RDF as shown in Figure 10.

From this information, we derive whether a particular
user learned some concept. The rule in Figure 11 derives
all learned concepts.

Similarly, it can be determined whether a learning
object has been learned by a user.

C. A Personal Reader Instance: The Personal Publica-
tion Reader

Again, let us consider a scenario first for describing
the idea of the Personal Publication Reader:

Bob is currently employed as a researcher
in a university. Of course, he is interested
in making his publications available to his
colleagues, for this he publishes all his pub-
lications at his insitute’s Web page. Bob is
also enrolled in a research project. From time

to time, he is requested to notify the project
coordination office about his new publica-
tions. Furthermore, the project coordination
office maintains a member page where infor-
mation about the members, their involvement
in the project, research experience, etc. is
maintained.

Can we simplify this process? And, furthermore, can
we use this information to provide new, syndicated
information? From the scenario, we may conclude that
most likely the partners of a research project have their
own Websites where they publish their research papers.
In addition, information about the role of researchers
in the project like “Bob is participating mainly in
working group X, and working group X is strongly
cooperating with working groups Y and Z” might be
available. If we succeed in making this information
available to machines to reason about, we can derive
new information like: “This research paper of Bob is
related to working group X, other papers of working
group X on the same research aspects are A, B, and C,
etc.”

To realize a Personal Publication Reader (PR-R), we
extract the publication information from the various
websites of the partners in the REWERSE project: All
Web-pages containing information about publications of
the REWERSE network are periodically crawled and
new information is automatically detected, extracted
and indexed in the repository of semantic descriptions
of the REWERSE network (see Section VIII-D). This
information, together with extracted information on the
project REWERSE, on people involved in the project,
their research interests, etc., is used to provide more
information on each publication: who has authored
it, which research groups are related to this kind of
research, which other publications are published by the
research group, which other publications of the author
are available, which other publications are on the similar
research, etc. (see Section VIII-E)

D. Gathering Data for Semantic Web Applications

Each institute and organization offers access to its
publications on the Web. However, each presentation is
usually different, some use e.g. automatic conversions
of bibtexor other files, some are manually maintained.
Such a presentation is well suited for human con-
sumption, but hardly usable for automatic processing.
Consider e.g. the scenario that we are interested in all
publications of REWERSE project members in the year
2003 which contain the word “personalization” in their
title or abstract. To be able to formulate such queries
and to generate personalized views on heterogeneously
presented publications it is necessary to first have access
to the publication data in a more structured form.

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 19

Fig. 7. Adaptation rule example
FORALL Q quiz(Q) <-

Q[’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:type ->
’http://ltsc.ieee.org/2002/09/lom-educational#’:’Quiz’]

FORALL Q, C concepts_of_Quiz(Q,C) <- quiz(Q) AND concept(C)
AND Q[’http://purl.org/dc/elements/1.1/’:subject -> C].

FORALL LO, Q quiz(LO, Q) <- EXISTS C (concepts_of_LO(LO,C)
AND concepts_of_Quiz(Q,C)).

Fig. 8. Recommending a resource
FORALL LO1, LO2 upperlevel(LO1,LO2) <-

LO1[’http://purl.org/dc/terms#’:isPartOf -> LO2].
FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO)
AND p_obs(UpperLevelLO, U, Learned)).

Fig. 9. Recommendation with respect to the current domain ontology
FORALL C, C_DETAIL detail_concepts(C, C_DETAIL) <-

C_DETAIL[’http://www.w3.org/2000/01/rdf-schema#’:subClassOf -> C]
AND concept(C) AND concept(C_DETAIL).

FORALL LO, U learning_state(LO, U, recommended) <-
EXISTS C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND p_obs(C, U, Learned)).

Fig. 10. Storing information in the user’s profile
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://semweb.kbs.uni-hannover.de/rdf/l3s.rdf#" >

<rdf:Description rdf:about="http://semweb.kbs.uni-hannover.de/user#john">
<rdf:type rdf:resource="http://hoersaal..../rdf/l3s.rdf#User"/>
<j.0:hasVisited>http://java.sun.com/.../variables.html</j.0:hasVisited>

...

Fig. 11. Rule deriving all learned concepts
FORALL C, U p_obs(C, U, Learned) <-

EXISTS LO (concepts_of_LO(LO, C) AND
U[’http://semweb.kbs.uni-hannover.de/rdf/l3s#’:hasVisited ->LO]).

Fig. 12. Sample RDF output entry
<rdf:Description rdf:about="http://www.example.org/id/16">

<rewerse:origin>University of Heraklion</rewerse:origin>
<rewerse:title>Describing Knowledge Representation Schemes:

A Formal Account</rewerse:title>
<rewerse:author>

<rdf:Seq>
<rdf:li rdf:resource="#Giorgos Flouris" />
<rdf:li rdf:resource="#Dimitris Plexousakis" />
<rdf:li rdf:resource="#Grigoris Antoniou" />

</rdf:Seq>
</rewerse:author>
<rewerse:year>2003</rewerse:year>
<rewerse:link>ftp://ftp.ics.forth.gr/tech-reports/2003/

2003.TR320.Knowledge_Representation_Schemes.pdf</rewerse:link>
<rewerse:abstract>The representation and manipulation of knowledge

has been drawing a great deal of attention since the early [...]
</rewerse:abstract>

</rdf:Description>

20 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 13. Part of the Ontology on Researchers used in the Personal Publication Reader

Fig. 14. Example of a rule determining all authors of a publication
FORALL A, P all_authors(A, P) <-

EXISTS X, R (
P[’http://.../rewerse#’:author -> X]@’http:...#’:publications
AND X[R -> ’http://www.../author’:A]@’http:...#’:publications).

Fig. 15. Example rule determining the employer of a project member
FORALL A,I works_at(A, I) <-

EXISTS A_id,X (name(A_id,A)
AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher
AND ont:X[rdfs:subClassOf ->

ont:Organization]@rdfschema(’http:...#’:researcher)
AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

In Section VII we discussed data extraction from the
Web and the Lixto methodology. Here, we apply Lixto
to regularly extract publication data from all REWERSE
members. As Figure 4 illustrates, the disks are Lixto
wrappers that regulary (e.g. once a week) navigate to
the page of each member (such as Munich, Hannover,
Eindhoven) and apply a wrapper that extracts at least
author names, publication titles, publication year and
link to the publication (if available). Figure 3 illustrates
the visual wrapper specification on the Munich page.

In the “XSL” components publication data is harmo-
nized to fit into a common structure and an attribute
“origin” is added containing the institution’s name. The
triangle in Figure 4 represents a data integration unit;
here data from the various institutions is put together
and duplicate entries are removed. IDs are assigned to
each publication in the next step. Finally, the XML data
structure is mapped to a predefined RDF structure (this
happens in the lower arc symbol in Figure 4) and passed

on to the Personal Publication Reader as described
below. A second deliverer component delivers the XML
publication data additionally in RDF. One sample RDF
output entry is depicted in Figure 12.

This Lixto application can be easily enhanced by
connecting further Web sources. For instance, abstracts
from www.researchindex.com can be queried for
each publication lacking this information and joined
to each entry, too. Moreover, using text categorization
tools one can rate and classify the contents of the
abstracts.

E. Content Syndication and Personalized Views

In addition to the extracted information on research
papers that we obtain as described in the previous
section, we collect the data about the members of
the research project from the member’s corner of the
REWERSE project. We have constructed an ontology
for describing researchers and their envolvment in

www.researchindex.com

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 21

Fig. 16. Screenshot of the Personal Publication Reader

REWERSE. A part of this ontology can be seen in
Figure 13

All the collected information is then used in a Person-
alization service which provides the end user with an
interface for browsing publications of the REWERSE
project, and having instantly access to further infor-
mation on authors, the working groups of REWERSE,
recommended related publications, etc.

The Personalization service of the PR-R uses, similar
to the PR-eL, personalization rules for deriving new
facts, and for determining recommendations for the
user. As an example, the rule in Figure 14 determines
all authors of a publication:

Further rules combine information on these authors
from the researcher ontology with the author informa-
tion. E.g. the rule in Figure 15 determines the employer
of a project member, which might be a company, or
a university, or, more generally, some instance of a
subclass of an organization:

The screenshot in fig. 16 depicts the output of the
visualization service of the PR-R.

By further exploiting the Web service architecture
of the Personal Reader, it is possible tolink to the
PR other (reasoning) services, such as a personal se-
quencing service, implemented as a planner by exploit-
ing the action metaphor, or making use of the non-
monotonic reasoning functionality or the ECA paradigm

and expressiveness for more advanced personalization
functionality.

IX. A CKNOWLEDGEMENT

This research has been carried out in connection with
the Network of Excellence REWERSE3 which strives
for a (minimal) set of rule and reasoning languages for
the Semantic Web.

X. CONCLUSIONS

This paper discusses recent approaches for shaping
the logic layer of the Semantic Web, and for supporting
approaches to personalization in the Semantic Web. We
demonstrate approaches for rules and rule-languages in
the logic layer of the Semantic Web. Special attention is
devoted to the important aspects of evolution, updates
and events, and their consequences for personaliza-
tion and reasoning. Approaches to personalization via
reasoning about actions is examplified for different
scenarios.

Query- and transformation languages as well as Web
data extraction for maintaining and constructing se-
mantic descriptions are discussed. Finally, personalized
Web systems making use of these reasoning techniques,
semantic descriptions and extractions, are introduced.

3REWERSE - Reasoning on the Web, Network of Excellence
founded in the 6th European Framework Programme, rewerse.net

22 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

REFERENCES

[1] ALFERES, J. J., BROGI, A., LEITE, J. A., AND PEREIRA,
L. M. Evolving logic programs. InProceedings of the 8th Euro-
pean Conference on Logics in Artificial Intelligence (JELIA’02)
(2002), S. Flesca, S. Greco, N. Leone, and G. Ianni, Eds.,
vol. 2424 ofLNCS, Springer-Verlag, pp. 50–61.

[2] ALFERES, J. J., LEITE, J. A., PEREIRA, L. M., PRZYMUSIN-
SKA, H., AND PRZYMUSINSKI, T. C. Dynamic updates of non-
monotonic knowledge bases.The Journal of Logic Programming
45, 1–3 (2000), 43–70. A shorter version appeared in “Principles
of Knowledge Representation and Reasoning ’98”.

[3] ANTONIOU, G., BIKAKIS , A., AND WAGNER, G. A system
for nonmonotonic rules on the web. InProc. of RuleML-2004
(2004), Springer LNCS.

[4] ANTONIOU, G., BILLINGTON , D., GOVERNATORI, G., AND

MAHER, M. Representation Results for Defeasible Logic.ACM
Transactions on Computational Logic 2,2(2002), 255–287.

[5] ANTONIOU, G., AND VAN HARMELEN, F. A Semantic Web
Primer. MIT Press, 2004.

[6] ATZENI, P.,AND MECCA, G. Cut and paste. InProc. of PODS
(1997).

[7] BALDONI , M., BAROGLIO, C., MARTELLI , A., AND PATTI ,
V. Reasoning about interaction for personalizing web service
fruition. In Proc. of WOA 2003: Dagli oggetti agli agenti, sistemi
intelligenti e computazione pervasiva(Villasimius (CA), Italy,
September 2003), G. Armano, F. De Paoli, A. Omicini, and
E. Vargiu, Eds., Pitagora Editrice Bologna.

[8] BALDONI , M., BAROGLIO, C., MARTELLI , A., AND PATTI , V.
Reasoning about self and others: communicating agents in a
modal action logic. InProc. of ICTCS’2003(2003), vol. 2841
of LNCS, Springer, pp. 228–241.

[9] BALDONI , M., BAROGLIO, C., AND PATTI , V. Web-based
adaptive tutoring: an approach based on logic agents and rea-
soning about actions.Artificial Intelligence Review 22, 1 (2004),
3–39.

[10] BALDONI , M., BAROGLIO, C., PATTI , V., AND TORASSO, L.
Reasoning about learning object metadata for adapting scorm
courseware. InAH 2004: Workshop Proceedings, Part I, EAW
2004: Engineering the Adaptive Web(Eindhoven, Holland,
August 2004), L. Aroyo and C. Tasso, Eds., CS-Report 04-18,
Technische Universiteit Eindhoven, pp. 4–13.

[11] BALDONI , M., GIORDANO, L., MARTELLI , A., AND PATTI , V.
An Abductive Proof Procedure for Reasoning about Actions in
Modal Logic Programming. InProc. of NMELP’96(1997), J.
Dix et.al., Ed., vol. 1216 ofLNAI, Springer-Verlag, pp. 132–150.

[12] BALDONI , M., GIORDANO, L., MARTELLI , A., AND PATTI ,
V. Programming Rational Agents in a Modal Action Logic.
Annals of Mathematics and Artificial Intelligence, Special issue
on Logic-Based Agent Implementation 41, 2-4 (2004), 207–257.

[13] BARAL , C., AND SON, T. C. Formalizing Sensing Actions - A
transition function based approach.Artificial Intelligence 125,
1-2 (January 2001), 19–91.

[14] BASSILIADES, N., ANTONIOU, G., AND VLAHAVAS , I. A
defeasible logic system for the semantic web. InPrinciples and
Practice of Semantic Web Reasoning(2004), Springer LNCS
3208.

[15] BAUMGARTNER, R., EICHHOLZ, S., FLESCA, S., GOTTLOB,
G., AND HERZOG, M. Semantic Markup of News Items with
Lixto. In Annotation for the Semantic Web(2003).

[16] BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. Declar-
ative Information Extraction, Web Crawling and Recursive
Wrapping with Lixto. InProc. of LPNMR(2001).

[17] BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. Visual
web information extraction with Lixto. InProc. of VLDB(2001).

[18] BAUMGARTNER, R., FLESCA, S., GOTTLOB, G., AND HER-
ZOG, M. Building dynamic information portals - a case study
in the agrarian domain. InProc. of IS(2002).

[19] BAUMGARTNER, R., GOTTLOB, G., AND HERZOG, M. Lixto -
Halfway to the Semantic Web.OEGAI-Journal 1(2003), 19–24.

[20] BAUMGARTNER, R., GOTTLOB, G., HERZOG, M., AND

SLANY, W. Interactively Adding Web Service Interfaces to
Existing Web Applications. InProc. of SAINT(2004).

[21] BAUMGARTNER, R., HERZOG, M., AND GOTTLOB, G. Visual
programming of web data aggregation applications. InProc. of
IIWeb-03(2003).

[22] BECKETT, D. Rdf/xml syntax specification.
http://www.w3.org/TR/rdf-syntax-grammar/.

[23] BERGER, S., BRY, F., AND SCHAFFERT, S. A Visual Language
for Web Querying and Reasoning. InProceedings of Work-
shop on Principles and Practice of Semantic Web Reasoning,
Mumbai, India (9th–13th December 2003)(2003), vol. 2901 of
LNCS.

[24] BERGER, S., BRY, F., SCHAFFERT, S.,AND WIESER, C. Xcerpt
and visXcerpt: From Pattern-Based to Visual Querying of XML
and Semistructured Data. InProceedings of 29th Intl. Confer-
ence on Very Large Data Bases, Berlin, Germany (9th–12th
September 2003)(2003).

[25] BERGER, S., BRY, F.,AND WIESER, C. Visual Querying for the
Semantic Web. InProceedings of 23rd International Conference
on Conceptual Modeling, Shanghai, China (8th–12th November
2004) (2004).

[26] BERGMAN, M. K. The deep web: Surfac-
ing hidden value. BrightPlanet White Paper,
http://www.brightplanet.com/technology/deepweb.asp.

[27] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The se-
mantic web.Scientific American(May 2001).

[28] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The Se-
mantic Web – A new form of Web content that is meaningful
to computers will unleash a revolution of new possibilities.
Scientific American(May 2001).

[29] BONNER, A. J., AND K IFER, M. An overview of transaction
logic. Theoretical Computer Science 133(1994).

[30] BRICKLEY, D., AND GUHA , R. Rdf vocabulary description
language 1.0: Rdf schema. http://www.w3.org/TR/rdf-schema/.

[31] BRY, F., FURCHE, T., PĂTRÂNJAN, P.-L., AND SCHAFFERT,
S. Data Retrieval and Evolution on the (Semantic) Web: A
Deductive Approach. InProceedings of Workshop on Principles
and Practice of Semantic Web Reasoning, St. Malo, France (6th–
10th September 2004)(2004), REWERSE.

[32] BRY, F., AND PĂTRÂNJAN, P.-L. Reactivity on the Web:
Paradigms and Applications of the Language XChange. In20th
Annual ACM Symposium on Applied Computing (SAC’2005)
(2005).

[33] BRY, F., AND SCHAFFERT, S. Towards a Declarative Query and
Transformation Language for XML and Semistructured Data:
Simulation Unification. InProceedings of International Con-
ference on Logic Programming, Copenhagen, Denmark (29th
July–1st August 2002)(2002), vol. 2401 ofLNCS.

[34] BRYSON, J., MARTIN , D., MCILRAITH , S.,AND STEIN, L. A.
Agent-based composite services in DAML-S: The behavior-
oriented design of an intelligent semantic web, 2002.

[35] CAMPIONE, M., AND WALRATH , K. The java tutorial, 2003.
http://java.sun.com/docs/books/tutorial/.

[36] CASTILHO, M., GASQUET, O., AND HERZIG, A. Modal
tableaux for reasoning about actions and plans. InProc. ECP’97
(1997), S. Steel, Ed., LNAI, pp. 119–130.

[37] CRESCENZI, V., MECCA, G., AND MERIALDO, P. Roadrunner:
Towards automatic data extraction from large web sites. In
Proceedings of 27th International Conference on Very Large
Data Bases(2001), pp. 109–118.

[38] DAML-S. http://www.daml.org/services/daml-s/0.9/. version
0.9, 2003.

[39] DAVULCU , H., YANG, G., KIFER, M., AND RAMAKRISHNAN ,
I. Computational aspects of resilient data extractraction from
semistructured sources. InProc. of PODS(2000).

[40] DEAN, M., AND SCHREIBER, G. Owl web ontology language
reference. http://www.w3.org/TR/owl-ref/.

[41] DOLOG, P., HENZE, N., NEJDL, W., AND SINTEK , M. The Per-
sonal Reader: Personalizing and Enriching Learning Resources
using Semantic Web Technologies. InProccedings of the 3nd

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 23

International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2004)(Eindhoven, The Netherlands,
2004).

[42] EITER, T., FINK , M., SABBATINI , G., AND TOMPITS, H.
Declarative update policies for nonmonotonic knowledge bases.
In Logics for Emerging Applications of Databases, J. Chomicki,
R. van der Meyden, and G. Saake, Eds. Springer-Verlag, 2003,
ch. 3, pp. 85–129.

[43] EITER, T., FINK , M., SABBATINI , G., AND TOMPITS, H.
Reasoning about Evolving Nonmonotonic Knowledge Bases.
ACM Transactions on Computational Logic(2004). To appear.

[44] EITER, T., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOM-
PITS, H. Combining answer set programming with description
logics for the semantic web. InProceedings KR-2004(2004),
pp. 141–151. http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

[45] EITER, T., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOM-
PITS, H. Well-founded semantics for description logic programs
in the semantic web. InProceedings RuleML 2004 Workshop,
ISWC Conference, Hiroshima, Japan(2004), Springer, pp. 81–
97. http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

[46] ETZIONI , O., CAFARELLA , M., DOWNEY, D., KOK, S.,
POPESCU, A., SHAKED , T., SODERLAND, S., WELD, D. S.,
AND YATES, A. Web-Scale Information Extraction in Know-
ItAll (Preliminary Results). InProceedings of the World Wide
Web Conference 2004(2004).

[47] FLESCA, S., MANCO, G., MASCIARI, E., RENDE, E., AND

TAGARELLI , A. Web wrapper induction: a brief survey.Journal
of the ACM, 51(1)(2004).

[48] GABBAY, D., AND PH.SMETS, Eds. Handbook on Defeasible
Reasoning and Uncertainty Management Systems, vol. III: Be-
lief Change. Kluwer Academic, 1998.

[49] GELFOND, M., AND L IFSCHITZ, V. Classical negation in logic
programs and disjunctive databases. InIn New Generation
Computing (1991), vol. 9, pp. 365–385.

[50] GELFOND, M., AND L IFSCHITZ, V. Representing action and
change by logic programs.Journal of Logic Programming 17
(1993), 301–321.

[51] GIACOMO, G. D., LESP̀ERANCE, Y., AND LEVESQUE, H.
Congolog, a concurrent programming language based on the
situation calculus.Artificial Intelligence 121(2000), 109–169.

[52] GIORDANO, L., MARTELLI , A., AND SCHWIND, C. Dealing
with concurrent actions in modal action logic. InProc. ECAI-
98 (1998), pp. 537–541.

[53] GOTTLOB, G., AND KOCH, C. Monadic datalog and the ex-
pressive power of languages for Web Information Extraction.
In Proc. of PODS(2002).

[54] GOTTLOB, G., AND KOCH, C. Monadic Datalog and the Ex-
pressive Power of Web Information Extraction Languages.AI
Communications Vol.17/2(2004).

[55] GROSOF, B. N., HORROCKS, I., VOLZ, R., AND DECKER, S.
Description logic programs: Combining logic programs with
description logic. InTwelfth International World Wide Web
Conference(Budapest, Hungary, May 2003).

[56] HENZE, N., AND HERRLICH, M. The Personal Reader: A
Framework for Enabling Personalization Services on the Se-
mantic Web. InProceedings of the Twelfth GI- Workshop on
Adaptation and User Modeling in Interactive Systems (ABIS 04)
(Berlin, Germany, 2004).

[57] HENZE, N., AND KRIESELL, M. Personalization functionality
for the semantic web: Architectural outline and first sample
implementation. InProccedings of the 1st International Work-
shop on Engineering the Adaptive Web (EAW 2004), held at
the Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH 2004)(Eindhoven, The Netherlands, 2004).
To appear.

[58] HENZE, N., AND NEJDL, W. A logical characterization of
adaptive educational hypermedia.New Review of Hypermedia
10, 1 (2004).

[59] HERZOG, M., AND GOTTLOB, G. InfoPipes: A flexible frame-
work for M-Commerce applications. InProc. of TES workshop
at VLDB (2001).

[60] HEYMANS, S., AND VERMEIR, D. Integrating semantic web
reasoning and answer set programming. In Answer Set Pro-
gramming, Advances in Theory and Implementation, Proc. 2nd
Intl. ASP’03 Workshop, Messina, Italy (2003), pp. 194–208.

[61] HORROCKS, I., PATEL-SCHNEIDER, P., BOLEY, H.,
TABET, S., AND GROSOF, B. Swrl: A semantic
web rule language combining owl and ruleml.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[62] HUCK, G., FANKHAUSER, P., ABERER, K., AND NEUHOLD, E.
JEDI: Extracting and synthesizing information from the web. In
Proc. of COOPIS(1998).

[63] KOWALSKI , R., AND SERGOT, M. A Logic-based Calculus of
Events.New Generation of Computing 4(1986), 67–95.

[64] KUHLINS, S., AND TREDWELL, R. Toolkits for generating
wrappers. InNet.ObjectDays(2002).

[65] KUSHMERICK, N., WELD, D., AND DOORENBOS, R. Wrapper
induction for information extraction. InProc. of IJCAI (1997).

[66] LAENDER, A. H., RIBEIRO-NETO, B. A., DA SILVA , A. S.,
AND TEIXEIRA , J. S. A brief survey of web data extraction
tools. In Sigmod Record 31/2(2002).

[67] LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB,
G., PERRI, S., AND SCARCELLO, F. The DLV System for
Knowledge Representation and Reasoning.ACM Transactions
on Computational Logic(2004). To appear. Available via
http://www.arxiv.org/ps/cs.AI/0211004 .

[68] LEVESQUE, H. J., REITER, R., LESṔERANCE, Y., L IN , F.,AND

SCHERL, R. B. GOLOG: A Logic Programming Language for
Dynamic Domains.J. of Logic Programming 31(1997), 59–83.

[69] LEVY, A., AND ROUSSET, M.-C. Combining horn rules and de-
scription logics in carin.Artificial Intelligence 104(1-2)(1998),
165–209.

[70] L IU , L., PU, C., AND HAN , W. XWrap: An extensible wrapper
construction system for internet information. InProc. of ICDE
(2000).

[71] L IU , Z., LI , F., AND NG, W. K. Wiccap Data Model: Mapping
Physical Websites to Logical Views. InProceedings of the 21st
International Conference on Conceptual Modelling (ER2002)
(Tempere, Finland, October 7-11 2002).

[72] LOBO, J., MENDEZ, G., AND TAYLOR , S. R. Adding Knowl-
edge to the Action Description LanguageA. In Proc. of
AAAI’97/IAAI’97 (Menlo Park, 1997), pp. 454–459.

[73] The mandarax project. http://www.mandarax.org.
[74] MAY, W., ALFERES, J. J.,AND BRY, F. Towards generic query,

update, and event languages for the semantic web. InPrinciples
and Practice of Semantic Web Reasoning (PPSWR)(2004),
no. 3208 in LNCS, Springer, pp. 19–33.

[75] MAY, W., HIMMERÖDER, R., LAUSEN, G., AND LUDÄSCHER,
B. A unified framework for wrapping, mediating and restructur-
ing information from the web. InWWWCM(1999), Sprg. LNCS
1727.

[76] MCCARTHY, J.,AND HAYES, P. Some Philosophical Problems
from the Standpoint of Artificial Intelligence.Machine Intelli-
gence 4(1963), 463–502.

[77] MCILRAITH , S., AND SON, T. Adapting Golog for Program-
ming the Semantic Web. In5th Int. Symp. on Logical Formal-
ization of Commonsense Reasoning(2001), pp. 195–202.

[78] MCILRAITH , S. A., SON, T. C., AND ZENF, H. Semantic Web
Services.IEEE Intelligent Systems(March/April 2001), 46–53.

[79] MENG, X., WANG, H., LI , C., AND KOU, H. A schema-guided
toolkit for generating wrappers. InProc. of WEBSA2003(2003).

[80] MUSLEA, I., M INTON, S.,AND KNOBLOCK, C. A hierarchical
approach to wrapper induction. InProc. of 3rd Intern. Conf. on
Autonomous Agents(1999).

[81] NIEMELÄ , I., AND SIMONS, P. Implementation of the stable
model and well-founded semantics for normal logic programs.
In In J. Dix, U. Furbach, and A. Nerode, editors,Proc. 4th Inter-
national Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-97) (1997), Springer, pp. 420–429.

[82] OWLS. http://www.daml.org/services/owl-s/. version 1.0, 2004.
[83] PATTI , V. Programming Rational Agents: a Modal Approach

in a Logic Programming Setting. PhD thesis, Dipartimento

http://www.arxiv.org/ps/cs.AI/0211004

24 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

di Informatica, Universit̀a degli Studi di Torino, Italy, 2002.
Available athttp://www.di.unito.it/˜patti/ .

[84] PRENDINGER, H., AND SCHURZ, G. Reasoning about action
and change. a dynamic logic approach.Journal of Logic, Lan-
guage, and Information 5, 2 (1996), 209–245.

[85] RAPOSO, J., PAN , A., ALVAREZ , M., HIDALGO , J., AND

V INA , A. The Wargo System: Semi-Automatic Wrapper Gener-
ation in Presence of Complex Data Access Modes. InProceed-
ings of DEXA 2002(Aix-en-Provence, France, 2002).

[86] RIBEIRO-NETO, B., LAENDER, A. H. F.,AND DA SILVA , A. S.
Extracting semi-structured data through examples. InProc. of
CIKM (1999).

[87] The rule markup initiative. http://www.ruleml.org.
[88] SAHUGUET, A., AND AZAVANT , F. Building light-weight wrap-

pers for legacy web data-sources using W4F. InProc. of VLDB
(1999).

[89] SCHAFFERT, S.,AND BRY, F. Querying the Web Reconsidered:
A Practical Introduction to Xcerpt. InProceedings of Extreme
Markup Languages 2004, Montreal, Quebec, Canada (2nd–6th
August 2004)(2004).

[90] SCHWIND, C. B. A logic based framework for action theories.
In Language, Logic and Computation(1997), J. Ginzburg et al.,
Ed., CSLI, pp. 275–291.

[91] SINTEK , M., AND DECKER, S. TRIPLE - an RDF Query, Infer-
ence, and Transformation Language. InInternational Semantic
Web Conference (ISWC)(Sardinia, Italy, 2002), I. Horrocks and
J. Hendler, Eds., LNCS 2342, pp. 364–378.

[92] WINSLETT, M. Updating Logical Databases. Cambridge Uni-
versity Press, 1990.

[93] WSDL. http://www.w3c.org/tr/2003/wd-wsdl12-20030303/.
version 1.2, 2003.

[94] http://xcerpt.org.

	Introduction
	Reasoning and the Semantic Web: State of the Art
	Introducing Rules

	 Nonmonotonic Rules for the Semantic Web
	Evolution, Updates and Events
	Language Paradigm: ECA Rules
	Events.
	Events, Knowledge, and Rules.

	Evolution and Reactivity for Personalization
	Knowledge Base Update and Reasoning About

	Personalization by Reasoning about Actions
	Reasoning about Web Services
	Reasoning about Learning Resources

	Xcerpt: A Query and Transformation Language for Web and Semantic Web Applications
	Xcerpt's Principles
	Referential Transparency.
	Answer-Closedness.
	Answers as Arbitrary XML Data.
	Answer Ranking and Top-k Answers.
	Pattern Queries.
	Incomplete Query Specifications.
	Incomplete Data Selections.
	Rule-Based, Chaining, and Recursion.
	Separation of Queries and Constructions.
	A Query Language for both the Standard Web and the Semantic Web.
	Specific Reasoning as Theories.
	Two Syntaxes: XML Syntax and Compact Human Readable Syntax.

	Flavors of Xcerpt: Xcerpt's Core Constructs
	Data terms
	Query terms
	Construct terms
	Queries
	Construct-query rules and goals.
	Further constructs.

	Languages Related to Xcerpt

	Web Data Extraction
	Lixto
	Visual Data Processing with Lixto
	Web Data Extraction Application Domains

	Personalization Services for the Semantic Web: The Personal Reader Framework
	Architectural Overview of the Personal Reader Framework
	A Personal Reader Instance: Personal Reader for e-Learning
	Providing a Context by Displaying Details of a Learning Resource.
	Providing Pointers to Quizzes.
	Calculating Recommendations.
	Reasoning Rules for User Modeling.

	A Personal Reader Instance: The Personal Publication Reader
	Gathering Data for Semantic Web Applications
	Content Syndication and Personalized Views

	Acknowledgement
	Conclusions
	References

